WO2015092959A1 - リチウム硫黄二次電池 - Google Patents

リチウム硫黄二次電池 Download PDF

Info

Publication number
WO2015092959A1
WO2015092959A1 PCT/JP2014/005237 JP2014005237W WO2015092959A1 WO 2015092959 A1 WO2015092959 A1 WO 2015092959A1 JP 2014005237 W JP2014005237 W JP 2014005237W WO 2015092959 A1 WO2015092959 A1 WO 2015092959A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
sulfur
lithium
separator
Prior art date
Application number
PCT/JP2014/005237
Other languages
English (en)
French (fr)
Inventor
義朗 福田
野末 竜弘
尚希 塚原
村上 裕彦
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2015553345A priority Critical patent/JPWO2015092959A1/ja
Priority to DE112014005918.8T priority patent/DE112014005918T5/de
Priority to KR1020167018813A priority patent/KR20160100333A/ko
Priority to US15/101,526 priority patent/US20170005312A1/en
Priority to CN201480067929.4A priority patent/CN105830273A/zh
Publication of WO2015092959A1 publication Critical patent/WO2015092959A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium-sulfur secondary battery.
  • lithium secondary batteries Since lithium secondary batteries have a high energy density, they are used not only for mobile devices such as mobile phones and personal computers, but also for hybrid vehicles, electric vehicles, power storage and storage systems, and the like. As one of such lithium secondary batteries, a lithium-sulfur secondary battery that is charged and discharged by a reaction between lithium and sulfur has recently attracted attention.
  • a lithium-sulfur secondary battery includes a positive electrode having a positive electrode active material containing sulfur, a negative electrode having a negative electrode active material containing lithium, and a separator that is disposed between the positive electrode and the negative electrode and holds an electrolytic solution. For example, it is known from Patent Document 1.
  • a plurality of carbon nanotubes are oriented on the current collector surface of the positive electrode in a direction perpendicular to the surface, and each surface of the carbon nanotubes is covered with sulfur. This is known, for example, from Patent Document 2.
  • the polysulfide diffused to the negative electrode side does not contribute to the charge / discharge reaction, and the amount of sulfur in the positive electrode decreases, resulting in a decrease in charge / discharge capacity. Further, when polysulfide reacts with lithium of the negative electrode, the charging reaction is not accelerated (so-called redox shuttle phenomenon occurs), and the charge / discharge efficiency is also lowered.
  • an object of the present invention is to provide a lithium-sulfur secondary battery that can suppress the diffusion of polysulfide eluted in the electrolyte into the negative electrode and suppress the decrease in charge / discharge capacity.
  • the present invention includes a positive electrode having a positive electrode active material containing sulfur, a negative electrode having a negative electrode active material containing lithium, and a separator disposed between the positive electrode and the negative electrode to hold an electrolyte.
  • This lithium-sulfur secondary battery is characterized in that a polymer nonwoven fabric having a sulfone group is disposed between at least one of the separator and the positive electrode and between the separator and the negative electrode.
  • the separator and the polymer nonwoven fabric having a sulfone group may be in contact with each other or may be separated by a predetermined distance.
  • the polymer nonwoven fabric is made of polypropylene or polyethylene.
  • the separator allows the passage of polysulfide
  • the polysulfide generated at the positive electrode is eluted into the electrolyte
  • the polysulfide diffuses to the negative electrode side through the separator, and the charge / discharge capacity is reduced due to the decrease in the amount of sulfur in the positive electrode. cause. Therefore, the present inventors have intensively studied and have come to know that a polymer nonwoven fabric having a sulfone group suppresses passage of polysulfide while allowing passage of lithium ions.
  • the polymer non-woven fabric having a sulfone group is disposed on at least one of the positive electrode side and the negative electrode side of the separator, it is possible to prevent the polysulfide eluted in the electrolyte from diffusing into the negative electrode, thereby reducing the charge / discharge capacity. Can be suppressed.
  • a positive electrode includes a current collector and a plurality of carbon nanotubes oriented in a direction perpendicular to the surface of the current collector, and the surface of each carbon nanotube is covered with sulfur. It is preferable to apply to a case. In this case, the amount of sulfur is greater than that applied to the surface of the current collector, and the polysulfide is more easily eluted in the electrolyte, but if the present invention is applied, the polysulfide diffuses to the negative electrode side. It can be effectively suppressed.
  • FIG. 2 is a schematic cross-sectional view showing an enlargement of the positive electrode shown in FIG. 1.
  • the graph which shows the experimental result (cycle characteristic of a discharge capacity maintenance factor) for confirming the effect of this invention.
