WO2015092922A1 - リニアモータ装置 - Google Patents

リニアモータ装置 Download PDF

Info

Publication number
WO2015092922A1
WO2015092922A1 PCT/JP2013/084304 JP2013084304W WO2015092922A1 WO 2015092922 A1 WO2015092922 A1 WO 2015092922A1 JP 2013084304 W JP2013084304 W JP 2013084304W WO 2015092922 A1 WO2015092922 A1 WO 2015092922A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
shielding
linear motor
motor device
magnetic field
Prior art date
Application number
PCT/JP2013/084304
Other languages
English (en)
French (fr)
Inventor
良 永田
隆志 城戸
佳宏 白川
真樹 黒野
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to US15/038,637 priority Critical patent/US10454345B2/en
Priority to PCT/JP2013/084304 priority patent/WO2015092922A1/ja
Priority to EP13899866.1A priority patent/EP3086452B1/en
Priority to JP2015553306A priority patent/JP6301960B2/ja
Priority to CN201380081719.6A priority patent/CN105830322B/zh
Publication of WO2015092922A1 publication Critical patent/WO2015092922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium

Definitions

  • the present invention relates to a linear motor device in which a moving body moves along a raceway member by a thrust generated between a coil and a magnet to which a current is applied. More specifically, the present invention relates to a magnet that reduces the influence of a magnetic field formed by a magnet. It relates to a shielding structure.
  • the applicant of the present application discloses a technical example of this type of shaft type linear motor device in Patent Document 1.
  • the cylindrical linear motor of Patent Document 1 includes a shaft-like stator in which a plurality of permanent magnets are linearly assembled and a mover having a plurality of coils built in, and a thickness dimension between the permanent magnets of the stator. A limited magnetic spacer is sandwiched. As a result, it is possible to efficiently perform the assembly operation of the stator while suppressing a reduction in thrust.
  • Patent Document 2 and Patent Document 3 disclose technical examples of performing magnetic shielding with a linear motor device.
  • the linear motor pair according to claim 4 of Patent Document 2 is characterized in that 4N magnet pairs and a yoke constituting the mover are surrounded by a magnetic shield. Furthermore, Embodiment 2 of Patent Document 2 discloses a mode in which two layers of magnetic shields are arranged so as to surround most of the periphery of the mover. Thereby, it is supposed that the leakage magnetic field from a needle
  • An electric machine includes a first operating part, a second operating part, and a sensor device that detects a momentum (relative movement amount) between the two operating parts. Yes.
  • a sensor device that is sensitive to stray magnetic fields is attached to one of the operating portions, and a magnetic shielding device is disposed between the sensor device and at least one of the operating portions.
  • the electric machine is configured as a linear motor
  • the first operating part is a primary part (moving body)
  • the second operating part is a secondary part (track member).
  • the sensor device is a position detection sensor that is mounted on a moving body and scans a measurer (linear scale) of a track member.
  • the magnetic shielding device is a simple strip shielding plate, and is erected between the permanent magnet of the track member and the sensor device of the moving body.
  • the linear motor device is not limited to the use of a component mounting machine or a board inspection machine, and is widely used in various industrial machines having a linearly movable part.
  • the magnetic shield of the linear motor pair of Patent Document 2 can reduce the leakage magnetic field from the mover (moving body) and reduce the influence of the magnetic field on other devices.
  • this magnetic shield cannot magnetically shield the electrical components arranged on the mover. For this reason, the possibility that the electrical components on the mover may stop functioning due to the magnetic field of the magnet pair, malfunction, or decrease in accuracy cannot be solved.
  • the strip shielding plate disclosed in Patent Document 2 magnetically shields the moving body sensor device from the permanent magnet of the track member.
  • the magnetic field of the permanent magnet is increased to obtain a large thrust, it is difficult to obtain a sufficient magnetic shielding effect with the thin shielding plate, and the possibility that the sensor device is affected by the magnetic field cannot be solved.
  • the magnetic shielding effect is improved if the area of the shielding plate is sufficiently expanded.
  • the shielding plate is made of a ferromagnetic material such as iron, a strong magnetic attractive force acts on the shielding plate from the permanent magnet. This magnetic attraction force crosses in the moving direction of the moving body and increases according to the area of the shielding plate, thus preventing smooth movement of the moving body.
  • the present invention has been made in view of the problems of the background art described above, and enhances the effect of magnetically shielding a magnetic shielding object from the magnetic field formed by the magnet, while acting from the magnet to the magnetic shielding member. It is an object to be solved to provide a linear motor device that suppresses an increase in magnetic attractive force that hinders smooth movement of a moving body.
  • An invention of a linear motor device that solves the above-described problem includes a track member that extends in a moving direction and has one of a magnet and a coil, and is mounted on the track member so as to be movable, the magnet and the magnet
  • a linear motor device including a moving body having the other coil and generating a thrust in the moving direction between the magnet and a current supplied to the coil, the track member having the coil or the moving
  • the body includes a magnetic shielding object that needs to mitigate the influence of the magnetic field formed by the magnet, and a magnetic shielding member that is made of a ferromagnetic material and shields the magnetic shielding object from the magnetic field.
  • the shielding member includes at least one of a parallel shielding plate arranged in parallel with the moving direction between the magnetic shielding object and the magnet, and a front edge and a rear edge of the parallel shielding plate in the moving direction.
  • a vertical shielding plate disposed in a direction away from said magnet perpendicular to the direction of movement.
  • the magnetic shielding object and the magnetic shielding member are provided on the track member or moving body having the coil, and the magnetic shielding member that shields the magnetic shielding object from the magnetic field formed by the magnet includes the parallel shielding plate, It has a vertical shielding plate.
  • the linear motor device of the prior art no magnetic shielding member is provided, or even if it is provided, it consists only of a parallel shielding plate. Therefore, according to the present invention, it is possible to effectively shield a part of the lines of magnetic force that have reached the magnetic shielding object in the prior art by the vertical shielding plate and the parallel shielding plate, and to prevent reaching the magnetic shielding object, Magnetic shielding effect is enhanced.
  • a strong magnetic attraction force acts from a magnet on a magnetic shielding member formed of a ferromagnetic material such as iron.
  • the magnetic attractive force increases corresponding to the area.
  • the vertical shielding plate is connected to at least one of the front edge and the rear edge of the parallel shielding plate and is arranged in a direction away from the magnet. Therefore, even if the area of the magnetic shielding member is increased by the same amount, in the present invention, an increase in magnetic attractive force can be suppressed as compared with the prior art by the amount that the vertical shielding plate moves away from the magnet. Thereby, in this invention, the smooth movement of a moving body is not prevented by magnetic attraction force.
  • FIG. 1 It is a perspective view of the shaft-like track member which constitutes the linear motor device of an embodiment. It is a perspective view of the cylindrical moving body which comprises the linear motor apparatus of embodiment. It is a perspective view of the magnetic shielding member which shields the rear side cooling fan which is a magnetic shielding target object from a permanent magnetic field. It is a perspective view of the attachment member used with a prior art in order to attach a rear side cooling fan. It is a figure which shows the shape of the non-shielding model which simulated magnetic field intensity distribution on the conditions without a magnetic shielding member. It is the figure which showed distribution of the magnetic field intensity in the A1 cross section of FIG. It is the figure which showed distribution of the magnetic field intensity in the A2 cross section of FIG.
  • FIG. 1 is a perspective view of a shaft-like raceway member 1 constituting the linear motor device of the embodiment.
  • the shaft-like raceway member 1 is formed by arranging a plurality of permanent magnets 11 in the moving direction.
  • FIG. 2 is a perspective view of the cylindrical moving body 2 constituting the linear motor device of the embodiment.
  • the cylindrical moving body 2 has an inner cylindrical portion 31 into which the shaft-shaped track member 1 is engaged, and is mounted on the shaft-shaped track member 1 so as to be movable.
  • the cylindrical moving body 2 reciprocates from the right front side in FIG. 2 to the left back side. For convenience, the left rear side is the front side, and the right front side is the rear side.
  • the shaft-like raceway member 1 is composed of a plurality of permanent magnets 11, a plurality of magnetic spacers 12, and a pipe material (not shown).
  • the pipe material is an elongated cylindrical member that is formed of a nonmagnetic material and extends to the moving range of the cylindrical moving body 2.
  • a plurality of permanent magnets 11 and a plurality of magnetic spacers 12 are accommodated alternately in the moving direction.
  • the permanent magnet 11 is formed in a cylindrical shape having an outer diameter slightly smaller than the inner diameter of the pipe material using a ferromagnetic material.
  • An N pole is formed on the upper bottom surface 111 of the cylindrical shape of the permanent magnet 11, and an S pole is formed on the lower bottom surface 112.
  • the magnetic spacer 12 is made of a ferromagnetic material and is formed in a disk shape having a thickness dimension T having the same outer diameter as that of the permanent magnet 11. Since the method of determining the thickness T of the magnetic spacer has already been disclosed in Patent Document 1, detailed description thereof is omitted.
  • the permanent magnets 11 that are adjacent to each other with the magnetic spacer 12 interposed therebetween are arranged so that the magnetic poles of the same polarity face each other (indicated by S and N in FIG. 1).
  • the plurality of permanent magnets 11 form a permanent magnetic field in the surrounding space without being affected by the presence or absence of the pipe material.
  • the cylindrical moving body 2 includes a cylindrical main body unit 3 and a cooling unit 4.
  • the cylindrical main body unit 3 is a substantially rectangular parallelepiped whose outer shape is long in the movement direction, and an inner cylinder portion 31 penetrating in the movement direction is formed.
  • the cross section perpendicular to the moving direction of the cylindrical main body unit 3 is a pentagon in which one corner of a square is cut off obliquely, and an inner cylindrical portion 31 is formed at the center thereof.
  • the cylindrical main body unit 3 has 11 coils arranged in the moving direction. Each coil is wound so as to circulate around the shaft-like raceway member 1 and is embedded in the cylindrical main body unit 3.
  • the cylindrical moving body 2 is equipped with a position detection unit, a movement control unit, and a power supply unit (not shown).
  • the position detection unit detects the current position of the cylindrical moving body 2 on the shaft-like track member 1.
