WO2016188435A1 - 一种兼顾散热的屏蔽电磁波的方法及装置 - Google Patents

一种兼顾散热的屏蔽电磁波的方法及装置 Download PDF

Info

Publication number
WO2016188435A1
WO2016188435A1 PCT/CN2016/083347 CN2016083347W WO2016188435A1 WO 2016188435 A1 WO2016188435 A1 WO 2016188435A1 CN 2016083347 W CN2016083347 W CN 2016083347W WO 2016188435 A1 WO2016188435 A1 WO 2016188435A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
casing
aperture
hole
electronic device
Prior art date
Application number
PCT/CN2016/083347
Other languages
English (en)
French (fr)
Inventor
穆远祥
彭明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016188435A1 publication Critical patent/WO2016188435A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to, but is not limited to, the field of communication and electronic systems, and in particular, a method and apparatus for shielding electromagnetic waves that take into account heat dissipation.
  • the related art provides an electronic device housing with an electromagnetic shielding effectiveness vent based on a frequency selective surface technology that satisfies requirements for heat dissipation and electromagnetic shielding by providing a specially shaped vent hole to the device housing.
  • the heat dissipation housing provided by the above technology is only suitable for temperature and electromagnetic wave stable environments, and cannot be adjusted according to the frequency, power and temperature of the surrounding interference electromagnetic waves.
  • the purpose of the present application is to provide a method and apparatus for shielding electromagnetic waves that take into account heat dissipation, so as to better solve the problem that the electronic device has poor adaptability to heat dissipation and electromagnetic wave shielding.
  • a method for shielding electromagnetic waves that combines heat dissipation including:
  • the determining, according to the temperature information and the interference electromagnetic wave information, the target aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device includes:
  • the step of adjusting the aperture of the heat dissipation hole of the heat dissipation area of the casing of the electronic device according to the determined target aperture of the heat dissipation hole comprises:
  • the aperture of the heat dissipation hole in the heat dissipation region of the casing is adjusted to the target aperture by the actuator driving adjustment member disposed on the casing of the electronic device relative to the heat dissipation region of the casing.
  • the adjusting component comprises:
  • a first movable baffle provided with a through hole and movable relative to the casing heat dissipating area in a first direction in a plane parallel to the heat dissipating area of the casing, and a through hole and capable of being opposite to the casing heat dissipating area a second movable baffle moving along a second direction perpendicular to the first direction in a plane parallel to the heat dissipation zone of the casing;
  • the aperture of the through hole disposed in the first movable shutter and the aperture of the through hole disposed in the second movable shutter are the same as the maximum value of the aperture of the heat dissipation hole in the heat dissipation area of the casing.
  • the actuating component is a motor or an electromagnetic relay arranged to drive the movement of the first flapper and the second flapper.
  • the application further provides a computer readable storage medium storing computer executable instructions that are implemented when the computer executable instructions are executed.
  • an apparatus for shielding electromagnetic waves that combines heat dissipation including:
  • a temperature detecting unit configured to detect a temperature in the casing of the electronic device to obtain temperature information
  • An electromagnetic detecting unit configured to detect an interference electromagnetic wave around the electronic device to obtain a dry Disturbing electromagnetic wave information
  • the processing unit is configured to determine a target aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device according to the temperature information and the interference electromagnetic wave information;
  • the casing heat dissipation area aperture adjusting unit is configured to adjust an aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device according to the determined target aperture of the heat dissipation hole.
  • the processing unit is configured to determine a maximum value of a hole diameter of a heat dissipation hole in a heat dissipation area of a casing of the electronic device according to the interference electromagnetic wave information, and determine the electronic quantity according to the temperature information.
  • the casing heat dissipation area aperture adjusting unit comprises:
  • An executing component disposed in the casing of the electronic device and configured to drive the adjusting component to move;
  • An adjusting member disposed in a casing of the electronic device, configured to move in a plane parallel to a heat dissipation region of the casing relative to the heat dissipation region of the casing when driven by the execution member, thereby The aperture of the heat dissipation hole of the shell heat dissipation area is adjusted to the target aperture.
  • the adjusting component comprises:
  • a first movable baffle provided with a through hole having the same aperture as a maximum aperture of the heat dissipation hole in the heat dissipation area of the casing, and the first movable baffle capable of being parallel to the machine along the heat dissipation zone of the casing Moving in a first direction in a plane of the heat dissipation zone of the shell;
  • a second movable baffle is provided with a through hole having the same aperture as the maximum aperture of the heat dissipation hole in the heat dissipation area of the casing, and the second movable baffle is capable of being parallel to the machine along the heat dissipation zone of the casing A second direction perpendicular to the first direction moves in a plane of the heat dissipation zone of the casing.
  • the actuating component is a motor or an electromagnetic relay arranged to drive the movement of the first flapper and the second flapper.
  • the method and device provided by the present application take into account heat dissipation and shielding electromagnetic waves, and can adjust the aperture of the heat dissipation hole according to the temperature around the electronic device and the frequency and power of the electromagnetic wave, thereby improving the adaptability and reliability of the electronic device, and satisfying the heat dissipation of the electronic device. Electromagnetic shielding requirements.
  • FIG. 1 is a flowchart of a method for shielding electromagnetic waves from heat dissipation according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a shielded electromagnetic wave device that combines heat dissipation according to an embodiment of the present invention
  • FIG. 3 is a schematic view of the aperture adjustment unit of the heat dissipation area of the casing of FIG. 2;
  • FIG. 4 is a partial schematic diagram of an apparatus for shielding electromagnetic waves using an electromagnetic relay as an execution component in a casing heat dissipation aperture adjustment unit according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for shielding electromagnetic waves from heat dissipation according to an embodiment of the present invention. As shown in FIG. 1 , the method includes:
  • Step S101 Detecting a temperature in a casing of the electronic device to obtain temperature information.
  • a temperature detecting unit is disposed in the casing of the electronic device, and the temperature detecting unit may be a temperature sensor, and the temperature in the casing of the electronic device is detected by the temperature sensor to obtain temperature information.
  • Step S102 detecting an interference electromagnetic wave around the electronic device to obtain interference electromagnetic wave information.
  • An electromagnetic detecting unit is disposed in the casing of the electronic device.
  • the electromagnetic detecting unit may be a radio frequency receiver, and the electromagnetic wave around the electronic device is detected by the radio frequency receiver to obtain interference electromagnetic wave information, and the interference electromagnetic wave information includes interference electromagnetic wave frequency and power.
  • Step S103 Determine a target aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device according to the temperature information and the interference electromagnetic wave information.