  • B is a lithium-sulfur secondary battery
  • the lithium-sulfur secondary battery B includes a positive electrode P having a positive electrode active material containing sulfur, a negative electrode N having a negative electrode active material containing lithium, and these positive electrodes P, And a separator S which is disposed between the negative electrodes N and holds the electrolytic solution L.
  • the positive electrode P includes a positive electrode current collector P1 and a positive electrode active material layer P2 formed on the surface of the positive electrode current collector P1.
  • the positive electrode current collector P1 includes, for example, a base 1, a base film (also referred to as “barrier film”) 2 formed on the surface of the base 1 with a film thickness of 5 to 50 nm, and 0.5 on the base film 2. And a catalyst layer 3 having a thickness of ⁇ 5 nm.
  • a metal foil or a metal mesh made of Ni, Cu, or Pt can be used as the substrate 1, for example, a metal foil or a metal mesh made of Ni, Cu, or Pt can be used.
  • the base film 2 is for improving the adhesion between the substrate 1 and a carbon nanotube 4 described later.
  • the catalyst layer 3 is made of at least one metal selected from, for example, Ni, Fe, or Co.
  • the positive electrode active material layer P2 includes a surface of the positive electrode current collector P1, a large number of carbon nanotubes 4 grown by being oriented in a direction orthogonal to the surface, and sulfur 5 covering the entire surface of each of the carbon nanotubes 4. Composed. There is a gap between the carbon nanotubes 4 covered with sulfur 5, and an electrolyte solution L (described later) is allowed to flow into this gap.
  • each of the carbon nanotubes 4 is advantageously of a high aspect ratio having a length in the range of 100 to 1000 ⁇ m and a diameter in the range of 5 to 50 nm, for example.
  • the thickness of the sulfur 5 covering the entire surface of each carbon nanotube 4 is preferably in the range of 1 to 3 nm, for example.
  • the positive electrode P can be formed by the following method. That is, the Al film as the base film 2 and the Ni film as the catalyst layer 3 are sequentially formed on the surface of the Ni foil as the substrate 1 to obtain the positive electrode current collector P1.
  • a method for forming the base film 2 and the catalyst layer 3 for example, a known electron beam evaporation method, a sputtering method, or a dipping using a solution of a compound containing a catalyst metal can be used. To do.
  • the obtained positive electrode current collector P1 was placed in a processing chamber of a known CVD apparatus, and a mixed gas containing a raw material gas and a dilution gas was supplied into the processing chamber under an operating pressure of 100 Pa to atmospheric pressure, and a temperature of 600 to 800 ° C.
  • a mixed gas containing a raw material gas and a dilution gas was supplied into the processing chamber under an operating pressure of 100 Pa to atmospheric pressure, and a temperature of 600 to 800 ° C.
  • the carbon nanotubes 4 are grown on the surface of the current collector P1 so as to be oriented perpendicular to the surface.
  • a CVD method for growing the carbon nanotubes 4 a thermal CVD method, a plasma CVD method, or a hot filament CVD method can be used.
  • source gas hydrocarbons, such as methane, ethylene, and acetylene, alcohol, such as methanol and ethanol, can be used, for example, and nitrogen, argon, or hydrogen can be used as dilution gas.
  • the flow rates of the source gas and the dilution gas can be appropriately set according to the volume of the processing chamber. For example, the flow rate of the source gas can be set within a range of 10 to 500 sccm, and the flow rate of the dilution gas can be set within a range of 100 to 5000 sccm. It can be set with.
  • the weight of the sulfur to be arranged can be set according to the density of the carbon nanotubes 4.
  • the weight of sulfur is preferably set to 0.7 to 3 times the weight of the carbon nanotubes 4.
  • the positive electrode P thus formed has a weight (impregnation amount) of sulfur 5 per unit area of the carbon nanotube 4 of 2.0 mg / cm 2 or more.
  • the negative electrode N for example, Li and Al or In alloy, or Si, SiO, Sn, SnO 2 or hard carbon doped with lithium ions can be used in addition to Li alone.
  • the separator S is composed of a porous film made of a resin such as polyethylene or polypropylene, or a non-woven fabric, and can conduct lithium ions (Li + ) between the positive electrode P and the negative electrode N through the electrolytic solution L. Yes.
  • polysulfide is generated while sulfur and lithium are reacted in multiple stages.
  • Polysulfide especially Li 2 S 4 or Li 2 S 6
  • the separator S allows passage of polysulfide.
  • the polysulfide eluted in the electrolyte L passes through the separator S and diffuses to the negative electrode side, causing a decrease in capacity due to a decrease in the amount of sulfur in the positive electrode. For this reason, it is important how to suppress the diffusion of polysulfide to the negative electrode side.
  • the present inventor has conducted extensive research and has come to know that a polymer nonwoven fabric having a sulfone group suppresses passage of polysulfide while allowing passage of lithium ions.