  • the movement control unit variably controls the magnitude and direction of the current flowing from the power supply unit to the coil based on the detected current position and movement command. Thereby, the thrust of a moving direction generate
  • the power supply unit also supplies power to cooling fans 51 and 55 described later.
  • the cooling unit 4 is attached to one side surface of the cylindrical main body unit 3. That is, the cooling unit 4 is disposed within a specific angular range in the circumferential direction of the cylindrical moving body 2.
  • the cooling unit 4 has a substantially rectangular parallelepiped shape whose outer shape is long in the moving direction.
  • the length dimension of the cooling unit 4 in the moving direction is comparable to the length of the cylindrical main body unit 3, and the width dimension perpendicular to the moving direction is smaller than that of the cylindrical main body unit 3.
  • the cooling unit 4 includes a front cooling fan 51, six sets of front radiating fins 52, a partition plate 53, five sets of rear radiating fins 54, and a rear cooling fan 55 arranged in order from the front side to the rear side. Configured.
  • the six sets of front side heat radiation fins 52 and the five sets of rear side heat radiation fins 54 are provided on a one-to-one basis on the coil in the cylindrical main body unit 3.
  • Each of the radiation fins 52 and 54 is made of a material having high thermal conductivity, such as aluminum.
  • the radiating fins 52 and 54 are arranged on one side close to the coil or in contact with the coil through a heat conductive insulator and on the other side away from the coil.
  • the radiating fins 52 and 54 allow the air to flow in the moving direction (the direction connecting the front side and the rear side) and allow air to flow in and out from above.
  • the radiating fins 52 and 54 receive the heat loss generated in the coil and dissipate it into the air.
  • the front cooling fan 51 sucks air from the front radiating fins 52 and blows it out forward.
  • the cooling air flows into the front radiating fins 52 from above (arrow F1 in FIG. 2), flows through the inside, and then flows forward from the front cooling fan 51 (arrow F2 in FIG. 2).
  • the rear cooling fan 55 sucks cooling air from the rear (arrow F3 in FIG. 2) and blows it out toward the rear radiating fins 54. After flowing through the inside of the rear radiating fin 54, the air flows upward from either one (arrow F4 in FIG. 2).
  • the partition plate 53 blocks the air flow between the front radiating fins 52 and the rear radiating fins 54.
  • the cooling unit 4 is attached to the cylindrical main body unit 3 by screwing an attachment portion 56 provided on the partition plate 53.
  • the front cooling fan 51 and the rear cooling fan 55 incorporate a control board that controls the rotation of the fan and a hall sensor that detects the rotation of the fan. Since the Hall sensor is a detection-type sensor using a magnetic field change, there is a possibility that the detection accuracy may be lowered or malfunction due to the influence of the permanent magnetic field formed by the permanent magnet 11. Therefore, the front side cooling fan 51 and the rear side cooling fan 55 correspond to the magnetic shielding object of the present invention that needs to reduce the influence of the permanent magnetic field. In order to alleviate the influence of the permanent magnetic field, the magnetic shielding members 6 are disposed around the front cooling fan 51 and the rear cooling fan 55, respectively.
  • the magnetic shielding object is not limited to the cooling fans 51 and 55.
  • electronic control components such as the position detection unit and the movement control unit of the cylindrical moving body 2 described above may correspond to the magnetic shielding object.
  • FIG. 3 is a perspective view of the magnetic shielding member 6 that shields the rear cooling fan 55, which is a magnetic shielding object, from a permanent magnetic field.
  • the magnetic shielding member 6 is formed in a rectangular parallelepiped box shape that is generally open upward, and will be described in detail below.
  • the magnetic shielding member 6 includes a substantially rectangular bottom plate, a parallel shielding plate 61 erected from four sides of the bottom plate, a front vertical shielding plate 62, a rear vertical shielding plate 63, and an outer parallel shielding plate 64. ing.
  • the parallel shielding plate 61 is arranged in parallel in the moving direction between the rear cooling fan 55 and the permanent magnet 11 (located on the left front side in FIG. 3).
  • the front vertical shielding plate 62 is connected to the front edge of the parallel shielding plate 51 in the moving direction, and is arranged in a direction away from the permanent magnet 11 perpendicular to the moving direction.
  • the rear vertical shielding plate 63 is connected to the rear edge of the parallel shielding plate 61 in the moving direction, and is arranged in a direction away from the permanent magnet 11 perpendicular to the moving direction.
  • the outer parallel shielding plate 64 is arranged by connecting the edges of the front vertical shielding plate 62 and the rear vertical shielding plate 63 on the side away from the permanent magnet 11.
  • a rear cooling fan 55 is fixed on the bottom plate. Therefore, when viewed from above, the magnetic shielding member 6 surrounds the rear cooling fan 55 in a rectangular shape.
  • the front vertical shielding plate 62 has a large circular hole 621 formed in the center.
  • the rear vertical shielding plate 63 is formed with a large circular center hole 631 in the center and eight smaller peripheral holes 632 around the center hole 631.
  • the magnetic shielding member 6 can be manufactured, for example, by subjecting a plate of a ferromagnetic material such as soft iron to a punching press process or a bending process.
  • the magnetic shielding member 6 may be made of a ferromagnetic material other than soft iron, and the manufacturing method is not particularly limited.
  • FIG. 4 is a perspective view of the mounting member 9 used in the prior art for mounting the rear cooling fan 55.
  • the mounting member 9 of the prior art is formed in an L shape in a front view by a substantially rectangular bottom plate 91 and a rectangular parallel shielding plate 92 erected from one side of the bottom plate 91.
  • the cylindrical main body unit 3 further includes a magnetic force canceling member 7.
  • the magnetic force canceling member 7 is made of a ferromagnetic material such as soft iron, for example, and is formed of a rectangular plate material that is long in the moving direction.
  • the magnetic force canceling member 7 is attached to the other side surface of the cylindrical main body unit 3. That is, the magnetic force canceling member 7 is arranged in an angle range opposite to the specific angular range in the circumferential direction in which the cooling unit 4 of the cylindrical moving body 2 is arranged.
  • the magnetic force canceling member 7 is disposed at a substantially symmetrical position of the rear cooling fan 55 with the cylindrical main body unit 3 as the center.
  • the magnetic force canceling member 7 is a member for canceling the magnetic attractive force by which the permanent magnet 11 attracts the magnetic shielding member 6.
  • a dummy member having the same shape and the same material as the magnetic shielding member 6 is manufactured and disposed at a symmetrical position of the magnetic shielding member 6, it is clear that the magnetic attractive force can be offset. This is because the magnetic attractive force for attracting the magnetic shielding member 6 by the permanent magnet 11 and the magnetic attractive force for attracting the dummy member are of the same magnitude and are opposite to each other. However, such a dummy member is not preferable because the width dimension of the cylindrical moving body 2 is remarkably increased.
  • the magnetic force canceling member 7 may be arranged not only at the substantially symmetric position of the rear cooling fan 55 but also at the substantially symmetric position of the front cooling fan 51. It is also conceivable to arrange only one magnetic force canceling member 7 in the vicinity of an intermediate position in the moving direction of the cylindrical main unit 3.
  • the magnetic force canceling member 7 is not limited to a plate material, and there are degrees of freedom in its shape, number, arrangement position, mounting method, and the like.
  • the simulation is performed with three models, a non-shielding model, a parallel shielding model, and a rectangular shielding model.
  • a common condition of the three models a case where the front cooling fan 51 is located directly beside a certain permanent magnet 11 is modeled.
  • the front cooling fan 51, the permanent magnet 11, and the magnetic shielding members 6 ⁇ / b> B and 6 ⁇ / b> C are considered, and the other members are not considered as having a relative permeability of approximately 1.
  • FIG. 5 is a diagram showing the shape of a non-shielding model that simulates the distribution of magnetic field strength under the condition that there is no magnetic shielding member.
  • the non-shielding model only the front cooling fan 51 and the permanent magnet 11 are considered.
  • 5 is the moving direction of the cylindrical moving body 2, and the direction from the left side to the right side of the drawing is the vertical outward direction.
  • a position P1 in the figure indicates one side surface near the permanent magnet 11 of the front cooling fan 51
  • a position P3 indicates the other side surface away from the permanent magnet 11 of the front cooling fan 51.
  • the position P2 indicates the position P2 of the hall sensor disposed at the front center of the front cooling fan 51. At this position P2, the necessity for relaxation of the magnetic field is the highest.
  • 5 is a cross section passing through the center position of the front cooling fan 51. 5 is a cross section passing through the position P2 of the Hall sensor of the front cooling fan 51.
  • the B1 cross section of FIG. 8 and the C1 cross section of FIG. 11 described later correspond to the same position as the A1 cross section, and the B2 cross section of FIG. 8 and the C2 cross section of FIG. 11 correspond to the same position as the A2 cross section. Yes.
  • FIGS. 6 and 7 are obtained with the unshielded model shown in FIG. 6 is a diagram showing the distribution of the magnetic field strength HA1 in the A1 cross section of FIG. 5, and FIG. 7 is a diagram showing the distribution of the magnetic field strength HA2 in the A2 cross section of FIG.
  • the non-shielding model that does not consider the magnetic shielding member, since the entire region has a relative permeability of 1, a general magnetic field of a magnetic dipole is formed.
  • the magnetic field strength HA1 and the magnetic field strength HA2 gradually decrease as the distance from the center of the permanent magnet 11 increases in the vertical outward direction.
  • FIG. 8 is a diagram showing the shape of a parallel shielding model that simulates the distribution of magnetic field strength under the condition using the magnetic shielding member 6B composed of the parallel shielding plate 61 and the outer parallel shielding plate 64.
  • the parallel shielding plate 61 is disposed in contact with one side surface (position P1) of the front cooling fan 51, and the outer parallel shielding plate 64 is disposed in contact with the other side surface (position P3) of the front cooling fan 51.
  • the simulation results shown in FIGS. 9 and 10 are obtained with the parallel shielding model.
  • FIG. 9 is a diagram showing the distribution of the magnetic field strength HB1 in the B1 cross section of FIG.
  • the magnetic field strength HB1 greatly decreases as it proceeds from the center position of the permanent magnet 11 in the vertical outward direction.
  • the magnetic field strength HB1 (P1) at the position P1 is considerably smaller than the magnetic field strength HA1 (P1) of the non-shielding model shown in FIG.
  • the magnetic field strength HB1 (P3) at the position P3 is substantially zero.
