WO2015093304A1 - 成膜マスクの製造方法及び成膜マスク - Google Patents

成膜マスクの製造方法及び成膜マスク Download PDF

Info

Publication number
WO2015093304A1
WO2015093304A1 PCT/JP2014/082121 JP2014082121W WO2015093304A1 WO 2015093304 A1 WO2015093304 A1 WO 2015093304A1 JP 2014082121 W JP2014082121 W JP 2014082121W WO 2015093304 A1 WO2015093304 A1 WO 2015093304A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mask
opening pattern
forming
light
Prior art date
Application number
PCT/JP2014/082121
Other languages
English (en)
French (fr)
Inventor
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201480069390.6A priority Critical patent/CN105829572B/zh
Priority to KR1020167019697A priority patent/KR102236893B1/ko
Priority to KR1020217003927A priority patent/KR102265891B1/ko
Publication of WO2015093304A1 publication Critical patent/WO2015093304A1/ja
Priority to US15/179,829 priority patent/US10337096B2/en
Priority to US16/194,196 priority patent/US10626491B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks

Definitions

  • the present invention relates to a method for manufacturing a film forming mask for forming an opening pattern by irradiating a resin film with a laser beam, and more particularly to a method for manufacturing a film forming mask capable of easily controlling the inclination angle of the side wall of the opening pattern.
  • This relates to a film mask.
  • a conventional film formation mask has a mask layer having a thickness of 1 ⁇ m or more and 50 ⁇ m or less having at least one opening pattern corresponding to a pattern to be formed, and an opening pattern included in the mask layer is formed on the mask layer. It has a magnetic body without blocking (see, for example, Patent Document 1). Desirably, the opening pattern of the mask layer should be tapered so that the opening becomes wider toward the surface on the magnetic material side.
  • the opening pattern is formed by, for example, irradiating the film with laser light shaped to have a cross-sectional shape similar to the opening pattern. It was difficult to control the inclination angle of the side wall.
  • an object of the present invention is to provide a film forming mask manufacturing method and a film forming mask that can cope with such problems and can easily control the inclination angle of the sidewall of the opening pattern.
  • a method of manufacturing a film formation mask according to the present invention is a method of manufacturing a film formation mask in which a resin film is irradiated with laser light to form a polygonal opening pattern in plan view.
  • a light-transmitting window through which the laser light is transmitted; outside the light-transmitting window, the light transmittance in a lateral region of at least a pair of sides of the light-transmitting window is measured from
  • the opening is directed from the side opposite to the laser light irradiation surface of the film toward the irradiation surface side.
  • An opening pattern having at least one pair of opposed side walls inclined so as to spread is formed.
  • the film forming mask according to the present invention is a film forming mask for forming a film on a substrate through an opening pattern formed on a sheet-like base material, and the opening pattern has an opening formed on the base material.
  • a plurality of pairs of opposing side walls extending from the side opposite to the film forming source toward the film forming source side, and the inclination angles of the plurality of pairs of opposing side walls differ at least on the film forming source side; .
  • the present invention it is possible to easily control the inclination angle of the opposing side wall that is inclined so that the opening of the opening pattern laser processed into the film spreads toward the laser beam irradiation side. Therefore, a plurality of pairs of opposing side walls whose openings of the opening pattern spread toward the film forming source side are provided, and a film forming mask in which the inclination angles of the plurality of pairs of opposing side walls are different at least on the film forming source side can be easily obtained. Can be manufactured. Therefore, it is possible to form a thin film having a uniform thickness while suppressing the side wall of the opening pattern from being a shadow of film formation.
  • FIG. 1A and 1B are views showing an embodiment of a film-forming mask according to the present invention, in which FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along the line OO in FIG. FIG. It is a front view which shows one structural example of the laser processing apparatus for forming the opening pattern in the film-forming mask by this invention. It is a figure which shows one structural example of the beam shaping mask used for the said laser processing apparatus, (a) is a top view, (b) is a partially expanded plan view of (a), (c) is (b).
  • FIG. 4D is an explanatory view showing the light transmittance of a corresponding portion, and FIG.
  • FIG. 4D is a cross-sectional view illustrating the inclination angle of the opposite side wall of the opening pattern processed by the laser light transmitted through the light transmission window of FIG.
  • FIG. 1 It is a figure which shows the structural example of the conventional mask for beam shaping, (a) is a top view, (b) is the inclination
  • FIG. It is explanatory drawing which shows vapor deposition using the conventional metal mask, (a) shows the film thickness distribution of the vapor deposition film in the relative movement direction of a vapor deposition source, (b) is in the direction crossing the relative movement direction of a vapor deposition source. The film thickness distribution of a vapor deposition film is shown.
  • FIG. 10 is a process diagram showing a modified example of laser processing of an opening pattern in the method for manufacturing a film formation mask according to the present invention.
  • FIG. 1A and 1B are diagrams showing an embodiment of a film-forming mask according to the present invention, where FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along the line OO in FIG. 1A, and FIG. FIG.
  • This film formation mask is for forming a film on a substrate through an opening pattern, and is configured to include a film mask 1, a metal mask 2, and a metal frame 3.
  • the film mask 1 is used in close contact with a film formation substrate, and serves as a main mask for forming a thin film pattern on the film formation substrate.
  • the film mask 1 has a thickness of about 10 ⁇ m to 30 ⁇ m.
  • a film made of resin such as polyimide or polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • FIG. 1A a plurality of polygons in a plan view (in the present embodiment, shown in a rectangular shape) corresponding to the thin film pattern.
  • the opening patterns 4 are arranged in a vertical and horizontal matrix.
  • a polyimide whose linear expansion coefficient is about 3 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 / ° C., which approximates the linear expansion coefficient of glass as a deposition target substrate (hereinafter simply referred to as “substrate”) is desirable.
  • the opening pattern 4 has a plurality of pairs (for example, two pairs) of opposing side walls that are inclined so that the opening widens from the substrate side toward the film forming source side (metal mask 2 side). As shown in FIGS. 1B and 1C, the inclination angles of the plurality of pairs of opposing side walls are different at least on the film forming source side (metal mask 2 side).
  • the substrate transfer direction (arrow in FIG. 1A). It is desirable to make the inclination angle of the opposite side wall corresponding to the direction (Y axis direction) intersecting the A direction (same as the X axis direction) larger than the inclination angle of the other opposite side wall.
  • a metal mask 2 is laminated on one surface of the film.
  • This metal mask 2 is a sheet of magnetic metal material such as nickel, nickel alloy, invar or invar alloy having a thickness of about 30 ⁇ m to 50 ⁇ m, for example, having through holes 5 sized to enclose the opening pattern 4.
  • a plurality of slit-like through holes 5 having a size including a plurality of opening patterns 4 arranged in a row are provided, and the film-forming mask of the present invention is provided.
  • the long axis of the slit-shaped through hole 5 is arranged so as to intersect the substrate transport direction (arrow A direction).
  • the film formation mask is placed on the substrate so that the metal mask 2 is on the film formation source side, and the film mask 1 is formed on the substrate by attracting the metal mask 2 by a magnet built in the substrate holder. Adhere to the surface.
  • a metal frame 3 is provided on the surface of the metal mask 2 opposite to the film mask 1.
  • the metal frame 3 fixes and supports the peripheral edge of the metal mask 2, and is formed of a magnetic metal member made of, for example, invar or invar alloy, and a plurality of rows of through holes 5 of the metal mask 2.
  • size which encloses is comprised.
  • the frame is not limited to the metal frame 3 and may be made of a hard resin. However, in the present embodiment, the frame is the metal frame 3.
  • a metal sheet having a predetermined size that is predetermined according to the size of the substrate is cut out.
  • the film may transmit visible light or may not transmit visible light, and is not particularly limited. Here, the case where the film transmits visible light will be described.
  • the resist film is dried to form a resist film.
  • the resist film is exposed using a photomask, and then developed.
  • a resist mask provided with a plurality of slit-shaped openings corresponding to the formation positions of the through holes 5 is formed.
  • the metal sheet is wet-etched using the resist mask, a portion of the metal sheet corresponding to the opening of the resist mask is removed, and a plurality of slit-shaped through holes 5 are provided to form the metal mask 2.
  • the resist mask is removed by dissolving it in an organic solvent, for example.
  • the etching liquid for etching a metal sheet is suitably selected according to the material of the metal sheet to be used, and a well-known technique can be applied.
  • the through holes 5 are formed by etching the metal sheet, the metal sheet is aligned with a substrate-side alignment mark previously provided on the substrate at a predetermined position outside the formation region of the plurality of rows of through holes 5. Therefore, the through hole 25 for the mask side alignment mark shown in FIG. 1A may be formed at the same time. In this case, when the resist mask is formed, an alignment mark opening may be provided at a position corresponding to the through hole 25.