  • the polymer nonwoven fabric F which has a sulfone group was arrange
  • the polymer nonwoven fabric F those made of polypropylene or polyethylene can be used. If such a structure is adopted, since polysulfide eluted in the electrolyte L does not easily pass through the polymer nonwoven fabric F, diffusion of polysulfide to the negative electrode side can be suppressed, and a decrease in charge / discharge capacity can be suppressed.
  • the electrolytic solution L includes an electrolyte and a solvent that dissolves the electrolyte.
  • the electrolyte known lithium bis (trifluoromethanesulfonyl) imide (hereinafter referred to as “LiTFSI”), LiPF 6 , LiBF 4, or the like can be used.
  • the solvent known solvents can be used, for example, selected from ethers such as tetrahydrofuran, glyme, diglyme, triglyme, tetraglyme, diethoxyethane (DEE) and dimethoxyethane (DME). At least one kind can be used.
  • dioxolane DOL
  • the mixing ratio of diethoxyethane and dioxolane can be set to 9: 1.
  • lithium nitrate may be added to the electrolytic solution L in order to form a coating on the negative electrode surface that inhibits the passage of polysulfide while allowing the passage of lithium ions.
  • the positive electrode P was prepared as follows. That is, the substrate 1 is a Ni foil having a diameter of 14 mm ⁇ and a thickness of 0.020 mm, an Al film as a base film 2 is formed on the Ni foil 1 with a thickness of 15 nm by an electron beam evaporation method, and a catalyst is formed on the Al film 2.
  • the Fe film as the layer 3 was formed by electron beam evaporation with a film thickness of 5 nm to obtain a positive electrode current collector P1.
  • the obtained positive electrode current collector P1 was placed in a processing chamber of a thermal CVD apparatus, acetylene 200 sccm and nitrogen 1000 sccm were supplied into the processing chamber, operating pressure: 1 atm, temperature: 750 ° C., growth time: 10 minutes
  • the carbon nanotubes 4 were grown to a length of 800 ⁇ m by vertically aligning on the surface of the positive electrode current collector P1.
  • Granular sulfur was placed on the carbon nanotubes 4 and placed in a tubular furnace, and heated at 120 ° C. for 5 minutes in an Ar atmosphere to cover the carbon nanotubes 4 with sulfur 5 to produce a positive electrode P. .
  • the weight (impregnation amount) of sulfur 5 per unit area of the carbon nanotube 4 was 4 mg / cm 2 .
  • the negative electrode N was made of metallic lithium having a diameter of 15 mm ⁇ and a thickness of 0.6 mm, and the separator S was made of a porous film made of polypropylene.
  • the positive electrode P and the negative electrode N are opposed to each other through the separator S, a polypropylene non-woven fabric F having a sulfone group is disposed between the separator S and the negative electrode N, and the electrolytic solution L is held in the separator S so that the lithium sulfur secondary A battery coin cell was prepared.
  • the electrolytic solution L was prepared by dissolving LiTFSI as an electrolyte in a mixed solution of diethoxyethane (DEE) and dioxolane (DOL) (mixing ratio 9: 1) to adjust the concentration to 1 mol / l.
  • the one to which lithium nitrate was added was used.
  • the coin cell thus produced was regarded as an invention. Moreover, it replaced with the polypropylene nonwoven fabric F which has a sulfone group, and the coin cell produced similarly to the said invention product was made into the comparative product 1 except the point which has arrange
  • FIG. FIG. 3 shows the discharge capacity retention rate (the discharge capacity at the second cycle is 100%) when the discharge current density is measured at 0.5 mA / cm 2 for these invention products and comparative products 1 and 2, respectively.
  • the invention product can suppress a decrease in charge / discharge capacity more than the comparative products 1 and 2. This is considered to be because the diffusion of polysulfide to the negative electrode side was suppressed by the polypropylene nonwoven fabric F having a sulfone group.
  • the comparison product 1 has a larger decrease in charge / discharge capacity than the comparison product 2. This is considered to be due to the fact that the lithium ion conductivity was lowered by disposing a polypropylene non-woven fabric having no sulfone group.
  • the embodiment of the present invention has been described above, but the present invention is not limited to the above.
  • the shape of the lithium-sulfur secondary battery is not particularly limited, and may be a button type, a sheet type, a laminated type, a cylindrical type, or the like other than the coin cell.
  • the nonwoven fabric F was arrange
  • a nonwoven fabric can be disposed between both the separator S and the positive electrode P and between the separator S and the negative electrode N.
  • B Lithium sulfur secondary battery
  • P positive electrode
  • N negative electrode
  • L electrolyte
  • P1 current collector
  • 1 substrate
  • 4 carbon nanotube
  • 5 sulfur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 電解液に溶出したポリサルファイドの負極への拡散を抑制でき、充放電容量の低下を抑制できるリチウム硫黄二次電池を提供する。 硫黄を含む正極活物質を有する正極Pと、リチウムを含む負極活物質を有する負極Nと、正極と負極との間に配置されて電解液Lを保持するセパレータSとを備える本発明のリチウム硫黄二次電池は、セパレータと正極との間、及びセパレータと負極との間の少なくとも一方に、スルホン基を有する高分子不織布Fを配置した。