  • the aperture of the heat dissipation hole is defined as the aperture of the largest area through which electromagnetic waves can pass through the heat dissipation holes of the electronic device. Therefore, the maximum value of the aperture of the louver is defined as the aperture of the louver when it is not overlapped or obscured by other objects. Therefore, The target aperture may be an aperture of the louver for dissipating electromagnetic waves due to heat dissipation and shielding, while being overlapped or obscured by other objects.
  • the electromagnetic wave it is theoretically necessary to adjust the aperture to be smaller than 0.25 ⁇ to the plane wave wavelength ⁇ . The electromagnetic wave, therefore, can be used as the maximum value of the aperture of the heat dissipation hole of the heat dissipation region of the casing of the electronic device.
  • the target aperture of the heat dissipation hole in the heat dissipation region of the casing of the electronic device and less than 0.25 ⁇ may be determined. For example, when the detected temperature is low, the heat dissipation requirement is relatively low. At this time, a smaller aperture can be selected as the target aperture, for example, 0.125 ⁇ , to achieve better shielding of electromagnetic waves; conversely, when the detected temperature is higher. At the same time, the system has relatively high heat dissipation requirements.
  • an aperture close to 0.25 ⁇ can be selected as the target aperture, for example, 0.24 ⁇ , to adaptively dissipate heat and shield electromagnetic waves, thereby improving heat dissipation and shielding electromagnetic waves.
  • the maximum value of the different apertures is set in advance, and the temperature and the corresponding target aperture may be set according to an empirical value. At this time, the corresponding target aperture is determined according to the maximum value of the aperture and the detected temperature information.
  • Step S104 Adjust the aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device according to the determined target aperture of the heat dissipation hole.
  • the step of adjusting the aperture of the heat dissipation hole of the heat dissipation area of the casing of the electronic device according to the determined target aperture of the heat dissipation hole comprises:
  • the aperture of the heat dissipation hole in the heat dissipation area of the casing is adjusted to the target aperture by the actuator driving adjustment component disposed on the casing of the electronic device relative to the heat dissipation area of the casing.
  • the adjustment member includes a first movable baffle movable relative to the heat dissipation region of the casing along a first direction in a plane parallel to the heat dissipation region of the casing, and capable of being disposed along the heat dissipation region of the casing a second movable baffle moving parallel to a second direction perpendicular to the first direction in a plane of the heat dissipation zone of the casing, wherein the first movable baffle and the second movable baffle are provided with a plurality of apertures and The through holes of the same diameter of the heat dissipation holes of the heat dissipation hole of the casing, for example, the apertures are all r.
  • the first movable baffle and the second movable baffle are both in an initial position, and at this time, the through hole of the first movable baffle is disposed, and the setting is in the first Through hole and casing of two movable baffles
  • the heat dissipation holes in the heat dissipation area coincide.
  • the through hole provided in the first flapper is disposed in the second movable block
  • the through holes of the board and the heat dissipation holes in the heat dissipation area of the casing are staggered, and the aperture of the electromagnetic wave in the area through which the heat dissipation holes of the electronic device can pass is smaller than r, and the aperture of the electromagnetic wave in the area through which the heat dissipation holes of the electronic device can pass is The position of the first flap and the second flap is determined.
  • the aperture of the through hole of the first flap/second flap is defined as electromagnetic waves on the through holes of the first flap/second flap The aperture of the largest area that can pass.
  • the actuator component can be a motor. Since the linear motor can drive the linear motion of other components, in this embodiment, the motor can be a linear motor, and the first linear motor configured to drive the first movable baffle and the second activity set in the electronic device casing are installed. a second linear motor of the baffle, the first linear motor driving the first movable baffle to move relative to the heat dissipation region of the casing along a first direction in a plane parallel to the heat dissipation region of the casing, thereby making the first The through hole on the movable baffle is staggered with the heat dissipation hole of the heat dissipation area.
  • the second linear motor drives the second movable baffle relative to the heat dissipation area of the casing along a plane parallel to the heat dissipation area of the casing
  • the first direction is perpendicular to the second direction, so that the through holes on the second movable baffle are interlaced with the heat dissipation holes of the heat dissipation area.
  • the linear motor may be a linear stepping motor.
  • the executing component may also be an electromagnetic relay.
  • the first/second movable baffle has only two stable positions, that is, when the coil of the electromagnetic relay is powered off, the first/second movable baffle is located. The respective first positions; when the coils of the electromagnetic relay are powered up, the first/second movable baffles are in respective second positions, and the target aperture has a selectable value relative to the embodiment in which the actuator is a motor.
  • the heat dissipation hole and the through hole may be a honeycomb hole or a circular hole.
  • the present application improves the reliability of communication and electronic equipment by adaptively adjusting heat dissipation and electromagnetic wave shielding.
  • Embodiments of the present invention further provide a computer readable storage medium storing computer executable instructions that are implemented when the computer executable instructions are executed.
  • FIG. 2 is a schematic diagram of an apparatus for shielding electromagnetic waves in consideration of heat dissipation according to an embodiment of the present invention.
  • the electromagnetic detection unit 10 the temperature detecting unit 20, the processing unit 30, and the casing heat dissipation area aperture adjusting unit 40 are included.
  • the electromagnetic detecting unit 10 is arranged to detect interfering electromagnetic waves around the electronic device to obtain interfering electromagnetic wave information.
  • the electromagnetic detection unit 10 can be implemented as a radio frequency receiver, and the detected interference electromagnetic wave information includes interference electromagnetic wave frequency and power for reading by the processing unit.
  • the temperature detecting unit 20 is arranged to detect the temperature inside the casing of the electronic device to obtain temperature information.
  • the temperature detecting unit 20 can be a commonly used temperature sensor chip of the type MAX1617 or DS18B20, and the temperature information is detected in real time for the processing unit 30 to read.
  • the processing unit 30 is configured to determine a target aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device according to the temperature information and the interference electromagnetic wave information. For example, the processing unit 30 determines a maximum value of the aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device according to the detected interference electromagnetic wave information, and determines the casing of the electronic device according to the detected temperature information. The target aperture of the heat dissipation hole in the heat dissipation region and smaller than the maximum value of the aperture.
  • the processing unit 30 can acquire the interference electromagnetic wave information and the system temperature from the electromagnetic detecting unit 10 and the temperature detecting unit 20, respectively, thereby adjusting the aperture of the heat dissipation hole of the casing according to the interference electromagnetic wave information and the system temperature.
  • the casing heat dissipation area aperture adjusting unit 40 is configured to adjust an aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device according to the determined target aperture of the heat dissipation hole, that is, the chassis heat dissipation area aperture adjustment unit 40 Adjust the hole diameter of the heat dissipation hole in the heat dissipation area of the case.
