WO2015093298A1 - 反射率可変素子および該素子の製造方法 - Google Patents

反射率可変素子および該素子の製造方法 Download PDF

Info

Publication number
WO2015093298A1
WO2015093298A1 PCT/JP2014/082085 JP2014082085W WO2015093298A1 WO 2015093298 A1 WO2015093298 A1 WO 2015093298A1 JP 2014082085 W JP2014082085 W JP 2014082085W WO 2015093298 A1 WO2015093298 A1 WO 2015093298A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
electrode
copper
reflectance
methanol
Prior art date
Application number
PCT/JP2014/082085
Other languages
English (en)
French (fr)
Inventor
持塚 多久男
Original Assignee
株式会社 村上開明堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村上開明堂 filed Critical 株式会社 村上開明堂
Priority to US15/103,992 priority Critical patent/US9690163B2/en
Priority to JP2015553471A priority patent/JP6402113B2/ja
Priority to CN201480069351.6A priority patent/CN105829960B/zh
Publication of WO2015093298A1 publication Critical patent/WO2015093298A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G17/00Electrographic processes using patterns other than charge patterns, e.g. an electric conductivity pattern; Processes involving a migration, e.g. photoelectrophoresis, photoelectrosolography; Processes involving a selective transfer, e.g. electrophoto-adhesive processes; Apparatus essentially involving a single such process
    • G03G17/02Electrographic processes using patterns other than charge patterns, e.g. an electric conductivity pattern; Processes involving a migration, e.g. photoelectrophoresis, photoelectrosolography; Processes involving a selective transfer, e.g. electrophoto-adhesive processes; Apparatus essentially involving a single such process with electrolytic development
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • the present invention relates to an element that reversibly changes reflectance and a method for manufacturing the element.
  • the present invention has a low-temperature-resistant reflectivity in which a silver compound is dissolved in a non-aqueous solvent to form an electrolytic solution and a reflective surface (mirror surface or diffuse reflective surface) having a deposited layer containing silver is formed.
  • a variable element is realized.
  • variable reflectance elements in which a gap in which electrode pairs are arranged to face each other is filled with an electrolytic solution in which metal ions are dispersed.
  • This variable reflectivity element applies a voltage between the electrode pair to move the metal ions in the electrolyte solution to one electrode and deposit the metal on the electrode. It is possible to release the metal from the electrode by releasing the voltage application or applying a reverse voltage.
  • Patent Document 1 and Non-Patent Document 1 are made using DMSO (dimethyl sulfoxide) as a solvent.
  • DMSO dimethyl sulfoxide
  • an electrolytic solution is prepared by dissolving AgNO 3 as an electrochromic material, TBABr as a supporting electrolyte, and CuCl 2 as a mediator in this solvent, and PVB (polyvinyl butyral) is added as a polymer to the electrolytic solution. .
  • Patent Document 2 uses a mixed solvent of DMSO and another solvent, and an electrolytic solution is prepared by dissolving a silver metal salt such as AgF, AgCl, AgBr, AgI, or AgSCN in this mixed solvent. ing.
  • a silver metal salt such as AgF, AgCl, AgBr, AgI, or AgSCN
  • NiCl 2 is dissolved in dehydrated methanol, this solution is mixed with a tetraethylammonium tetrafluoroborate-propylene carbonate solution, and ferrocene is added to the mixed solution to prepare an electrolytic solution. .
  • a silver compound is dissolved in a non-aqueous solvent at a concentration sufficient to cause the reflecting surface to appear. It is necessary to create an electrolyte.
  • Patent Document 1 it is possible to establish a thin reflectance variable element in which a reflecting surface composed of a deposited layer containing silver appears.
  • DMSO used as a solvent in this element has a high melting point of 19 ° C.
  • Industrial products such as home appliances and automobiles may be used in a low temperature environment of about -30 ° C. If an industrial product with a reflectivity variable element using DMSO as a solvent is used in such a low temperature environment, reflection will occur. There was a problem that the rate could not be adjusted.
  • Patent Document 2 uses a mixed solvent in which a low melting point / high boiling point solvent such as propylene carbonate is mixed with DMSO in order to improve low temperature resistance.
  • a low melting point / high boiling point solvent such as propylene carbonate
  • Patent Document 3 constitutes a variable reflectance element without using DMSO.
  • the reflectivity variable element specifically disclosed in Patent Document 3 is an electrolyte prepared by using NiCl 2 and ferrocene as solutes. When ferrocene is used, the electrolyte becomes yellow, so this element cannot be used depending on the application.
  • silver is also mentioned as a kind of metal that forms metal ions, but it is specifically composed of a deposit layer containing silver by any electrolyte composition and any electrolyte preparation process.
  • a thin reflectance variable element with high low-temperature resistance that allows the reflected surface to appear can be realized.
  • the present invention has been made in view of the above-described points, and has a low-temperature resistance that forms a reflective surface having a deposited layer containing silver by dissolving a silver compound in a non-aqueous solvent to prepare an electrolytic solution. It is intended to realize a reflectivity variable element.
  • the present invention also intends to provide a method for manufacturing the element of the present invention.
  • the reflectivity variable element includes a pair of electrodes arranged with a gap therebetween, and an electrolyte filled in the gap.
  • the electrolyte includes a non-aqueous solvent having a boiling point higher than methanol and the non-aqueous solvent.
  • the composition includes at least silver ions and copper ions having a lower content than the silver ions.
  • a reflective surface (mirror surface or diffuse reflective surface) having a deposited layer containing silver by substantially dissolving DMSO in a non-aqueous solvent to prepare an electrolytic solution without using DMSO. It is possible to establish a variable reflectance element that forms a high temperature resistance.
  • the silver ions may be generated from a silver metal salt.
  • the silver metal salt can be, for example, silver nitrate.
  • silver nitrate By using silver nitrate, silver can be dissolved in a non-aqueous solvent at a sufficient concentration, and a thin reflectance variable element can be established.
  • the content of silver nitrate in the entire electrolyte is preferably 0.5 wt% or more. That is, when the content of silver nitrate is less than 0.5 wt%, it is difficult to form a mirror surface with a thin element.
  • the silver nitrate content is 0.5 wt% or more, even a thin element can form a mirror surface. If the silver nitrate content is 0.55 wt%, even a thin element can form a mirror surface having sufficient reflectivity. If the content of silver nitrate exceeds 0.55 wt%, the increase in reflectance cannot be expected so much, but rather expensive silver nitrate is used wastefully.
  • the copper ions may be generated from a copper metal salt.
  • a reflectance variable element can be established by using a copper metal salt.
  • the copper metal salt can be, for example, copper chloride.
  • the reflectance variable element of the present invention for example, propylene carbonate or ⁇ -butyrolactone can be used as the non-aqueous solvent having a boiling point higher than that of methanol. According to this, by using propylene carbonate or ⁇ -butyrolactone having a melting point lower than that of DMSO, a reflectance variable element having good low-temperature resistance can be established.
  • the gap distance of the gap can be set to, for example, 100 ⁇ m or more and 1 mm or less. According to this, a thin reflectance variable element can be established.
  • a polymer can be added to the electrolytic solution. According to this, by adding a polymer to the electrolytic solution, the viscosity of the electrolytic solution is increased, and the electrolytic solution can be prevented from scattering when the element is damaged.
  • the method of manufacturing a reflectance variable element according to the present invention includes a step of dissolving a silver metal salt in methanol to prepare a silver salt-methanol solution, and a copper metal salt dissolved in methanol to obtain a copper metal salt-methanol solution. And a step of preparing the silver salt-methanol solution and the copper metal salt-methanol solution at a boiling point higher than that of methanol and higher in weight than the total amount of the silver salt-methanol solution and the copper metal salt-methanol solution.
  • An electrolytic solution is prepared by mixing with a water solvent and dissolving the supporting electrolyte in the non-aqueous solvent before or after the silver salt-methanol solution and the copper metal salt-methanol solution are mixed.
  • variable reflectance element of the present invention can be manufactured.
  • the silver metal salt may be silver nitrate.
  • the reflectance variable element of this invention can be manufactured using silver nitrate.
  • FIG. 1 It is a schematic cross-sectional view and an electric circuit diagram showing an embodiment of a specular reflection (regular reflection) transmission-type reflectivity variable element according to the present invention, and shows a state when both electrodes are short-circuited. It is a figure which shows a state when a voltage is applied between both electrodes in the reflectance variable element of FIG. It is a diagram which shows the time change characteristic of the transmittance
  • FIG. 5 is a diagram showing a state when a voltage is applied between both electrodes in the reflectivity variable element of FIG. 4.
  • FIG. 2 is a schematic cross-sectional view and an electric circuit diagram showing an embodiment of a diffuse reflection / transmission-type reflectivity variable element according to the present invention, and shows a state when both electrodes are short-circuited. It is a figure which shows a state when a voltage is applied between both electrodes in the reflectance variable element of FIG.
  • Embodiment 1 (Specular reflection transmission element)
  • a specular reflection / transmission type reflectivity variable element 10 (hereinafter referred to as “specular reflection / transmission element 10”) includes two transparent substrates 14 and 16 made of glass or resin and arranged to face each other with a gap 12 therebetween. Yes. Each surface of the transparent substrates 14 and 16 is smooth.
  • Transparent conductive films 18 and 20 constituting electrode pairs are formed on the opposing surfaces of the transparent substrates 14 and 16, respectively.
  • the transparent conductive films 18 and 20 are made of, for example, ITO (indium tin oxide), tin oxide, zinc oxide or the like.
  • the gap 12 is filled with an electrolytic solution 22.
  • the space around the gap 12 is sealed with a sealing material 24.
  • the electrolytic solution 22 is composed of propylene carbonate as a main component (the component with the highest content weight), methanol as a subcomponent (a component with a smaller content weight than the main component), and as a solute, AgNO 3 (silver nitrate). , CuCl 2 (cupric chloride) and LiBr as the supporting electrolyte are dissolved.
  • the content of silver nitrate in the electrolytic solution 22 is greater than the content of cupric chloride.
  • Polymers such as polypropylene, polyvinyl butyral, and polymethyl methacrylate can be added to the electrolytic solution 22 as a thickener.
  • One end portions of lead wires 32 and 34 are connected to the transparent conductive films 18 and 20, respectively.
  • a series connection circuit including a switch 36 and a DC power source 38 is connected between the other ends of the lead wires 32 and 34.
  • a switch 40 is connected between the lead wires 32 and 34 in parallel with a series connection circuit including the switch 36 and the DC power supply 38. The switches 36 and 40 are turned on and off in opposite directions in conjunction with each other.
  • the specular reflection transmissive element 10 having the above configuration will be described.
  • the switch 36 when the switch 36 is turned off and the switch 40 is turned on, the transparent conductive films 18 and 20 are short-circuited, and no electric field is generated between the transparent conductive films 18 and 20. Therefore, the metal cations Ag + , Cu 2+ , anions NO 3 ⁇ and Cl ⁇ are dispersed in the electrolytic solution 22.
  • the electrolytic solution 22 is almost colorless and transparent, and the specular reflection / transmission element 10 is almost colorless and transparent in the entire thickness direction from the transparent substrate 14 to the transparent substrate 16 (the colors of the transparent conductive films 18 and 20 are slightly generated). Sometimes).
  • the switch 36 When the switch 36 is turned on and the switch 40 is turned off as shown in FIG. 2 from the state of FIG. 1, the voltage of the DC power supply 38 is applied between the transparent conductive films 18 and 20 (the transparent conductive film 18 is the positive electrode and the transparent conductive film 20 An electric field is generated between the transparent conductive films 18 and 20. By this electric field, the metal cations Ag + and Cu 2+ in the electrolytic solution 22 move to the surface of the negative electrode 20 and are reduced. As a result, a deposition layer (specular reflection layer) 26 containing silver as a main component and a small amount of copper as a subcomponent is deposited on the surface of the negative electrode 20, and a reflection surface (mirror surface) 26a due to the deposition layer 26 appears. .