Description

リチウム硫黄二次電池
 本発明は、リチウム硫黄二次電池に関する。
 リチウム二次電池は高エネルギー密度を有することから、携帯電話やパーソナルコンピュータ等の携帯機器等だけでなく、ハイブリッド自動車、電気自動車、電力貯蔵蓄電システム等にも適用が拡がっている。このようなリチウム二次電池の1つとして、近年、リチウムと硫黄の反応により充放電するリチウム硫黄二次電池が注目されている。リチウム硫黄二次電池は、硫黄を含む正極活物質を有する正極と、リチウムを含む負極活物質を有する負極と、正極と負極との間に配置されて電解液を保持するセパレータとを備えるものが例えば特許文献1で知られている。
 他方、電池反応に寄与する硫黄の量を増大させるために、正極の集電体表面に、当該表面に直交する方向に複数本のカーボンナノチューブを配向させ、カーボンナノチューブの各々の表面を硫黄で覆ってなるものが例えば特許文献2で知られている。
 ここで、リチウム硫黄二次電池の正極では、硫黄(S)とリチウムとが多段階で反応し、最終的にLiSまで反応する過程と、LiSからSまで戻る過程とを繰り返すことで充放電反応が進行する。充放電反応の途中でポリサルファイド(Li:x=2~8)と呼ばれる反応物が生成するが、LiやLiは非常に電解液に溶出し易い。上記特許文献1では、セパレータを高分子不織布や樹脂製微多孔フィルムで構成しているが、これでは電解液に溶出したポリサルファイドがセパレータを透過して負極へ拡散する。負極側に拡散したポリサルファイドは充放電反応に寄与せず、正極の硫黄量が減少するため、充放電容量の低下を招来する。さらにポリサルファイドが負極のリチウムと反応すると、充電反応が促進されず(所謂レドックスシャトル現象が起こり)、充放電効率も低下する。
特開2013-114920号公報 国際公開第2012/070184号明細書
 本発明は、以上の点に鑑み、電解液に溶出したポリサルファイドの負極への拡散を抑制でき、充放電容量の低下を抑制できるリチウム硫黄二次電池を提供することをその課題とするものである。
 上記課題を解決するために、硫黄を含む正極活物質を有する正極と、リチウムを含む負極活物質を有する負極と、正極と負極との間に配置されて電解質を保持するセパレータとを備える本発明のリチウム硫黄二次電池は、セパレータと正極との間、及びセパレータと負極との間の少なくとも一方に、スルホン基を有する高分子不織布を配置したことを特徴とする。尚、セパレータとスルホン基を有する高分子不織布とは接していてもよく、所定の距離だけ離間していてもよい。また、高分子不織布は、ポリプロピレン製またはポリエチレン製である。
 ここで、セパレータはポリサルファイドの通過を許容するため、正極で生成したポリサルファイドが電解液に溶出すると、ポリサルファイドがセパレータを介して負極側に拡散し、正極の硫黄量の減少により充放電容量の低下を引き起こす。そこで、本発明らは鋭意研究し、スルホン基を有する高分子不織布がリチウムイオンの通過を許容しつつポリサルファイドの通過を抑制することを知見するに至った。本発明では、このスルホン基を有する高分子不織布をセパレータの正極側及び負極側の少なくとも一方に配置するため、電解液に溶出したポリサルファイドが負極に拡散することを抑制でき、充放電容量の低下を抑制できる。
 本発明は、正極が、集電体と、集電体の表面に、当該表面に直交する方向に配向させた複数本のカーボンナノチューブとを備え、カーボンナノチューブの各々の表面を硫黄で覆ってなる場合に適用することが好ましい。この場合、集電体表面に硫黄を塗布するものに比べて硫黄量が多くなり、電解液にポリサルファイドがより一層溶出し易くなるが、本発明を適用すれば、負極側へのポリサルファイドの拡散を効果的に抑制することができる。
本発明の実施形態のリチウム硫黄二次電池の構成を示す模式的断面図。 図1に示す正極を拡大して示す模式的断面図。 本発明の効果を確認するための実験結果(放電容量維持率のサイクル特性)を示すグラフ。
 図1において、Bはリチウム硫黄二次電池であり、リチウム硫黄二次電池Bは、硫黄を含む正極活物質を有する正極Pと、リチウムを含む負極活物質を有する負極Nと、これら正極Pと負極Nの間に配置されて電解液Lを保持するセパレータSとを備える。