  • 3 is a schematic view of the housing heat dissipation area aperture adjusting unit 40 of FIG. 2, as shown in FIG.
  • the housing heat dissipation area aperture adjusting unit 40 includes an executing part 41 and an adjusting part 42 disposed in the electronic device casing, and an executing part 41 moves the aperture of the heat dissipation hole of the heat dissipation area of the casing to the target aperture by moving the adjustment member 42 relative to the heat dissipation area of the casing in a plane parallel to the heat dissipation area of the casing.
  • the executing component 41 is a motor or an electromagnetic relay;
  • the adjusting component 42 includes a first movable baffle and a second movable baffle, and the first movable baffle is provided with an aperture having the same maximum diameter as that of the heat dissipating hole in the heat dissipating area of the casing a through hole, and the first movable baffle is movable relative to the casing heat dissipating region in a first direction in a plane parallel to the heat dissipating region of the casing, the second movable baffle being provided with an aperture and a casing a through hole having a maximum aperture of a heat dissipation hole in the heat dissipation region, and the second movable shutter is capable of being opposite to the heat dissipation region of the chassis along a plane parallel to a heat dissipation region of the chassis and the first The direction moves in the second direction perpendicular to the direction.
  • the through holes provided in the first movable baffle and/or the second movable baffle are interlaced with the heat dissipation holes of the heat dissipation area of the casing. Thereby adjusting the aperture of the heat dissipation hole.
  • the first flap and the second flap are in the initial position, set in the first live
  • the through hole of the movable baffle, the through hole provided in the second movable baffle, the heat dissipating hole in the heat dissipating area of the casing coincide, the aperture of the heat dissipating hole reaches a maximum value; the first movable baffle and/or the second activity are driven in the executing component
  • the through hole of the first movable baffle and/or the through hole of the second movable baffle and the heat dissipating hole of the heat dissipating area of the casing are staggered, and the aperture of the heat dissipating hole is reduced.
  • the working principle of the device is as follows: the electromagnetic detecting unit 10 detects the frequency and power of the interference electromagnetic wave for the processing unit 30 to acquire; the temperature detecting unit 20 detects the temperature information for the processing unit 30 to acquire; the processing unit 30 processes the temperature detecting unit and the electromagnetic detecting unit.
  • the temperature information acquired by the unit and the interference electromagnetic wave information, and the control unit 41 is controlled to adjust the aperture of the heat dissipation hole according to the processing result to meet the requirement of shielding electromagnetic waves and heat dissipation.
  • the step of determining, by the processing unit, the aperture of the heat dissipation hole in the heat dissipation area of the casing of the electronic device according to the acquired temperature information and the interference electromagnetic wave information may include: the system temperature and the interference that the processing unit 30 will periodically collect.
  • the electromagnetic wave information is compared with the set value, and the aperture of the heat dissipation hole is adjusted by moving the position of the movable shutter to meet the requirements of heat dissipation and shielding electromagnetic waves.
  • the frequencies f1 and f2 are set in advance, and the power P1 is preset, where f1 ⁇ f2.
  • the maximum aperture diameter of the heat dissipation hole in the heat dissipation area of the casing of the electronic device is r
  • the frequency of the interference electromagnetic wave collected by the processing unit is f
  • the power is P. If f ⁇ f1, the heat dissipation can be performed according to the temperature information.
  • the aperture of the aperture is no larger than the range of r to move the movable baffle.
  • shielding electromagnetic waves with a wavelength of ⁇ requires the use of a shielding mesh with an aperture smaller than ⁇ /4; for heat dissipation, the larger the aperture of the cooling holes, the better the heat dissipation effect.
  • the common honeycomb hole design is used to realize the heat dissipation area of the casing, and the radius of the honeycomb hole is r, and two movable baffles which overlap at the initial position and have the same aperture as the honeycomb hole are installed, and one movable baffle It can only move horizontally in a plane parallel to the heat dissipation zone of the casing, and the other piece can only move vertically in a plane parallel to the heat dissipation zone of the casing, and two movable baffles are in the horizontal direction or
  • the moving distance in the vertical direction is the same as the radius of the honeycomb hole, and the movable baffle is moved to interlace the through hole provided in the movable baffle with the honeycomb hole in the heat dissipating area of the casing to adjust the aperture of the heat dissipating hole.
  • the actuating member 41 drives the flap movement to be implemented in any of the following two devices:
  • each movable baffle has only two stable positions, that is, the through hole provided in the movable baffle coincides with the honeycomb hole in the casing, and is disposed on the movable baffle.
  • the through holes are offset from the honeycomb holes in the casing by the distance of the aperture of the honeycomb holes.
  • electromagnetic relay The electromagnet and the coil are mounted on the casing, and the armature is mounted on one side of the moving direction of the movable baffle, and the maximum distance between the iron core and the armature is the aperture r of the honeycomb hole.
  • the electromagnet and the coil on the left side of the boundary line are installed on the inner surface of the left side of the casing, the right side of the boundary line is the active area, and the armature is attached to the left edge of the movable baffle.
  • the movable baffle is connected to the inner surface of the right side of the casing through a spring connected to its right edge for resetting the movable baffle after the core and the coil are de-energized.
  • the electromagnet is separated from the armature.
  • the through hole of the movable baffle coincides with the honeycomb hole of the casing, and the heat dissipation effect is best;
  • the electromagnet and the armature suck
  • the driving movable baffle moves to the left, and the moving distance is r, so that the heat dissipating aperture is reduced, and the electromagnetic shielding effect is good at this time.
  • the electromagnet suction in the other direction will further reduce the aperture of the honeycomb cavity of the casing.
  • the movable baffle can be in any position where the maximum distance between the iron core and the armature is 0 to r.
  • the movable baffle can be moved by an ordinary small motor in cooperation with the actuator, so that the output of the ordinary small motor with the actuator is equivalent to the output of the linear motor. More complicated.
  • the linear motor can be selected to drive the movable shutter to move. For example, by installing a first linear motor on the inner surface of the left side of the casing, driving a movable baffle relative to the heat dissipation zone of the casing can have a maximum distance between the core and the armature in a plane parallel to the heat dissipation zone of the casing.
  • the application improves the adaptability of the electronic device to the working environment, and the electronic device can work stably in various electromagnetic interference environments and different temperatures without redesigning or replacing any components.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • Embodiments of the invention are not limited to any specific form of combination of hardware and software.
  • the method and device provided by the present application take into account heat dissipation and shielding electromagnetic waves, and can adjust the aperture of the heat dissipation hole according to the temperature around the electronic device and the frequency and power of the electromagnetic wave, thereby improving the adaptability and reliability of the electronic device, and satisfying the heat dissipation of the electronic device. Electromagnetic shielding requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