  • the reflectivity / transmission type element 10 has an increased reflectivity (mainly reflectivity by specular reflection), and the transmittance is decreased to become a mirror or a half mirror.
  • the voltage applied between the transparent conductive films 18 and 20 can be varied stepwise or steplessly so that the reflectance and transmittance can be adjusted stepwise or steplessly.
  • the voltage applied between the transparent conductive films 18 and 20 is a voltage obtained by pulse width modulation of a direct current voltage (a direct current voltage having a magnitude that realizes a desired maximum reflectance or minimum transmittance).
  • the duty ratio can be varied stepwise or steplessly, and the reflectance and transmittance can be adjusted stepwise or steplessly.
  • the specular reflection / transmission element 10 is used as an element that reflects light La incident from the right side (transparent substrate 16 side) of the specular reflection transmission element 10 of FIG. 2 on the mirror surface 26a when the deposited layer 26 is viewed from the right side. can do.
  • the specular reflection / transmission type element 10 uses light Lb incident from the left side (transparent substrate 14 side) of the specular reflection / transmission type element 10 as an element that reflects the deposited layer 26 on the mirror surface 26b viewed from the left side. You can also.
  • the specular reflection / transmission element 10 can also be used as an element that reflects light incident from the left and right sides of the specular reflection / transmission element 10 on the left and right mirror surfaces 26a and 26b.
  • the transparent conductive films 18 and 20 are short-circuited, and the electric field between the transparent conductive films 18 and 20 disappears.
  • the silver and copper forming the deposited layer 26 are oxidized and separated from the surface of the negative electrode 20 to form metal cations Ag + and Cu 2+ and are dispersed again in the electrolytic solution 22. . Since the deposited layer 26 is configured by mixing copper with silver as the main component, such separation is possible. As a result, the reflectance of the specular reflection / transmission element 10 decreases, and the transmittance increases to return to the original transparent state.
  • the electrodes 18 and 20 can be opened. That is, when the electrodes 18 and 20 are opened, the electric field between the electrodes 18 and 20 disappears. Therefore, the metal cations Ag + and Cu 2+ are separated from the negative electrode 20, and the specular reflection transmissive element 10 is restored. Can be returned to a transparent state. That is, when both the switches 36 and 40 are turned off from the state of FIG. 2 and the electrodes 18 and 20 are opened, the specular reflection transmission type element 10 has a slower speed than the case where the electrodes 18 and 20 are short-circuited. Thus, the reflectance decreases, the transmittance increases, and the original transparent state is restored.
  • Characteristic I The initial transmittance is about 77% (the transmittance is a value at a wavelength of 550 nm. The same applies hereinafter), and a direct current voltage is applied between the electrodes 18 and 20, and the transmittance is up to 7%. Characteristic / characteristic II when both electrodes 18 and 20 are short-circuited when the voltage drops, and the same DC voltage is applied between both electrodes 18 and 20 from the state where the initial transmittance is about 77%.
  • the transmittance When the transmittance is reduced to 7%, the characteristics and characteristics III when the electrodes 18 and 20 are opened: Characteristics I and II are measured between the electrodes 18 and 20 from the state where the initial transmittance is about 77%. Characteristics when the same DC voltage as that measured is applied and the transmittance is reduced to 35% and the electrodes 18 and 20 are opened. According to FIG. 8, the transmittance increases from the state where the transmittance decreases. The speed when the two electrodes 18 and 20 are short-circuited Ku, if you open between the electrodes 18 and 20 reveals slow.
  • the reflectance and transmittance of the specular reflection transmissive element 10 can be reversibly changed.
  • the specular reflection transmissive element 10 can be suitably used for applications such as architectural light control window glass and automotive light control window glass. That is, by reducing the transmittance (increasing the reflectivity) in summer to reflect ultraviolet rays and infrared rays to increase indoor cooling efficiency, and in the winter, increasing the transmittance (decreasing reflectivity) to increase indoor heating efficiency Can be increased. As a result, an energy saving effect can be obtained. Further, by reducing the transmittance (increasing the reflectance), it is possible to obtain a blinding effect with respect to the line of sight from the outside.
  • the specular reflection transmissive element 10 can also be used as an alternative device for the light control filter of the camera. That is, the specular reflection transmissive element 10 is arranged on the optical axis in the camera, and the voltage applied between the electrodes 18 and 20 is varied stepwise or steplessly. Alternatively, the voltage applied between the transparent conductive films 18 and 20 is a voltage obtained by pulse width modulation of a DC voltage (a DC voltage having a magnitude that achieves a desired minimum transmittance), and the pulse duty ratio of the pulse width modulation is stepped. Variable stepwise or steplessly. By adjusting the transmittance of the specular reflection transmissive element 10 stepwise or steplessly as described above, a dimming filter having no mechanically operating portion can be configured. FIG.
  • Characteristic X Characteristic when the electric field between the electrodes 18 and 20 disappears and the element 10 is transparent (transmittance is about 77%) while the electrodes 18 and 20 are continuously short-circuited or opened.
  • Characteristic Y An electric field between the electrodes 18 and 20 is saturated by continuously applying a DC voltage having a magnitude that can reduce the transmittance to approximately 0% between the electrodes 18 and 20, and the element 10 Characteristics / Characteristic Z when Specular (Transmittance is almost 0%): An electric field intermediate between the characteristics X and Y is generated between the electrodes 18 and 20, and the element 10 is transparent.
  • FIG. 9 shows that the ND (dimming) filter can be constructed using the intermediate state characteristic Z.
  • FIG. A variable ND filter can be configured by adjusting the intensity of the electric field in the intermediate state stepwise or steplessly.
  • Method 1 The magnitude of the DC voltage applied between the electrodes 18 and 20 is adjusted to a value that realizes a desired transmittance intermediate between the mirror surface state and the transparent state, and the adjusted DC voltage is continuously applied.
  • the DC voltage value is set to a voltage value that realizes the transmittance exceeding the target value at the beginning of adjustment, and when the transmittance reaches the target value or It is also possible to return to a voltage value that maintains the target value of transmittance immediately before.
  • Method 2 The magnitude of the DC voltage applied between the electrodes 18 and 20 is set to a value that realizes a desired minimum transmittance, and the DC voltage is pulse width modulated and applied between the electrodes 18 and 20. .
  • the duty ratio of the pulse of the pulse width modulation is adjusted to a value that maintains a desired transmittance, and the adjusted pulse width modulation voltage is continuously applied.
  • the duty ratio of the pulse width modulation voltage is set to a value that realizes the transmittance exceeding the target value at the beginning of the adjustment, and the transmittance has reached the target value. Sometimes or just before that, it can be returned to a value that maintains the target value of transmittance.
  • the transparent substrates 14 and 16 are made of optical glass (white plate glass) having a high transmittance. In addition, it is desirable to form an antireflection film on the outer surfaces of the transparent substrates 14 and 16.
  • the specular reflection transmissive element 10 can also be configured as a display body by metal reflection by dividing the transparent conductive film 20 into segments and applying a voltage to each segment.
  • the specular reflection / transmission element 10 shown in FIG. 1 was manufactured by the following procedure.
  • anhydrous silver nitrate and anhydrous copper chloride cupric chloride
  • propylene carbonate is used as the main component of the solvent.
  • the weight of anhydrous silver nitrate used is greater than that of anhydrous copper chloride.
  • Anhydrous silver nitrate and anhydrous copper chloride are insoluble in propylene carbonate. Therefore, anhydrous silver nitrate and anhydrous copper chloride are each dissolved in dehydrated methanol.
  • the saturation solubility of anhydrous silver nitrate in dehydrated methanol was tested and found to be 5 wt%. As a result, a 5 wt% silver nitrate-methanol solution with saturated solubility was prepared.
  • Two square transparent substrates 14 and 16 each measuring 5 cm square were prepared, and these transparent substrates 14 and 16 were arranged opposite to each other with a gap 12 having a gap distance of 300 ⁇ m.
  • ITO transparent conductive films 18 and 20 are formed on opposite surfaces of the transparent substrates 14 and 16, respectively.
  • the surface resistance value of the ITO transparent conductive films 18 and 20 is 10 ⁇ / ⁇ .
  • (6) Filling the gap 12 with the electrolytic solution 22 prepared in the step (4), and sealing the periphery of the gap 12 with a sealing material 24, the mirror reflection transmissive element 10 was completed.
  • the completed specular reflection transmissive element 10 was transparent in the thickness direction.
  • the deposited layer 26 exhibited a silver mirror surface 26a.
  • the switches 36 and 40 are returned to the state shown in FIG. 1 from the state in which the transmittance is almost 0% and the electrodes 18 and 20 are short-circuited, the silver color of the mirror surface 26a becomes thinner as the thickness of the deposited layer 26 decreases.
  • the transmittance gradually increased and finally returned to the initial value of about 77%.
  • the deposited layer 26 disappeared, and the specular reflection / transmission element 10 returned to the original transparent state in the thickness direction.
  • a change in the transmittance of the specular reflection transmissive element 10 at this time is shown by a line c in FIG. That is, the transmittance decreased with time from about 75% immediately after removal from the low temperature environment, and decreased to about 5% after 30 seconds from the start of application. When switching to a short circuit from there, the transmittance increased with time, and returned to about 73% in about 2 minutes from the start of the short circuit. Therefore, it was found from this experiment that the specular reflection transmissive element 10 has sufficiently low temperature resistance. That is, without using DMSO, a silver compound is dissolved in a non-aqueous solvent to prepare an electrolytic solution, and a mirror surface 26a composed of a deposited layer 26 containing silver appears. A variable rate element could be established.
  • the final transmittance lower limit value of the specular reflection transmissive element 10 was measured. Thereafter, the switches 36 and 40 were returned to the state shown in FIG. 1 and the electrodes 18 and 20 were continuously short-circuited, and the final transmittance upper limit value of the specular reflection transmission element 10 was measured.
  • the transmittance final reaching lower limit was approximately 0%
  • the transmittance final reaching upper limit was approximately 77%, the same as the initial value. Therefore, from this result, it was found that the reversible performance was maintained even when the voltage application / short circuit was repeated.
  • the reflectivity variable element according to the present invention is configured as a thin specular reflection / non-transmission type reflectivity variable element (a reflectivity variable element that is non-transmissive in the thickness direction when the reflection surface forms a mirror surface and the reflectivity is low).
  • specular reflection non-transmission type variable reflectance element 42 includes an opaque substrate 44 and a transparent substrate 16 that are opposed to each other with a gap 12 therebetween.
  • the opaque substrate 44 is made of a substrate made of glass, ceramics, resin, metal or the like whose surface is dark (black, etc.), for example, and has a low surface reflectance. In addition to forming the surface of the opaque substrate 44 as a smooth surface, it can also be formed as a fine uneven surface to make it diffusely reflective. Transparent conductive films 18 and 20 constituting electrode pairs are formed on opposing surfaces of the opaque substrate 44 and the transparent substrate 16, respectively.