  • the magnetic field strength HB1 is higher than the magnetic field strength HA1 of the non-shielding model in a region away from the position P3 in the vertical outward direction. That is, part of the magnetic force lines that have reached the front cooling fan 51 in the non-shielding model are guided to the outside of the front cooling fan 51 in the parallel shielding model, and are prevented from reaching the front cooling fan 51.
  • the average value of the width range (the range of P1 to P3) of the front cooling fan 51 of the magnetic field strength HB1 is reduced to 32% of the average value of the non-shielding model. That is, the area SB indicated by hatching in FIG. 9 is 32% of the area SA indicated by hatching in FIG.
  • FIG. 10 is a diagram showing the distribution of the magnetic field strength HB2 in the B2 cross section of FIG.
  • Magnetic field strength HB2 (P1) at position P1 and magnetic field strength HB2 (P3) at position P3 are substantially zero.
  • the effect of magnetic shielding occurs as in the case of the magnetic field strength HB1 of the B1 cross section.
  • the magnetic field strength HB2 (P2) at the position P2 of the Hall sensor is only reduced to 64% of the magnetic field strength HA2 (P2) of the non-shielding model shown in FIG. Therefore, although a magnetic shielding effect is produced at the position P2 of the Hall sensor, it cannot be said that it is quantitatively sufficient.
  • FIG. 11 is a diagram showing the shape of a rectangular shielding model in which the magnetic field strength distribution is simulated under the condition using the rectangular magnetic shielding member 6C as viewed from above. It is assumed that the magnetic shielding member 6 ⁇ / b> C is disposed in contact with the four side surfaces of the front cooling fan 51. With the rectangular shielding model shown in FIG. 11, the simulation results shown in FIGS. 12 and 13 are obtained.
  • FIG. 12 is a diagram showing the distribution of the magnetic field strength HC1 in the section C1 in FIG.
  • the magnetic field strength HC1 is extremely small in the width range (range P1 to P3) of the front cooling fan 51. Further, the magnetic field strength HC1 is higher than the magnetic field strength HA1 of the non-shielding model in a region away from the position P3 in the vertical outward direction. That is, most of the magnetic force lines that have reached the front cooling fan 51 in the non-shielding model are guided to the outside of the front cooling fan 51 in the rectangular shielding model, and are prevented from reaching the front cooling fan 51.
  • FIG. 13 is a diagram showing the distribution of the magnetic field strength HC2 in the section C2 in FIG.
  • the magnetic field strength HC2 is small in the width range (P1 to P3 range) of the front cooling fan 51.
  • the magnetic field strength HC2 (P2) at the Hall sensor position P2 is reduced to 32% of the magnetic field strength HA2 (P2) of the non-shielding model shown in FIG. Therefore, a quantitatively sufficient magnetic shielding effect is obtained at the position P2 of the Hall sensor.
  • the rectangular magnetic shielding member 6 ⁇ / b> C used in the simulation has punched holes 621, 631 and 632 at positions corresponding to the front vertical shielding plate 62 and the rear vertical shielding plate 63. Absent. Therefore, although the magnetic shielding effect obtained by the actual magnetic shielding member 6 is somewhat diminished from the effect of the rectangular shielding model, it is sure to exceed the effect of the parallel shielding model. This is supported by experiments using an actual magnetic shielding member 6.
  • the influence of the current magnetic field formed by the coil is small as compared with the influence of the permanent magnetic field formed by the permanent magnet 11, and is omitted in the above simulation. Even if the current magnetic field is relatively large, the magnetic shielding member 6 has an equivalent magnetic shielding performance against the current magnetic field and the permanent magnetic field.
  • FIG. 14 is a waveform obtained by measuring the vibration amount of the roll generated when the cylindrical moving body 2 moves in the linear motor device of the embodiment.
  • FIG. 15 shows a waveform obtained by removing the magnetic force canceling member 7 from the linear motor device of the embodiment and measuring the amount of rolling vibration generated when the cylindrical moving body 2 moves.
  • the horizontal axis of the waveforms in FIGS. 14 and 15 represents time, and the vertical axis represents the amount of roll vibration perpendicular to the moving direction. 14 and 15 are measured with the same sweep time and the same measurement range.
  • the magnetic attractive force with which the permanent magnet 11 attracts the magnetic shielding member 6 varies greatly depending on the positional relationship between the cylindrical moving body 2 and the permanent magnet 11. For example, when the magnetic shielding member 6 of the cylindrical moving body 2 is positioned right next to the N pole or S pole of the permanent magnet 11, the magnetic attractive force becomes maximum, and the magnetic shielding member 6 has the N pole and S pole of the permanent magnet 11. When located in the middle, the magnetic attractive force is minimized. Thereby, a large roll is generated in the cylindrical moving body 2, and smooth movement is prevented.
  • the linear motor device includes a shaft-shaped track member 1 having a plurality of permanent magnets 11 extending in the moving direction, and a cylindrical moving body 2 having a coil mounted on the shaft-shaped track member 1 so as to be movable.
  • a linear motor device that generates a thrust in the moving direction between the coil and the permanent magnet 11, and the cylindrical moving body 2 having the coil is influenced by the permanent magnetic field formed by the permanent magnet.
  • Cooling fans 51 and 55 that need to be relaxed, and a magnetic shielding member 6 that is made of a ferromagnetic material and shields the cooling fans 51 and 55 from a permanent magnetic field.
  • the parallel shielding plate 61 arranged in parallel in the movement direction between the cooling fans 51 and 55 and the permanent magnet 11, and the parallel shielding plate 61 is permanently perpendicular to the movement direction from the front edge and the rear edge in the movement direction. Away from magnet Having a front vertical shield plate 62 and the rear-side vertical shield plates 63 are arranged in that direction.
  • the cooling fans 51 and 55 (magnetic shielding object) and the magnetic shielding member 6 are provided on the cylindrical moving body 2 having a coil, and the cooling fans 51 and 55 are generated from the permanent magnetic field formed by the permanent magnet 11.
  • the magnetic shielding member 6 that shields has a parallel shielding plate 61 and vertical shielding plates 62 and 63.
  • no magnetic shielding member is provided, or even if it is provided, it consists only of a parallel shielding plate. Therefore, according to the present embodiment, a part of the lines of magnetic force that have reached the magnetic shielding object in the prior art are effectively shielded by the parallel shielding plate 61 and the vertical shielding plates 62 and 63 to the cooling fans 51 and 55. The magnetic shielding effect is enhanced.
  • a strong magnetic attractive force acts from the permanent magnet 11 on the magnetic shielding member 6 formed of a ferromagnetic material such as soft iron.
  • the magnetic attractive force increases corresponding to the area.
  • the vertical shielding plates 62 and 63 are connected to the front and rear edges of the parallel shielding plate 61 and are arranged in a direction away from the permanent magnet 11. Therefore, even if the area of the magnetic shielding member is increased by the same amount, in the present embodiment, an increase in magnetic attractive force can be suppressed as compared with the prior art by the amount that the vertical shielding plates 62 and 63 are moved away from the magnet. Thereby, in this embodiment, the smooth movement of the cylindrical moving body 2 is not hindered by the magnetic attractive force.
  • the magnetic shielding member 6 includes the parallel shielding plate 61, the front vertical shielding plate 62 and the rear vertical shielding plate 63 arranged from the front edge and the rear edge in the moving direction of the parallel shielding plate 61. And an outer parallel shielding plate 64 that connects the edges of the two vertical shielding plates 62 and 63 on the side away from the permanent magnet 11 and surrounds the cooling fans 51 and 55 (magnetic shielding object) in a rectangular shape. It is out.
  • the magnetic field strength HC2 (P2) is about 1/3 as compared with the case where the magnetic shielding member 6 is not used at the position P2 of the Hall sensor of the cooling fans 51 and 55 where the influence of the permanent magnetic field is concerned. Can be reduced. In other words, a quantitatively sufficient magnetic shielding effect can be obtained at the position P2 of the Hall sensor.
  • the track member is a shaft-shaped track member 1 formed by arranging a plurality of permanent magnets 11 in the moving direction so that magnetic poles of the same polarity face each other, and the moving body has a shaft shape.
  • the cylindrical moving body 2 includes the cooling fans 51 and 55 (magnetic shielding objects) and the magnetic shielding member 6 within a specific angular range in the circumferential direction, and further in the circumferential direction.
  • the magnetic force canceling member 7 made of a ferromagnetic material is provided outside the specific angle range, and at least a part of the magnetic attractive force by which the plurality of permanent magnets 11 attract the magnetic shielding member 6 is a plurality of permanent magnets 11. Is canceled by the magnetic attractive force that attracts the magnetic force canceling member 7.
  • the magnetic force canceling member 7 is a plate material arranged in an angle range opposite to the specific angle range in the circumferential direction of the cylindrical moving body 2.
  • the magnetic attractive force can be effectively canceled without enlarging the cylindrical moving body 2 by using the magnetic force canceling member 7 made of a simple plate material. And the attachment method of the magnetic force cancellation member 7 is easy.
  • the magnetic shielding object is the cooling fans 51 and 55 that cool the coil
  • the front vertical shielding plate 62 of the magnetic shielding member 6 is a hollow that allows the cooling air to flow.
  • the rear vertical shielding plate 63 has a hole 621, and has a central punched hole 631 and a peripheral punched hole 632 that allow the flow of cooling air.
  • the suction holes 621, 631, and 632 do not prevent the cooling fans 51 and 55 from sucking and blowing air.
  • the magnetic shielding object is not the cooling fans 51 and 55, the punched hole 621 of the front vertical shield plate 62, the central punched hole 631 and the peripheral punched hole 632 of the rear vertical shield plate 63 are not necessary. In this case, the magnetic shielding effect is more reliably increased.
  • the structure of the shaft-shaped track member 1 and the cylindrical moving body 2 can be variously modified. Various other applications and modifications are possible for the present invention.
  • the linear motor device of the present invention is not limited to the head drive device of a component mounter or a board inspection machine, and can be widely used for various industrial machines having a linearly movable part.
  • SYMBOLS 1 Shaft-shaped track member 11: Permanent magnet 12: Magnetic body spacer 2: Cylindrical moving body 3: Cylindrical main body unit 4: Cooling unit 51: Front side cooling fan 52: Front side radiation fin 53: Partition plate 54: Rear side heat radiation Fin 55: Rear cooling fan 6: Magnetic shielding member 61: Parallel shielding plate 62: Front vertical shielding plate 63: Rear vertical shielding plate 64: Outer parallel shielding plate 6B, 6C: Magnetic shielding member used for simulation 7: Magnetic Force canceling member 9: Prior art mounting member P2: Position of the hall sensor built in the front cooling fan HA1, HA2, HB1, HB2, HC1, HC2: Magnetic field strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Linear Motors (AREA)