公开了一种兼顾散热的屏蔽电磁波的方法及装置,所述方法包括:检测电子设备的机壳内的温度,以得到温度信息;检测所述电子设备周围的干扰电磁波,以得到干扰电磁波信息;根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径;根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区中的散热孔的孔径。通过上述方案,能够根据电子设备周围的温度信息和干扰电磁波信息调整散热孔的孔径,满足电子设备对于散热及电磁屏蔽的要求。

Description

一种兼顾散热的屏蔽电磁波的方法及装置 技术领域
本申请涉及但不限于通信及电子系统领域,特别是一种兼顾散热的屏蔽电磁波的方法及装置。
背景技术
随着通信技术及电子设备的高速发展,设备的集成度越来越高,通信、电子设备的普及带来电磁干扰越来越严重。因此,散热及电磁屏蔽对电子设备的设计很重要。
相关技术提供了一种带有基于频率选择表面技术的电磁屏蔽效能散热孔的电子设备外壳体,该技术通过对设备壳体设置特殊形状的散热孔来满足对于散热及电磁屏蔽的要求。
上述技术提供的散热壳体仅适用于温度、电磁波稳定的环境,不能根据周围的干扰电磁波的频率和功率及温度进行调整。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种兼顾散热的屏蔽电磁波的方法及装置,以更好地解决关于电子设备对于散热与电磁波屏蔽适应性差的问题。
根据本申请的一个方面,提供了一种兼顾散热的屏蔽电磁波的方法,包括:
检测电子设备的机壳内的温度,以得到温度信息;
检测所述电子设备周围的干扰电磁波,以得到干扰电磁波信息;
根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径;
根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区中的散热孔的孔径。
可选地,所述根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径的步骤包括:
根据所述干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的孔径的最大值;
根据所述温度信息,确定所述电子设备的机壳的散热区中的散热孔的、且小于所述孔径的最大值的目标孔径。
可选地,所述根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区的散热孔的孔径的步骤包括:
通过设置在所述电子设备机壳上的执行部件驱动调整部件相对于所述机壳散热区移动,从而将所述机壳的散热区内的散热孔的孔径调整为目标孔径。
可选地,所述调整部件包括:
设置有通孔且能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中的第一方向移动的第一活动挡板,和设置有通孔且能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中与所述第一方向垂直的第二方向移动的第二活动挡板;
其中,所述设置在第一活动挡板的通孔的孔径和所述设置在第二活动挡板的通孔的孔径均与机壳的散热区中的散热孔的孔径的最大值相同。
可选地,所述执行部件是电机或电磁继电器,所述电机或电磁继电器设置成驱动所述第一活动挡板和所述第二活动挡板移动。
本申请另外提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述方法。
根据本申请的另一方面,提供了一种兼顾散热的屏蔽电磁波的装置,包括:
温度检测单元,设置成检测电子设备机壳内的温度,以得到温度信息;
电磁检测单元,设置成检测所述电子设备周围的干扰电磁波,以得到干 扰电磁波信息;
处理单元,设置成根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径;
机壳散热区孔径调整单元,设置成根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区中的散热孔的孔径。
可选地,所述处理单元是设置成根据所述干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的孔径的最大值,并根据所述温度信息,确定所述电子设备的机壳的散热区中的散热孔的、且小于所述孔径的最大值的目标孔径。
可选地,所述机壳散热区孔径调整单元包括:
执行部件,设置在所述电子设备的机壳内,设置成驱动调整部件移动;
调整部件,设置在所述电子设备的机壳内,设置成由所述执行部件驱动时相对于所述机壳散热区在平行于所述机壳的散热区的平面中移动,从而将所述机壳散热区的散热孔的孔径调整为目标孔径。
可选地,所述调整部件包括:
第一活动挡板,设置有孔径与机壳散热区中的散热孔的孔径的最大值相同的通孔,且所述第一活动挡板能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中的第一方向移动;
第二活动挡板,设置有孔径与机壳散热区中的散热孔的孔径的最大值相同的通孔,且所述第二活动挡板能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中与所述第一方向垂直的第二方向移动。
可选地,所述执行部件是电机或电磁继电器,所述电机或电磁继电器设置成驱动所述第一活动挡板和所述第二活动挡板移动。
与相关技术相比较,本申请的有益效果在于:
本申请提供的方法和装置兼顾散热及屏蔽电磁波,可以根据电子设备周围的温度及干扰电磁波的频率及功率调整散热孔的孔径,提高了电子设备的适应性和可靠性,满足电子设备对于散热及电磁屏蔽的要求。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例提供的兼顾散热的屏蔽电磁波的方法的流程图;
图2是本发明实施例提供的兼顾散热的屏蔽电磁波装置的示意图;
图3是图2中的机壳散热区孔径调整单元的示意图;
图4是本发明实施例提供的以电磁继电器作为机壳散热区孔径调整单元中的执行部件的屏蔽电磁波的装置的局部示意图。
本发明的较佳实施方式