  • the gap 12 is filled with an electrolytic solution 22.
  • the space around the gap 12 is sealed with a sealing material 24.
  • the electrolytic solution 22 is the same as that used in the first embodiment.
  • Polymers such as polypropylene, polyvinyl butyral, and polymethyl methacrylate can be added to the electrolytic solution 22 as a thickener.
  • One end portions of lead wires 32 and 34 are connected to the transparent conductive films 18 and 20, respectively.
  • a series connection circuit including a switch 36 and a DC power source 38 is connected between the other ends of the lead wires 32 and 34.
  • a switch 40 is connected between the lead wires 32 and 34 in parallel with a series connection circuit including the switch 36 and the DC power supply 38. The switches 36 and 40 are turned on and off in opposite directions in conjunction with each other.
  • the specular non-transmissive element 42 having the above configuration will be described.
  • the switch 36 when the switch 36 is turned off and the switch 40 is turned on, the transparent conductive films 18 and 20 are short-circuited, and no electric field is generated between the transparent conductive films 18 and 20. Therefore, the metal cations Ag + , Cu 2+ , anions NO 3 ⁇ and Cl ⁇ are dispersed in the electrolytic solution 22.
  • the electrolytic solution 22 is transparent, and light incident from the surface side of the transparent substrate 16 strikes the opaque substrate 44 and is almost absorbed. Therefore, the reflectance seen from the front side of the transparent substrate 16 is low at this time.
  • the voltage of the DC power supply 38 is applied between the transparent conductive films 18 and 20 (the transparent conductive film 18 is the positive electrode, the transparent conductive film 20 An electric field is generated between the transparent conductive films 18 and 20.
  • the metal cations Ag + and Cu 2+ in the electrolytic solution 22 move to the surface of the negative electrode 20 and are reduced.
  • a deposition layer (specular reflection layer) 26 containing silver as a main component and a small amount of copper as a subcomponent is deposited on the surface of the negative electrode 20, and a reflection surface (mirror surface) 26a due to the deposition layer 26 appears. .
  • the reflectance of the specular reflection non-transmissive element 42 as viewed from the front side of the transparent substrate 16 increases.
  • the voltage applied between the transparent conductive films 18 and 20 can be varied stepwise or steplessly so that the reflectance can be adjusted stepwise or steplessly.
  • the voltage applied between the transparent conductive films 18 and 20 is a voltage obtained by pulse width modulation of a DC voltage (a DC voltage having a magnitude that realizes a desired maximum reflectance), and the pulse duty ratio of the pulse width modulation is stepped.
  • the reflectance can be adjusted stepwise or steplessly so that it can be varied in a stepwise or stepless manner.
  • the switch 36 When the switch 36 is turned off again from the state shown in FIG. 5 and the switch 40 is turned on again, the transparent conductive films 18 and 20 are short-circuited, and the electric field between the transparent conductive films 18 and 20 disappears. As a result, the silver and copper forming the deposited layer 26 are oxidized and separated from the surface of the negative electrode 20 to form metal cations Ag + and Cu 2+ and are dispersed again in the electrolytic solution 22. . Since the deposited layer 26 is configured by mixing copper with silver as the main component, such separation is possible. As a result, the specular reflection non-transmission type element 42 returns to the original state as the reflectance viewed from the front side of the transparent substrate 16 decreases.
  • the electrodes 18 and 20 can be opened. That is, when the electrodes 18 and 20 are opened, the electric field between the electrodes 18 and 20 disappears. Therefore, the metal cations Ag + and Cu 2+ are separated from the negative electrode 20, and the specular reflection non-transmissive element 42 is formed.
  • the original reflectance can be returned to a low state. That is, when both the switches 36 and 40 are turned off from the state of FIG. 5 and the electrodes 18 and 20 are opened, the specular reflection non-transmissive element 42 has a slower speed than when the electrodes 18 and 20 are short-circuited. Thus, the reflectance is lowered and the original reflectance is lowered.
  • the reflectance of the specular reflection non-transmissive element 42 viewed from the front side of the transparent substrate 16 is reversible. Can be changed.
  • the specular reflection non-transmissive element 42 can be manufactured in the same procedure as described in the example of the first embodiment.
  • the specular reflection non-transmissive element 42 can be used as an anti-glare mirror for a vehicle, for example.
  • the specular reflection non-transmissive element 42 can also be configured as a display body by metal reflection by dividing the transparent conductive film 20 into segments and applying a voltage to each segment.
  • the reflectivity variable element according to the present invention is configured as a thin diffuse reflection / transmittance reflectivity variable element (reflectance variable element whose reflection surface constitutes a diffuse reflection surface and is transmissive in the thickness direction when the reflectivity is low).
  • the diffuse reflection / transmission type reflectivity variable element 46 (hereinafter referred to as “diffuse reflection / transmission element 46”) has a fine irregular surface on the inner surface of the transparent substrate 16 ′ (the surface on which the deposited layer 26 is deposited). Is formed.
  • the transparent conductive film 20 ′ is also formed in an uneven shape following the uneven surface of the transparent substrate 16 ′.
  • Other configurations are the same as those of the specular reflection / transmission element 10 of FIG.
  • the diffuse reflection transmission element 46 having the above configuration will be described.
  • the transparent conductive films 18 and 20 ′ are short-circuited in FIG. 6, the metal cations Ag + , Cu 2+ , anions NO 3 ⁇ and Cl ⁇ are dispersed in the electrolytic solution 22.
  • the electrolytic solution 22 is almost colorless and transparent.
  • Light incident on the diffuse reflection / transmission element 46 is diffused and transmitted through the concavo-convex surfaces of the transparent substrate 16 ′ and the transparent conductive film 20 ′. Therefore, the scenery on the opposite side seen through the diffuse reflection transmission type element 46 appears blurred.
  • the diffuse reflection / transmission type element 46 has an increased reflectivity (a reflectivity mainly due to diffuse reflection) and a reduced transmittance.
  • the light La incident on the diffuse reflection transmission element 46 is diffusely reflected by the reflection surface 26a ′.
  • the voltage applied between the transparent conductive films 18 and 20 ′ can be varied stepwise or steplessly, and the reflectance and transmittance can be adjusted stepwise or steplessly.
  • the voltage applied between the transparent conductive films 18 and 20 ′ is a voltage obtained by pulse width modulation of a DC voltage (DC voltage having a magnitude that realizes a desired maximum reflectance or minimum transmittance), and a pulse of this pulse width modulation.
  • the duty ratio can be varied stepwise or steplessly so that the reflectance and transmittance can be adjusted stepwise or steplessly.
  • the diffuse reflection / transmission element 46 diffuses light La incident from the right side (transparent substrate 16 ′ side) of the diffuse reflection / transmission element 46 of FIG. 7 on the reflection surface 26a ′ when the deposition layer 26 ′ is viewed from the right side. It can be used as a reflective element.
  • the diffuse reflection / transmission element 46 diffuses and reflects light Lb incident from the left side (transparent substrate 14 side) of the diffuse reflection / transmission element 46 on the reflection surface 26b ′ when the deposited layer 26 ′ is viewed from the left side. It can also be used as Furthermore, the diffuse reflection / transmission element 46 can also be used as an element that diffusely reflects light incident from the left and right sides of the diffuse reflection / transmission element 46 on the left and right reflection surfaces 26a ′ and 26b ′.
  • the transparent conductive films 18 and 20 ′ of FIG. 6 are short-circuited again from the state of FIG. 7, the silver and copper forming the deposited layer 26 are oxidized and separated from the surface of the negative electrode 20.
  • the metal cations Ag + and Cu 2+ are dispersed again in the electrolytic solution 22.
  • the reflectance of the diffuse reflection / transmission element 46 decreases, the transmittance increases, and the opposite side view seen through the diffuse reflection / transmission element 46 returns to the original state.
  • the electrodes 18 and 20' can be opened. That is, when the electrodes 18 and 20 'are opened, the electric field between the electrodes 18 and 20' disappears.
  • the metal cations Ag + and Cu 2+ are separated from the negative electrode 20 ', and the diffuse reflection / transmission element is formed. 46 can be restored to its original state. That is, when both the switches 36 and 40 are turned off and the electrodes 18 and 20 'are opened from the state of FIG. 7, the diffuse reflection / transmission element 46 is gentler than the case where the electrodes 18 and 20' are short-circuited. The reflectance decreases at the speed, and the transmittance increases to return to the original state.
  • the diffuse reflection transmissive element 46 can be suitably used for applications such as architectural light control window glass. That is, while blocking the line of sight from the outside, in summer, the transmittance is lowered (increasing the reflectance) to reflect ultraviolet rays and infrared rays to improve indoor cooling efficiency, and in winter the transmittance is increased (reflectance) The heating efficiency of the room can be increased. As a result, an energy saving effect can be obtained.
  • silver nitrate is used, but it is also possible to use silver halide such as AgI or AgCl instead of silver nitrate.
  • silver halide such as AgI or AgCl
  • cupric chloride was used in each said embodiment, it can also consider using other copper halides, such as CuF, CuCl, CuBr, instead of cupric chloride.
  • LiBr is used as the supporting electrolyte, but it is also conceivable to use ammonium salt or the like instead of LiBr.
  • propylene carbonate is used as the main component of the non-aqueous solvent, but ⁇ -butyrolactone can be used instead of propylene carbonate.
  • ⁇ -butyl lactone it is considered that a variable reflectance element having high low-temperature resistance can be obtained as in the case of using propylene carbonate.
  • a glass substrate, a resin substrate, or the like is used as a base material for forming the transparent conductive films 18 and 20, but a conductive film can be formed on the surface using a resin film as a base material.
  • the reflectance is lowered by short-circuiting or opening the electrodes, but a reverse voltage is applied between the electrodes as in the elements described in Patent Document 1 and Non-Patent Document 1.
  • the reflectance can be reduced.
  • a propylene carbonate solution in which a supporting electrolyte (LiBr) is dissolved, a silver nitrate-methanol solution, and a copper chloride-methanol solution are mixed to prepare an electrolyte solution.
  • the method for producing the electrolytic solution is not limited to this. That is, instead of this, the propylene carbonate solution before dissolving the supporting electrolyte (LiBr), the silver nitrate-methanol solution, and the copper chloride-methanol solution are mixed, and then the supporting electrolyte (LiBr) is dissolved in the mixed solution. It is also possible to create an electrolyte solution.
  • the conductive film 18 is formed of a transparent conductive film, but a metal film (opaque conductive film) can also be used.
  • the transparent conductive film 18 formed on the surface of the opaque substrate 44 is used.
  • a single metal plate is disposed, and the metal plate A single substance can also be used as a substrate and electrode.
  • the state in which the deposited layers 26 and 26 ′ are deposited is returned to the state in which the deposited layers 26 and 26 ′ are completely disappeared, but the deposited layers 26 and 26 ′ are completely removed.
  • a method of not returning to the disappeared state is also possible.
  • SYMBOLS 10 ... Reflectivity variable element (specular reflection transmission type element), 12 ... Air gap, 14, 16, 16 '... Transparent substrate, 18, 20, 20' ... Transparent conductive film (electrode pair), 22 ... Electrolyte, 24 ... Sealing material, 26... Precipitation layer (specular reflection layer), 26 a and 26 b. Reflection surface (mirror surface), 26 ′. Precipitation layer (diffuse reflection layer), 26 a ′ and 26 b ′. 34 ... Lead wire, 36, 40 ... Switch, 38 ... DC power supply, 42 ... Reflectance variable element (specular reflection non-transmission element), 44 ... Opaque substrate, 46 ... Reflectance variable element (diffuse reflection / transmission element)