  • the mask member may be formed by other methods without depending on the above method.
  • a seed layer is formed on one surface of the film by, for example, electroless plating, a photoresist is applied thereon, and this is exposed and developed, and a plurality of islands are formed corresponding to the positions where the plurality of through holes 5 are formed.
  • a magnetic metal material such as nickel, nickel alloy, invar or invar alloy is plated on the outer region of the island pattern.
  • the mask member may be formed by etching and removing the seed layer at the formation position of the island pattern.
  • the mask member is stretched and fixed to one end surface of the metal frame 3 with the metal mask 2 side as the metal frame 3 side.
  • the mask member may be fixed to the metal frame 3 by irradiating the peripheral region of the mask member with laser light from the film mask 1 side and spot welding the metal mask 2 and the metal frame 3.
  • This opening pattern forming step is a step of forming the plurality of opening patterns 4 by irradiating the laser beam L from the metal mask 2 side and arranging them in a row on the films in the plurality of rows of through holes 5 of the metal mask 2.
  • the laser processing apparatus includes an XY stage 7, a laser light source 8, a coupling optical system 9, and a beam shaping mask 10 above the XY stage 7 from upstream to downstream in the traveling direction of the laser light L.
  • the imaging lens 11 and the objective lens 12 are provided in this order.
  • An imaging camera 14 is disposed on the optical path where the optical path from the objective lens 12 to the imaging lens 11 is branched by the half mirror 13, and the optical path from the objective lens 12 to the imaging lens 11 is 400 nm or less.
  • An illumination light source 16 is disposed on an optical path branched by a dichroic mirror 15 that transmits light L and reflects visible light.
  • the XY stage 7 has a mask member 17 placed on the upper surface and moves in the XY direction in a plane parallel to the XY plane.
  • the XY stage 7 is controlled by a control device (not shown) and previously input and stored. The movement is stepped by the amount of movement.
  • the laser light source 8 generates a laser beam L having a wavelength of 400 nm or less, for example, an excimer laser having a KrF of 248 nm, or a YAG laser emitting a laser beam L having a third or fourth harmonic of 1064 nm.
  • the coupling optical system 9 includes a beam expander that expands the laser beam emitted from the laser light source 8, a photo integrator that irradiates a beam shaping mask 10 described later with a uniform luminance distribution of the laser light L, and It includes a condenser lens.
  • the beam shaping mask 10 is formed by shaping the laser beam L irradiated to the mask member 17 into a laser beam having a cross-sectional shape similar to the opening pattern 4 to be formed.
  • a plurality of translucent windows 18 having a similar shape to a predetermined enlargement with respect to the arrangement pitch of the plurality of opening patterns 4 located in a predetermined unit region surrounded by a broken line in FIG.
  • the transparent window 18 is formed on a light shielding film such as chromium (Cr) deposited on a transparent glass substrate or quartz substrate.
  • the beam shaping mask 10 has a light transmission window 18 similar to the opening pattern 4, and outside the light transmission window 18, a lateral region of at least one side of the light transmission window 18.
  • the light transmittance is gradually reduced from the edge of the light transmitting window 18 toward the side.
  • the beam shaping mask 10 has the light transmitting window 18 on the light shielding film 19 in the lateral region of the opposite side corresponding to the Y-axis direction.
  • the light-shielding portions and the light-transmitting portions are alternately provided from the edge toward the side, and the width of the light-shielding portion is separated from the edge of the light-transmitting window 18 as shown partially enlarged in FIG.
  • the light transmittance in the lateral region of the opposite side corresponding to the Y-axis direction (corresponding to the direction intersecting the substrate transport direction) is gradually reduced as the distance from the edge of the light transmission window 18 increases.
  • FIG. 5C gradation is given to the light transmittance.
  • FIG. 4D the light intensity of the laser light L applied to the film 20 is strongest in the central region corresponding to the opening pattern 4 and is separated from the edge of the opening pattern 4 to the side. It decreases gradually according to.
  • the method of gradually decreasing the light transmittance of the side region of the light transmitting window 18 is not limited to the method in which the light shielding portions and the light transmitting portions are alternately provided in the light shielding film 19 as described above.
  • the film 19 may be halftone.
  • the imaging lens 11 is a condensing lens that projects a plurality of light-transmitting windows 18 formed on the beam shaping mask 10 at a predetermined magnification on a film in cooperation with an objective lens 12 described later. It is.
  • the objective lens 12 projects a plurality of light-transmitting windows 18 formed on the beam shaping mask 10 in cooperation with the imaging lens 11 at a predetermined magnification on the film, and for example, a mask.
  • An image of the above-described reference pattern of a transparent reference substrate 21 (see FIG. 2) provided on a side opposite to the metal frame 3 of the member 17 and provided with a reference pattern serving as a positioning reference for the irradiation of the laser beam L will be described later.
  • the imaging camera 14 can take a picture.
  • the imaging position of the objective lens 12 and the beam shaping mask 10 have a conjugate relationship.
  • the imaging camera 14 captures the reference pattern provided on the reference substrate 21, and is, for example, a CCD camera or a CMOS camera that captures a two-dimensional image.
  • the imaging position of the objective lens 12 and the imaging surface of the imaging camera 14 have a conjugate relationship.
  • the illumination light source 16 is, for example, a halogen lamp that emits visible light, and illuminates the imaging region of the imaging camera 14 so that the imaging camera 14 can shoot.
  • reference numeral 22 denotes a result of forming an image of the reference pattern of the reference substrate, the image of the opening pattern 4 formed by laser processing, and the like on the imaging surface of the imaging camera 14 in cooperation with the objective lens 12.
  • Reference numeral 23 denotes a relay lens, and reference numeral 24 denotes a total reflection mirror.
  • the opening pattern formation process performed using the laser processing apparatus comprised in this way is demonstrated.
  • the mask member 17 and the reference substrate 21 are placed with the film of the mask member 17 facing the surface 21a opposite to the surface on which the reference pattern is formed of the reference substrate 21 on which the reference pattern is formed.
  • the film 20 is brought into close contact with the surface 21 a of the reference substrate 21.
  • the integrated mask member 17 and the reference substrate 21 are positioned and placed on the XY stage 7 with the mask member 17 as the laser light L irradiation side. .
  • the XY stage 7 moves and the objective lens 12 is positioned at the laser processing start position of the mask member 17.
  • the imaging camera 14 captures the reference pattern provided on the reference substrate 21 corresponding to, for example, the center position of the unit region of the laser processing start position through the film 20 and captures the reference pattern at the imaging center. Position.
  • the imaging center coincides with the optical axis of the objective lens 12.
  • the optical unit of the laser processing apparatus is raised in the Z-axis direction by a predetermined distance along the optical axis of the objective lens 12, and the imaging position of the objective lens 12 is set to the film 20 of the mask member 17 and the reference. It is positioned at the interface with the substrate 21.
  • the laser light source 8 is activated and pulsates to emit a plurality of shot laser beams.
  • the emitted laser beam is expanded by the coupling optical system 9 and is applied to the beam shaping mask 10 as laser light L having a uniform intensity distribution.
  • the laser beam L irradiated to the beam shaping mask 10 passes through the plurality of light transmitting windows 18 of the beam shaping mask 10, so that the cross-sectional shape is shaped to be similar to the shape of the opening pattern 4.
  • Light L is emitted from the beam shaping mask 10. Then, the light is condensed on the film 20 by the objective lens 12.
  • the laser light L shaped by the conventional beam shaping mask 10 whose outer side of the light transmission window 18 is shielded by the light shielding film 19 is shown in FIG.
  • the opposing side wall 4a of the opening pattern 4 processed into the film 20 by such laser light L is shown in FIG.
  • the opposite side facing the Y-axis direction of the translucent window 18 (corresponding to the major axis direction of the through hole 5 of the metal mask 2).
  • the light transmittance is formed so that the light transmittance gradually decreases from the edge of the light transmission window 18 to the side, the Y region of the laser light L emitted from the beam shaping mask 10 is formed.
  • the light intensity distribution in the direction is strong in the central region corresponding to the opening pattern 4 and gradually decreases from the position corresponding to the edge of the opening pattern 4 toward the outside, as indicated by a thick solid line in FIG. It will be a thing.
  • the opposite side wall 4a of the opening pattern 4 processed into the film 20 by the laser beam L as described above is the irradiation side (corresponding to the film forming source side) of the laser beam L as shown in FIG. It has a shallow inclination angle (small inclination angle) of 25 ° to 30 ° with respect to the opposite film surface (mask surface) 20a.
  • the opposite side regions corresponding to the X-axis direction of the translucent window 18 are not subjected to the light transmittance gradation process, and thus have the same direction.