以下结合附图对本申请的可选实施例进行详细说明,应当理解,以下所说明的可选实施例仅用于说明和解释本申请,并不用于限定本申请。
图1是本发明实施例提供的兼顾散热的屏蔽电磁波的方法的流程图,如图1所示,该方法包括:
步骤S101:检测电子设备的机壳内的温度,以得到温度信息。
在电子设备机壳内设置温度检测单元,该温度检测单元可以是温度传感器,通过温度传感器对电子设备机壳内的温度进行检测,获取温度信息。
步骤S102:检测所述电子设备周围的干扰电磁波,以得到干扰电磁波信息。
在电子设备机壳内设置电磁检测单元,该电磁检测单元可以是射频接收机,通过射频接收机对电子设备周围的干扰电磁波进行检测,获取干扰电磁波信息,干扰电磁波信息包括干扰电磁波频率及功率。
步骤S103:根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径。
需要说明的是,在本申请中,将所述散热孔的孔径定义为电磁波在所述电子设备的散热孔能够通过的最大区域的孔径。因此,将所述散热孔的孔径的最大值定义为散热孔在没有受到其他物体重叠或遮掩时的孔径。因此,所 述目标孔径可以是散热孔为了散热和屏蔽干扰电磁波,而在受到其他物体重叠或遮掩时的孔径。
根据检测得到的干扰电磁波信息,确定所述电子设备的机壳散热区的散热孔的孔径的最大值。假设干扰电磁波频率为f,根据频率f能够确定干扰电磁波波长λ,即λ=c/f,其中c为光速,根据电磁屏蔽原理,理论上需要调整为小于0.25λ的孔径以平波波长为λ的电磁波,因此,可以将0.25λ作为电子设备的机壳散热区的散热孔的孔径的最大值。
在确定孔径的最大值0.25λ之后,根据检测到的温度信息,可以确定所述电子设备的机壳的散热区中的散热孔的、且小于0.25λ的目标孔径。例如,当检测到的温度较低时,对散热要求相对较低,此时可以选取较小孔径作为目标孔径,例如0.125λ,以达到更好地屏蔽电磁波;反之,当检测到的温度较高时,系统对散热要求相对较高,此时可以选取接近于0.25λ的孔径作为目标孔径,例如0.24λ,以自适应地散热及屏蔽电磁波,提高散热和屏蔽电磁波效果。又例如,预先设置在不同的孔径的最大值,温度与对应的目标孔径,可以根据经验值设置,此时,根据孔径的最大值以及所检测到的温度信息确定相应的目标孔径。
步骤S104:根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区中的散热孔的孔径。
可选地,所述根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区的散热孔的孔径的步骤包括:
通过设置在电子设备机壳上的执行部件驱动调整部件相对于机壳散热区移动,从而将机壳的散热区内的散热孔的孔径调整为目标孔径。
可选地,调整部件包括能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中的第一方向移动的第一活动挡板,和能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中与所述第一方向垂直的第二方向移动的第二活动挡板,第一活动挡板和第二活动挡板上均设置有多个孔径与机壳散热区的散热孔的孔径的最大值相同的通孔,例如孔径均为r。在移动第一活动挡板和第二活动挡板前,第一活动挡板和第二活动挡板均位于初始位置,此时,设置在第一活动挡板的通孔、所述设置在第二活动挡板的通孔、机壳 散热区中的散热孔重合。在移动第一活动挡板和/或第二活动挡板之后,例如在移动第一活动挡板和第二活动挡板后,设置在第一活动挡板的通孔、设置在第二活动挡板的通孔、机壳散热区中的散热孔交错,电磁波在所述电子设备的散热孔能够通过的区域的孔径将小于r,电磁波在所述电子设备的散热孔能够通过的区域的孔径由第一活动挡板和第二活动挡板的位置决定。
需要说明的是,在本申请中,将所述第一活动挡板/第二活动挡板的通孔的孔径定义为电磁波在所述第一活动挡板/第二活动挡板的通孔上能够通过的最大区域的孔径。
可选地,执行部件可以是电机。由于直线电机能够驱动其它部件直线运动,因此在本实施例中电机可以是直线电机,在电子设备机壳内安装设置成驱动第一活动挡板的第一直线电机和设置成驱动第二活动挡板的第二直线电机,第一直线电机驱动第一活动挡板相对于机壳散热区沿着在平行于所述机壳的散热区的平面中的第一方向移动,从而使第一活动挡板上的通孔与散热区的散热孔交错,同样地,第二直线电机驱动第二活动挡板相对于机壳散热区沿着在平行于所述机壳的散热区的平面中与所述第一方向垂直的第二方向移动,从而使第二活动挡板上的通孔与散热区的散热孔交错。可选地,为了能够精确控制散热区散热孔的孔径大小,所述直线电机可以是直线步进电机。
可选地,所述执行部件还可以是电磁继电器,此时,第一/第二活动挡板分别只有两个稳定位置,即电磁继电器的线圈断电时,第一/第二活动挡板位于各自的第一位置;电磁继电器的线圈上电时,第一/第二活动挡板位于各自的第二位置,相对于执行部件是电机的实施方式,目标孔径的可选值较少。
可选地,上述散热孔、通孔可以是蜂窝孔,也可以是圆形孔。
本申请通过自适应地调节散热和电磁波屏蔽,提高了通信及电子设备的可靠性。
本发明实施例另外提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述方法。
图2是本发明实施例提供的兼顾散热的屏蔽电磁波的装置的示意图,如图2所示,包括电磁检测单元10、温度检测单元20、处理单元30和机壳散热区孔径调整单元40。
电磁检测单元10设置成检测所述电子设备周围的干扰电磁波,以得到干扰电磁波信息。电磁检测单元10可实现为射频接收机,其检测到的干扰电磁波信息包括干扰电磁波频率及功率,以供处理单元读取。
温度检测单元20设置成检测电子设备机壳内的温度,以得到温度信息。温度检测单元20可以是常用的型号为MAX1617或DS18B20的温度传感器芯片,对温度信息进行实时检测,以供处理单元30读取。
处理单元30,设置成根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径。例如,处理单元30根据检测到的干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的孔径的最大值,并根据检测到的温度信息,确定所述电子设备的机壳的散热区中的散热孔的、且小于所述孔径的最大值的目标孔径。也就是说,处理单元30可以分别从电磁检测单元10和温度检测单元20获取干扰电磁波信息和系统温度,从而根据干扰电磁波信息和系统温度,调节机壳的散热孔的孔径。