Abstract

 本発明は、移動方向に延在して磁石を有する軌道部材と、軌道部材に移動可能に装架されてコイルを有する移動体とを備え、コイルに電流を通電して磁石との間に移動方向の推力を発生するリニアモータ装置であって、コイルを有する移動体は、磁石が形成する磁界の影響の緩和が必要な磁気遮蔽対象物と、強磁性材料で形成されて磁気遮蔽対象物を磁界から遮蔽する磁気遮蔽部材とを有し、磁気遮蔽部材は、磁気遮蔽対象物と磁石との間で移動方向に平行配置された平行遮蔽板、ならびに、平行遮蔽板の移動方向の前縁および後縁の少なくとも一方から移動方向に対して垂直に磁石から遠ざかる方向に配置された垂直遮蔽板を有する。これにより、磁石が形成する磁界から磁気遮蔽対象物を磁気遮蔽する効果を従来よりも高めることができる。

Description

リニアモータ装置
 本発明は、電流を通電したコイルと磁石との間に発生する推力により移動体が軌道部材に沿って移動するリニアモータ装置に関し、より詳細には、磁石が形成する磁界の影響を緩和する磁気遮蔽構造に関する。
 多数の電子部品が装着された基板を生産する設備として、半田印刷機、部品実装機、リフロー炉、基板検査機などがある。これらの設備を基板搬送装置で連結して基板生産ラインを構築することが一般的になっている。部品実装機や基板検査機では、実装ヘッドや検査ヘッドの駆動装置として、従来から送りねじ駆動装置が用いられてきた。近年では、ヘッドの高速移動および高精度位置制御への要求が高まり、駆動装置としてリニアモータ装置が用いられるようになってきている。特に、限られた設置スペースで大きな推力を発生できるシャフト型リニアモータ装置が注目されている。
 本願出願人は、この種のシャフト型リニアモータ装置の技術例を特許文献1に開示している。特許文献1の円筒型リニアモータは、複数の永久磁石を直線状に組み付けたシャフト状の固定子と、複数のコイルを内蔵した可動子とを備え、固定子の永久磁石の間に厚み寸法の限定された磁性体スペーサが挟み込まれている。これにより、推力の低下を抑制しつつ、固定子の組立作業を能率良く行うことができる。
 ところで、シャフト型に限らず一般的なリニアモータ装置で大きな推力を得るためにコイルの通電電流を増加させると、損失熱が増加して温度上昇が顕著になる。このため、例えば放熱フィンや冷却ファンを用いて、コイルを強制的に冷却する必要が生じる。また、大きな推力を得るために強力な永久磁石を用いると、永久磁石によって形成された磁界が近隣の電装部品に影響を及ぼす。このため、磁界の影響の緩和に磁気遮蔽部材を用いる必要が生じる。磁気遮蔽が必要とされる電装部品(磁気遮蔽対象物)として、CPUを始めとする電子制御部品や、磁界変化を利用した検出方式のセンサなどを例示できる。リニアモータ装置で磁気遮蔽を行う技術例が特許文献2および特許文献3に開示されている。
 特許文献2の請求項4のリニアモータ対は、可動子を構成する4N組の磁石ペアおよびヨークを磁気シールドで囲むように構成することを特徴としている。さらに、特許文献2の実施例2には、可動子の周囲の大部分を取り囲むように磁気シールドを2層配置した態様が開示されている。これにより、可動子からの漏洩磁場を低減できる、とされている。
 また、特許文献3の請求項1の電気機械は、第1の作動部分と、第2の作動部分と、両作動部分の間の運動量(相対移動量)を検出するセンサ装置と、を備えている。そして、漂遊磁場に感応するセンサ装置が一方の作動部分に装着され、センサ装置と少なくとも一方の作動部分との間に磁気遮蔽装置が配置されている。特許文献3の請求項2では、電気機械がリニアモータとして構成され、第1の作動部分が第1次部分(移動体)、第2の作動部分が第2次部分(軌道部材)であると特定されている。さらに、特許文献3の実施形態において、センサ装置は移動体に装着されて軌道部材の度量器(リニアスケール)を走査する位置検出センサとされている。また、磁気遮蔽装置は、簡単な細片の遮蔽板とされており、軌道部材の永久磁石と移動体のセンサ装置との間に立設されている。
 なお、リニアモータ装置は、部品実装機や基板検査機の用途に限定されず、直進可動部を有する各種の産業機械に広く用いられている。
特開2008-206335号公報 特開2011-193703号公報 特表2009-529131号公報
 ところで、特許文献2のリニアモータ対の磁気シールドで、可動子(移動体)からの漏洩磁場を低減して、他装置への磁界の影響を緩和できる点は好ましい。しかしながら、この磁気シールドは、可動子上に配設された電装部品を磁気遮蔽することができない。このため、可動子上の電装部品が磁石ペアの磁界の影響を受けて機能停止したり、誤動作したり、精度低下したりするおそれを解消できない。
 これに対して、特許文献2に開示された細片の遮蔽板は、移動体のセンサ装置を軌道部材の永久磁石から磁気遮蔽している。ところが、永久磁石の磁界を強くして大きな推力を得ようとすると、細片の遮蔽板では十分な磁気遮蔽効果を得ることが困難になり、センサ装置が磁界の影響を受けるおそれは解消されない。この対策として、遮蔽板の面積を十分に拡げれば磁気遮蔽効果は向上する。しかしながら、遮蔽板は鉄などの強磁性材料で形成されるので、永久磁石から遮蔽板に強い磁気吸引力が作用する。この磁気吸引力は、移動体の移動方向に交叉しておりかつ遮蔽板の面積に応じて増加するので、移動体の円滑な移動を妨げる。
 本発明は、上記背景技術の問題点に鑑みてなされたものであり、磁石が形成する磁界から磁気遮蔽対象物を磁気遮蔽する効果を従来よりも高めつつ、磁石から磁気遮蔽部材に作用して移動体の円滑な移動を妨げる磁気吸引力の増加を抑制したリニアモータ装置を提供することを解決すべき課題とする。
 上記課題を解決する請求項1に係るリニアモータ装置の発明は、移動方向に延在して磁石およびコイルの一方を有する軌道部材と、前記軌道部材に移動可能に装架されて前記磁石および前記コイルの他方を有する移動体とを備え、前記コイルに電流を通電して前記磁石との間に前記移動方向の推力を発生するリニアモータ装置であって、前記コイルを有する前記軌道部材または前記移動体は、前記磁石が形成する磁界の影響の緩和が必要な磁気遮蔽対象物と、強磁性材料で形成されて前記磁気遮蔽対象物を前記磁界から遮蔽する磁気遮蔽部材とを有し、前記磁気遮蔽部材は、前記磁気遮蔽対象物と前記磁石との間で前記移動方向に平行配置された平行遮蔽板、ならびに、前記平行遮蔽板の前記移動方向の前縁および後縁の少なくとも一方から前記移動方向に対して垂直に前記磁石から遠ざかる方向に配置された垂直遮蔽板を有する。
 これによれば、コイルを有する軌道部材または移動体に磁気遮蔽対象物および磁気遮蔽部材が設けられており、磁石が形成する磁界から磁気遮蔽対象物を遮蔽する磁気遮蔽部材は、平行遮蔽板ならびに垂直遮蔽板を有している。一方、従来技術のリニアモータ装置において、磁気遮蔽部材は設けられないか、仮に設けられても平行遮蔽板のみからなる。したがって、本発明によれば、従来技術で磁気遮蔽対象物に到達していた磁力線の一部を垂直遮蔽板および平行遮蔽板により効果的に遮蔽して磁気遮蔽対象物への到達を阻止でき、磁気遮蔽効果が高まる。
 また、鉄などの強磁性材料で形成される磁気遮蔽部材には、磁石から強い磁気吸引力が作用する。従来技術で磁気遮蔽効果を高めるために平行遮蔽板の面積を拡げた場合に、磁気吸引力は、面積に対応して増加する。一方、本発明で垂直遮蔽板は平行遮蔽板の前縁および後縁の少なくとも一方に連なり磁石から遠ざかる方向に配置される。したがって、仮に磁気遮蔽部材の面積を同じだけ増加させても、本発明では垂直遮蔽板が磁石から遠ざかる分だけ、従来技術よりも磁気吸引力の増加を抑制できる。これにより、本発明では、移動体の円滑な移動が磁気吸引力によって妨げられない。