 図2も参照して、正極Pは、正極集電体P1と、正極集電体P1の表面に形成された正極活物質層P2とを備える。正極集電体P1は、例えば、基体1と、基体1の表面に5~50nmの膜厚で形成された下地膜(「バリア膜」ともいう)2と、下地膜2の上に0.5~5nmの膜厚で形成された触媒層3とを有する。基体1としては、例えば、Ni、CuまたはPtからなる金属箔や金属メッシュを用いることができる。下地膜2は、基体1と後述するカーボンナノチューブ4との密着性を向上させるためのものであり、例えば、Al、Ti、V、Ta、Mo及びWから選択される少なくとも1種の金属またはその金属の窒化物から構成される。触媒層3は、例えば、Ni、FeまたはCoから選択される少なくとも1種の金属から構成される。正極活物質層P2は、正極集電体P1の表面、当該表面に直交する方向に配向させて成長させた多数本のカーボンナノチューブ4と、カーボンナノチューブ4の各々の表面全体を覆う硫黄5とから構成される。硫黄5で覆われたカーボンナノチューブ4相互間に間隙を有しており、この間隙に後述の電解液Lを流入させるようになっている。
 ここで、電池特性を考慮して、カーボンナノチューブ4の各々は、例えば、長さが100~1000μmの範囲内で、直径が5~50nmの範囲内である高アスペクト比のものが有利であり、また、単位面積当たりの密度が、1×1010~1×1012本/cmの範囲内となるように成長させることが好ましい。そして、各カーボンナノチューブ4表面全体を覆う硫黄5の厚さは、例えば、1~3nmの範囲とすることが好ましい。
 上記正極Pは、以下の方法により形成することができる。即ち、基体1たるNi箔の表面に、下地膜2としてのAl膜と触媒層3としてのNi膜を順次形成して正極集電体P1を得る。下地膜2と触媒層3の形成方法としては、例えば、公知の電子ビーム蒸着法、スパッタリング法、触媒金属を含む化合物の溶液を用いたディッピングを用いることができるため、ここでは詳細な説明を省略する。得られた正極集電体P1を公知のCVD装置の処理室内に設置し、処理室内に原料ガス及び希釈ガスを含む混合ガスを100Pa~大気圧の作動圧力下で供給し、600~800℃の温度に正極集電体P1を加熱することにより、集電体P1の表面に、当該表面に直交する配向させてカーボンナノチューブ4を成長させる。カーボンナノチューブ4を成長させるためのCVD法としては、熱CVD法、プラズマCVD法、ホットフィラメントCVD法を用いることができる。原料ガスとしては、例えば、メタン、エチレン、アセチレン等の炭化水素や、メタノール、エタノール等のアルコールを用いることができ、また、希釈ガスとしては、窒素、アルゴン又は水素を用いることができる。また、原料ガス及び希釈ガスの流量は、処理室の容積に応じて適宜設定でき、例えば、原料ガスの流量は10~500sccmの範囲内で設定でき、希釈ガスの流量は100~5000sccmの範囲内で設定できる。カーボンナノチューブ4が成長した領域の全体に亘って、その上方から、1~100μmの範囲の粒径を有する顆粒状の硫黄を撒布して、正極集電体P1を管状炉内に設置し、硫黄の融点(113℃)以上の120~180℃の温度に加熱して硫黄を溶融させる。空気中で加熱すると、溶解した硫黄が空気中の水分と反応して二酸化硫黄が生成するため、ArやHe等の不活性ガス雰囲気中、または真空中で加熱することが好ましい。溶融した硫黄はカーボンナノチューブ4相互間の間隙に流れ込み、カーボンナノチューブ4の各々の表面全体が硫黄5で覆われ、隣接するカーボンナノチューブ4相互間に間隙が存する(図2参照)。このとき、カーボンナノチューブ4の密度に応じて、上記配置する硫黄の重量を設定することができる。例えば、カーボンナノチューブ4の成長密度が1×1010~1×1012本/cmである場合、硫黄の重量をカーボンナノチューブ4の重量の0.7倍~3倍に設定することが好ましい。このようにして形成された正極Pは、カーボンナノチューブ4の単位面積当たりの硫黄5の重量(含浸量)が2.0mg/cm以上のものとなる。
 上記負極Nとしては、例えば、Li単体のほか、LiとAlもしくはInとの合金、または、リチウムイオンをドープしたSi、SiO、Sn、SnOもしくはハードカーボンを用いることができる。
 上記セパレータSは、ポリエチレンやポリプロピレン等の樹脂製の多孔質膜や不織布で構成され、電解液Lを介して正極Pと負極Nとの間でリチウムイオン(Li)を伝導できるようになっている。
 ここで、上記正極Pでは、硫黄とリチウムとが多段階で反応する途中でポリサルファイドが生成する。ポリサルファイド(特に、LiやLi)は電解液Lに溶出し易く、上記セパレータSはポリサルファイドの通過を許容する。このため、電解液Lに溶出したポリサルファイドはセパレータSを通過して負極側に拡散し、正極の硫黄量の減少により容量低下を引き起こす。このため、ポリサルファイドの負極側への拡散を如何にして抑制するかが重要である。