机壳散热区孔径调整单元40设置成根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区中的散热孔的孔径,也就是说,机壳散热区孔径调整单元40调整机壳的散热区中的散热孔的孔径。图3是图2中的机壳散热区孔径调整单元40的示意图,如图3所示,机壳散热区孔径调整单元40包括设置在电子设备机壳内执行部件41和调整部件42,执行部件41通过驱动调整部件42相对于机壳散热区在平行于所述机壳的散热区的平面中移动,将机壳散热区的散热孔的孔径调整为目标孔径。其中,执行部件41是电机或电磁继电器;调整部件42包括第一活动挡板和第二活动挡板,第一活动挡板设置有孔径与机壳散热区中的散热孔的孔径的最大值相同的通孔,且所述第一活动挡板能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中的第一方向移动,第二活动挡板设置有孔径与机壳散热区中的散热孔的孔径的最大值相同的通孔,且所述第二活动挡板能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中与所述第一方向垂直的第二方向移动。本实施例中,通过移动第一活动挡板和/或第二活动挡板,使设置在第一活动挡板和/或第二活动挡板的通孔与机壳散热区的散热孔交错,从而调整散热孔的孔径。例如,当第一活动挡板和第二活动挡板位于初始位置时,设置在第一活 动挡板的通孔、设置在第二活动挡板的通孔、机壳散热区的散热孔重合,散热孔的孔径达到最大值;在执行部件驱动第一活动挡板和/或第二活动挡板移动后,第一活动挡板的通孔和/或第二活动挡板的通孔、机壳散热区的散热孔交错,散热孔的孔径减小。
所述装置的工作原理如下:电磁检测单元10检测干扰电磁波频率及功率,供处理单元30获取;温度检测单元20检测温度信息,供处理单元30获取;处理单元30处理从温度检测单元及电磁检测单元获取的温度信息和干扰电磁波信息,并根据处理结果控制执行部件41调整散热孔的孔径,来满足屏蔽电磁波及散热的需求。其中,处理单元根据获取到的温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的孔径的步骤可以包括:处理单元30将周期性地采集的系统温度及干扰电磁波信息与设定值进行比较,通过移动活动挡板位置来调整散热孔的孔径,以满足散热及屏蔽电磁波的要求。例如,预先设置频率f1和f2,预设功率P1,其中,f1<f2。假设电子设备的机壳的散热区中的散热孔的孔径的最大值为r,处理单元采集到的干扰电磁波的频率为f,功率为P,若f<f1,则可以根据温度信息,在散热孔的孔径不大于r的范围内移动活动挡板。
对于电磁的屏蔽,理论上,屏蔽波长为λ的电磁波需要使用孔径小于λ/4的屏蔽网;对于散热,散热孔的孔径越大,散热效果越好。本实施例中,采用常用的蜂窝孔设计实现机壳散热区,蜂窝孔半径为r,同时安装两片在初始位置重叠的、且与蜂窝孔具有相同孔径的活动挡板,其中一片活动挡板只可在平行于所述机壳的散热区的平面中水平移动,另一片只可在平行于所述机壳的散热区的平面中垂直移动,且两片活动挡板在所述水平方向或垂直方向的移动距离与蜂窝孔半径相同,移动活动挡板以使设置在活动挡板的通孔与机壳的散热区中的蜂窝孔交错,以调整散热孔的孔径。
执行部件41驱动活动挡板移动,可以实现为以下两种装置中的任意一种:
装置1、电磁继电器。
电磁继电器(或电磁阀)移动活动挡板,此时每片活动挡板只2个稳定位置,即设置在活动挡板的通孔与机壳中的蜂窝孔重合、以及设置在活动挡板的通孔与机壳中的蜂窝孔错开所述蜂窝孔的孔径的距离。其中,电磁继电 器的电磁铁及线圈安装在机壳上,衔铁安装在活动挡板的运动方向的一侧,并设置铁芯与衔铁最大间距为蜂窝孔的孔径r。
以水平移动的活动挡板为例,如图4所示,分界线左侧电磁铁及线圈安装在机壳左侧内表面,分界线右侧为活动区,活动挡板的左边缘安装衔铁,活动挡板通过其右边缘连接的弹簧连接在机壳右侧内表面,用于在铁芯与线圈断电后使活动挡板复位。当电磁继电器的线圈不通电时,电磁铁与衔铁分开,此时的活动挡板的通孔与机壳的蜂窝孔重合,散热效果最好;当电磁继电器的线圈通电时,电磁铁与衔铁吸合,驱动活动挡板向左移动,移动距离为r,使散热孔径减小,此时电磁屏蔽效果好。同理,设置在另一个方向的电磁铁吸合会进一步减小机壳蜂窝孔孔径。
装置2、电机。
活动挡板可处于铁芯与衔铁最大间距为0到r的任意位置,活动挡板可由普通小型电机配合执行机构移动,以使得普通小型电机配合执行机构的输出相当于直线电机的输出,此方案较复杂。本实施例可选直线电机驱动活动挡板移动。例如,通过在机壳左侧内表面安装第一直线电机,驱动一个活动挡板相对机壳散热区可在平行于所述机壳的散热区的平面中在铁芯与衔铁最大间距为0到r的任意位置水平移动,通过在机壳内部下面表面安装第二直线电机,驱动另一个活动挡板相对机壳散热区可在平行于所述机壳的散热区的平面中在铁芯与衔铁最大间距为0到r的任意位置垂直移动,最终通过移动两个活动挡板至不同位置得到更多可选的目标孔径。
综上所述,本申请具有以下技术效果:
本申请提高了电子设备对工作环境适应性,电子设备无需重新设计或更换任何部件即可在各种电磁干扰环境及不同温度下稳定工作。
尽管上文对本申请进行了详细说明,但是本申请不限于此,本技术领域技术人员可以根据本申请的原理进行各种修改。因此,凡按照本申请原理所作的修改,都应当理解为落入本申请的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分 步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明实施例不限制于任何特定形式的硬件和软件的结合。
工业实用性
本申请提供的方法和装置兼顾散热及屏蔽电磁波,可以根据电子设备周围的温度及干扰电磁波的频率及功率调整散热孔的孔径,提高了电子设备的适应性和可靠性,满足电子设备对于散热及电磁屏蔽的要求。