  • the light intensity distribution is uniform, and the inclination angle of the sidewalls facing in the same direction of the processed opening pattern 4 is the same as that of the prior art with respect to the film surface 20a opposite to the laser light irradiation side. 70 ° to 80 °.
  • the XY stage 7 is stepped by a predetermined distance in the X or Y axis direction, and the second unit region, the third unit region ... And the plurality of opening patterns 4 are laser processed in order in each unit region.
  • the plurality of opening patterns 4 are laser processed at predetermined positions on the film 20 to form the film mask 1.
  • the imaging camera 14 captures the reference pattern provided on the reference substrate 21 corresponding to, for example, the center position of the unit region of the laser processing start position, and after confirming the position, A plurality of opening patterns 4 are formed while the XY stage 7 is moved stepwise in the X and Y axis directions with reference to the position of the reference pattern.
  • a plurality of opening patterns 4 may be formed in each unit area while stepping by a predetermined distance based on the mechanical accuracy of the XY stage 7, but a reference corresponding to the center position of each unit area is possible.
  • a reference pattern provided on the substrate 21 is photographed by the imaging camera 14, and, for example, the imaging center of the imaging camera 14 (coincides with the optical axis of the objective lens 12) is positioned on the reference pattern, and then a plurality of aperture patterns 4 are laser processed. May be.
  • the XY stage 7 is moved in the X or Y axis direction with the mask side alignment mark as a reference.
  • a plurality of opening patterns 4 may be formed in each unit region while stepping by a predetermined distance.
  • a substrate is placed on a substrate holder that is movably provided in a vacuum chamber. Further, a film formation mask is placed on the substrate with the film mask 1 side as the substrate side. At this time, the camera provided in the vacuum chamber is used to photograph the substrate-side alignment mark of the substrate and the mask-side alignment mark provided on the film formation mask so that both marks have a predetermined positional relationship. The substrate and the deposition mask are positioned on the substrate. Thereafter, the magnetic force of the magnet built in the substrate holder is applied to the metal mask 2 of the film formation mask to attract the metal mask 2, and the film mask 1 is brought into close contact with the film formation surface of the substrate.
  • the vapor deposition source 26 (see FIGS. 5 to 7) is heated to start vapor deposition.
  • 5 to 7 show the vapor deposition source 26 arranged above the film formation mask for convenience of explanation, but in an actual vapor deposition apparatus, the vapor deposition source 26 is located below the film formation mask. Be placed.
  • the vapor deposition source 26 of the vapor deposition apparatus for performing vapor deposition while moving the substrate as described above is generally the direction of movement of the substrate (the direction in which the vapor deposition source 26 moves relatively, corresponding to the arrow A direction or the X-axis direction). It has a structure in which a plurality of unit vapor deposition sources 26a are arranged side by side in the intersecting direction (Y-axis direction) (see, for example, FIG. 5B), and both the relative movement directions of the vapor deposition source 26 (arrow A direction).
  • a shielding plate 27 is provided on the side (see, for example, FIG. 5A).
  • the minimum divergence angle ⁇ t of the vapor deposition particles in the relative movement direction is approximately 70 ° to 80 ° with respect to the opening surface of the vapor deposition source 26 (a surface parallel to the mask surface of the opposing film formation mask) by the shielding plate 27.
  • the shielding plate 27 since there is no shielding plate 27 on the side (Y-axis direction) intersecting the relative movement direction of each unit vapor deposition source 26a constituting the vapor deposition source 26 (see, for example, FIG. 5B), the Y-axis direction.
  • the minimum divergence angle ⁇ e of the vapor deposition particles is a shallow angle of about 20 ° to 30 ° with respect to the opening surface of the vapor deposition source 26.
  • the inclination angle of the opposite side wall 4a in the same direction of the opening pattern 4 is 70 ° to 80 °. Even if it is steep, the opposite side wall 4a in the same direction does not become a shadow of vapor deposition, and the film thickness distribution of the vapor deposition film in the same direction becomes substantially uniform.
  • the minimum divergence angle ⁇ e of the vapor deposition particles in the direction (Y-axis direction) intersecting the relative movement direction of the vapor deposition source 26 indicated by the arrow A is not limited. It is incident on the film formation mask at a shallow angle of 30 ° to 30 °. Therefore, the opposing side wall 4a of the opening pattern 4 in the same direction becomes a shadow of vapor deposition, and the film thickness distribution of the vapor deposition film in the same direction becomes non-uniform. That is, the film thickness at both ends in the same direction of the vapor deposition film becomes thin.
  • the minimum divergence angle ⁇ t of the vapor deposition particles in the relative movement direction (X-axis direction) of the vapor deposition source 26 indicated by the arrow A is limited to approximately 70 ° to 80 °, the opposite of the opening pattern 4 in the same direction Even if the inclination angle of the side wall 4a is steep from 70 ° to 80 °, the opposite side wall 4a in the same direction does not become a deposition shadow, and the film thickness distribution of the deposited film in the same direction becomes substantially uniform.
  • the minimum divergence angle ⁇ e of the vapor deposition particles in the direction (Y-axis direction) intersecting the relative movement direction of the vapor deposition source 26 indicated by the arrow A is not limited.
  • the light enters the deposition mask at a shallow angle of approximately 20 ° to 30 °. Therefore, the opposing side wall 4a of the opening pattern 4 in the same direction becomes a shadow of vapor deposition, and the film thickness distribution of the vapor deposition film in the same direction becomes non-uniform. That is, the film thickness at both ends in the same direction of the vapor deposition film becomes thin.
  • the inclination angle of the opposite side walls on both sides in the relative movement direction of the vapor deposition source 26 indicated by the arrow A is the same as that of the conventional film forming mask.
  • the minimum divergence angle ⁇ t of the vapor deposition particles in the same direction is limited to about 70 ° to 80 °, so that the opening pattern 4 in the same direction is the same as in the prior art.
  • the opposite side wall 4a does not become a shadow of vapor deposition, and the film thickness distribution of the vapor deposition film in the same direction becomes substantially uniform.
  • the film formation mask according to the present invention has an inclination of the opposite side wall 4 a of the opening pattern 4 in the direction (Y-axis direction) intersecting the relative movement direction of the vapor deposition source 26 indicated by the arrow A. Since the angle is formed at a shallow angle of 25 ° to 30 ° with respect to the film surface 20a opposite to the vapor deposition source 26 side, the opposite side wall 4a of the opening pattern 4 in the same direction is the vapor deposition source indicated by the arrow A. No vapor deposition shadow is formed on the vapor deposition particles incident on the film formation mask at a shallow angle of 25 ° to 30 ° from the direction (Y-axis direction) crossing the direction of relative movement 26. Therefore, the film thickness distribution of the deposited film in the same direction is also substantially uniform.
  • FIG. 8 is a process diagram showing a modified example of laser processing of the opening pattern 4 in the method for manufacturing a film formation mask according to the present invention.
  • the light transmitting window 18 through which the laser light L is transmitted is provided, and outside the light transmitting window 18, at least in a side region of one side of the light transmitting window 18.
  • the film 20 corresponding to the pattern forming portion is irradiated to form a concave portion 28 having a predetermined depth as shown in FIG.
  • a beam shaping mask (second beam shaping mask) having a transparent window 18 similar to the opening pattern 4 and the outside of the transparent window 18 being shielded from light.
  • the second laser beam L2 shaped using 10 is irradiated to the portion of the film 20 corresponding to the opening pattern 4 forming portion at the bottom 28a of the recess 28 as shown in FIG.
  • a through opening 29 is formed.
  • the opening pattern 4 having at least one pair of opposing side walls 4 a extending toward the laser light L irradiation side is formed on at least the laser light irradiation surface side of the film 20. be able to.
  • the transparent window 18 of the first beam shaping mask 10 is formed so that the bottom area of the recess 28 is larger than the opening area of the through opening 29, Even when the irradiation position of the first laser beam L1 is shifted by ⁇ d from a predetermined position, the through opening 29 can be formed at the predetermined position in the recess 28 (FIG. 8A). , (B)). Therefore, the formation position accuracy of the recess 28 may be lower than the formation position accuracy of the through opening 29.
  • the film formation mask in which the laminated body in which the film mask 1 and the metal mask 2 are stacked is fixed to the frame.
  • the present invention is not limited to this, and the frame may be omitted. Furthermore, only the film mask 1 may be sufficient, and the film mask 1 may be fixed to the frame.
  • the film formation mask applied to the vapor deposition apparatus has been described.
  • the present invention is not limited to this, and may be applied to a sputtering apparatus or other film formation apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Laser Beam Processing (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、樹脂製のフィルム20にレーザ光Lを照射して平面視多角形の開口パターン4を形成する成膜マスクの製造方法であって、前記レーザ光が透過する透光窓18を有し、該透光窓18の外側にて、該透光窓18の少なくとも一対辺の側方領域における光透過率を、前記透光窓の縁部から側方に向かって漸減させたビーム整形用マスク10を使用して整形されたレーザ光Lを前記フィルム20に照射することにより、開口が前記フィルム20の前記レーザ光Lの照射面とは反対側から前記照射面側に向かって広がるように傾斜した少なくとも1対の対向側壁4aを有する開口パターン4を形成するものである。