Abstract

【課題】銀の化合物を非水溶媒に溶解して電解液を作成して、銀を含む析出層で構成される反射面を出現させる、低温耐性が高い反射率可変素子を成立可能にする。 【解決手段】空隙12を隔てて2枚の透明基板14,16を対向配置する。透明基板14,16の対向面にそれぞれ透明導電膜18,20を形成する。空隙12に電解液22を充填する。電解液22は、メタノールよりも高沸点の非水溶媒および該非水溶媒よりも含有重量が少ないメタノールを含有する、非水溶媒中に、少なくとも銀イオンおよび該銀イオンよりも含有重量が少ない銅イオンを含む組成を有する。

Description

反射率可変素子および該素子の製造方法
 この発明は、反射率を可逆的に変化させる素子および該素子の製造方法に関する。特に、この発明は、銀の化合物を非水溶媒に溶解して電解液を作成して、銀を含む析出層を有する反射面(鏡面または拡散反射面)を形成する、低温耐性が高い反射率可変素子を実現したものである。
 電極対を対向配置した空隙に、金属イオンを分散させた電解液を充填した反射率可変素子として、特許文献1~3および非特許文献1に記載されたものがあった。この反射率可変素子は、該電極対間に電圧を印加することにより、電解液中の金属イオンを一方の電極に移動させて、該電極に該金属を析出させ、この状態から該電極対間の電圧印加を解除しまたは逆電圧を印加することにより、該電極から該金属を離脱させることを可能にしたものである。
 特許文献1および非特許文献1に記載の素子は、DMSO(ジメチルスルホキシド)を溶媒としたものである。この素子では、この溶媒にエレクトロクロミック材料としてAgNO3、支持電解質としてTBABr、メディエータとしてCuCl2をそれぞれ溶解して電解液が作成され、この電解液にポリマーとしてPVB(ポリビニルブチラール)が添加されている。
 特許文献2に記載の素子は、DMSOと他の溶媒との混合溶媒を使用し、この混合溶媒にAgF、AgCl、AgBr、AgI、AgSCNなどの銀の金属塩を溶解して電解液が作成されている。
 特許文献3に記載の素子は、脱水メタノールにNiCl2を溶解し、この溶液をテトラエチルアンモニウムテトラフルオロボレート-プロピレンカーボネート溶液に混合し、この混合溶液にフェロセンを添加して電解液が作成されている。
特開2012-181389号公報 特開平10-133236号公報 特開2010-002573号公報
「Electrochemical Optical-Modulation Device with Reversible Transformation Between Transparent, Mirror, and Black」, Advanced Materials, Volume 24, Issue 23, pages OP122?OP126, June 19, 2012
 銀を含む析出層で構成される反射面を出現させる薄型の反射率可変素子を成立させるためには、銀の化合物を非水溶媒に、該反射面を出現させるのに十分な濃度で溶解して電解液を作成する必要がある。
 特許文献1および非特許文献1に記載の素子によれば、銀を含む析出層で構成される反射面を出現させる薄型の反射率可変素子が成立可能である。しかし、この素子で溶媒として使用されているDMSOは融点が19℃と高い。このため、この素子は、使用環境が19℃を下回ると、溶質である一旦溶けた金属塩が析出してしまう。家電、自動車等の工業製品は-30℃程度の低温環境で使用されることがあり、溶媒としてDMSOを使った反射率可変素子を備えた工業製品をこのような低温環境下で使用すると、反射率の調整ができなくなってしまうといった問題があった。
 特許文献2に記載の素子は、低温耐性を改善するために、炭酸プロピレン等の低融点・高沸点溶媒をDMSOに混合した混合溶媒を使用している。しかし、この素子は依然としてDMSOを使用するため、使用環境によっては低温耐性が不十分となる可能性があった。
 特許文献3に記載の素子はDMSOを使用せずに反射率可変素子を構成している。しかし、特許文献3に具体的に開示されている反射率可変素子は、NiCl2およびフェロセンを溶質として電解液を作成したものである。フェロセンを使用すると電解液が黄色となるため、用途によってはこの素子は使用できない。特許文献3には金属イオンを形成する金属の一種として銀も挙げられているが、具体的にどのような電解液組成により、またどのような電解液作成工程により、銀を含む析出層で構成される反射面を出現させる、低温耐性が高い薄型の反射率可変素子が成立可能なのかについては開示されていない。
 この発明は、上述の点に鑑みてなされたもので、銀の化合物を非水溶媒に溶解して電解液を作成して、銀を含む析出層を有する反射面を形成する、低温耐性が高い反射率可変素子を実現しようとするものである。またこの発明は、この発明の素子の製造方法を提供しようとするものである。
 この発明の反射率可変素子は、空隙を隔てて配置された電極対と、前記空隙に充填された電解液とを具備し、前記電解液は、メタノールよりも高沸点の非水溶媒および該非水溶媒よりも含有重量が少ないメタノールを含有する、非水溶媒で構成される溶媒中に、少なくとも銀イオンおよび該銀イオンよりも含有重量が少ない銅イオンを含む組成を有し、前記電極対間の電場の変化に応じて、前記電解液中の銀イオンおよび銅イオンが一方の電極の表面に移動して、該電極の表面に銀および銅を析出させて、該電極の表面部の反射率を上昇させた状態と、該電極の表面から銀および銅を離脱させて該電極の表面部の反射率を低下させた状態とに変化して、該電極の表面部の反射率を可逆的に変化させるものである。この素子によれば、実質的にDMSOを使用せずに、銀の化合物を非水溶媒に溶解して電解液を作成して、銀を含む析出層を有する反射面(鏡面または拡散反射面)を形成する、低温耐性が高い反射率可変素子を成立させることができる。
 この発明の反射率可変素子は、前記銀イオンが銀の金属塩から生じたものとすることができる。この場合、銀の金属塩は例えば硝酸銀とすることができる。硝酸銀を使用することにより、銀を十分な濃度で非水溶媒に溶解することが可能になり、薄型の反射率可変素子を成立させることができる。硝酸銀を使用して鏡面を構成する場合、電解液全体に占める硝酸銀の含有量は0.5wt%以上であることが望ましい。すなわち、硝酸銀の含有量が0.5wt%未満であると、薄型の素子では鏡面を構成しにくい。硝酸銀の含有量が0.5wt%以上であれば、薄型の素子でも鏡面を構成できる。硝酸銀の含有量が0.55wt%あれば、薄型の素子でも十分な反射率を有する鏡面を構成できる。硝酸銀の含有量が0.55wt%よりも多くなると、反射率の上昇はあまり期待できず、むしろ高価な硝酸銀を無駄に使用することになる。
 この発明の反射率可変素子は、前記銅イオンが銅の金属塩から生じたものとすることができる。これによれば、銅の金属塩を使用することにより、反射率可変素子を成立させることができる。この場合、銅の金属塩は例えば塩化銅とすることができる。
 この発明の反射率可変素子は、メタノールよりも高沸点の前記非水溶媒として、例えば炭酸プロピレンまたはγ-ブチロラクトンを用いることができる。これによれば、DMSOよりも融点が低い炭酸プロピレンまたはγ-ブチロラクトンを使用することにより、低温耐性が良好な反射率可変素子を成立させることができる。
 この発明の反射率可変素子は、前記空隙の隙間距離を例えば100μm以上、1mm以下とすることができる。これによれば、薄型の反射率可変素子を成立させることができる。
 この発明の反射率可変素子は、前記電解液にポリマーを添加することができる。これによれば、電解液にポリマーを添加することにより、電解液の粘度が増加し、素子が破損した際に電解液が飛散するのを防止することができる。
 この発明の反射率可変素子の製造方法は、銀の金属塩をメタノールに溶解して銀塩-メタノール溶液を作成する工程と、銅の金属塩をメタノールに溶解して銅金属塩-メタノール溶液を作成する工程と、前記銀塩-メタノール溶液および前記銅金属塩-メタノール溶液を、メタノールよりも高沸点で該銀塩-メタノール溶液および該銅金属塩-メタノール溶液の合計量よりも重量が多い非水溶媒に混合する工程と、前記銀塩-メタノール溶液および前記銅金属塩-メタノール溶液が混合される前または後の前記非水溶媒に支持電解質を溶解する工程とを有して電解液を作成する電解液作成工程と、前記作成された電解液を電極対の間の空隙に充填する充填工程とを具備してなり、前記電極対間の電場の変化に応じて、前記電解液中の銀イオンおよび銅イオンが一方の電極の表面に移動して、該電極の表面に銀および銅を析出させて、該電極の表面部の反射率を上昇させた状態と、該電極の表面から銀および銅を離脱させて該電極の表面部の反射率を低下させた状態とに変化して、該電極の表面部の反射率を可逆的に変化させる素子を製造する方法である。この発明の方法によれば、この発明の反射率可変素子を製造することができる。
 この発明の反射率可変素子の製造方法は、前記銀の金属塩が硝酸銀であるものとすることができる。これによれば、硝酸銀を使用してこの発明の反射率可変素子を製造することができる。
この発明による鏡面反射(正反射)透過型反射率可変素子の実施の形態を示す模式断面図と電気回路図で、両電極間を短絡したときの状態を示す図である。 図1の反射率可変素子において両電極間に電圧を印加したときの状態を示す図である。 図1の反射率可変素子の電極対間に電圧を印加したときおよび電圧を印加した後に電極対間を短絡したときの透過率の時間変化特性を示す線図である。 この発明による鏡面反射非透過型反射率可変素子の実施の形態を示す模式断面図と電気回路図で、両電極間を短絡したときの状態を示す図である。 図4の反射率可変素子において両電極間に電圧を印加したときの状態を示す図である。 この発明による拡散反射透過型反射率可変素子の実施の形態を示す模式断面図と電気回路図で、両電極間を短絡したときの状態を示す図である。 図6の反射率可変素子において両電極間に電圧を印加したときの状態を示す図である。 図1の鏡面反射透過型素子の或る試料について測定した透過率の時間変化特性を示す線図である。 図1の鏡面反射透過型素子の或る試料について測定した透過率の分光特性を示す線図である。