Claims (10)

  1. 一种兼顾散热的屏蔽电磁波的方法,包括:
    检测电子设备的机壳内的温度,以得到温度信息;
    检测所述电子设备周围的干扰电磁波,以得到干扰电磁波信息;
    根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径;
    根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区中的散热孔的孔径。
  2. 根据权利要求1所述的方法,其中,所述根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径的步骤包括:
    根据所述干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的孔径的最大值;
    根据所述温度信息,确定所述电子设备的机壳的散热区中的散热孔的、且小于所述孔径的最大值的目标孔径。
  3. 根据权利要求1或2所述的方法,其中,所述根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区的散热孔的孔径的步骤包括:
    通过设置在所述电子设备机壳上的执行部件驱动调整部件相对于所述机壳散热区移动,从而将所述机壳的散热区内的散热孔的孔径调整为目标孔径。
  4. 根据权利要求3所述的方法,其中,所述调整部件包括:
    设置有通孔且能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中的第一方向移动的第一活动挡板,和设置有通孔且能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中与所述第一方向垂直的第二方向移动的第二活动挡板;
    其中,所述设置在第一活动挡板的通孔的孔径和所述设置在第二活动挡板的通孔的孔径均与机壳散热区中的散热孔的孔径的最大值相同。
  5. 根据权利要求4所述的方法,其中,所述执行部件是电机或电磁继电 器,所述电机或电磁继电器设置成驱动所述第一活动挡板和所述第二活动挡板移动。
  6. 一种兼顾散热的屏蔽电磁波的装置,包括:
    温度检测单元,设置成检测电子设备的机壳内的温度,以得到温度信息;
    电磁检测单元,设置成检测所述电子设备周围的干扰电磁波,以得到干扰电磁波信息;
    处理单元,设置成根据所述温度信息和干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的目标孔径;
    机壳散热区孔径调整单元,设置成根据所确定的散热孔的目标孔径,调整所述电子设备的机壳的散热区中的散热孔的孔径。
  7. 根据权利要求6所述的装置,其中,所述处理单元是设置成根据所述干扰电磁波信息,确定所述电子设备的机壳的散热区中的散热孔的孔径的最大值,并根据所述温度信息,确定所述电子设备的机壳的散热区中的散热孔的、且小于所述孔径的最大值的目标孔径。
  8. 根据权利要求6或7所述的装置,其中,所述机壳散热区孔径调整单元包括:
    执行部件,设置在所述电子设备的机壳内,设置成驱动调整部件移动;
    调整部件,设置在所述电子设备的机壳内,设置成由所述执行部件驱动时相对于所述机壳散热区在平行于所述机壳的散热区的平面中移动,从而将所述机壳散热区的散热孔的孔径调整为目标孔径。
  9. 根据权利要求8所述的装置,其中,所述调整部件包括:
    第一活动挡板,设置有孔径与机壳散热区中的散热孔的孔径的最大值相同的通孔,且所述第一活动挡板能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中的第一方向移动;
    第二活动挡板,设置有孔径与机壳散热区中的散热孔的孔径的最大值相同的通孔,且所述第二活动挡板能够相对机壳散热区沿着在平行于所述机壳的散热区的平面中与所述第一方向垂直的第二方向移动。
  10. 根据权利要求9所述的装置,其中,所述执行部件是电机或电磁继电器,所述电机或电磁继电器设置成驱动所述第一活动挡板和所述第二活动挡板移动。
PCT/CN2016/083347 2015-11-10 2016-05-25 一种兼顾散热的屏蔽电磁波的方法及装置 WO2016188435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510760022.2A CN106686961B (zh) 2015-11-10 2015-11-10 一种兼顾系统散热的电磁波屏蔽方法及装置
CN201510760022.2 2015-11-10

Publications (1)

Publication Number Publication Date
WO2016188435A1 true WO2016188435A1 (zh) 2016-12-01

Family

ID=57393736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083347 WO2016188435A1 (zh) 2015-11-10 2016-05-25 一种兼顾散热的屏蔽电磁波的方法及装置

Country Status (2)