Description

成膜マスクの製造方法及び成膜マスク
 本発明は、樹脂製のフィルムにレーザ光を照射して開口パターンを形成する成膜マスクの製造方法に関し、特に開口パターンの側壁の傾き角度の制御を容易にし得る成膜マスクの製造方法及び成膜マスクに係るものである。
 従来の成膜マスクは、成膜作製するパターンに対応した、少なくとも1つの開口パターンを有する厚みが1μm以上50μm以下のマスク層を有し、そのマスク層上に、該マスク層が有する開口パターンを塞ぐことなく磁性体を有するものとなっていた(例えば、特許文献1参照)。そして、望ましくは、上記マスク層が有する開口パターンは、磁性体側の表面に向かって開口が広くなるようにテーパー状であるのがよいとされていた。
特開2009-249706号公報
 しかし、このような従来の成膜マスクにおいて、開口パターンの形成は、例えば、開口パターンに相似形の断面形状に整形されたレーザ光をフィルムに照射して行うものであったので、開口パターンの側壁の傾き角度を制御することが困難であった。
 特に、平面視矩形状の開口パターンの2対の対向側壁にて、一方の対向側壁と他方の対向側壁の傾き角度を異ならせることができなかった。したがって、従来の方法により製造される成膜マスクを使用して、基板を一方向に搬送しながら成膜しようとすると、成膜された薄膜の搬送方向と交差する方向の膜厚分布が、同方向の開口パターンの縁部によるシャドウの影響で不均一になるという問題があった。
 そこで、本発明は、このような問題点に対処し、開口パターンの側壁の傾き角度の制御を容易にし得る成膜マスクの製造方法及び成膜マスクを提供することを目的とする。
 上記目的を達成するために、本発明による成膜マスクの製造方法は、樹脂製のフィルムにレーザ光を照射して平面視多角形の開口パターンを形成する成膜マスクの製造方法であって、前記レーザ光が透過する透光窓を有し、該透光窓の外側にて、該透光窓の少なくとも一対辺の側方領域における光透過率を、前記透光窓の縁部から側方に向かって漸減させたビーム整形用マスクを使用して整形されたレーザ光を前記フィルムに照射することにより、開口が前記フィルムの前記レーザ光の照射面とは反対側から前記照射面側に向かって広がるように傾斜した少なくとも1対の対向側壁を有する開口パターンを形成するものである。
 また、本発明による成膜マスクは、シート状の基材に形成された開口パターンを介して基板上に成膜するための成膜マスクであって、前記開口パターンは、開口が前記基材の成膜源とは反対側から前記成膜源側に向かって広がる複数対の対向側壁を有しており、該複数対の対向側壁の傾き角度が、少なくとも前記成膜源側で異なるものである。
 本発明によれば、フィルムにレーザ加工される開口パターンの開口がレーザ光の照射側に向かって広がるように傾斜した対向側壁の傾き角度を容易に制御することができる。したがって、開口パターンの開口が成膜源側に向かって広がる複数対の対向側壁を有しており、該複数対の対向側壁の傾き角度が、少なくとも成膜源側で異なる成膜マスクも容易に製造することができる。それ故、開口パターンの側壁が成膜のシャドウとなるのを抑制して膜厚が均一な薄膜を成膜することができる。
本発明による成膜マスクの一実施形態を示す図であり、(a)は平面図、(b)は(a)のO-O線断面矢視図、(c)は(a)のP-P線断面矢視図である。 本発明による成膜マスクにおける開口パターンを形成するためのレーザ加工装置の一構成例を示す正面図である。 上記レーザ加工装置に使用するビーム整形用マスクの一構成例を示す図であり、(a)は平面図、(b)は(a)の一部拡大平面図、(c)は(b)に対応する部分の光透過率を示す説明図、(d)は(a)の透光窓を透過したレーザ光により加工される開口パターンの対向側壁の傾斜角度を説明する断面図である。 従来のビーム整形用マスクの構成例を示す図であり、(a)は平面図、(b)は(a)の透光窓を透過したレーザ光により加工される開口パターンの対向側壁の傾斜角度を説明する断面図である。 従来のメタルマスクを使用した蒸着を示す説明図であり、(a)は蒸着源の相対移動方向における蒸着膜の膜厚分布を示し、(b)は蒸着源の相対移動方向と交差する方向における蒸着膜の膜厚分布を示す。 図4に示すビーム整形用マスクを使用して開口パターンがレーザ加工された成膜マスクを使用した蒸着を示す説明図であり、(a)は蒸着源の相対移動方向における蒸着膜の膜厚分布を示し、(b)は蒸着源の相対移動方向と交差する方向における蒸着膜の膜厚分布を示す。 本発明による成膜マスクを使用した蒸着を示す説明図であり、(a)は蒸着源の相対移動方向における蒸着膜の膜厚分布を示し、(b)は蒸着源の相対移動方向と交差する方向における蒸着膜の膜厚分布を示す。 本発明による成膜マスクの製造方法において、開口パターンのレーザ加工の変形例を示す工程図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による成膜マスクの一実施形態を示す図であり、(a)は平面図、(b)は(a)のO-O線断面矢視図、(c)は(a)のP-P線断面矢視図である。この成膜マスクは、基板上に開口パターンを介して成膜するためのもので、フィルムマスク1と、メタルマスク2と、金属フレーム3とを備えて構成されている。
 上記フィルムマスク1は、被成膜基板に密接させて使用されものであり、被成膜基板上に薄膜パターンを成膜するためのメインマスクとなるもので、例えば厚みが10μm~30μm程度の、例えばポリイミドやポリエチレンテレフタレート(PET)等の樹脂製のフィルムに、図1(a)に示すように、上記薄膜パターンに対応して平面視多角形(本実施形態においては矩形状で示す)の複数の開口パターン4を縦横マトリクス状に配置して備えている。好ましくは、線膨張係数が被成膜基板(以下、単に「基板」という)としてのガラスの線膨張係数に近似した3×10-6~5×10-6/℃程度のポリイミドが望ましい。
 詳細には、上記開口パターン4は、開口が上記基板側から成膜源側(メタルマスク2側)に向かって広がるように傾斜した複数対(例えば、2対)の対向側壁を有しており、該複数対の対向側壁の傾き角度が、図1(b),(c)に示すように、少なくとも上記成膜源側(メタルマスク2側)で異なるものである。
 より詳細には、本発明の成膜マスクが基板を一方向に搬送しながら成膜する成膜装置に適用されるものである場合には、上記基板の搬送方向(図1(a)の矢印A方向(X軸方向に同じ))と交差する方向(Y軸方向)に対応した対向側壁の傾き角度を他の対向側壁の傾き角度よりも大きくするのが望ましい。
 上記フィルムの一面には、メタルマスク2が積層されている。このメタルマスク2は、上記開口パターン4を内包する大きさの貫通孔5を形成した、例えば厚みが30μm~50μm程度の、例えばニッケル、ニッケル合金、インバー又はインバー合金等の磁性金属材料のシートであり、フィルムマスク1を支持するサブマスクとなるものである。
 詳細には、図1(a)に示すように、一列に並んだ複数の開口パターン4を内包する大きさのスリット状の貫通孔5が複数列設けられており、本発明の成膜マスクが基板を一方向に搬送しながら成膜する成膜装置に適用されるものである場合には、スリット状の貫通孔5の長軸が基板搬送方向(矢印A方向)と交差するように配置される。
 この場合、成膜マスクは、メタルマスク2が成膜源側となるようにして基板上に設置され、基板ホルダーに内蔵された磁石によりメタルマスク2が吸引されてフィルムマスク1を基板の成膜面に密着させる。
 上記メタルマスク2の上記フィルムマスク1とは反対側の面には、金属フレーム3が設けられている。この金属フレーム3は、上記メタルマスク2の周縁部を固定して支持するもので、例えばインバー又はインバー合金等から成る磁性金属部材で形成されており、上記メタルマスク2の複数列の貫通孔5を内包する大きさの開口6を有する枠状を成している。なお、フレームは、金属フレーム3に限られず、硬質樹脂から成るものであってもよいが、本実施形態においては、フレームは金属フレーム3である。
 次に、このように構成された成膜マスクの製造方法について説明する。
 先ず、厚みが30μm~50μm程度の例えばインバー又はインバー合金等の磁性金属材料のシートから、基板のサイズに合わせて予め定められた所定サイズのメタルシートが切り出される。
 次に、上記メタルシートの一面に例えばポリイミド等の樹脂液を塗布した後、これを200℃~300℃程度の温度で硬化させて厚みが10μm~30μm程度のフィルムを形成する。上記フィルムは、可視光を透過するものでも又は可視光を不透過のものであってもよく、特に限定されないが、ここではフィルムが可視光を透過するものである場合について説明する。
 次いで、メタルシートの他面にフォトレジストを例えばスプレー塗布した後、これを乾燥させてレジストフィルムを形成し、次に、フォトマスクを使用してレジストフィルムを露光した後、現像し、複数列の貫通孔5の形成位置に対応させてスリット状の複数列の開口部を設けたレジストマスクを形成する。
 続いて、上記レジストマスクを使用して上記メタルシートをウェットエッチングし、レジストマスクの上記開口部に対応した部分のメタルシートを除去してスリット状の複数列の貫通孔5を設けてメタルマスク2を形成した後、レジストマスクを例えば有機溶剤に溶解させて除去する。これにより、メタルマスク2と樹脂製のフィルムとを積層したマスク用部材が形成される。なお、メタルシートをエッチングするためのエッチング液は、使用するメタルシートの材料に応じて適宜選択され、公知の技術を適用することができる。