《実施の形態1(鏡面反射透過型素子)》
 この発明の反射率可変素子を薄型の鏡面反射透過型反射率可変素子(反射面が鏡面を構成し、かつ反射率が低いときに厚み方向に透過性である反射率可変素子)として構成した実施の形態を以下説明する。図1において鏡面反射透過型反射率可変素子10(以下「鏡面反射透過型素子10」)は空隙12を隔てて対向配置されたガラス製または樹脂製の2枚の透明基板14,16を具えている。透明基板14,16のそれぞれの面は平滑である。透明基板14,16の対向面には電極対を構成する透明導電膜18,20がそれぞれ成膜形成されている。透明導電膜18,20は例えばITO(酸化インジウム・スズ)、酸化スズ、酸化亜鉛等で構成される。空隙12には電解液22が充填されている。空隙12の周囲はシール材24で封止されている。電解液22は炭酸プロピレンを主成分(最も含有重量が多い成分)とし、メタノールを副成分(主成分よりも含有重量が少ない成分)として含有する非水溶媒に、溶質として、AgNO3(硝酸銀)、CuCl2(塩化第二銅)、支持電解質のLiBrをそれぞれ溶解して構成されている。電解液22中の硝酸銀の含有重量は塩化第二銅の含有重量よりも多い。電解液22には増粘剤としてポリプロピレン、ポリビニルブチラール、ポリメチルメタアクリレート等のポリマーを添加することができる。透明導電膜18,20にはリード線32,34の一端部がそれぞれ接続されている。リード線32,34の他端部間にはスイッチ36と直流電源38による直列接続回路が接続されている。またリード線32,34間にはスイッチ40が、スイッチ36と直流電源38による直列接続回路と並列に接続されている。スイッチ36,40は相互に連動して互いに逆方向にオン、オフ切り換えされる。
 以上の構成の鏡面反射透過型素子10の動作を説明する。図1のようにスイッチ36がオフし、スイッチ40がオンしているときは透明導電膜18,20間は短絡状態となり、透明導電膜18,20間に電場は生じない。したがって電解液22中で金属陽イオンAg+、Cu2+、陰イオンNO3 -、Cl-は分散した状態にある。このとき電解液22はほぼ無色透明であり、鏡面反射透過型素子10は透明基板14から透明基板16に至るまで厚み方向全体がほぼ無色透明である(透明導電膜18,20の色が若干生じる場合がある)。
 図1の状態から図2のようにスイッチ36をオンし、スイッチ40をオフすると直流電源38の電圧が透明導電膜18,20間に印加され(透明導電膜18を正電極、透明導電膜20を負電極とする)、透明導電膜18,20間に電場が生じる。この電場により電解液22中の金属陽イオンAg+、Cu2+は負電極20の表面に移動して還元される。その結果、負電極20の表面に銀を主成分とし、副成分として少量の銅が混在する析出層(鏡面反射層)26が析出して、析出層26による反射面(鏡面)26aを出現させる。これにより鏡面反射透過型素子10は反射率(主に鏡面反射による反射率)が増大し、透過率が減少してミラーまたはハーフミラーとなる。透明導電膜18,20間に印加する電圧を段階的にまたは無段階に可変できるようにして、反射率、透過率を段階的にまたは無段階に調整可能にすることもできる。あるいは透明導電膜18,20間に印加する電圧を、直流電圧(所望の最高反射率または最低透過率を実現する大きさの直流電圧)をパルス幅変調した電圧とし、このパルス幅変調のパルスのデューティ比を段階的にまたは無段階に可変できるようにして、反射率、透過率を段階的にまたは無段階に調整可能にすることもできる。なお、鏡面反射透過型素子10は、図2の鏡面反射透過型素子10の右側(透明基板16側)から入射する光Laを、析出層26を右側から見た鏡面26aで反射する素子として利用することができる。このほか、鏡面反射透過型素子10は、鏡面反射透過型素子10の左側(透明基板14側)から入射する光Lbを、析出層26を左側から見た鏡面26bで反射する素子として利用することもできる。さらには、鏡面反射透過型素子10は、鏡面反射透過型素子10の左右両側から入射する光を左右の鏡面26a,26bで反射する素子として利用することもできる。
 図2の状態から再び図1のようにスイッチ36をオフし、スイッチ40をオンすると透明導電膜18,20間が短絡し、透明導電膜18,20間の電場が消失する。これにより、析出層26を形成していた銀および銅は酸化されて、負電極20の表面から離脱して、金属陽イオンAg+、Cu2+となって、再び電解液22中に分散する。析出層26が、主成分の銀に銅を混在して構成されているため、このような離脱が可能となる。その結果、鏡面反射透過型素子10は反射率が低下し、透過率が増大して元の透明な状態に戻る。なお両電極18,20間を短絡するのに代えて、両電極18,20間を開放することもできる。すなわち両電極18,20間を開放すると、両電極18,20間の電場が消失するので、金属陽イオンAg+、Cu2+を負電極20から離脱させて、鏡面反射透過型素子10を元の透明な状態に戻すことができる。すなわち、図2の状態からスイッチ36,40を共にオフして両電極18,20間を開放すると、鏡面反射透過型素子10は、両電極18,20間を短絡した場合に比べて緩やかな速度で反射率が低下し、透過率が増大して元の透明な状態に戻る。図8は鏡面反射透過型素子10の或る試料について、透過率をほぼ0%まで低下させることができる大きさの直流電圧を印加して測定した透過率の時間変化特性を示す。特性I,II,IIIはそれぞれ次を示す。
・特性I:初期透過率が約77%(透過率の数値は波長550nmにおける値を示す。以下同じ)の状態から両電極18,20間に直流電圧を印加して、透過率が7%まで低下したところで両電極18,20間を短絡したときの特性
・特性II:初期透過率が約77%の状態から両電極18,20間に、特性Iを測定したときと同じ直流電圧を印加して、透過率が7%まで低下したところで両電極18,20間を開放したときの特性
・特性III:初期透過率が約77%の状態から両電極18,20間に、特性I,IIを測定したときと同じ直流電圧を印加して、透過率が35%まで低下したところで両電極18,20間を開放したときの特性
 図8によれば、透過率が低下した状態から透過率が増大する速度は、両電極18,20間を短絡した場合は速く、両電極18,20間を開放した場合は遅いことがわかる。
 以上のようにして、両電極18,20間に電場を印加し、また電場の印加を解除することにより、鏡面反射透過型素子10の反射率および透過率を可逆的に変化させることができる。
 鏡面反射透過型素子10は例えば建築用調光窓ガラス、自動車用調光窓ガラス等の用途に好適に用いることができる。すなわち夏は透過率を低くする(反射率を高くする)ことにより紫外線、赤外線を反射させて室内の冷房効率を高め、冬は透過率を高くする(反射率を下げる)ことにより室内の暖房効率を高めることができる。その結果、省エネルギー効果が得られる。また透過率を低くする(反射率を高くする)ことにより、室外からの視線に対して目隠し効果を得ることもできる。
 また鏡面反射透過型素子10はカメラの調光フィルターの代替デバイスとして利用することもできる。すなわち、鏡面反射透過型素子10をカメラ内の光軸上に配置し、両電極18,20間に印加する電圧を段階的にまたは無段階に可変する。あるいは透明導電膜18,20間に印加する電圧を、直流電圧(所望の最低透過率を実現する大きさの直流電圧)をパルス幅変調した電圧とし、このパルス幅変調のパルスのデューティ比を段階的にまたは無段階に可変する。これらのようにして鏡面反射透過型素子10の透過率を段階的にまたは無段階に調整することにより、機械的動作部分を有しない調光フィルターを構成することができる。図9は鏡面反射透過型素子10の或る試料について測定した透過率の分光特性を示す。特性X,Y,Zはそれぞれ次を示す。
・特性X:両電極18,20間を短絡または開放し続けて、両電極18,20間の電場が消失して、素子10が透明(透過率は約77%)を呈している時の特性
・特性Y:両電極18,20間に透過率をほぼ0%まで低下させることができる大きさの直流電圧を印加し続けて、両電極18,20間の電場が飽和して、素子10が鏡面(透過率はほぼ0%)を呈しているとき時の特性
・特性Z:両電極18,20間に、特性Xのときと特性Yのときの中間の電場が生じて、素子10が透明と鏡面の中間状態(無彩色のハーフミラー状態)を呈している時の特性
 図9によれば、中間状態の特性Zを利用してND(減光)フィルターを構成することができる。そして、この中間状態の電場の強さを段階的にまたは無段階に調整可能とすることにより可変NDフィルターを構成することができる。鏡面反射透過型素子10の透過率を鏡面状態と透明状態の中間の所望の透過率に調整し維持する方法としては例えば次の各方法が考えられる。
・方法1:両電極18,20間に印加する直流電圧の大きさを、鏡面状態と透明状態の中間の所望の透過率を実現する値に調整し、その調整した直流電圧を印加し続ける。なお、透過率を目標値に早急に到達させるために、直流電圧値を、調整開始当初は目標値を超える透過率を実現する電圧値に設定し、透過率が目標値に達したときまたはその直前に、透過率の目標値を維持する電圧値に戻すこともできる。