Country Link
CN (1) CN106686961B (zh)
WO (1) WO2016188435A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677170A (zh) * 2021-09-16 2021-11-19 维沃移动通信有限公司 电子设备以及散热方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109068542B (zh) * 2018-08-30 2020-11-10 歌尔科技有限公司 一种散热装置及具有该散热装置的智能摄像头
CN109634393A (zh) * 2018-12-29 2019-04-16 努比亚技术有限公司 终端散热结构及散热控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277102A (ja) * 2005-03-28 2006-10-12 Fujitsu Ltd 電子機器搭載ラック
CN201638129U (zh) * 2009-11-05 2010-11-17 恩斯迈电子(深圳)有限公司 可调整通风开口大小的散热模块及其相关电脑系统
CN102279628A (zh) * 2010-06-10 2011-12-14 鸿富锦精密工业(深圳)有限公司 机箱
CN102291967A (zh) * 2010-06-15 2011-12-21 鸿富锦精密工业(深圳)有限公司 具有防电磁辐射功能开孔的电子装置
CN102378543A (zh) * 2010-08-06 2012-03-14 鸿富锦精密工业(深圳)有限公司 电子装置模组
CN103096682A (zh) * 2011-10-31 2013-05-08 鸿富锦精密工业(深圳)有限公司 电子装置
CN103596406A (zh) * 2012-08-17 2014-02-19 鸿富锦精密工业(深圳)有限公司 货柜数据中心

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517427A (en) * 1983-06-17 1985-05-14 Richard H. Williams Frequency resonance heater
JP2001210990A (ja) * 2000-01-28 2001-08-03 Takenaka Komuten Co Ltd 電波遮蔽制御体とこれを用いてのシールド対象周波数可変の電磁波シールドシステム
CN2666097Y (zh) * 2003-06-23 2004-12-22 鸿富锦精密工业(深圳)有限公司 具防emi功能的散热板
CN100437429C (zh) * 2003-06-24 2008-11-26 鸿富锦精密工业(深圳)有限公司 具防emi功能的散热板
WO2005075049A1 (ja) * 2004-02-03 2005-08-18 Nec Corporation 放熱構造を備えた密閉型装置並びにそれに用いる筐体および複合シート
CN100463594C (zh) * 2005-06-18 2009-02-18 鸿富锦精密工业(深圳)有限公司 具有散热功能的电磁屏蔽装置
CN2840161Y (zh) * 2005-10-28 2006-11-22 上海环达计算机科技有限公司 电脑系统的防电磁波干扰结构
CN100562242C (zh) * 2006-12-21 2009-11-18 西北工业大学 一种可用于微波炉和电脑的负磁导率材料电磁屏蔽装置
JP2011086749A (ja) * 2009-10-15 2011-04-28 Panasonic Corp 電子機器
CN202663712U (zh) * 2012-04-26 2013-01-09 鸿富锦精密工业(深圳)有限公司 具有散热功能的电磁屏蔽装置
CN203722973U (zh) * 2013-09-24 2014-07-16 东莞市兆科电子材料科技有限公司 一种具有屏蔽电磁波的高热传导性散热片
CN104703454B (zh) * 2013-12-06 2018-01-16 华为技术有限公司 Emi控制方法、装置及电子设备
CN203801207U (zh) * 2014-03-27 2014-08-27 惠州比亚迪电子有限公司 具有屏蔽结构的移动终端
CN204636085U (zh) * 2015-04-15 2015-09-16 邹跃军 无线供电的食品保温装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277102A (ja) * 2005-03-28 2006-10-12 Fujitsu Ltd 電子機器搭載ラック
CN201638129U (zh) * 2009-11-05 2010-11-17 恩斯迈电子(深圳)有限公司 可调整通风开口大小的散热模块及其相关电脑系统
CN102279628A (zh) * 2010-06-10 2011-12-14 鸿富锦精密工业(深圳)有限公司 机箱
CN102291967A (zh) * 2010-06-15 2011-12-21 鸿富锦精密工业(深圳)有限公司 具有防电磁辐射功能开孔的电子装置
CN102378543A (zh) * 2010-08-06 2012-03-14 鸿富锦精密工业(深圳)有限公司 电子装置模组
CN103096682A (zh) * 2011-10-31 2013-05-08 鸿富锦精密工业(深圳)有限公司 电子装置
CN103596406A (zh) * 2012-08-17 2014-02-19 鸿富锦精密工业(深圳)有限公司 货柜数据中心

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113677170A (zh) * 2021-09-16 2021-11-19 维沃移动通信有限公司 电子设备以及散热方法

Also Published As

Publication number Publication date
CN106686961A (zh) 2017-05-17
CN106686961B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2016188435A1 (zh) 一种兼顾散热的屏蔽电磁波的方法及装置
EP3086452B1 (en) Linear motor device
CN108227871B (zh) 用于存储设施的散热装置和相应的存储设施
WO2016115785A1 (zh) 电子设备
JP6836923B2 (ja) 電磁駆動アセンブリおよびそれを用いたレンズ駆動装置
JP6685650B2 (ja) 羽根駆動装置および光学機器
KR20190103300A (ko) 전자기 간섭 성능을 개선하기 위한 입자 센서용 실드 커버
CN113163674A (zh) 散热结构、电器盒、散热控制方法及装置
US9173321B2 (en) Electronic device with airflow control structure
JP4661303B2 (ja) 電子機器搭載ラック
CN117762218A (zh) 一种自动切换式导风装置和服务器
US20090268341A1 (en) Minimizing flow induced vibration in a hard disk drive with a hybrid planar plate having a bypass channel
JP6354278B2 (ja) 半導体電力変換装置
US20140146470A1 (en) Heat dissipation apparatus
KR102050391B1 (ko) 무인비행장치용 비행 콘트롤러의 진동 및 자기장 저감을 위한 마운트 장치
US9723752B2 (en) Heat dissipating system
JP5342363B2 (ja) 制御装置の実装構造
JP2016033626A (ja) カメラ用フォーカルプレーンシャッタ、及びそれを備えたカメラ
JP2005276920A (ja) 電装筐体
JP2018205503A (ja) 絞り装置及び撮像装置
CN104219931A (zh) 散热模块
US9668381B2 (en) Channel diversion device and related heat dissipating system
US20240023272A1 (en) Fan module and electronic device
JP5435005B2 (ja) アクチュエータおよびアクチュエータの冷却方法
JP3193955U (ja) 電子機器冷却用の機体放熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799322

Country of ref document: EP

Kind code of ref document: A1