 また、メタルシートをエッチングして貫通孔5を形成する際に、複数列の貫通孔5の形成領域外の予め定められた位置に基板に予め設けられた基板側アライメントマークに対して位置合わせするための、図1(a)に示すマスク側アライメントマーク用の貫通孔25を同時に形成してもよい。この場合、レジストマスクを形成する際に、上記貫通孔25に対応した位置にアライメントマーク用の開口部を設けるとよい。
 マスク用部材は上記方法によらず、他の方法で形成してもよい。例えば、フィルムの一面にシード層を例えば無電解めっきにより形成し、その上にフォトレジストを塗布してこれを露光及び現像し、複数列の貫通孔5の形成位置に対応させて複数列の島パターンを形成した後、該島パターンの外側領域にニッケル、ニッケル合金、インバー又はインバー合金等の磁性金属材料をめっき形成する。そして、島パターンを除去した後、該島パターンの形成位置のシード層をエッチングして除去することによりマスク用部材を形成してもよい。
 次いで、マスク用部材は、メタルマスク2側を金属フレーム3側として金属フレーム3の一端面に架張して固定される。マスク用部材の金属フレーム3への固定は、マスク用部材の周縁領域にフィルムマスク1側からレーザ光を照射してメタルマスク2と金属フレーム3とをスポット溶接して行うとよい。
 続いて、本発明の特徴である開口パターン形成工程に移る。この開口パターン形成工程は、メタルマスク2側からレーザ光Lを照射してメタルマスク2の複数列の貫通孔5内のフィルムに夫々一列に並べて複数の開口パターン4を形成する工程である。
 先ず、開口パターン形成工程において使用するレーザ加工装置について、図2を参照して説明する。
 上記レーザ加工装置は、XYステージ7と、該XYステージ7の上方に、レーザ光Lの進行方向の上流から下流に向かってレーザ光源8と、カップリング光学系9と、ビーム整形用マスク10と、結像レンズ11と、対物レンズ12とをこの順に備えている。また、対物レンズ12から結像レンズ11に向かう光路がハーフミラー13で分岐された光路上には、撮像カメラ14が配置され、対物レンズ12から結像レンズ11に向かう光路が、400nm以下のレーザ光Lを透過し、可視光を反射するダイクロイックミラー15で分岐された光路上には、照明光源16が配置されている。
 ここで、XYステージ7は、上面にマスク用部材17を載置してXY平面に平行な面内をXY方向に移動するもので、図示省略の制御装置によって制御されて、予め入力して記憶された移動量だけステップ移動するようになっている。
 上記レーザ光源8は、波長が400nm以下のレーザ光Lを発生する、例えばKrF248nmのエキシマレーザや、1064nmの第3高調波や第4高調波のレーザ光Lを放射するYAGレーザである。
 また、上記カップリング光学系9は、レーザ光源8から放射されたレーザビームを拡張するビームエキスパンダと、レーザ光Lの輝度分布を均一にして後述のビーム整形用マスク10に照射するフォトインテグレータ及びコンデンサレンズを含むものである。
 上記ビーム整形用マスク10は、マスク用部材17に照射されるレーザ光Lを、形成しようとする開口パターン4に相似形の断面形状を有するレーザビームに整形して射出するもので、開口パターン4に相似形の複数の透光窓18を、図1(a)に破線で囲って示す予め定められた単位領域内に位置する複数の開口パターン4の配列ピッチに対して、予め定められた拡大倍率で配置して備えたもので、透明なガラス基板や石英基板に被着させたクロム(Cr)等の遮光膜に上記透光窓18を形成したものである。
 詳細には、上記ビーム整形用マスク10は、開口パターン4に相似形の透光窓18を有し、該透光窓18の外側にて、該透光窓18の少なくとも一対辺の側方領域における光透過率を、上記透光窓18の縁部から側方に向かって漸減させた構成を有している。
 より詳細には、上記ビーム整形用マスク10は、図3(a)に示すように、透光窓18の、Y軸方向に対応した対辺の側方領域の遮光膜19に透光窓18の縁部から側方に向かって遮光部と透光部とが交互に設けられると共に、同図(b)に一部拡大して示すように遮光部の幅を透光窓18の縁部から離れるに従って徐々に広げることにより、Y軸方向(基板搬送方向と交差する方向に相当)に対応した対辺の側方領域における光透過率が透光窓18の縁部から離れるに従って段階的に減じるように、同図(c)に示すように光透過率にグラデーションを持たせている。これにより、同図(d)に示すように、フィルム20に照射されるレーザ光Lの光強度は、開口パターン4に対応した中央領域が最も強く、開口パターン4の縁部から側方に離れるに従って漸減する。
 なお、透光窓18の上記側方領域の光透過率を漸減させる方法としては、上述のように遮光膜19に遮光部と透光部とを交互に設けるものに限られず、対応領域の遮光膜19をハーフトーンにしてもよい。
 上記結像レンズ11は、後述の対物レンズ12と協働してビーム整形用マスク10に形成された複数の透光窓18をフィルム上に予め定められた倍率で縮小投影するもので集光レンズである。
 また、上記対物レンズ12は、上記結像レンズ11と協働してビーム整形用マスク10に形成された複数の透光窓18をフィルム上に予め定められた倍率で縮小投影すると共に、例えばマスク用部材17の金属フレーム3とは反対側に配置され、レーザ光Lの照射の位置決め基準となる基準パターンを設けた透明な基準基板21(図2参照)の上記基準パターンの像を取り込んで後述の撮像カメラ14により撮影可能とするものである。そして、対物レンズ12の結像位置とビーム整形用マスク10とは共役の関係を成している。
 上記撮像カメラ14は、基準基板21に設けられた上記基準パターンを撮影するものであり、例えば2次元画像を撮影するCCDカメラやCMOSカメラ等である。そして、対物レンズ12の結像位置と撮像カメラ14の撮像面とは共役の関係を成している。
 上記照明光源16は、可視光を放射する例えばハロゲンランプ等であり、撮像カメラ14の撮像領域を照明して撮像カメラ14による撮影を可能にさせるものである。
 なお、図2において、符号22は、対物レンズ12と協働して基準基板の基準パターンの像やレーザ加工により形成される開口パターン4の像等を撮像カメラ14の撮像面に結像させる結像レンズであり、符号23は、リレーレンズ、符号24は全反射ミラーである。
 次に、このように構成されたレーザ加工装置を使用して行う開口パターン形成工程について説明する。
 先ず、上記基準パターンを形成した基準基板21の基準パターンを形成した面とは反対側の面21aにマスク用部材17のフィルムを対向させた状態で、マスク用部材17と上記基準基板21とを図示省略のアライメントマークを使用して位置決めした後、フィルム20を基準基板21の上記面21aに密着させる。
 次に、図2に示すように、一体化された上記マスク用部材17と上記基準基板21とをマスク用部材17をレーザ光Lの照射側として、XYステージ7上に位置決めし、載置する。
 次いで、XYステージ7が移動して対物レンズ12がマスク用部材17のレーザ加工開始位置に位置付けられる。詳細には、撮像カメラ14により、レーザ加工開始位置の単位領域の例えば中心位置に対応して上記基準基板21に設けられた基準パターンを、フィルム20を透かして撮影し、該基準パターンを撮像中心に位置付ける。なお、この撮像中心は、対物レンズ12の光軸に合致している。
 続いて、レーザ加工装置の光学ユニットを対物レンズ12の光軸に沿って予め定められた距離だけZ軸方向に上昇させ、対物レンズ12の結像位置をマスク用部材17のフィルム20と上記基準基板21との界面に位置付ける。
 引き続いて、レーザ光源8が起動されてパルス発振し、複数ショットのレーザビームが放射される。放射されたレーザビームは、カップリング光学系9により拡張され、強度分布が均一にされたレーザ光Lとなってビーム整形用マスク10に照射する。
 ビーム整形用マスク10に照射したレーザ光Lは、該ビーム整形用マスク10の複数の透光窓18を透過することにより断面形状が開口パターン4の形状と相似形に整形されて、複数のレーザ光Lとなってビーム整形用マスク10を射出する。そして、対物レンズ12により、フィルム20上に集光される。
 この場合、図4(a)に示すような、透光窓18の外側が遮光膜19で遮光された従来技術のビーム整形用マスク10により整形されたレーザ光Lは、同図(b)に太い実線で示すように、X(及びY)軸方向の光強度分布が略均一であるため、このようなレーザ光Lによりフィルム20に加工される開口パターン4の対向側壁4aは、同図(b)に示すようにレーザ光Lの照射側(成膜源側に相当)とは反対側のフィルム面(マスク面)20aに対して70°~80°の急峻な傾き角度(大きい傾き角度)を有するものとなる。
 一方、本発明においては、図3(a)に示すように、上記透光窓18のY軸方向(メタルマスク2の貫通孔5の長軸方向に相当)に対応して対向する対辺の側方領域は、前述したように、光透過率が透光窓18の縁部から側方に向かって漸減するように形成されているため、ビーム整形用マスク10を射出したレーザ光LのY軸方向の光強度分布は、同図(d)に太い実線で示すように、開口パターン4に対応した中央領域が強く、開口パターン4の縁部に対応した位置から外側に向かって強度が漸減するものとなる。したがって、上記のようなレーザ光Lによりフィルム20に加工される開口パターン4の対向側壁4aは、同図(d)に示すようにレーザ光Lの照射側(成膜源側に相当)とは反対側のフィルム面(マスク面)20aに対して25°~30°の浅い傾き角度(小さい傾き角度)を有するものとなる。