・方法2:両電極18,20間に印加する直流電圧の大きさを所望の最低透過率を実現する値に設定し、該直流電圧をパルス幅変調して両電極18,20間に印加する。このパルス幅変調のパルスのデューティ比を所望の透過率を維持する値に調整し、この調整したパルス幅変調電圧を印加し続ける。なお、透過率を目標値に早急に到達させるために、パルス幅変調電圧のデューティ比を、調整開始当初は目標値を超える透過率を実現する値に設定し、透過率が目標値に達したときまたはその直前に、透過率の目標値を維持する値に戻すこともできる。
 なお、鏡面反射透過型素子10でNDフィルターを構成する場合は、透明状態で高い透過率が得られることが望ましいので、透明基板14,16を透過率が高い光学ガラス(白板ガラス)で構成し、かつ透明基板14,16の外表面に反射防止膜を形成するのが望ましい。
 また鏡面反射透過型素子10は透明導電膜20をセグメントに分割し各セグメントごとに電圧を印加することにより金属反射による表示体として構成することもできる。
<<実施例>>
 図1の鏡面反射透過型素子10の実施例を説明する。この実施例では次の手順で図1の鏡面反射透過型素子10を製作した。
(1) この実施例では、溶質として無水硝酸銀および無水塩化銅(塩化第二銅)、溶媒の主成分として炭酸プロピレンを使用する。無水硝酸銀の使用重量は無水塩化銅の使用重量よりも多い。無水硝酸銀および無水塩化銅は炭酸プロピレンには不溶である。そこで、無水硝酸銀および無水塩化銅をそれぞれ脱水メタノールに溶解する。無水硝酸銀の脱水メタノールに対する飽和溶解度を試験したところ、5wt%であった。結果、飽和溶解度の5wt%硝酸銀-メタノール溶液を作成した。
(2) 無水塩化銅を脱水メタノールに溶解して塩化銅-メタノール溶液を作成する。この場合、塩化銅の濃度が高いと電解液22の透明度が低くなる。そこで、負電極20の表面からの金属陽イオンAg+、Cu2+の離脱を可能にし、かつ電解液22の十分な透明度が得られる濃度の塩化銅-メタノール溶液として、1wt%塩化銅-メタノール溶液を作成した。
(3) 支持電解質となる無水LiBrを炭酸プロピレンに溶解して、0.5mol/LのLiBr-炭酸プロピレン溶液を作成した。
(4) 工程(1)で作成した5wt%硝酸銀-メタノール溶液Aと、工程(2)で作成した1wt%塩化銅-メタノール溶液Bと、工程(3)で作成した0.5mol/LのLiBr-炭酸プロピレン溶液Cを、重量比A:B:C=10:1:80で混合して、電解液22を作成した。このとき、電解液22全体に占める硝酸銀の含有量は、5wt%×{10/(10+1+80)}=0.55wt%である。
(5) それぞれ5cm四方の2枚の正方形の透明基板14,16を用意し、これら透明基板14,16を隙間距離300μmの空隙12を隔てて対向配置した。透明基板14,16の対向面には、ITO透明導電膜18,20がそれぞれ形成されている。ITO透明導電膜18,20の表面抵抗値は10Ω/□である。
(6) 工程(4)で作成された電解液22を空隙12に充填し、該充填後に空隙12の周囲をシール材24で封止して鏡面反射透過型素子10を完成した。完成した鏡面反射透過型素子10は厚み方向に透明であった。
 以上の手順で製作された鏡面反射透過型素子10について、図1のように電気回路を接続して以下のとおり各種特性を調べた。
[実験1:透過率最終到達上下限値の確認]
 初めに、電圧を印加する前の鏡面反射透過型素子10の初期透過率は約77%であった。図1のスイッチ36がオフ、スイッチ40がオンの状態から、図2のようにスイッチ36をオン、スイッチ40をオフして両電極18,20間に直流電源38から2.1Vの電圧を印加した。このときの鏡面反射透過型素子10の透過率の変化を図3に線aで示す。すなわち、透過率は、初期値である約77%から、印加を開始すると、析出層26の層厚の増加に伴い、時間とともに低下し、印加開始から30秒で約5%になり、最終的にほぼ0%になった。透過率が低下するにつれて、析出層26は銀色の鏡面26aを呈するに至った。透過率がほぼ0%になった状態からスイッチ36,40を図1の状態に戻して両電極18,20間を短絡すると、析出層26の層厚の減少に伴い、鏡面26aの銀色は薄まっていき、透過率は徐々に上昇し最終的に初期値である約77%に戻った。これとともに析出層26は消失し、鏡面反射透過型素子10は元の、厚み方向に透明な状態に戻った。
[実験2:低温耐性の確認]
 図1のスイッチ36がオフ、スイッチ40がオンの状態から、図2のようにスイッチ36をオン、スイッチ40をオフして両電極18,20間に2.1Vの電圧を印加した。次いでこの印加開始から30秒後に、スイッチ36,40を図1の状態に戻して両電極18,20間を短絡した。このときの鏡面反射透過型素子10の透過率の変化を図3に線bで示す。すなわち、透過率は、初期値である約77%から、印加を開始すると、時間とともに低下し、印加開始から30秒後に約5%となった。そこから短絡に切り換えると透過率は時間とともに上昇し、短絡開始から約2分で約76%に戻った。
 次いで、図3の特性bを測定した鏡面反射透過型素子10を-30℃の環境に24時間放置した後に、該環境から取り出したところ、鏡面反射透過型素子10に金属塩の析出は見られなかった。該低温環境から取り出した鏡面反射透過型素子10について上記同様の実験を行った。すなわち、図1のスイッチ36がオフ、スイッチ40がオンの状態から、図2のようにスイッチ36をオン、スイッチ40をオフして両電極18,20間に2.1Vの電圧を印加した。次いでこの印加開始から30秒後に、スイッチ36,40を図1の状態に戻して両電極18,20間を短絡した。このときの鏡面反射透過型素子10の透過率の変化を図3に線cで示す。すなわち、透過率は、低温環境から取り出した直後の約75%から、印加を開始すると、時間とともに低下し、印加開始から30秒後に約5%となった。そこから短絡に切り換えると透過率は時間とともに上昇し、短絡開始から約2分で約73%に戻った。したがって、この実験から、鏡面反射透過型素子10は、低温耐性が十分に得られていることがわかった。すなわち、DMSOを使用せずに、銀の化合物を非水溶媒に溶解して電解液を作成して、銀を含む析出層26で構成される鏡面26aを出現させる、低温耐性が高い薄型の反射率可変素子を成立させることができた。
[実験3:電圧印加・短絡を繰り返したときの性能の確認]
 図1のスイッチ36がオフ、スイッチ40がオンの状態から、図2のようにスイッチ36をオン、スイッチ40をオフして両電極18,20間に2.1Vの電圧を印加する。次いでこの印加開始から30秒後に、スイッチ36,40を図1の状態に戻して両電極18,20間を4分間短絡する。この一連の動作を1サイクルとして、この動作を1000サイクル連続して繰り返した。その後、図1のスイッチ36がオフ、スイッチ40がオンの状態から、図2のようにスイッチ36をオン、スイッチ40をオフして両電極18,20間に直流電源38から2.1Vの電圧を印加し続けて、鏡面反射透過型素子10の透過率最終到達下限値を測定した。さらにその後、スイッチ36,40を図1の状態に戻して両電極18,20間を短絡し続け、鏡面反射透過型素子10の透過率最終到達上限値を測定した。その結果、応答速度は1000サイクル繰り返し実験前よりも若干低下するものの、透過率最終到達下限値はほぼ0%、透過率最終到達上限値は初期値と同じ約77%となった。したがって、この結果から、電圧印加・短絡を繰り返しても可逆性能が維持されることがわかった。
《実施の形態2(鏡面反射非透過型素子)》
 この発明の反射率可変素子を薄型の鏡面反射非透過型反射率可変素子(反射面が鏡面を構成し、かつ反射率が低いときに厚み方向に非透過性である反射率可変素子)として構成した実施の形態を以下説明する。実施の形態1と共通する部分には同一の符号を用いる。図4において鏡面反射非透過型反射率可変素子42(以下「鏡面反射非透過型素子42」)は空隙12を隔てて対向配置された不透明基板44と透明基板16を具えている。不透明基板44は例えば表面が暗色(黒色等)のガラス、セラミックス、樹脂、金属等の基板で構成されたもので、表面の反射率は低い。不透明基板44の表面は平滑面に形成するほか、微細な凹凸面に形成して拡散反射性にすることもできる。不透明基板44と透明基板16の対向面には電極対を構成する透明導電膜18,20がそれぞれ形成されている。空隙12には電解液22が充填されている。空隙12の周囲はシール材24で封止されている。電解液22は実施の形態1で使用したものと同じである。電解液22には増粘剤としてポリプロピレン、ポリビニルブチラール、ポリメチルメタアクリレート等のポリマーを添加することができる。透明導電膜18,20にはリード線32,34の一端部がそれぞれ接続されている。リード線32,34の他端部間にはスイッチ36と直流電源38による直列接続回路が接続されている。またリード線32,34間にはスイッチ40が、スイッチ36と直流電源38による直列接続回路と並列に接続されている。スイッチ36,40は相互に連動して互いに逆方向にオン、オフ切り換えされる。
 以上の構成の鏡面反射非透過型素子42の動作を説明する。図4のようにスイッチ36がオフし、スイッチ40がオンしているときは透明導電膜18,20間は短絡状態となり、透明導電膜18,20間に電場は生じない。したがって電解液22中で金属陽イオンAg+、Cu2+、陰イオンNO3 -、Cl-は分散した状態にある。このとき電解液22は透明であり、透明基板16の表面側から入射した光は不透明基板44に当たってほとんど吸収される。したがってこのとき透明基板16の前面側から見た反射率は低い。