 そこで、本発明者は鋭意研究を重ね、スルホン基を有する高分子不織布がリチウムイオンの通過を許容しつつポリサルファイドの通過を抑制することを知見するに至った。そして、図1に示す如く、セパレータSと負極Nとの間に、スルホン基を有する高分子不織布Fを配置した。高分子不織布Fとしては、ポリプロピレン製やポリエチレン製のものを用いることができる。このような構成を採用すれば、電解液Lに溶出したポリサルファイドが高分子不織布Fを通過し難いため、ポリサルファイドの負極側への拡散を抑制でき、充放電容量の低下を抑制することができる。
 電解液Lは、電解質と電解質を溶解する溶媒とを含み、電解質としては、公知のリチウムビス(トリフルオロメタンスルホニル)イミド(以下「LiTFSI」という)、LiPF、LiBF等を用いることができる。また、溶媒としては、公知のものを用いることができ、例えば、テトラヒドロフラン、グライム、ジグライム、トリグライム、テトラグライム、ジエトキシエタン(DEE)、ジメトキシエタン(DME)などのエーテル類のうちから選択された少なくとも1種を用いることができる。また、放電カーブを安定させるために、この選択された少なくとも1種にジオキソラン(DOL)を混合することが好ましい。例えば、溶媒としてジエトキシエタンとジオキソランの混合液を用いる場合、ジエトキシエタンとジオキソランとの混合比を9:1に設定することができる。また、負極表面に、リチウムイオンの通過を許容しつつポリサルファイドの通過を抑制する被膜を形成すべく、電解液Lに硝酸リチウムを添加してもよい。
 次に、本発明の効果を確認するために実験を行った。本実験では、先ず、以下のように正極Pを作成した。即ち、基体1を直径14mmφ、厚さ0.020mmのNi箔とし、Ni箔1上に下地膜2たるAl膜を15nmの膜厚で電子ビーム蒸着法により形成し、Al膜2の上に触媒層3たるFe膜を5nmの膜厚で電子ビーム蒸着法により形成して正極集電体P1を得た。得られた正極集電体P1を熱CVD装置の処理室内に載置し、処理室内にアセチレン200sccmと窒素1000sccmを供給し、作動圧力:1気圧、温度:750℃、成長時間:10分の条件で、正極集電体P1表面に垂直配向させてカーボンナノチューブ4を800μmの長さで成長させた。カーボンナノチューブ4上に顆粒状の硫黄を配置し、これを管状炉内に配置し、Ar雰囲気下で120℃、5分加熱してカーボンナノチューブ4を硫黄5で覆うことにより、正極Pを作製した。この正極Pでは、カーボンナノチューブ4の単位面積当たりの硫黄5の重量(含浸量)が4mg/cmであった。負極Nを直径15mmφ、厚さ0.6mmの金属リチウムとし、セパレータSをポリプロピレン製の多孔質膜とした。これら正極P及び負極NをセパレータSを介して対向させ、セパレータSと負極Nとの間にスルホン基を有するポリプロピレン製不織布Fを配置し、セパレータSに電解液Lを保持させてリチウム硫黄二次電池のコインセルを作製した。ここで、電解液Lは、電解質たるLiTFSIを、ジエトキシエタン(DEE)とジオキソラン(DOL)との混合液(混合比9:1)に溶解させて濃度を1mol/lに調整し、1%の硝酸リチウムを加えたものを用いた。このように作製したコインセルを発明品とした。また、スルホン基を有するポリプロピレン製不織布Fに代えてスルホン基を有していないポリプロピレン製不織布を配置した点を除き、上記発明品と同様に作製したコインセルを比較品1とした。さらに、不織布Fを配置しない点を除き、上記発明品と同様に作製したコインセルを比較品2とした。これら発明品及び比較品1,2について放電電流密度を0.5mA/cmとして充放電測定したときの放電容量維持率(2サイクル目の放電容量を100%とした)を夫々図3に示す。これによれば、発明品は、比較品1,2よりも充放電容量の低下を抑制できることが確認された。これは、スルホン基を有するポリプロピレン製不織布Fによりポリサルファイドの負極側への拡散を抑制できたことによるものと考えられる。他方、比較品1は、比較品2よりも充放電容量の低下が大きいことが確認された。これは、スルホン基を有しないポリプロピレン製不織布を配置することにより、リチウムイオンの伝導度が低下したことによると考えられる。
 以上、本発明の実施形態について説明したが、本発明は上記のものに限定されない。リチウム硫黄二次電池の形状は特に限定されず、上記コインセル以外に、ボタン型、シート型、積層型、円筒型等であってもよい。また、上記実施形態では、セパレータSと負極Nとの間に不織布Fを配置する場合を例に説明したが、セパレータSと正極Pとの間に不織布を配置してもよい。さらに、例えば、電解液への硫黄溶出量が多い場合には、セパレータSと正極Pとの間、及び、セパレータSと負極Nとの間の両方に不織布を配置することもできる。
 B…リチウム硫黄二次電池、P…正極、N…負極、L…電解液、P1…集電体、1…基体、4…カーボンナノチューブ、5…硫黄。