 この場合、図3(a)に示すように、上記透光窓18のX軸方向に対応して対向する対辺の側方領域は、光透過率のグラデーション処理が施されていないため、同方向の光強度分布は均一であり、加工された開口パターン4の同方向に対向する側壁の傾き角度は、従来技術と同じように、レーザ光Lの照射側とは反対側のフィルム面20aに対して70°~80°となる。
 レーザ加工開始位置の単位領域に複数の開口パターン4が形成されると、XYステージ7がX又はY軸方向に予め定められた距離だけステップ移動され、2番目の単位領域、3番目の単位領域…と、各単位領域に順繰りに複数の開口パターン4がレーザ加工される。こうして、フィルム20の予め定められた所定位置に複数の開口パターン4がレーザ加工され、フィルムマスク1が形成される。
 この場合、前述したように、撮像カメラ14により、レーザ加工開始位置の単位領域の例えば中心位置に対応して上記基準基板21に設けられた基準パターンを撮影し、その位置を確認した後、該基準パターンの位置を基準にしてXYステージ7をX,Y軸方向にステップ移動しながら複数の開口パターン4を形成する。その際、XYステージ7の機械精度に基づいて予め定められた距離だけステップ移動しながら各単位領域に複数の開口パターン4を形成してもよいが、各単位領域の中心位置に対応して基準基板21に設けられた基準パターンを撮像カメラ14で撮影し、該基準パターンに撮像カメラ14の例えば撮像中心(対物レンズ12の光軸に一致)を位置決めした後、複数の開口パターン4をレーザ加工してもよい。
 又は、マスク側アライメントマーク用の貫通孔25(図1参照)内に、予めマスク側アライメントマークをレーザ加工した後、該マスク側アライメントマークを基準にして、XYステージ7をX又はY軸方向に予め定められた距離だけステップ移動しながら、各単位領域に複数の開口パターン4を形成してもよい。
 次に、本発明の成膜マスクを使用して行う成膜について説明する。ここでは、一例として蒸着装置に適用した場合について説明する。なお、ここで説明する蒸着装置は、基板を一定方向に搬送しながら薄膜パターンを形成するものである。
 先ず、真空チャンバー内に移動可能に設けられた基板ホルダーに基板が設置される。さらに、上記基板上に成膜マスクがフィルムマスク1側を基板側として設置される。このとき、真空チャンバー内に設けられたカメラにより、基板の基板側アライメントマークと成膜マスクに設けられたマスク側アライメントマークとが撮影され、両マークが予め定められた所定の位置関係となるように基板と成膜マスクが位置決めされる。その後、基板ホルダーに内蔵された磁石の磁力を成膜マスクのメタルマスク2に作用させてメタルマスク2を吸引し、フィルムマスク1を基板の成膜面に密着させる。
 次に、真空チャンバー内の真空度が予め定められた所定値となるまで真空引きされた後、基板ホルダーが成膜マスクを構成するメタルマスク2の貫通孔5の長軸と交差する方向(X軸方向又は矢印A方向)に、基板及び成膜マスクと一体的に一定速度で移動を開始する。同時に、蒸着源26(図5~7参照)が加熱されて蒸着が開始される。なお、図5~7においては、説明の便宜から蒸着源26を成膜マスクの上方に配置した状態で示しているが、実際の蒸着装置においては、蒸着源26が成膜マスクの下側に配置される。
 上記のような基板を移動しながら蒸着する蒸着装置の蒸着源26は、一般に、基板の移動方向(相対的に蒸着源26が移動する方向であり、矢印A方向又はX軸方向に相当)と交差する方向(Y軸方向)に複数の単位蒸着源26aを並べて配置した構造を有しており(例えば、図5(b)参照)、蒸着源26の相対移動方向(矢印A方向)の両サイドには、遮蔽板27が備えられている(例えば、図5(a)参照)。したがって、相対移動方向の蒸着粒子の最小発散角度θtは、上記遮蔽板27によって、蒸着源26の開口面(対向する成膜マスクのマスク面に平行な面)に対して略70°~80°に制限される。一方、蒸着源26を構成する各単位蒸着源26aの相対移動方向と交差する側(Y軸方向)には、上記遮蔽板27がないため(例えば、図5(b)参照)、Y軸方向の蒸着粒子の最小発散角度θeは、蒸着源26の開口面に対して略20°~30°と浅い角度となる。
 したがって、開口パターン4の側壁の傾き角度を任意に制御することができない、従来のメタルマスク2のみで構成した成膜マスクを使用した場合には、図5(a)に示すように、矢印Aで示す蒸着源26の相対移動方向の蒸着粒子の最小発散角度θtが略70°~80°に制限されているため、開口パターン4の同方向の対向側壁4aの傾き角度が70°~80°と急峻であっても、同方向の対向側壁4aが蒸着のシャドウとならず、同方向における蒸着膜の膜厚分布は、略均一になる。
 しかしながら、図5(b)に示すように、矢印Aで示す蒸着源26の相対移動方向と交差する方向(Y軸方向)の蒸着粒子の最小発散角度θeは制限されないため、蒸着粒子が略20°~30°の浅い角度で成膜マスクに入射する。したがって、同方向の開口パターン4の対向側壁4aが蒸着のシャドウとなり、同方向における蒸着膜の膜厚分布が不均一になる。即ち、蒸着膜の同方向の両端部における膜厚が薄くなる。
 また、図4(a)に示すような従来のビーム整形用マスク10を使用して開口パターン4がレーザ加工されたフィルムマスク1を有する成膜マスクの場合も同様に、図6(a)に示すように、矢印Aで示す蒸着源26の相対移動方向(X軸方向)の蒸着粒子の最小発散角度θtが略70°~80°に制限されているため、同方向の開口パターン4の対向側壁4aの傾き角度が70°~80°と急峻であっても、同方向の対向側壁4aが蒸着のシャドウとならず、同方向における蒸着膜の膜厚分布は、略均一になる。
 しかしながら、図6(b)に示すように、矢印Aで示す蒸着源26の相対移動方向と交差する方向(Y軸方向)の蒸着粒子の最小発散角度θeは制限されていないため、蒸着粒子が略20°~30°の浅い角度で成膜マスクに入射する。したがって、同方向の開口パターン4の対向側壁4aが蒸着のシャドウとなり、同方向における蒸着膜の膜厚分布が不均一になる。即ち、蒸着膜の同方向の両端部における膜厚が薄くなる。
 一方、本発明による成膜マスクによれば、図7(a)に示すように、矢印Aで示す蒸着源26の相対移動方向の両サイドの対向側壁の傾き角度は、従来の成膜マスクと同様に、70°~80°と急峻であるが、同方向の蒸着粒子の最小発散角度θtが略70°~80°に制限されているため、従来技術と同様に、同方向の開口パターン4の対向側壁4aが蒸着のシャドウとならず、同方向における蒸着膜の膜厚分布は、略均一になる。
 さらに、本発明による成膜マスクは、図7(b)に示すように、矢印Aで示す蒸着源26の相対移動方向と交差する方向(Y軸方向)の開口パターン4の対向側壁4aの傾き角度が、蒸着源26側とは反対側のフィルム面20aに対して25°~30°の浅い角度で形成されているため、同方向の開口パターン4の対向側壁4aが矢印Aで示す蒸着源26の相対移動方向と交差する方向(Y軸方向)から25°~30°の浅い角度で成膜マスクに入射する蒸着粒子に対して蒸着のシャドウとならない。したがって、同方向における蒸着膜の膜厚分布も略均一になる。
 図8は本発明による成膜マスクの製造方法において、開口パターン4のレーザ加工の変形例を示す工程図である。
 先ず、図3(a)に示すような、レーザ光Lが透過する透光窓18を有し、該透光窓18の外側にて、該透光窓18の少なくとも一対辺の側方領域における光透過率を、透光窓18の縁部から側方に向かって漸減させたビーム整形用マスク(第1のビーム整形用マスク)10を使用して整形された第1のレーザ光L1を開口パターン形成部に対応したフィルム20の部分に照射し、図8(a)に示すように予め定められた所定深さの凹部28を形成する。
 その後、図4(a)に示すような、開口パターン4に相似形の透光窓18を有し、該透光窓18の外側が遮光されたビーム整形用マスク(第2のビーム整形用マスク)10を使用して整形された第2のレーザ光L2を、図8(b)に示すように上記凹部28の底部28aにて、開口パターン4の形成部に対応したフィルム20の部分に照射し、貫通開口29を形成する。こうして、図8(c)に示すように、フィルム20の少なくともレーザ光Lの照射面側に、レーザ光Lの照射側に向かって広がる少なくとも1対の対向側壁4aを有する開口パターン4を形成することができる。
 この場合、図8(c)に示すように、凹部28の底面積が上記貫通開口29の開口面積よりも広くなるように第1のビーム整形用マスク10の透光窓18を形成すれば、第1のレーザ光L1の照射位置が予め定められた所定位置よりもΔdだけずれた場合にも、貫通開口29を上記凹部28内の上記所定位置に形成することができる(図8(a),(b)参照)。したがって、凹部28の形成位置精度は、貫通開口29の形成位置精度よりも低くてよい。
 なお、上記実施形態においては、フィルムマスク1とメタルマスク2とを積層した積層体をフレームに固定した成膜マスクについて説明したが、本発明はこれに限られず、フレームは無くてもよい。さらに、フィルムマスク1のみであってもよく、フィルムマスク1をフレームに固定したものであてもよい。
 また、上記実施形態においては、蒸着装置に適用される成膜マスクについて説明したが、本発明はこれに限られず、スパッタリング装置や他の成膜装置に適用されるものであってもよい。
 さらに、本発明は、当業者にとって本発明の技術的思想を逸脱しない範囲内で様々な置換、変形及び変更が可能であり、前述の実施形態及び添付された図によって限定されるものではない。
 1…フィルムマスク
 2…メタルマスク
 3…金属フレーム
 4…開口パターン
 4a…対向側壁
 5…貫通孔
 10…ビーム整形用マスク
 18…透光窓
 20…フィルム
 28…凹部
 29…貫通開口
 