 図4の状態から図5のようにスイッチ36をオンし、スイッチ40をオフすると直流電源38の電圧が透明導電膜18,20間に印加され(透明導電膜18を正電極、透明導電膜20を負電極とする)、透明導電膜18,20間に電場が生じる。この電場により電解液22中の金属陽イオンAg+、Cu2+は負電極20の表面に移動して還元される。その結果、負電極20の表面に銀を主成分とし、副成分として少量の銅が混在する析出層(鏡面反射層)26が析出して、析出層26による反射面(鏡面)26aを出現させる。これにより鏡面反射非透過型素子42は透明基板16の前面側から見た反射率(主に鏡面反射による反射率)が増大する。透明導電膜18,20間に印加する電圧を段階的にまたは無段階に可変できるようにして、反射率を段階的にまたは無段階に調整可能にすることもできる。あるいは透明導電膜18,20間に印加する電圧を、直流電圧(所望の最高反射率を実現する大きさの直流電圧)をパルス幅変調した電圧とし、このパルス幅変調のパルスのデューティ比を段階的にまたは無段階に可変できるようにして、反射率を段階的にまたは無段階に調整可能にすることもできる。
 図5の状態から再び図4のようにスイッチ36をオフし、スイッチ40をオンすると透明導電膜18,20間が短絡し、透明導電膜18,20間の電場が消失する。これにより、析出層26を形成していた銀および銅は酸化されて、負電極20の表面から離脱して、金属陽イオンAg+、Cu2+となって、再び電解液22中に分散する。析出層26が、主成分の銀に銅を混在して構成されているため、このような離脱が可能となる。その結果、鏡面反射非透過型素子42は透明基板16の前面側から見た反射率が低下して元の状態に戻る。なお両電極18,20間を短絡するのに代えて、両電極18,20間を開放することもできる。すなわち両電極18,20間を開放すると、両電極18,20間の電場が消失するので、金属陽イオンAg+、Cu2+を負電極20から離脱させて、鏡面反射非透過型素子42を元の反射率が低い状態に戻すことができる。すなわち、図5の状態からスイッチ36,40を共にオフして両電極18,20間を開放すると、鏡面反射非透過型素子42は両電極18,20間を短絡した場合に比べて緩やかな速度で反射率が低下して元の反射率が低い状態に戻る。
 以上のようにして、両電極18,20間に電場を印加し、また電場の印加を解除することにより、鏡面反射非透過型素子42の透明基板16の前面側から見た反射率を可逆的に変化させることができる。
 鏡面反射非透過型素子42は、実施の形態1の実施例で説明したのと同様の手順で製作することができる。
 鏡面反射非透過型素子42は例えば車両用防眩ミラーとして利用することができる。また鏡面反射非透過型素子42は透明導電膜20をセグメントに分割し各セグメントごとに電圧を印加することにより金属反射による表示体として構成することもできる。
《実施の形態3(拡散反射透過型素子)》
 この発明の反射率可変素子を薄型の拡散反射透過型反射率可変素子(反射面が拡散反射面を構成し、かつ反射率が低いときに厚み方向に透過性である反射率可変素子)として構成した実施の形態を以下説明する。実施の形態1と共通する部分には同一の符号を用いる。図6において拡散反射透過型反射率可変素子46(以下「拡散反射透過型素子46」)は、透明基板16’の内側の面(析出層26が析出する側の面)が微細な凹凸面に形成されている。透明基板16’のこの凹凸面に倣って透明導電膜20’も凹凸状に成膜されている。他の構成は図1の鏡面反射透過型素子10と同じである。
 以上の構成の拡散反射透過型素子46の動作を説明する。図6の、透明導電膜18,20’間が短絡状態のときは、電解液22中で金属陽イオンAg+、Cu2+、陰イオンNO3 -、Cl-は分散した状態にある。このとき電解液22はほぼ無色透明である。拡散反射透過型素子46に入射された光は透明基板16’および透明導電膜20’の凹凸面で拡散して透過する。したがって、拡散反射透過型素子46を透過して見た反対側の景色はぼやけて見える。
 図6の状態から図7の、透明導電膜18,20’間に電圧を印加した状態に切り換えると、電解液22中の金属陽イオンAg+、Cu2+は負電極20’の表面に移動して還元される。その結果、負電極20’の表面に銀を主成分とし、副成分として少量の銅が混在する析出層(拡散反射層)26’が析出して、析出層26’による反射面(拡散反射面)26a’を出現させる。これにより拡散反射透過型素子46は反射率(主に拡散反射による反射率)が増大し、透過率が減少する。拡散反射透過型素子46に入射される光Laは反射面26a’で拡散反射する。透明導電膜18,20’間に印加する電圧を段階的にまたは無段階に可変できるようにして、反射率、透過率を段階的にまたは無段階に調整可能にすることもできる。あるいは透明導電膜18,20’間に印加する電圧を、直流電圧(所望の最高反射率または最低透過率を実現する大きさの直流電圧)をパルス幅変調した電圧とし、このパルス幅変調のパルスのデューティ比を段階的にまたは無段階に可変できるようにして、反射率、透過率を段階的にまたは無段階に調整可能にすることもできる。なお、拡散反射透過型素子46は、図7の拡散反射透過型素子46の右側(透明基板16’側)から入射する光Laを、析出層26’を右側から見た反射面26a’で拡散反射する素子として利用することができる。このほか、拡散反射透過型素子46は、拡散反射透過型素子46の左側(透明基板14側)から入射する光Lbを、析出層26’を左側から見た反射面26b’で拡散反射する素子として利用することもできる。さらには、拡散反射透過型素子46は、拡散反射透過型素子46の左右両側から入射する光を左右の反射面26a’,26b’で拡散反射する素子として利用することもできる。
 図7の状態から再び図6の透明導電膜18,20’間を短絡させた状態にすると、析出層26を形成していた銀および銅は酸化されて、負電極20の表面から離脱して、金属陽イオンAg+、Cu2+となって、再び電解液22中に分散する。その結果、拡散反射透過型素子46は反射率が低下し、透過率が増大して、拡散反射透過型素子46を透過して見た反対側の景色がぼやけて見える元の状態に戻る。なお両電極18,20’間を短絡するのに代えて、両電極18,20’間を開放することもできる。すなわち両電極18,20’間を開放すると、両電極18,20’間の電場が消失するので、金属陽イオンAg+、Cu2+を負電極20’から離脱させて、拡散反射透過型素子46を元の状態に戻すことができる。すなわち、図7の状態からスイッチ36,40を共にオフして両電極18,20’間を開放すると、拡散反射透過型素子46は両電極18,20’間を短絡した場合に比べて緩やかな速度で反射率が低下し、透過率が増大して元の状態に戻る。
 以上のようにして、両電極18,20’間に電場を印加し、また電場の印加を解除することにより、拡散反射透過型素子46の反射率および透過率を可逆的に変化させることができる。
 拡散反射透過型素子46は例えば建築用調光窓ガラス等の用途に好適に用いることができる。すなわち、室外からの視線を遮りながら、夏は透過率を低くする(反射率を高くする)ことにより紫外線、赤外線を反射させて室内の冷房効率を高め、冬は透過率を高くする(反射率を下げる)ことにより室内の暖房効率を高めることができる。その結果、省エネルギー効果が得られる。
 前記各実施の形態では硝酸銀を使用したが、硝酸銀に代えてAgI、AgCl等のハロゲン化銀を使用することも考えられる。また、前記各実施の形態では塩化第二銅を使用したが、塩化第二銅に代えて、CuF、CuCl、CuBr等の他のハロゲン化銅を使用することも考えられる。また前記各実施の形態では支持電解質としてLiBrを使用したが、LiBrに代えてアンモニウム塩等を使用することも考えられる。
 前記各実施の形態では非水溶媒の主成分として炭酸プロピレンを使用したが、炭酸プロピレンに代えてγ-ブチロラクトンを使用することもできる。γ-ブチルラクトンを使用した場合は、炭酸プロピレンを使用した場合と同様に低温耐性が高い反射率可変素子が得られるものと考えられる。
 前記各実施の形態では透明導電膜18,20を形成する基材としてガラス基板、樹脂基板等を使用したが、樹脂フィルムを基材として使用してその表面に導電膜を形成することもできる。
 前記各実施の形態では両電極間を短絡または開放させることにより反射率を低下させたが、特許文献1および非特許文献1に記載の素子と同様に、両電極間に逆電圧を印加することにより、反射率を低下させることもできる。
 前記実施の形態1の実施例で説明した製作手順では、支持電解質(LiBr)を溶解した炭酸プロピレン溶液と、硝酸銀-メタノール溶液と、塩化銅-メタノール溶液を混合して電解液を作成したが、電解液の作成方法はこれに限らない。すなわちこれに代えて、支持電解質(LiBr)を溶解する前の炭酸プロピレン溶液と、硝酸銀-メタノール溶液と、塩化銅-メタノール溶液を混合し、その後に該混合液に支持電解質(LiBr)を溶解して電解液を作成することもできる。
 前記実施の形態2では導電膜18を透明導電膜で構成したが、金属膜(不透明導電膜)を使用することもできる。また前記実施の形態2では不透明基板44の表面に透明導電膜18を形成したものを使用したが、不透明基板44と透明導電膜18の組み合わせに代えて金属板単体を配置して、該金属板単体を基板兼電極として使用することもできる。
 また、前記実施の形態では、析出層26,26’を析出させた状態から、析出層26,26’を完全に消失させた状態に戻すようにしたが、析出層26,26’を完全に消失させた状態まで戻さない(析出層26,26’が薄く残っている状態で止める)ような使い方も可能である。
 10…反射率可変素子(鏡面反射透過型素子)、12…空隙、14,16,16’…透明基板、18,20,20’…透明導電膜(電極対)、22…電解液、24…シール材、26…析出層(鏡面反射層)、26a,26b…反射面(鏡面)、26’…析出層(拡散反射層),26a’,26b’…反射面(拡散反射面)、32,34…リード線、36,40…スイッチ、38…直流電源、42…反射率可変素子(鏡面反射非透過型素子)、44…不透明基板、46…反射率可変素子(拡散反射透過型素子)