実施形態のリニアモータ装置を構成するシャフト状軌道部材の斜視図である。 実施形態のリニアモータ装置を構成する筒状移動体の斜視図である。 磁気遮蔽対象物である後側冷却ファンを永久磁界から遮蔽する磁気遮蔽部材の斜視図である。 後側冷却ファンを取り付けるために従来技術で用いる取付部材の斜視図である。 磁気遮蔽部材が無い条件で磁界強度の分布をシミュレーションした非遮蔽モデルの形状を示す図である。 図5のA1断面における磁界強度の分布を示した図である。 図5のA2断面における磁界強度の分布を示した図である。 平行遮蔽板および外側平行遮蔽板からなる磁気遮蔽部材を用いた条件で磁界強度の分布をシミュレーションした平行遮蔽モデルの形状を示す図である。 図8のB1断面における磁界強度の分布を示した図である。 図8のB2断面における磁界強度の分布を示した図である。 上から見て矩形の磁気遮蔽部材を用いた条件で磁界強度の分布をシミュレーションした矩形遮蔽モデルの形状を示す図である。 図11のC1断面における磁界強度の分布を示した図である。 図11のC2断面における磁界強度の分布を示した図である。 実施形態のリニアモータ装置で、筒状移動体が移動するときに発生する横揺れの振動量を測定した波形である。 実施形態のリニアモータ装置から磁気力相殺部材を取り外して、筒状移動体が移動するときに発生する横揺れの振動量を測定した波形である。
 本発明の実施形態のリニアモータ装置について、図1~図15を参考にして説明する。実施形態のリニアモータ装置は、シャフト状軌道部材1および筒状移動体2で構成されている。図1は、実施形態のリニアモータ装置を構成するシャフト状軌道部材1の斜視図である。シャフト状軌道部材1は、複数の永久磁石11が移動方向に列設されて形成されている。また、図2は、実施形態のリニアモータ装置を構成する筒状移動体2の斜視図である。筒状移動体2は、シャフト状軌道部材1が係入する内筒部31を有しており、シャフト状軌道部材1に移動可能に装架されている。筒状移動体2は、図2の右手前側から左奥側へと往復移動する。便宜的に左奥側を前側、右手前側を後側とする。
 図1に示されるように、シャフト状軌道部材1は、複数の永久磁石11、複数の磁性体スペーサ12、および図略のパイプ材で構成されている。パイプ材は、非磁性材料で形成されて筒状移動体2の移動範囲に延在する細長い円筒状の部材である。パイプ材の内部空間には、複数の永久磁石11および複数の磁性体スペーサ12が移動方向に交互に接して収納されている。
 永久磁石11は、強磁性材料を用いて、パイプ材の内径よりもわずかに小さな外径を有する円柱形状に形成されている。永久磁石11の円柱形状の上底面111にN極が形成され、下底面112にS極が形成されている。磁性体スペーサ12は、強磁性材料を用いて、概ね永久磁石11と同じ外径を有する厚み寸法Tの円板形状に形成されている。磁性体スペーサの厚み寸法Tの決め方については、特許文献1に開示済みであるので、詳細な説明は省略する。磁性体スペーサ12を挟んで隣り合う永久磁石11は、同極性の磁極同士が向かい合うように配置される(図1にS、Nで示す)。複数の永久磁石11は、パイプ材の有無に影響されずに周囲の空間に永久磁界を形成する。
 図2に示されるように、筒状移動体2は、筒状本体ユニット3および冷却ユニット4などで構成されている。筒状本体ユニット3は、外形形状が移動方向に長い略直方体であり、移動方向に貫通する内筒部31が形成されている。詳細には、筒状本体ユニット3の移動方向に直角な断面は、概ね正方形の一隅が斜めに切り取られた五角形であり、その中心に内筒部31が形成されている。筒状本体ユニット3は、移動方向に列設された11個のコイルを有している。各コイルは、シャフト状軌道部材1を周回するように巻回され、筒状本体ユニット3の内部に埋設されている。
 筒状移動体2は、図略の位置検出部、移動制御部、および電源部を搭載している。位置検出部は、シャフト状軌道部材1上における筒状移動体2の現在位置を検出する。移動制御部は、検出された現在位置および移動指令に基づいて、電源部からコイルに流れる電流の大きさおよび方向を可変に制御する。これにより、筒状移動体2のコイルが形成する電流磁界と、シャフト状軌道部材1の永久磁石11が形成する永久磁界との間に、移動方向の推力が発生する。大きな推力を得るためにコイルに大きな電流を流すので、コイルは強制的に冷却する必要がある。また、電源部は、後述する冷却ファン51、55にも電源を供給している。
 冷却ユニット4は、筒状本体ユニット3の一方の側面に付設されている。つまり、冷却ユニット4は、筒状移動体2の周方向の特定角度範囲内に配設されている。冷却ユニット4は、外形形状が移動方向に長い略直方体形状である。冷却ユニット4の移動方向の長さ寸法は筒状本体ユニット3の長さに匹敵し、移動方向に直角な幅寸法は筒状本体ユニット3よりも小さめである。冷却ユニット4は、前側から後側に向かって順番に前側冷却ファン51、6組の前側放熱フィン52、仕切り板53、5組の後側放熱フィン54、および後側冷却ファン55が列設されて構成されている。
 6組の前側放熱フィン52および5組の後側放熱フィン54は、筒状本体ユニット3内のコイルに一対一で設けられている。各放熱フィン52、54は、熱伝導率の高い材質、例えばアルミニウムなどで形成されている。放熱フィン52、54は、一側がコイルに近接し、または熱伝導性絶縁物を介してコイルに接し、他側がコイルから離れて配置されている。放熱フィン52、54は、移動方向(前側と後側を結ぶ方向)の空気の流通を許容し、かつ上方から空気が流入出できるようになっている。放熱フィン52、54は、コイルで発生した損失熱を受け取り、空気中に放散する。
 前側冷却ファン51は、前側放熱フィン52から空気を吸い込み、前方に向けて吹き出す。冷却用の空気は、上方から前側放熱フィン52に流入して(図2の矢印F1)内部を流通した後、前側冷却ファン51から前方に流出する(図2の矢印F2)。後側冷却ファン55は、冷却用の空気を後方から吸い込み(図2の矢印F3)、後側放熱フィン54に向けて吹き出す。空気は、後側放熱フィン54の内部を流通した後、いずれかから上方に流出する(図2の矢印F4)。放熱フィン52、54に空気を流通させる強制冷却方式を採用することで、自然冷却方式と比較して熱放散特性が格段に高められる。仕切り板53は、前側放熱フィン52と後側放熱フィン54との間の空気の流通を遮断する。また、仕切り板53に設けられた取付部56のネジ留めにより、冷却ユニット4が筒状本体ユニット3に取り付けられている。
 前側冷却ファン51および後側冷却ファン55は、ファンの回転を制御する制御基板、およびファンの回転を検出するホールセンサを内蔵している。ホールセンサは、磁界変化を利用した検出方式のセンサであるので、永久磁石11が形成する永久磁界に影響されて検出精度が低下したり誤動作したりするおそれがある。したがって、前側冷却ファン51および後側冷却ファン55は、永久磁界の影響の緩和が必要な本発明の磁気遮蔽対象物に相当する。永久磁界の影響を緩和するために、前側冷却ファン51および後側冷却ファン55の周りにそれぞれ磁気遮蔽部材6が配設されている。なお、磁気遮蔽対象物は、冷却ファン51、55に限定されない。例えば、前述した筒状移動体2の位置検出部や移動制御部などの電子制御部品も、磁気遮蔽対象物に該当する場合がある。
 前側冷却ファン51および後側冷却ファン55の周りに配設された2個の磁気遮蔽部材6は、互いに鏡面対称(ミラーイメージ)の同一形状である。そこで、後側冷却ファン55側の磁気遮蔽部材6を例にして説明する。図3は、磁気遮蔽対象物である後側冷却ファン55を永久磁界から遮蔽する磁気遮蔽部材6の斜視図である。磁気遮蔽部材6は、概ね上方に開口する直方体の箱形状に形成されており、以下詳述する。
 磁気遮蔽部材6は、略矩形の底板と、底板の4辺からそれぞれ立設された平行遮蔽板61、前側垂直遮蔽板62、後側垂直遮蔽板63、および外側平行遮蔽板64とにより形成されている。平行遮蔽板61は、後側冷却ファン55と永久磁石11(図3で左手前に位置する)との間で移動方向に平行配置されている。前側垂直遮蔽板62は、平行遮蔽板51の移動方向の前縁に連なり、移動方向に対して垂直に永久磁石11から遠ざかる方向に配置されている。後側垂直遮蔽板63は、平行遮蔽板61の移動方向の後縁に連なり、移動方向に対して垂直に永久磁石11から遠ざかる方向に配置されている。外側平行遮蔽板64は、前側垂直遮蔽板62および後側垂直遮蔽板63の永久磁石11から離れた側の縁を連結して配置されている。そして、底板の上に後側冷却ファン55が固設されている。したがって、上方から見て、磁気遮蔽部材6は、後側冷却ファン55を矩形に囲んでいる。
 前側垂直遮蔽板62は、中央に略円形の大きな刳り抜き穴621が形成されている。後側垂直遮蔽板63は、中央に円形の大きめの中央刳り抜き穴631が形成され、中央刳り抜き穴631の周りに8個の小さめの周辺刳り抜き穴632が形成されている。これらの刳り抜き穴621、631、632により、後側冷却ファン55による空気の吸い込みおよび吹き出しが妨げられない。