Claims (13)

  1.  樹脂製のフィルムにレーザ光を照射して平面視多角形の開口パターンを形成する成膜マスクの製造方法であって、
     前記レーザ光が透過する透光窓を有し、該透光窓の外側にて、該透光窓の少なくとも一対辺の側方領域における光透過率を、前記透光窓の縁部から側方に向かって漸減させたビーム整形用マスクを使用して整形されたレーザ光を前記フィルムに照射することにより、開口が前記フィルムの前記レーザ光の照射面とは反対側から前記照射面側に向かって広がるように傾斜した少なくとも1対の対向側壁を有する開口パターンを形成することを特徴とする成膜マスクの製造方法。
  2.  前記開口パターンは、複数対の対向側壁の傾き角度が、少なくとも前記レーザ光の照射面側で異なることを特徴とする請求項1記載の成膜マスクの製造方法。
  3.  前記開口パターンは、
     前記ビーム整形用マスクにより整形された第1のレーザ光を照射して前記フィルムの前記開口パターン形成部に予め定められた深さの凹部を形成する工程と、
     前記開口パターンに相似形の透光窓を有し、該透光窓の外側が遮光された別の整形用マスクを使用して整形された第2のレーザ光を前記凹部内のフィルムに照射し、該フィルムを貫通する貫通開口を形成する工程と、
    を実施して形成されることを特徴とする請求項1又は2記載の成膜マスクの製造方法。
  4.  前記凹部の底面積は、前記貫通開口の開口面積よりも広いことを特徴とする請求項3記載の成膜マスクの製造方法。
  5.  前記フィルムには、前記レーザ光の照射面側に前記開口パターンを内包する大きさの貫通孔を設けたメタルマスクが積層されていることを特徴とする請求項1又は2記載の成膜マスクの製造方法。
  6.  前記開口パターンの形成前に、前記フィルムと前記メタルマスクとの積層体を枠状のフレームの一端面に架張して固定することを特徴とする請求項5記載の成膜マスクの製造方法。
  7.  前記フィルムには、前記レーザ光の照射面側に前記開口パターンを内包する大きさの貫通孔を設けたメタルマスクが積層されていることを特徴とする請求項3記載の成膜マスクの製造方法。
  8.  前記開口パターンの形成前に、前記フィルムと前記メタルマスクとの積層体を枠状のフレームの一端面に架張して固定することを特徴とする請求項7記載の成膜マスクの製造方法。
  9.  樹脂製のフィルムに形成された開口パターンを介して基板上に成膜するための成膜マスクであって、
     前記開口パターンは、開口が前記フィルムの成膜源とは反対側から前記成膜源側に向かって広がる複数対の対向側壁を有しており、該複数対の対向側壁の傾き角度が、少なくとも前記成膜源側で異なることを特徴とする成膜マスク。
  10.  一方向に搬送されながら成膜される前記基板に対し、前記開口パターンの、前記成膜源とは反対側のマスク面に対する傾き角度の小さい対向側壁が前記基板の搬送方向と交差する方向となるように配置した状態で使用されることを特徴とする請求項9記載の成膜マスク。
  11.  前記フィルムの前記成膜源側の面には、前記開口パターンを内包する大きさの貫通孔を設けたメタルマスクが積層されていることを特徴とする請求項9又は10記載の成膜マスク。
  12.  前記成膜源側の面に、枠状のフレームをさらに備えたことを特徴とする請求項9又は10記載の成膜マスク。
  13.  前記成膜源側の面に、枠状のフレームをさらに備えたことを特徴とする請求項11記載の成膜マスク。
     
PCT/JP2014/082121 2013-12-20 2014-12-04 成膜マスクの製造方法及び成膜マスク WO2015093304A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480069390.6A CN105829572B (zh) 2013-12-20 2014-12-04 成膜掩膜的制造方法
KR1020167019697A KR102236893B1 (ko) 2013-12-20 2014-12-04 성막 마스크의 제조 방법 및 성막 마스크
KR1020217003927A KR102265891B1 (ko) 2013-12-20 2014-12-04 성막 마스크의 제조 방법 및 성막 마스크
US15/179,829 US10337096B2 (en) 2013-12-20 2016-06-10 Method for manufacturing deposition mask and deposition mask
US16/194,196 US10626491B2 (en) 2013-12-20 2018-11-16 Method for manufacturing deposition mask and deposition mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-264326 2013-12-20
JP2013264326A JP6357312B2 (ja) 2013-12-20 2013-12-20 成膜マスクの製造方法及び成膜マスク

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/179,829 Continuation US10337096B2 (en) 2013-12-20 2016-06-10 Method for manufacturing deposition mask and deposition mask

Publications (1)

Publication Number Publication Date
WO2015093304A1 true WO2015093304A1 (ja) 2015-06-25

Family

ID=53402653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082121 WO2015093304A1 (ja) 2013-12-20 2014-12-04 成膜マスクの製造方法及び成膜マスク

Country Status (6)

Country Link
US (2) US10337096B2 (ja)
JP (1) JP6357312B2 (ja)
KR (2) KR102265891B1 (ja)
CN (2) CN105829572B (ja)
TW (1) TWI645057B (ja)
WO (1) WO2015093304A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150376765A1 (en) * 2014-06-30 2015-12-31 Shanghai Tianma AM-OLED Co., Ltd. Mask, method for manufacturing the same and process device
CN107034451A (zh) * 2015-10-02 2017-08-11 圆益Ips股份有限公司 基板对准装置
US20180053894A1 (en) * 2015-02-03 2018-02-22 Dai Nippon Printing Co., Ltd. Method for producing vapor deposition mask, vapor deposition mask producing apparatus, laser mask and method for producing organic semiconductor element
CN107851715A (zh) * 2015-08-10 2018-03-27 Ap系统股份有限公司 用于使用混合加工方法来制造荫罩的方法以及由此制造的荫罩
JP2018168429A (ja) * 2017-03-30 2018-11-01 大日本印刷株式会社 フレーム付き蒸着マスク、有機半導体素子の製造方法、有機elディスプレイの製造方法、およびフレーム
CN109659449A (zh) * 2017-10-11 2019-04-19 三星显示有限公司 沉积掩模制造方法
US10355209B2 (en) 2013-11-14 2019-07-16 Dai Nippon Printing Co., Ltd. Vapor deposition mask, frame-equipped vapor deposition mask, and method for producing organic semiconductor element
CN111172496A (zh) * 2015-02-03 2020-05-19 大日本印刷株式会社 激光用掩模

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972920B1 (ko) * 2012-01-12 2019-08-23 다이니폰 인사츠 가부시키가이샤 수지판을 구비한 금속 마스크, 증착 마스크, 증착 마스크 장치의 제조 방법, 및 유기 반도체 소자의 제조 방법
JP6357312B2 (ja) * 2013-12-20 2018-07-11 株式会社ブイ・テクノロジー 成膜マスクの製造方法及び成膜マスク
US10573815B2 (en) * 2014-06-06 2020-02-25 Dai Nippon Printing Co., Ltd. Vapor deposition mask, frame-equipped vapor deposition mask, vapor deposition mask preparation body, and method for producing organic semiconductor element
KR102441557B1 (ko) * 2015-04-28 2022-09-08 삼성디스플레이 주식회사 마스크 프레임 조립체, 그 제조 방법 및 표시 장치의 제조 방법
JP6359788B2 (ja) * 2016-03-10 2018-07-18 鴻海精密工業股▲ふん▼有限公司 蒸着マスク、蒸着マスク用マスク部材、及び蒸着マスクの製造方法と有機el表示装置の製造方法
KR102444139B1 (ko) * 2016-10-06 2022-09-15 다이니폰 인사츠 가부시키가이샤 증착 마스크의 제조 방법, 유기 반도체 소자의 제조 방법 및 유기 el 디스플레이의 제조 방법
JP2018127705A (ja) * 2017-02-10 2018-08-16 株式会社ジャパンディスプレイ 蒸着マスク
JP6904718B2 (ja) * 2017-02-10 2021-07-21 株式会社ジャパンディスプレイ 蒸着マスク、蒸着マスクの製造方法および蒸着マスクの製造装置
KR102130060B1 (ko) * 2017-10-11 2020-07-03 에이피에스홀딩스 주식회사 레이저 가공 방법
KR20190055295A (ko) * 2017-11-14 2019-05-23 삼성디스플레이 주식회사 마스크 제조 장치 및 마스크 제조 방법
US11613801B2 (en) * 2018-05-14 2023-03-28 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Masks and display devices
WO2020190444A1 (en) 2019-03-15 2020-09-24 Applied Materials, Inc. Deposition mask and methods of manufacturing and using a deposition mask
WO2020242611A1 (en) 2019-05-24 2020-12-03 Applied Materials, Inc. System and method for aligning a mask with a substrate
US11189516B2 (en) 2019-05-24 2021-11-30 Applied Materials, Inc. Method for mask and substrate alignment
WO2020251696A1 (en) 2019-06-10 2020-12-17 Applied Materials, Inc. Processing system for forming layers
US10916464B1 (en) 2019-07-26 2021-02-09 Applied Materials, Inc. Method of pre aligning carrier, wafer and carrier-wafer combination for throughput efficiency
CN111796706A (zh) * 2020-05-22 2020-10-20 南昌欧菲显示科技有限公司 面板及其制备方法、触控显示屏和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188418A (ja) * 2009-01-23 2010-09-02 Dainippon Printing Co Ltd テーパ穴形成装置、およびテーパ穴形成装置で用いられる振幅変調マスクまたは位相変調マスク
JP2012035294A (ja) * 2010-08-05 2012-02-23 Dainippon Printing Co Ltd テーパ穴形成装置、テーパ穴形成方法、光変調手段および変調マスク
JP2013108143A (ja) * 2011-11-22 2013-06-06 V Technology Co Ltd マスクの製造方法及びマスクの製造装置
JP2013147739A (ja) * 2012-01-19 2013-08-01 Samsung Display Co Ltd 蒸着用マスク及びこれを含む蒸着設備
JP2013165060A (ja) * 2012-01-12 2013-08-22 Dainippon Printing Co Ltd 多面付け蒸着マスクの製造方法及びこれにより得られる多面付け蒸着マスク並びに有機半導体素子の製造方法
JP2013165058A (ja) * 2012-01-12 2013-08-22 Dainippon Printing Co Ltd 蒸着マスクの製造方法、及び有機半導体素子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029760A1 (en) * 1993-06-04 1994-12-22 Summit Technology, Inc. Rotatable aperture apparatus and methods for selective photoablation of surfaces
US6777276B2 (en) * 2002-08-29 2004-08-17 Sharp Laboratories Of America, Inc. System and method for optimized laser annealing smoothing mask
US7821199B2 (en) * 2004-09-08 2010-10-26 Toray Industries, Inc. Organic electroluminescent device and manufacturing method thereof
JP5228586B2 (ja) 2008-04-09 2013-07-03 株式会社Sumco 蒸着用マスク、ならびにそれを用いる蒸着パターン作製方法、半導体ウェーハ評価用試料の作製方法、半導体ウェーハの評価方法および半導体ウェーハの製造方法
TWI555862B (zh) 2011-09-16 2016-11-01 V科技股份有限公司 蒸鍍遮罩、蒸鍍遮罩的製造方法及薄膜圖案形成方法
KR101972920B1 (ko) * 2012-01-12 2019-08-23 다이니폰 인사츠 가부시키가이샤 수지판을 구비한 금속 마스크, 증착 마스크, 증착 마스크 장치의 제조 방법, 및 유기 반도체 소자의 제조 방법
JP6078747B2 (ja) * 2013-01-28 2017-02-15 株式会社ブイ・テクノロジー 蒸着マスクの製造方法及びレーザ加工装置
KR102130546B1 (ko) * 2013-10-11 2020-07-07 삼성디스플레이 주식회사 마스크 조립체 및 이를 이용한 평판표시장치용 증착 장치
JP5780350B2 (ja) * 2013-11-14 2015-09-16 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
JP6357312B2 (ja) * 2013-12-20 2018-07-11 株式会社ブイ・テクノロジー 成膜マスクの製造方法及び成膜マスク
JP2017150017A (ja) * 2016-02-23 2017-08-31 株式会社ジャパンディスプレイ 蒸着マスクの製造方法及び有機elディスプレイの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188418A (ja) * 2009-01-23 2010-09-02 Dainippon Printing Co Ltd テーパ穴形成装置、およびテーパ穴形成装置で用いられる振幅変調マスクまたは位相変調マスク
JP2012035294A (ja) * 2010-08-05 2012-02-23 Dainippon Printing Co Ltd テーパ穴形成装置、テーパ穴形成方法、光変調手段および変調マスク
JP2013108143A (ja) * 2011-11-22 2013-06-06 V Technology Co Ltd マスクの製造方法及びマスクの製造装置
JP2013165060A (ja) * 2012-01-12 2013-08-22 Dainippon Printing Co Ltd 多面付け蒸着マスクの製造方法及びこれにより得られる多面付け蒸着マスク並びに有機半導体素子の製造方法
JP2013165058A (ja) * 2012-01-12 2013-08-22 Dainippon Printing Co Ltd 蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP2013147739A (ja) * 2012-01-19 2013-08-01 Samsung Display Co Ltd 蒸着用マスク及びこれを含む蒸着設備

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355209B2 (en) 2013-11-14 2019-07-16 Dai Nippon Printing Co., Ltd. Vapor deposition mask, frame-equipped vapor deposition mask, and method for producing organic semiconductor element
US11404640B2 (en) 2013-11-14 2022-08-02 Dai Nippon Printing Co., Ltd. Vapor deposition mask, frame-equipped vapor deposition mask, and method for producing organic semiconductor element
US10825989B2 (en) 2013-11-14 2020-11-03 Dai Nippon Printing Co., Ltd. Vapor deposition mask, frame-equipped vapor deposition mask, and method for producing organic semiconductor element
US9605336B2 (en) * 2014-06-30 2017-03-28 Shanghai Tianma AM-OLED Co., Ltd. Mask, method for manufacturing the same and process device
US20150376765A1 (en) * 2014-06-30 2015-12-31 Shanghai Tianma AM-OLED Co., Ltd. Mask, method for manufacturing the same and process device
US20180053894A1 (en) * 2015-02-03 2018-02-22 Dai Nippon Printing Co., Ltd. Method for producing vapor deposition mask, vapor deposition mask producing apparatus, laser mask and method for producing organic semiconductor element
CN111172496A (zh) * 2015-02-03 2020-05-19 大日本印刷株式会社 激光用掩模
CN111172496B (zh) * 2015-02-03 2022-12-13 大日本印刷株式会社 激光用掩模
CN107851715A (zh) * 2015-08-10 2018-03-27 Ap系统股份有限公司 用于使用混合加工方法来制造荫罩的方法以及由此制造的荫罩
CN107034451A (zh) * 2015-10-02 2017-08-11 圆益Ips股份有限公司 基板对准装置
JP2018168429A (ja) * 2017-03-30 2018-11-01 大日本印刷株式会社 フレーム付き蒸着マスク、有機半導体素子の製造方法、有機elディスプレイの製造方法、およびフレーム
CN109659449A (zh) * 2017-10-11 2019-04-19 三星显示有限公司 沉积掩模制造方法
CN109659449B (zh) * 2017-10-11 2024-01-09 三星显示有限公司 沉积掩模制造方法

Also Published As

Publication number Publication date
JP6357312B2 (ja) 2018-07-11
KR20160100392A (ko) 2016-08-23
CN109112476B (zh) 2020-09-15
CN105829572B (zh) 2019-03-19
KR20210019117A (ko) 2021-02-19
KR102236893B1 (ko) 2021-04-06
US10337096B2 (en) 2019-07-02
CN105829572A (zh) 2016-08-03
TW201538762A (zh) 2015-10-16
US20160281209A1 (en) 2016-09-29
TWI645057B (zh) 2018-12-21
US10626491B2 (en) 2020-04-21
JP2015120947A (ja) 2015-07-02
KR102265891B1 (ko) 2021-06-16
CN109112476A (zh) 2019-01-01
US20190144988A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6357312B2 (ja) 成膜マスクの製造方法及び成膜マスク
JP6078747B2 (ja) 蒸着マスクの製造方法及びレーザ加工装置
JP5958824B2 (ja) 蒸着マスクの製造方法
JP5224341B2 (ja) 露光装置及びフォトマスク
JP6611817B2 (ja) レーザーパターニングを用いたシャドーマスクの製造装置およびレーザーパターニングを用いたシャドーマスクの製造方法
WO2015166759A1 (ja) ビーム整形マスク、レーザ加工装置及びレーザ加工方法
JP2017014582A (ja) 成膜マスクの製造方法及びその製造装置
JP7221096B2 (ja) 蒸着マスクの製造方法
KR101660918B1 (ko) 노광 장치 및 포토 마스크
JP2006011121A (ja) 位相シフトマスクおよびその製造方法およびパターン転写方法
JP4589788B2 (ja) レーザ照射方法
TW201327063A (zh) 用於製造基材表面上的週期結構之方法
JP5434547B2 (ja) レチクルを用いた複数パターンの形成方法
KR102012297B1 (ko) 멀티빔 스캐너 시스템을 이용한 패턴 형성방법
KR101390512B1 (ko) 개선된 패턴 형성용 노광 광원, 노광 장치, 노광 시스템, 및 노광 방법
JP5709495B2 (ja) 露光装置
KR20150034502A (ko) 마스크리스 노광장치의 제조 방법
JP2019042762A (ja) 蒸着マスクの製造方法及び加工マスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167019697

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14871875

Country of ref document: EP

Kind code of ref document: A1