Claims (10)

  1.  空隙を隔てて配置された電極対と、前記空隙に充填された電解液とを具備し、
     前記電解液は、メタノールよりも高沸点の非水溶媒および該非水溶媒よりも含有重量が少ないメタノールを含有する、非水溶媒で構成される溶媒中に、少なくとも銀イオンおよび該銀イオンよりも含有重量が少ない銅イオンを含む組成を有し、
     前記電極対間の電場の変化に応じて、前記電解液中の銀イオンおよび銅イオンが一方の電極の表面に移動して、該電極の表面に銀および銅を析出させて、該電極の表面部の反射率を上昇させた状態と、該電極の表面から銀および銅を離脱させて該電極の表面部の反射率を低下させた状態とに変化して、該電極の表面部の反射率を可逆的に変化させる素子。
  2.  前記銀イオンが硝酸銀から生じたものである請求項1に記載の素子。
  3.  前記銅イオンが塩化銅から生じたものである請求項1または2に記載の素子。
  4.  前記銀および銅の析出により構成される反射面が鏡面を構成する請求項1から3のいずれか1つに記載の素子。
  5.  前記電極対が、前記空隙を隔てて対向配置された2枚の透明基板の対向面にそれぞれ配置された透明導電膜を有し、該素子がカメラ用調光フィルターを構成する請求項1から3のいずれか1つに記載の素子。
  6.  メタノールよりも高沸点の前記非水溶媒が、炭酸プロピレンおよびγ-ブチロラクトンから選ばれた少なくとも一種を最も含有重量が多い成分とする請求項1から5のいずれか1つに記載の素子。
  7.  前記空隙の隙間距離が100μm以上、1mm以下である請求項1から6のいずれか1つに記載の素子。
  8.  前記電解液にポリマーを添加してなる請求項1から7のいずれか1つに記載の素子。
  9.  銀の金属塩をメタノールに溶解して銀塩-メタノール溶液を作成する工程と、銅の金属塩をメタノールに溶解して銅金属塩-メタノール溶液を作成する工程と、前記銀塩-メタノール溶液および前記銅金属塩-メタノール溶液を、メタノールよりも高沸点で該銀塩-メタノール溶液および該銅金属塩-メタノール溶液の合計量よりも重量が多い非水溶媒に混合する工程と、前記銀塩-メタノール溶液および前記銅金属塩-メタノール溶液が混合される前または後の前記非水溶媒に支持電解質を溶解する工程とを有して電解液を作成する電解液作成工程と、
     前記作成された電解液を電極対の間の空隙に充填する充填工程とを具備してなり、
     前記電極対間の電場の変化に応じて、前記電解液中の銀イオンおよび銅イオンが一方の電極の表面に移動して、該電極の表面に銀および銅を析出させて、該電極の表面部の反射率を上昇させた状態と、該電極の表面から銀および銅を離脱させて該電極の表面部の反射率を低下させた状態とに変化して、該電極の表面部の反射率を可逆的に変化させる素子を製造する方法。
  10.  前記銀の金属塩が硝酸銀である請求項9に記載の方法。
PCT/JP2014/082085 2013-12-19 2014-12-04 反射率可変素子および該素子の製造方法 WO2015093298A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/103,992 US9690163B2 (en) 2013-12-19 2014-12-04 Reflectance variable element and method for manufacturing same
JP2015553471A JP6402113B2 (ja) 2013-12-19 2014-12-04 反射率可変素子および該素子の製造方法
CN201480069351.6A CN105829960B (zh) 2013-12-19 2014-12-04 反射率可变元件以及该元件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013263071 2013-12-19
JP2013-263071 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015093298A1 true WO2015093298A1 (ja) 2015-06-25

Family

ID=53402647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082085 WO2015093298A1 (ja) 2013-12-19 2014-12-04 反射率可変素子および該素子の製造方法

Country Status (4)

Country Link
US (1) US9690163B2 (ja)
JP (1) JP6402113B2 (ja)
CN (1) CN105829960B (ja)
WO (1) WO2015093298A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103629A1 (ja) * 2014-12-24 2016-06-30 パナソニックIpマネジメント株式会社 光学デバイス
JP2018180351A (ja) * 2017-04-17 2018-11-15 スタンレー電気株式会社 電気光学装置、表示装置
JP2020060608A (ja) * 2018-10-05 2020-04-16 凸版印刷株式会社 調光装置、調光窓、および、調光システム
DE112018005192T5 (de) 2017-11-01 2020-06-18 Murakami Corporation Bildanzeigesystem
JP2021173824A (ja) * 2020-04-22 2021-11-01 日本放送協会 透過率可変素子及びその製造方法
JP2021173825A (ja) * 2020-04-22 2021-11-01 日本放送協会 透過率可変素子及びその製造方法
WO2021220583A1 (ja) * 2020-04-30 2021-11-04 株式会社村上開明堂 可変ndフィルタ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072796B2 (ja) * 2018-02-19 2022-05-23 国立大学法人 名古屋工業大学 調光部材
JP7244492B2 (ja) 2018-03-30 2023-03-22 株式会社村上開明堂 光透過素子
CN108613967B (zh) * 2018-08-09 2020-12-08 江苏师范大学 一种拉曼光谱测试系统
CN108613966B (zh) * 2018-08-09 2021-04-13 江苏师范大学 光路转换镜、基于拉曼光谱分析的检测系统
CN109525763A (zh) * 2018-12-07 2019-03-26 丁向峰 可调节夜视监控摄像头
CN111624577B (zh) * 2019-02-28 2023-08-15 深圳市速腾聚创科技有限公司 反射强度标定方法、装置、系统和计算机设备
CN111338146B (zh) * 2020-04-09 2021-04-02 Tcl华星光电技术有限公司 背板及其调光方法、显示装置
CN113534557B (zh) * 2021-07-09 2022-10-25 吉林大学 电致变色器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297324A (ja) * 1996-03-08 1997-11-18 Sony Corp 光学装置及び電解液
JP2001059980A (ja) * 1999-06-17 2001-03-06 Sony Corp 光学装置及びその駆動方法、並びに撮像装置
JP2007199581A (ja) * 2006-01-30 2007-08-09 Dainippon Ink & Chem Inc 電気化学型表示素子の駆動方法
JP2009020270A (ja) * 2007-07-11 2009-01-29 Fuji Xerox Co Ltd 表示媒体、表示装置および表示方法
JP2010002573A (ja) * 2008-06-19 2010-01-07 Murakami Corp 反射率を可逆的に変化させる方法およびその素子および該素子の製造方法、並びに透過率可変素子および反射率可変ミラー

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439174A (en) * 1966-03-07 1969-04-15 Alvin A Snaper Electrolytic image transducer
FR2618569B1 (fr) * 1987-07-24 1989-12-22 Warszawski Bernard Technique de fabrication d'un dispositif pour la modulation de la lumiere
FR2618568B1 (fr) * 1987-07-24 1992-04-17 Warszawski Bernard Procede de fabrication d'un dispositif pour la modulation de la lumiere
US5207877A (en) * 1987-12-28 1993-05-04 Electrocinerator Technologies, Inc. Methods for purification of air
DE69432788T2 (de) * 1993-12-03 2004-04-08 Matsushita Electric Industrial Co., Ltd., Kadoma Elektrolytloesung und daraus hergestelltes elektrochemisches element
US5864420A (en) * 1996-03-08 1999-01-26 Sony Corporation Optical unit and electrolytic solution
JP3915850B2 (ja) 1996-09-06 2007-05-16 ソニー株式会社 光学装置及び電解液
US5923456A (en) * 1997-12-19 1999-07-13 Rockwell International Corporation Reversible electrochemical mirror
US5903382A (en) * 1997-12-19 1999-05-11 Rockwell International Corporation Electrodeposition cell with high light transmission
US6631022B1 (en) 1999-05-28 2003-10-07 Sony Corporation Optical device, a fabrication method thereof, a driving method thereof and a camera system
JP4715321B2 (ja) * 2005-06-15 2011-07-06 富士ゼロックス株式会社 多色表示用光学組成物及びその製造方法、並びに、光学素子及びその表示方法
KR101841618B1 (ko) * 2010-12-16 2018-03-23 삼성전자주식회사 전기 변색 소자용 잉크, 전기 변색 소자 및 그 제조 방법
JP2012181389A (ja) 2011-03-02 2012-09-20 Chiba Univ 表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297324A (ja) * 1996-03-08 1997-11-18 Sony Corp 光学装置及び電解液
JP2001059980A (ja) * 1999-06-17 2001-03-06 Sony Corp 光学装置及びその駆動方法、並びに撮像装置
JP2007199581A (ja) * 2006-01-30 2007-08-09 Dainippon Ink & Chem Inc 電気化学型表示素子の駆動方法
JP2009020270A (ja) * 2007-07-11 2009-01-29 Fuji Xerox Co Ltd 表示媒体、表示装置および表示方法
JP2010002573A (ja) * 2008-06-19 2010-01-07 Murakami Corp 反射率を可逆的に変化させる方法およびその素子および該素子の製造方法、並びに透過率可変素子および反射率可変ミラー

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103629A1 (ja) * 2014-12-24 2016-06-30 パナソニックIpマネジメント株式会社 光学デバイス
JP2016122058A (ja) * 2014-12-24 2016-07-07 パナソニックIpマネジメント株式会社 光学デバイス
JP2018180351A (ja) * 2017-04-17 2018-11-15 スタンレー電気株式会社 電気光学装置、表示装置
JP7078352B2 (ja) 2017-04-17 2022-05-31 スタンレー電気株式会社 電気光学装置、表示装置
DE112018005192T5 (de) 2017-11-01 2020-06-18 Murakami Corporation Bildanzeigesystem
JP2020060608A (ja) * 2018-10-05 2020-04-16 凸版印刷株式会社 調光装置、調光窓、および、調光システム
JP7293597B2 (ja) 2018-10-05 2023-06-20 凸版印刷株式会社 調光装置、調光窓、および、調光システム
JP2021173824A (ja) * 2020-04-22 2021-11-01 日本放送協会 透過率可変素子及びその製造方法
JP2021173825A (ja) * 2020-04-22 2021-11-01 日本放送協会 透過率可変素子及びその製造方法
JP7412261B2 (ja) 2020-04-22 2024-01-12 日本放送協会 透過率可変素子及びその製造方法
JP7412262B2 (ja) 2020-04-22 2024-01-12 日本放送協会 透過率可変素子及びその製造方法
WO2021220583A1 (ja) * 2020-04-30 2021-11-04 株式会社村上開明堂 可変ndフィルタ

Also Published As

Publication number Publication date
JPWO2015093298A1 (ja) 2017-03-16
US20160313626A1 (en) 2016-10-27
JP6402113B2 (ja) 2018-10-10
CN105829960B (zh) 2019-09-03
CN105829960A (zh) 2016-08-03
US9690163B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
JP6402113B2 (ja) 反射率可変素子および該素子の製造方法
KR101535100B1 (ko) 전기변색 스마트 윈도우 및 그 제조 방법
JP5123749B2 (ja) 反射率を可逆的に変化させる方法およびその素子および該素子の製造方法、並びに透過率可変素子および反射率可変ミラー
JP6041269B2 (ja) 非水系水素イオン導電性電解質層を介設した反射型調光エレクトロクロミック素子及びそれを用いた調光部材
US9778534B2 (en) Chromatic systems
KR20010073166A (ko) 향상된 전해액을 갖는 가역성 전기 화학적 거울
JP2015082081A (ja) 光学装置、撮像装置、光学素子の駆動方法
US20240069401A1 (en) Single active layer electrochromic devices
KR20160064338A (ko) 가역 전기화학 거울
TWM539636U (zh) 可調控透過率之電子鏡面視窗
JPH09127559A (ja) 太陽光可変調光断熱材料
JP2017509813A (ja) アクティブ建物窓
JPH0217093B2 (ja)
CN109477994B (zh) 电化学装置
JP2016045242A (ja) 電解液組成物、及び光学装置
JP7244492B2 (ja) 光透過素子
JP7232115B2 (ja) 電気化学装置
WO2023214524A1 (ja) エレクトロクロミック素子、眼鏡レンズ及び窓材
JPH1124111A (ja) 遮光素子および遮光方法
JP2023085578A (ja) 可変ndフィルタ
Kavei et al. Electrochromic Glass with Multilayer Configuration
Ma et al. Smart goggles based on all-plastic electrochromic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553471

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15103992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870822

Country of ref document: EP

Kind code of ref document: A1