 磁気遮蔽部材6は、例えば、軟鉄などの強磁性材料の板材に打ち抜きプレス加工や曲げ成形加工などを施して製作することができる。磁気遮蔽部材6は、軟鉄以外の強磁性材料で製作されていてもよく、また、製作方法は特に制約されない。
 参考までに、図4は、後側冷却ファン55を取り付けるために従来技術で用いる取付部材9の斜視図である。従来技術の取付部材9は、略矩形の底板91、および底板91の一辺から立設された矩形の平行遮蔽板92により、正面視でL字状に形成されている。
 図2に示されるように、筒状本体ユニット3は、さらに、磁気力相殺部材7を有している。磁気力相殺部材7は、例えば、軟鉄などの強磁性材料からなり、移動方向に長い矩形の板材で形成されている。磁気力相殺部材7は、筒状本体ユニット3の他方の側面に付設されている。つまり、磁気力相殺部材7は、筒状移動体2の冷却ユニット4が配設された周方向の特定角度範囲の反対側の角度範囲に配置されている。具体的には、磁気力相殺部材7は、筒状本体ユニット3を中心として、後側冷却ファン55の概ね対称位置に配置されている。
 磁気力相殺部材7は、永久磁石11が磁気遮蔽部材6を吸引する磁気吸引力を相殺するための部材である。ここで、磁気遮蔽部材6と同一形状で同一材質のダミー部材を製作して、磁気遮蔽部材6の対称位置に配置すれば、磁気吸引力を相殺できることは明らかである。なぜなら、永久磁石11が磁気遮蔽部材6を吸引する磁気吸引力と、ダミー部材を吸引する磁気吸引力とが、同じ大きさで逆向きになるからである。しかしながら、このようなダミー部材は、筒状移動体2の幅寸法を著しく増加させて好ましくない。
 このため、単純な板材の磁気力相殺部材7でもダミー部材と同等の効果が得られるように、磁気吸引力のシミュレーションを行うことが好ましい。さらに、シミュレーションは、磁気力相殺部材7を形成する板材の大きさや厚さ、配設位置、取付方法などをパラメータとして、複数回行うことが好ましい。これにより、筒状移動体2を大きくすることなく磁気吸引力を効果的に相殺し、かつ取付方法が容易になる最適な磁気力相殺部材7の板材形状を求めることができる。
 なお、図2において、後側冷却ファン55の概ね対称位置だけでなく、前側冷却ファン51の概ね対称位置にも磁気力相殺部材7を配置してよい。また、筒状本体ユニット3の移動方向の中間位置の付近に1個の磁気力相殺部材7のみを配置することも考えられる。磁気力相殺部材7は板材に限定されず、その形状、個数、配設位置、および取付方法などには自由度がある。
 次に、上述のように構成された実施形態のリニアモータ装置の磁気遮蔽の作用について、シミュレーション結果を参考にして説明する。シミュレーションは、非遮蔽モデル、平行遮蔽モデル、および矩形遮蔽モデルの3モデルで実施している。3モデルの共通条件として、前側冷却ファン51が或る永久磁石11の真横に位置した場合をモデル化する。モデル化では、前側冷却ファン51、永久磁石11、および磁気遮蔽部材6B、6Cのみを考慮し、他の部材は比透磁率が概ね1であるとして考慮しない。
 図5は、磁気遮蔽部材が無い条件で磁界強度の分布をシミュレーションした非遮蔽モデルの形状を示す図である。非遮蔽モデルでは、前側冷却ファン51および永久磁石11のみが考慮されている。図5の紙面上下方向が筒状移動体2の移動方向であり、紙面左側から右側に向かう方向を垂直外方向とする。また、図中の位置P1は前側冷却ファン51の永久磁石11に近い一側面を示し、位置P3は前側冷却ファン51の永久磁石11から離れた他側面を示している。さらに、位置P2は、前側冷却ファン51の前寄り中央に配置されたホールセンサの位置P2を示している。この位置P2で、磁界の緩和の必要性が最も高い。図5のA1断面は、前側冷却ファン51の中心位置を通る断面である。図5のA2断面は、前側冷却ファン51のホールセンサの位置P2を通る断面である。なお、後述する図8のB1断面および図11のC1断面は、A1断面と同じ位置に対応しており、図8のB2断面および図11のC2断面は、A2断面と同じ位置に対応している。
 図5に示す非遮蔽モデルで、図6および図7に示されるシミュレーション結果が得られている。図6は、図5のA1断面における磁界強度HA1の分布を示した図であり、図7は、図5のA2断面における磁界強度HA2の分布を示した図である。磁気遮蔽部材を考慮しない非遮蔽モデルでは、全領域が比透磁率1となるため、磁気双極子の一般的な磁界が形成される。これにより、磁界強度HA1および磁界強度HA2は、永久磁石11の中心からの距離が増加する垂直外方向に進むにつれてなだらかに減少している。
 図8は、平行遮蔽板61および外側平行遮蔽板64からなる磁気遮蔽部材6Bを用いた条件で磁界強度の分布をシミュレーションした平行遮蔽モデルの形状を示す図である。平行遮蔽板61は前側冷却ファン51の一側面(位置P1)に接して配置され、外側平行遮蔽板64は前側冷却ファン51の他側面(位置P3)に接して配置されたものとする。平行遮蔽モデルで、図9および図10に示されるシミュレーション結果が得られている。
 図9は、図8のB1断面における磁界強度HB1の分布を示した図である。磁界強度HB1は、永久磁石11の中心位置から垂直外方向に進むにつれて大きく減少している。これにより、位置P1での磁界強度HB1(P1)は、図6に示される非遮蔽モデルの磁界強度HA1(P1)よりもかなり減少している。また、位置P3での磁界強度HB1(P3)は概ねゼロになっている。
 一方、位置P3よりも垂直外方向に離れた領域で、磁界強度HB1は、非遮蔽モデルの磁界強度HA1よりも増加している。つまり、非遮蔽モデルで前側冷却ファン51に到達していた磁力線の一部は、平行遮蔽モデルで前側冷却ファン51の外側に誘導され、前側冷却ファン51への到達が阻止されている。磁気遮蔽の定量的な評価として、磁界強度HB1の前側冷却ファン51の幅範囲(P1~P3の範囲)の平均値は、非遮蔽モデルの平均値の32%まで低減されている。つまり、図9に斜線で示された面積SBは、図6に斜線で示された面積SAの32%になっている。
 図10は、図8のB2断面における磁界強度HB2の分布を示した図である。位置P1での磁界強度HB2(P1)および位置P3での磁界強度HB2(P3)は、概ねゼロになっている。定性的には、B1断面の磁界強度HB1と同様に、磁気遮蔽の効果は生じている。ただ、ホールセンサの位置P2における磁界強度HB2(P2)は、図7に示される非遮蔽モデルの磁界強度HA2(P2)の64%まで低減されているに過ぎない。したがって、ホールセンサの位置P2で磁気遮蔽効果が生じているものの、定量的には必ずしも十分とは言えない。
 図11は、上から見て矩形の磁気遮蔽部材6Cを用いた条件で磁界強度の分布をシミュレーションした矩形遮蔽モデルの形状を示す図である。磁気遮蔽部材6Cは、前側冷却ファン51の4側面に接して配置されたものとする。図11に示される矩形遮蔽モデルで、図12および図13に示されるシミュレーション結果が得られている。
 図12は、図11のC1断面における磁界強度HC1の分布を示した図である。磁界強度HC1は、前側冷却ファン51の幅範囲(P1~P3の範囲)で極めて小さくなっている。また、位置P3よりも垂直外方向に離れた領域で、磁界強度HC1は、非遮蔽モデルの磁界強度HA1よりも増加している。つまり、非遮蔽モデルで前側冷却ファン51に到達していた磁力線の大部分が、矩形遮蔽モデルで前側冷却ファン51の外側に誘導され、前側冷却ファン51への到達が阻止されている。
 図13は、図11のC2断面における磁界の強度HC2の分布を示した図である。磁界強度HC2は、前側冷却ファン51の幅範囲(P1~P3の範囲)で小さくなっている。そして、ホールセンサの位置P2における磁界強度HC2(P2)は、図7に示される非遮蔽モデルの磁界強度HA2(P2)の32%と、1/3以下まで低減されている。したがって、ホールセンサの位置P2で、定量的に十分な磁気遮蔽効果が得られている。
 実際の磁気遮蔽部材6と異なり、シミュレーションに用いた矩形の磁気遮蔽部材6Cは、前側垂直遮蔽板62および後側垂直遮蔽板63に相当する位置に刳り抜き穴621、631、632を有していない。したがって、実際の磁気遮蔽部材6で得られる磁気遮蔽効果は、矩形遮蔽モデルの効果よりも多少は減殺されるが、平行遮蔽モデルの効果を上回ることは確実である。このことは、実際の磁気遮蔽部材6を用いた実験でも裏付けられている。