Claims (2)

  1.  硫黄を含む正極活物質を有する正極と、リチウムを含む負極活物質を有する負極と、正極と負極との間に配置されて電解液を保持するセパレータとを備えるリチウム硫黄二次電池において、
     セパレータと正極との間、及びセパレータと負極との間の少なくとも一方に、スルホン基を有する高分子不織布を配置したことを特徴とするリチウム硫黄二次電池。
  2.  前記正極は、集電体と、集電体の表面に、当該表面に直交する方向に配向させた複数本のカーボンナノチューブとを備え、隣接するカーボンナノチューブ相互間に所定の間隙が存するように、カーボンナノチューブの各々の表面を硫黄で覆ってなることを特徴とする請求項1記載のリチウム硫黄二次電池。
PCT/JP2014/005237 2013-12-18 2014-10-15 リチウム硫黄二次電池 WO2015092959A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015553345A JPWO2015092959A1 (ja) 2013-12-18 2014-10-15 リチウム硫黄二次電池
DE112014005918.8T DE112014005918T5 (de) 2013-12-18 2014-10-15 Lithium-Schwefel-Akkumulator
KR1020167018813A KR20160100333A (ko) 2013-12-18 2014-10-15 리튬 유황 이차전지
US15/101,526 US20170005312A1 (en) 2013-12-18 2014-10-15 Lithium-Sulfur Secondary Battery
CN201480067929.4A CN105830273A (zh) 2013-12-18 2014-10-15 锂硫二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013261070 2013-12-18
JP2013-261070 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015092959A1 true WO2015092959A1 (ja) 2015-06-25

Family

ID=53402346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005237 WO2015092959A1 (ja) 2013-12-18 2014-10-15 リチウム硫黄二次電池

Country Status (7)

Country Link
US (1) US20170005312A1 (ja)
JP (1) JPWO2015092959A1 (ja)
KR (1) KR20160100333A (ja)
CN (1) CN105830273A (ja)
DE (1) DE112014005918T5 (ja)
TW (1) TW201530871A (ja)
WO (1) WO2015092959A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119165A (ja) * 2014-12-18 2016-06-30 株式会社アルバック アルカリ金属−硫黄電池用正極及びこれを備えた二次電池の製造方法
KR20170001375A (ko) * 2015-06-26 2017-01-04 주식회사 엘지화학 리튬 황 전지 및 이의 제조방법
JP2019522316A (ja) * 2016-09-09 2019-08-08 エルジー・ケム・リミテッド リチウム−硫黄電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103418B (zh) * 2018-08-23 2021-04-13 宁德新能源科技有限公司 电极及包含所述电极的电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268799A (ja) * 1999-03-15 2000-09-29 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2002025527A (ja) * 2000-07-03 2002-01-25 Japan Storage Battery Co Ltd 非水電解液二次電池
JP2002532852A (ja) * 1998-12-17 2002-10-02 モルテック コーポレイション 電気化学セル用セパレーターのための保護コーティング
WO2012070184A1 (ja) * 2010-11-26 2012-05-31 株式会社アルバック リチウム硫黄二次電池用の正極及びその形成方法
WO2013087348A2 (de) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Lithium-schwefel-zellen-separator mit polysulfidsperrschicht
JP2013539193A (ja) * 2010-10-07 2013-10-17 バッテル メモリアル インスティチュート 充電式リチウム−硫黄電池電極用のグラフェン−硫黄ナノ複合体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213722A (en) * 1987-11-17 1993-05-25 Matsushita Electric Industrial Co., Ltd. Method of making a separator material for a storage battery
JP3532168B2 (ja) * 2001-06-20 2004-05-31 トーヨーキッチンアンドリビング株式会社 スライドパネル式収納家具
JP2008041606A (ja) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd 非水電解質電池用セパレータ及び非水電解質電池
JP2012070184A (ja) 2010-09-22 2012-04-05 Fujitsu Ten Ltd 放送受信装置
FR2977722B1 (fr) * 2011-07-05 2014-03-14 Commissariat Energie Atomique Separateur d'electrodes pour accumulateur au lithium/soufre
JP2013114920A (ja) 2011-11-29 2013-06-10 Toyota Central R&D Labs Inc リチウム硫黄電池
US9093710B2 (en) * 2012-01-18 2015-07-28 E I Du Pont De Nemours And Company Compositions, layerings, electrodes and methods for making
WO2013126864A1 (en) * 2012-02-23 2013-08-29 E. I. Du Pont De Nemours And Company Compositions, layerings, electrodes and methods for making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532852A (ja) * 1998-12-17 2002-10-02 モルテック コーポレイション 電気化学セル用セパレーターのための保護コーティング
JP2000268799A (ja) * 1999-03-15 2000-09-29 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2002025527A (ja) * 2000-07-03 2002-01-25 Japan Storage Battery Co Ltd 非水電解液二次電池
JP2013539193A (ja) * 2010-10-07 2013-10-17 バッテル メモリアル インスティチュート 充電式リチウム−硫黄電池電極用のグラフェン−硫黄ナノ複合体
WO2012070184A1 (ja) * 2010-11-26 2012-05-31 株式会社アルバック リチウム硫黄二次電池用の正極及びその形成方法
WO2013087348A2 (de) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Lithium-schwefel-zellen-separator mit polysulfidsperrschicht

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119165A (ja) * 2014-12-18 2016-06-30 株式会社アルバック アルカリ金属−硫黄電池用正極及びこれを備えた二次電池の製造方法
KR20170001375A (ko) * 2015-06-26 2017-01-04 주식회사 엘지화학 리튬 황 전지 및 이의 제조방법
KR101994877B1 (ko) * 2015-06-26 2019-07-01 주식회사 엘지화학 리튬 황 전지 및 이의 제조방법
JP2019522316A (ja) * 2016-09-09 2019-08-08 エルジー・ケム・リミテッド リチウム−硫黄電池

Also Published As

Publication number Publication date
DE112014005918T5 (de) 2016-09-08
CN105830273A (zh) 2016-08-03
US20170005312A1 (en) 2017-01-05
KR20160100333A (ko) 2016-08-23
TW201530871A (zh) 2015-08-01
JPWO2015092959A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
KR101502538B1 (ko) 리튬 유황 2차 전지용의 양극 및 그 형성 방법
WO2015083314A1 (ja) リチウム硫黄二次電池
WO2015092959A1 (ja) リチウム硫黄二次電池
JP2014203593A (ja) リチウム硫黄二次電池用の正極及びその形成方法
KR101849754B1 (ko) 리튬 유황 이차전지용 양극 및 그 형성방법
JP6422070B2 (ja) リチウム硫黄二次電池用正極の形成方法
JP2017004605A (ja) リチウム硫黄二次電池及びセパレータの製造方法
JP6210869B2 (ja) リチウム硫黄二次電池用の正極及びその形成方法
JP2015115270A (ja) リチウム硫黄二次電池
JP6298625B2 (ja) リチウム硫黄二次電池用の正極の形成方法及びリチウム硫黄二次電池用正極
US9997770B2 (en) Lithium-sulfur secondary battery
JP2015115209A (ja) リチウム硫黄二次電池
US20220115638A1 (en) Metallic lithium based battery electrodes, formation thereof, and uses thereof
CN115642370A (zh) 锂硫电池用夹层材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553345

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15101526

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014005918

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167018813

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14871213

Country of ref document: EP

Kind code of ref document: A1