 なお、本実施形態において、コイルが形成する電流磁界の影響は、永久磁石11が形成する永久磁界の影響と比較して小さいので、上述のシミュレーションでは省略した。仮に、電流磁界が比較的大きな場合であっても、磁気遮蔽部材6は電流磁界および永久磁界に対して同等の磁気遮蔽性能を有している。
 次に、実施形態のリニアモータ装置の磁気吸引力相殺の作用について、実験結果を参考にして説明する。図14は、実施形態のリニアモータ装置で、筒状移動体2が移動するときに発生する横揺れの振動量を測定した波形である。また、図15は、実施形態のリニアモータ装置から磁気力相殺部材7を取り外して、筒状移動体2が移動するときに発生する横揺れの振動量を測定した波形である。図14および図15の波形の横軸は時間を表し、縦軸は移動方向に直角な横揺れの振動量を表している。かつ、図14および図15の波形は、同じ掃引時間および同じ測定レンジで測定されている。
 図14の実施形態における横揺れの振幅は、図15の磁気力相殺部材7を取り外したときの振幅の概ね半分になっている。この振幅の差異は、磁気力相殺部材7の有無のみに起因して発生している。磁気力相殺部材7を取り外した構成で、永久磁石11が磁気遮蔽部材6を吸引する磁気吸引力は、筒状移動体2と永久磁石11との位置関係に依存して大きく変化する。例えば、筒状移動体2の磁気遮蔽部材6が永久磁石11のN極やS極の真横に位置すると磁気吸引力は最大になり、磁気遮蔽部材6が永久磁石11のN極とS極の中間に位置すると磁気吸引力は最小になる。これにより、筒状移動体2には大きな横揺れが発生して、円滑な移動が妨げられる。
 これに対して、実施形態の構成では、永久磁石11が磁気遮蔽部材6を吸引する磁気吸引力の少なくとも一部は、永久磁石11が磁気力相殺部材7を吸引する磁気吸引力によって相殺されている。これにより、筒状移動体2に作用する横揺れ方向の正味の磁気吸引力が低減され、結果として横揺れが1/2程度に軽減されている。したがって、筒状移動体2の円滑な移動が妨げられない。
 実施形態のリニアモータ装置は、移動方向に延在して複数の永久磁石11を有するシャフト状軌道部材1と、シャフト状軌道部材1に移動可能に装架されてコイル有する筒状移動体2とを備え、コイルに電流を通電して永久磁石11との間に移動方向の推力を発生するリニアモータ装置であって、コイルを有する筒状移動体2は、永久磁石が形成する永久磁界の影響の緩和が必要な冷却ファン51、55(磁気遮蔽対象物)と、強磁性材料で形成されて冷却ファン51、55を永久磁界から遮蔽する磁気遮蔽部材6とを有し、磁気遮蔽部材6は、冷却ファン51、55と永久磁石11との間で移動方向に平行配置された平行遮蔽板61、ならびに、平行遮蔽板61の移動方向の前縁および後縁から移動方向に対して垂直に永久磁石から遠ざかる方向に配置された前側垂直遮蔽板62および後側垂直遮蔽板63を有する。
 これによれば、コイルを有する筒状移動体2に冷却ファン51、55(磁気遮蔽対象物)および磁気遮蔽部材6が設けられており、永久磁石11が形成する永久磁界から冷却ファン51、55を遮蔽する磁気遮蔽部材6は、平行遮蔽板61ならびに垂直遮蔽板62、63を有している。一方、従来技術のリニアモータ装置において、磁気遮蔽部材は設けられないか、仮に設けられても平行遮蔽板のみからなる。したがって、本実施形態によれば、従来技術で磁気遮蔽対象物に到達していた磁力線の一部を平行遮蔽板61および垂直遮蔽板62、63により効果的に遮蔽して冷却ファン51、55への到達を阻止でき、磁気遮蔽効果が高まる。
 また、軟鉄などの強磁性材料で形成される磁気遮蔽部材6には、永久磁石11から強い磁気吸引力が作用する。従来技術で磁気遮蔽効果を高めるために平行遮蔽板の面積を拡げた場合に、磁気吸引力は、面積に対応して増加する。一方、本実施形態で垂直遮蔽板62、63は平行遮蔽板61の前縁および後縁に連なり永久磁石11から遠ざかる方向に配置される。したがって、仮に磁気遮蔽部材の面積を同じだけ増加させても、本実施形態では垂直遮蔽板62、63が磁石から遠ざかる分だけ、従来技術よりも磁気吸引力の増加を抑制できる。これにより、本実施形態では、筒状移動体2の円滑な移動が磁気吸引力によって妨げられない。
 さらに、実施形態のリニアモータ装置において、磁気遮蔽部材6は、平行遮蔽板61、平行遮蔽板61の移動方向の前縁および後縁から配置された前側垂直遮蔽板62および後側垂直遮蔽板63、ならびに、2枚の垂直遮蔽板62、63の永久磁石11から離れた側の縁を連結する外側平行遮蔽板64を有して、冷却ファン51、55(磁気遮蔽対象物)を矩形に囲んでいる。
 これによれば、永久磁界の影響が懸念される冷却ファン51、55のホールセンサの位置P2で、磁気遮蔽部材6を用いない場合と比較して、磁界強度HC2(P2)を1/3程度まで低減できる。換言すれば、ホールセンサの位置P2で、定量的に十分な磁気遮蔽効果が得られる。
 また、実施形態のリニアモータ装置において、軌道部材は、複数の永久磁石11を同極性の磁極同士が対向するように移動方向に並べて形成したシャフト状軌道部材1であり、移動体は、シャフト状軌道部材1を周回して巻回されたコイルを有する筒状移動体2である。
 これによれば、大きな推力を得るのに適したシャフト型リニアモータ装置で永久磁石11の磁界を強くしても十分な磁気遮蔽効果が得られるので、冷却ファン51、55に内蔵されたホールセンサで検出精度の低下や誤動作は生じない。
 また、実施形態のリニアモータ装置において、筒状移動体2は、周方向の特定角度範囲内に冷却ファン51、55(磁気遮蔽対象物)および磁気遮蔽部材6を有し、さらに、周方向の特定角度範囲外に強磁性材料で形成された磁気力相殺部材7を有しており、複数の永久磁石11が磁気遮蔽部材6を吸引する磁気吸引力の少なくとも一部は、複数の永久磁石11が磁気力相殺部材7を吸引する磁気吸引力によって相殺される。
 これによれば、筒状移動体2に作用する横揺れ方向の正味の磁気吸引力が低減されて、横揺れが軽減される。したがって、筒状移動体2の円滑な移動が妨げられない。
 さらに、実施形態のリニアモータ装置において、磁気力相殺部材7は、筒状移動体2の周方向の特定角度範囲の反対側の角度範囲に配置された板材である。
 これによれば、単純な板材の磁気力相殺部材7を用いることで、筒状移動体2を大きくすることなく磁気吸引力を効果的に相殺できる。かつ、磁気力相殺部材7の取付方法は容易である。
 また、実施形態のリニアモータ装置において、磁気遮蔽対象物は、コイルを冷却する冷却ファン51、55であり、磁気遮蔽部材6の前側垂直遮蔽板62は冷却用の空気の流通を許容する刳り抜き穴621を有し、後側垂直遮蔽板63は冷却用の空気の流通を許容する中央刳り抜き穴631および周辺刳り抜き穴632を有する。
 これによれば、刳り抜き穴621、631、632により、冷却ファン51、55による空気の吸い込みおよび吹き出しが妨げられない。
 なお、磁気遮蔽対象物が冷却ファン51、55でない場合、前側垂直遮蔽板62の刳り抜き穴621や後側垂直遮蔽板63の中央刳り抜き穴631および周辺刳り抜き穴632は不要である。この場合、磁気遮蔽効果は一層確実に高まる。また、シャフト状軌道部材1および筒状移動体2の構造は、様々に変形できる。本発明は、その他にも様々な応用や変形が可能である。
 本発明のリニアモータ装置は、部品実装機や基板検査機のヘッド駆動装置に限定されず、直進可動部を有する各種の産業機械に広く利用可能である。
  1:シャフト状軌道部材  11:永久磁石  12:磁性体スペーサ
  2:筒状移動体  3:筒状本体ユニット  4:冷却ユニット
  51:前側冷却ファン  52:前側放熱フィン  53:仕切り板
  54:後側放熱フィン  55:後側冷却ファン
  6:磁気遮蔽部材  61:平行遮蔽板  62:前側垂直遮蔽板
  63:後側垂直遮蔽板  64:外側平行遮蔽板
  6B、6C:シミュレーションに用いた磁気遮蔽部材
  7:磁気力相殺部材
  9:従来技術の取付部材
  P2:前側冷却ファンに内蔵されたホールセンサの位置
  HA1、HA2、HB1、HB2、HC1、HC2:磁界強度

Claims (6)

  1.  移動方向に延在して磁石およびコイルの一方を有する軌道部材と、前記軌道部材に移動可能に装架されて前記磁石および前記コイルの他方を有する移動体とを備え、前記コイルに電流を通電して前記磁石との間に前記移動方向の推力を発生するリニアモータ装置であって、
     前記コイルを有する前記軌道部材または前記移動体は、前記磁石が形成する磁界の影響の緩和が必要な磁気遮蔽対象物と、強磁性材料で形成されて前記磁気遮蔽対象物を前記磁界から遮蔽する磁気遮蔽部材とを有し、
     前記磁気遮蔽部材は、前記磁気遮蔽対象物と前記磁石との間で前記移動方向に平行配置された平行遮蔽板、ならびに、前記平行遮蔽板の前記移動方向の前縁および後縁の少なくとも一方から前記移動方向に対して垂直に前記磁石から遠ざかる方向に配置された垂直遮蔽板を有するリニアモータ装置。
  2.  前記磁気遮蔽部材は、前記平行遮蔽板、前記平行遮蔽板の前記移動方向の前縁および後縁から配置された2枚の前記垂直遮蔽板、ならびに、2枚の前記垂直遮蔽板の前記磁石から離れた側の縁を連結する外側平行遮蔽板を有して、前記磁気遮蔽対象物を矩形に囲んでいる請求項1に記載のリニアモータ装置。
  3.  前記軌道部材は、複数の前記磁石を同極性の磁極同士が対向するように前記移動方向に並べて形成したシャフト状軌道部材であり、前記移動体は、前記シャフト状軌道部材を周回して巻回されたコイルを有する筒状移動体である請求項1または2に記載のリニアモータ装置。
  4.  前記筒状移動体は、周方向の特定角度範囲内に前記磁気遮蔽対象物および前記磁気遮蔽部材を有し、さらに、周方向の特定角度範囲外に強磁性材料で形成された磁気力相殺部材を有しており、
     複数の前記磁石が前記磁気遮蔽部材を吸引する磁気吸引力の少なくとも一部は、複数の前記磁石が前記磁気力相殺部材を吸引する磁気吸引力によって相殺される請求項3に記載のリニアモータ装置。
  5.  前記磁気力相殺部材は、前記筒状移動体の前記周方向の特定角度範囲の反対側の角度範囲に配置された板材である請求項4に記載のリニアモータ装置。
  6.  前記磁気遮蔽対象物は、前記コイルを冷却する冷却ファンであり、前記磁気遮蔽部材の前記垂直遮蔽板は、冷却用の空気の流通を許容する刳り抜き穴を有する請求項1~5のいずれか一項に記載のリニアモータ装置。
PCT/JP2013/084304 2013-12-20 2013-12-20 リニアモータ装置 WO2015092922A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/038,637 US10454345B2 (en) 2013-12-20 2013-12-20 Linear motor device
PCT/JP2013/084304 WO2015092922A1 (ja) 2013-12-20 2013-12-20 リニアモータ装置
EP13899866.1A EP3086452B1 (en) 2013-12-20 2013-12-20 Linear motor device
JP2015553306A JP6301960B2 (ja) 2013-12-20 2013-12-20 リニアモータ装置
CN201380081719.6A CN105830322B (zh) 2013-12-20 2013-12-20 直线电动机装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084304 WO2015092922A1 (ja) 2013-12-20 2013-12-20 リニアモータ装置

Publications (1)

Publication Number Publication Date
WO2015092922A1 true WO2015092922A1 (ja) 2015-06-25

Family

ID=53402314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084304 WO2015092922A1 (ja) 2013-12-20 2013-12-20 リニアモータ装置

Country Status (5)

Country Link
US (1) US10454345B2 (ja)
EP (1) EP3086452B1 (ja)
JP (1) JP6301960B2 (ja)
CN (1) CN105830322B (ja)
WO (1) WO2015092922A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2883248T3 (es) * 2016-11-11 2021-12-07 Agie Charmilles Sa Motor de eje lineal
CN107317455A (zh) * 2017-07-13 2017-11-03 吴德林 一种轴式直线电机的大长径比磁轴结构
US11266757B2 (en) 2019-08-06 2022-03-08 Daniel R. Schumaier Hearing aid dryer and disinfection kit with UV-reflective drying tray
US11102588B2 (en) 2019-08-06 2021-08-24 Daniel R. Schumaier Hearing aid dryer and disinfection kit
US11122378B1 (en) 2019-08-06 2021-09-14 Daniel R. Schumaier Hearing aid dryer and disinfection kit
US11092379B2 (en) 2019-08-07 2021-08-17 Ear Technology Corporation Dryer and sanitizer for rechargeable electronic devices
US11167052B2 (en) 2020-04-07 2021-11-09 Daniel R. Schumaier Ultraviolet light sanitizer
CN113105994A (zh) * 2021-03-03 2021-07-13 华中农业大学 一种新型光磁耦合装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201216A (ja) * 1996-12-30 1998-07-31 Minolta Co Ltd リニアモータ
JPH11220866A (ja) * 1998-01-30 1999-08-10 Minolta Co Ltd シャフト型リニアモータ及びその駆動方法
JP2008206335A (ja) 2007-02-21 2008-09-04 Fuji Mach Mfg Co Ltd 円筒型リニアモータ
JP2009529131A (ja) 2006-03-06 2009-08-13 シーメンス アクチエンゲゼルシヤフト 電気機械
JP2011193703A (ja) 2010-03-17 2011-09-29 Hitachi High-Technologies Corp リニアモータ対、移動ステージ、及び電子顕微鏡

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023495A (en) * 1990-04-17 1991-06-11 Hitachi Metals & Shicoh Engine Moving-magnet type linear d.c. brushless motor having plural moving elements
US6008552A (en) * 1996-12-30 1999-12-28 Minolta Co., Ltd. Linear drive device
US6864601B2 (en) 2001-03-01 2005-03-08 Nikon Corporation Electric motors with reduced stray magnetic fields
KR200268109Y1 (ko) * 2001-12-06 2002-03-15 김정훈 편평형 무정류자 진동모터
GB2434489B (en) * 2006-01-18 2011-04-20 Alstom Power Conversion Ltd Tubular electrical machines
CN201112370Y (zh) * 2007-10-12 2008-09-10 深圳市大族精密机电有限公司 二维运动平台
JP5426180B2 (ja) * 2009-01-20 2014-02-26 富士機械製造株式会社 リニアモータ
JP5909247B2 (ja) 2012-01-10 2016-04-26 富士機械製造株式会社 リニアモータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201216A (ja) * 1996-12-30 1998-07-31 Minolta Co Ltd リニアモータ
JPH11220866A (ja) * 1998-01-30 1999-08-10 Minolta Co Ltd シャフト型リニアモータ及びその駆動方法
JP2009529131A (ja) 2006-03-06 2009-08-13 シーメンス アクチエンゲゼルシヤフト 電気機械
JP2008206335A (ja) 2007-02-21 2008-09-04 Fuji Mach Mfg Co Ltd 円筒型リニアモータ
JP2011193703A (ja) 2010-03-17 2011-09-29 Hitachi High-Technologies Corp リニアモータ対、移動ステージ、及び電子顕微鏡

Also Published As

Publication number Publication date
US20160301287A1 (en) 2016-10-13
JPWO2015092922A1 (ja) 2017-03-16
CN105830322A (zh) 2016-08-03
EP3086452B1 (en) 2020-04-01
EP3086452A1 (en) 2016-10-26
EP3086452A4 (en) 2017-08-02
JP6301960B2 (ja) 2018-03-28
US10454345B2 (en) 2019-10-22
CN105830322B (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
JP6301960B2 (ja) リニアモータ装置
JP5515478B2 (ja) 周期磁界発生装置およびそれを用いたリニアモータ、回転型モータ
JP5843202B2 (ja) 電子デバイス並びに斯様な電子デバイスの使用に適したベース部分及び電子要素
JP2017523462A5 (ja)
JP2007312449A (ja) 周期磁界発生装置およびこれを用いた電動機
TWI671419B (zh) 磁性薄膜沉積腔室及薄膜沉積裝置
US10879767B2 (en) Linear motor cooling system
US20150211575A1 (en) Driving device and bearing including the same
JP5646476B2 (ja) アクチュエータ
Zhang et al. Characteristic analysis of a long-stroke synchronous permanent magnet planar motor
JP5135984B2 (ja) リニアモータ
WO2016188435A1 (zh) 一种兼顾散热的屏蔽电磁波的方法及装置
JP2020027946A (ja) 外へ向けて延出する放熱翼及び/または放熱孔を有する静止型電動機の鉄心の外枠装置
TW201524329A (zh) 散熱裝置
US20120300399A1 (en) Electronic device with heat dissipation structure
JP2000245131A (ja) 可動コイル形リニアモータ
JP5435005B2 (ja) アクチュエータおよびアクチュエータの冷却方法
US20180076692A1 (en) Cooling fan and electronic device using the same
WO2022054713A1 (ja) 電磁石装置、電磁石装置の駆動方法、及び電磁石制御システム
KR20190080402A (ko) 영전자 척
KR101393843B1 (ko) Isg 모터
JP6864697B2 (ja) 非接触給電装置、および電子部品装着機
JP2007089245A (ja) 平面サーボモータ
CN103781327A (zh) 散热板及封装壳体
JP2022045016A (ja) 電磁石装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15038637

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015553306

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013899866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899866

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE