WO2015090060A1 - 修复缺陷像素的方法、系统及显示面板 - Google Patents

修复缺陷像素的方法、系统及显示面板 Download PDF

Info

Publication number
WO2015090060A1
WO2015090060A1 PCT/CN2014/082564 CN2014082564W WO2015090060A1 WO 2015090060 A1 WO2015090060 A1 WO 2015090060A1 CN 2014082564 W CN2014082564 W CN 2014082564W WO 2015090060 A1 WO2015090060 A1 WO 2015090060A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
pixel
defective pixel
center
coordinate
Prior art date
Application number
PCT/CN2014/082564
Other languages
English (en)
French (fr)
Inventor
秦卫
邓玉新
钮曼萍
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/429,885 priority Critical patent/US9791725B2/en
Publication of WO2015090060A1 publication Critical patent/WO2015090060A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects

Definitions

  • Embodiments of the present invention relate to a method of repairing defective pixels, a system for repairing defective pixels, and a repaired display panel. Background technique
  • the specific equipment maintenance method is that the device is positioned to the defective pixel, and the person manually aligns the black matrix diffusion laser to the pixel region to perform laser irradiation, and the laser irradiates the alignment film to damage the alignment film to weaken the alignment characteristic of the liquid crystal.
  • the light transmittance of the liquid crystal eliminates the light leakage phenomenon, and the laser is irradiated while the light is adjusted during the maintenance process to confirm the maintenance effect.
  • Embodiments of the present invention provide a method for repairing defective pixels, a system for repairing defective pixels, and a repaired display panel, which can automatically repair bright pixels.
  • an embodiment of the present invention provides a method for repairing a defective pixel, comprising: centering the defective pixel to acquire a center coordinate of the defective pixel; and repairing the defective pixel according to the central coordinate.
  • an embodiment of the present invention further provides a system for repairing a defective pixel, comprising: a center positioning unit, centrally positioning the defective pixel to obtain a center of the defective pixel And a repair unit that repairs the defective pixel according to the center coordinate.
  • an embodiment of the present invention further provides a display panel, wherein the display panel is a display panel repaired by the method for repairing defective pixels.
  • Embodiment 1 is a pixel coordinate positioning of a defective pixel according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a lens positioned in a pixel coordinate of a defective pixel according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a lens positioned at a center coordinate of a defective pixel according to Embodiment 1 of the present invention
  • Schematic diagram of adjusting the brightness in the middle
  • FIG. 6 is a schematic diagram of performing laser automatic repair in the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of detecting a repair effect according to Embodiment 1 of the present invention.
  • FIG. 8 is a block diagram of a system for repairing defective pixels according to a second embodiment of the present invention
  • FIG. 9 is a block diagram of a central positioning unit provided in Embodiment 2 of the present invention.
  • FIG. 10 is a structural block diagram of a repair monitoring unit provided in Embodiment 2 of the present invention.
  • FIG. 11 is a structural block diagram of a detection module provided in Embodiment 2 of the present invention. detailed description
  • Embodiment 1 of the present invention provides a method for repairing a defective pixel, including the following steps: Step S1: Centering the defective pixel to obtain the center coordinate of the defective pixel; Step S2, repairing the defective pixel according to the central coordinate.
  • the center coordinates of the defective pixels are accurately positioned, and then the defective pixels are repaired according to the central coordinates, since no manual treatment is required.
  • the repaired defective pixels are precisely positioned to improve the speed and accuracy of the repair.
  • the obtained central coordinate may have a certain deviation within the allowable range, that is, the obtained central coordinate may have a certain deviation from the precise central coordinate, but the deviation is within the allowable range.
  • the central coordinate is the approximate center coordinate of the pixel area, which is not limited by the embodiment of the present invention, which may be determined according to a specific situation, if the pixel area is a regular shape, For example, a square, then the center coordinates determined here are the exact center coordinates.
  • the method before performing central positioning on the defective pixel to obtain the center coordinate of the defective pixel in step S1 of the embodiment, the method further includes performing defect pixel positioning, obtaining pixel coordinates of the defective pixel, and obtaining pixel coordinates and a center.
  • the coordinates do not coincide.
  • the center coordinate of the lens image is as shown by the cross-shaped mark in the figure, that is, the pixel center of the lens image is aligned with a pixel coordinate in the pixel region where the defective pixel is located. , not at the center of the pixel area, as can be seen from Fig.
  • the pixel coordinates Add ( X, Y ) of the pixel area are located at the center-right position.
  • the lens can only be moved to the pixel area of the defective pixel by aligning the pixel coordinates of the defective pixel, and the movement precision can only be guaranteed within the pixel area, but it is necessary to perform the repair process in advance.
  • the center of the pixel area is precisely positioned, that is, the center coordinates are found, and the center coordinates are located at the center point of the defective pixel.
  • performing central positioning on the defective pixel includes:
  • the abscissa of the center coordinate is calculated according to the upper edge coordinate and the lower edge coordinate, and the ordinate of the center coordinate is calculated according to the left edge coordinate and the right edge coordinate, and the center coordinate is obtained.
  • the steps of the coordinate include: scanning from the pixel coordinates in four directions of up, down, left, and right respectively, and when the gray value corresponding to the pixel coordinate changes, determining the coordinates when the four gray values change.
  • the upper edge coordinate, the lower edge coordinate, the left edge coordinate, and the right edge coordinate respectively.
  • the center of the lens picture is not at the center of the defective pixel area, and its coordinates (that is, pixel coordinates) are Add ( X, Y ), according to the color of the target pixel (in the embodiment, green is taken as an example)
  • the square starts scanning until it reaches the upper edge of the pixel area, because the area except the pixel area is covered by the black matrix, so the gray value will change from the original green gray value to the black gray value, thus determining the defect
  • the upper edge of the pixel area, that is, the upper edge coordinate scanned up along the pixel coordinate Add (X, Y) is Offset U.
  • the edge coordinates of the other three directions are determined, and scanning is performed downward until scanning to the lower edge of the defective pixel area to obtain the lower edge coordinate Offset D; scanning to the left until scanning to the left edge of the defective pixel area, The left edge coordinate Offset L is obtained; scanning is performed to the right until scanning to the right edge of the defective pixel area, and the right edge coordinate Offset R is obtained.
  • scanning up and down with the pixel coordinates as the center means that the X coordinate is constant, and the image is scanned up and down along the Y-axis direction with the pixel coordinates as the center, and the pixel coordinates are centered on the pixel coordinate to the left.
  • Scanning to the right means scanning left and right along the X-axis direction centering on the pixel coordinates when the Y coordinate is not changed.
  • the pixel area shown in FIG. 2 is an irregular area, which is only an example. Actually, the pixel area is determined according to actual conditions, and for an irregular pixel area, centered on pixel coordinates.
  • the upper, lower, left, and right edges of the scan of the lower, left, and right scans may not be the uppermost edge, the lowermost edge, the leftmost edge, and the rightmost edge of the pixel region, but the center coordinates thus determined are also Within the tolerance of the error.
  • the pixel area is a regular shape, for example, a rectangle
  • the upper edge, the lower edge, the left edge, and the right edge determined above are the uppermost edge, the lowermost edge, the leftmost edge, and the rightmost edge of the pixel region, thereby
  • the determined center coordinates are the exact center coordinates.
  • the lens After determining the center coordinates of the defective pixel, move the lens to the position of the center coordinate, as shown in Figure 2.
  • the cross mark in Fig. 2 is the position of the center coordinate of the pixel area.
  • the laser is aimed at the center coordinate of the defective pixel, and the surrounding black matrix is pulverized and diffused, thereby realizing physical shading, thereby realizing the effect of repairing the defective pixel.
  • the method for repairing a defective pixel in this embodiment further includes the step of monitoring the repair result, including:
  • the brightness of the defective pixel area is detected to obtain a preset brightness
  • the unrepaired pixel is occluded to perform brightness detection on the repaired defective pixel to obtain a repaired brightness
  • the repair effect is determined based on the preset brightness and the repair brightness.
  • a sensitization test module is added to the black matrix (BM) diffusion repair optical path.
  • S the preset luminance level of the defective pixel region
  • SA Fixing pixels for occlusion to detect the brightness of the repaired defective pixels, and obtaining the repaired brightness at this time is SA (cd/m 2 ), and further monitoring whether the repair effect is qualified according to the size of S and SA Judging, the criteria are:
  • the decision width may be a value of approximately 0, or other values, the implementation of the present invention
  • the comparison of the examples is not limited, and the judgment threshold can be set according to experiments or needs.
  • the lens moves to the pixel area of the defective pixel, and is positioned at the pixel coordinate Add ( X, Y ). As shown in Figure 3, the lens is positioned on the pixel area where the defective pixel is located, that is, positioned on the pixel coordinates.
  • the defective pixel is in the column where the green pixel is located, the left column is the red pixel, and the right column is the blue pixel.
  • the laser repairing device can repair the defective pixel according to the central coordinate, and a schematic diagram of performing automatic laser repair is shown in FIG. 6.
  • the repair effect is also detected; exemplarily, the unrepaired pixel is occluded to perform brightness detection on the repaired defective pixel to obtain the repaired brightness; and the repair effect is corrected according to the preset brightness and the repaired brightness.
  • a determination is made in which the preset brightness is obtained by detecting the brightness level of the defective pixel before performing the repair.
  • a schematic diagram for detecting the repair effect is shown in Fig. 7.
  • the center coordinates of the defective pixels on the display panel can be positioned to achieve accurate positioning, and then the defective pixels are repaired according to the obtained central coordinates, and the center coordinate positioning is automatically replaced.
  • the original manual alignment operation not only speeds up the repair of defective pixels, but also improves the repair efficiency, improves the overall efficiency and productivity of the equipment, and avoids the problem of unsuccessful repair due to errors caused by manual operations. Automatic center positioning improves the accuracy of the fix.
  • a central positioning unit 10 configured to centrally locate a defective pixel to obtain a center coordinate of the defective pixel
  • the repairing unit 20 is configured to repair the defective pixel according to the central coordinate.
  • the block diagram of the central positioning unit 10 in this embodiment is as shown in FIG. 9, and includes a first positioning unit 11 for positioning a defective pixel to obtain pixel coordinates of the defective pixel.
  • the central positioning unit 10 further includes a second positioning unit 12, further performing center positioning on the defective pixel to obtain the center coordinates of the defective pixel, and the pixel coordinates and the central coordinate are not based on the obtained pixel coordinates of the defective pixel. coincide.
  • the second positioning unit 12 in this embodiment includes:
  • the edge determining unit 121 is configured to scan upward, downward, leftward, and rightward with the pixel coordinates as the center, until the upper edge, the lower edge, the left edge, and the right edge of the defective pixel are scanned to obtain the upper edge coordinates, Lower edge coordinates, left edge coordinates, and right edge coordinates.
  • the edge determining unit is configured to scan the four directions of up, down, left, and right respectively from the pixel coordinates, and when the gray value corresponding to the pixel coordinates changes, determine four.
  • the coordinates when the gray value changes are taken as the upper edge coordinate, the lower edge coordinate, the left edge coordinate, and the right edge coordinate, respectively.
  • the second positioning unit 12 of this embodiment further includes: a central determining unit 122, configured to calculate an abscissa of the central coordinate according to the upper edge coordinate and the lower edge coordinate, and calculate the ordinate of the central coordinate according to the left edge coordinate and the right edge coordinate , so far get the center coordinates.
  • the method for calculating the center coordinates according to the upper edge coordinates, the lower edge coordinates, the left edge coordinates, and the right edge coordinates is the same as the calculation method in the first embodiment, and will not be described herein.
  • the repair unit 20 emits laser light according to the obtained optimal brightness, and illuminates the defective pixel to perform pulverization and diffusion on the black matrix of the defective pixel region, thereby realizing the physical shading property of the ear defect, and completing repair.
  • the system further includes a repair monitoring unit 30.
  • the block diagram is shown in FIG. 10, and is used for monitoring the repair result, including:
  • the detecting module 31 is configured to respectively detect the defective pixels before and after repairing the defective pixels to obtain a preset brightness and a repair brightness.
  • the determining module 32 is configured to determine the repair effect according to the preset brightness and the repair brightness. For example, when the difference between the preset brightness and the repaired brightness is less than the determination threshold, the determining module 32 determines that the repair is successful; and when the difference between the preset brightness and the repaired brightness is greater than the determination threshold, the repair unit returns to the center coordinate pair again. Defective pixels are repaired.
  • composition of the detecting module 31 is as shown in FIG. 11, and includes: a light source emitting unit
  • the reflected light module 02, the prism group, the camera 04, and the photosensitive module 05 The light source emitting unit 01 is located below the display panel 00, and is configured to emit light of a preset brightness to the display panel 00.
  • the reflected light module 02 is located above the display panel.
  • the reflection through the prism group is divided into two paths, one way is reflected to the camera 04 to acquire an image, and the other is reflected to the photosensitive module 05; wherein the photosensitive module 05 is based on the reflected light
  • the defective pixel area is detected to obtain a preset brightness before the repair, and after the defective pixel is repaired, the repaired defective pixel is again subjected to brightness detection in the case where the unrepaired pixel is occluded, and the repaired brightness is obtained.
  • the prism group provided in FIG. 11 includes three prisms, wherein the main function of the first prism 031 is to receive the reflection from the reflected light module 02. The light is then split into two paths by reflection and refraction, one direction in the horizontal direction, and then transmitted through the second prism 032, so that the camera located above it acquires an image; the other direction obtained by the second prism 032 is perpendicular to the vertical direction Then, through the reflection of the third prism 033, the photosensitive module located in the horizontal direction can measure the brightness of the light.
  • the light source emitting unit 01 When the defective pixel is positioned, the light source emitting unit 01 is turned on, and the reflected light module 02 is turned off. At this time, the light source emitting unit 01 is equivalent to the backlight, and the light passes through the defective pixel to display a corresponding color, for example, red, green or blue. Etc., and the black matrix occluded area is black, so it is convenient to centrally locate the defective pixel according to the gray value of the defective pixel.
  • the light source transmitting unit 01 and the reflected light module 02 are turned on, and the brightness of the defective pixel area is detected by the photosensitive module 05, and the preset brightness s is obtained. After the defective pixel is repaired, the unrepaired pixel is occluded.
  • the light generated by the light source emitting unit 01 is reflected to the prism group, and one of the light is reflected to the photosensitive module, and the photosensitive module 05 can be in the defective pixel according to the reflected light. If the unrepaired pixel is occluded, the brightness of the repaired defective pixel is detected, and the repaired brightness is corrected to obtain the repaired brightness SA, and then the determining module can determine the repair effect by repairing the difference between the brightness SA and the preset brightness S, that is, if S- SA > d, it is judged that the repair is qualified; if S-SA ⁇ d, it is judged that the repair is unqualified, where d is the judgment threshold.
  • the camera 04 in this embodiment is a CCD camera, that is, a charge-coupled device, and may also be an image sensor.
  • the system provided by the embodiment further includes a photosensitive module, which can automatically adjust the brightness during the repair process, and compares the brightness of the defective pixel area before and after the repair, thereby confirming whether the repair is qualified.
  • the system not only repairs defective pixels, but also monitors the results of repairs to increase productivity.
  • the third embodiment of the present invention further provides a display panel, which is a display panel repaired based on the method for repairing defective pixels provided in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种修复缺陷像素的方法、系统及显示面板,该方法包括:对缺陷像素进行中心定位以获取所述缺陷像素的中心坐标;根据所述中心坐标对所述缺陷像素进行修复。该方法用自动进行的中心坐标定位代替原有的人工对位操作,不仅加快对缺陷像素的修复速度,还能提高修复效率,提高设备的整体效能及产能,同时还能避免由于人工操作产生误差带来的修复不成功的问题,进行自动的中心定位还可以提高修复的准确性。

Description

修复缺陷像素的方法、 系统及显示面板 技术领域
本发明的实施例涉及一种修复缺陷像素的方法、 修复缺陷像素的系统以 及修复得到的显示面板。 背景技术
在液晶面板的制作工艺过程中, 由于线路不良会产生点瑕疵和线瑕疵, 在液晶面板制造期间, 还会由于灰尘、 有机物、 金属等杂质被吸附到液晶面 板上靠近某些滤色器的区域时, 造成相应于这些滤色器的像素会发射出比其 余正常像素的亮度明亮得多的光, 这称为漏光现象, 也就是亮点像素瑕疵。
对于亮点像素瑕疵, 据发明人已知, 釆用将像素周边黑矩阵粉碎扩散进 而通过物理性挡光的维修方法进行像素瑕疵的修复。 具体的设备维修方法为 设备定位到缺陷像素, 人员手动将黑矩阵扩散激光精确对位至像素区域进行 激光照射, 激光照射到配向膜使得该配向膜被损坏, 以削弱液晶的排列特性 的方法降低液晶的透光率, 从而消除漏光现象, 而且进行激光照射的同时还 在维修过程中进行光亮调节, 以便进行维修效果确认。
但是上述方法进行激光对位过程中需要人工手动将激光精确对位到像素 区域, 光亮调节的过程也需要人工手动进行光亮调节, 无法实现对亮点瑕疵 像素的自动修复。 发明内容
本发明的实施例提供一种修复缺陷像素的方法、 修复缺陷像素的系统以 及修复得到的显示面板, 能够实现对亮点瑕疵像素进行自动修复。
一方面, 本发明的实施例提供一种修复缺陷像素的方法, 包括: 对所述 缺陷像素进行中心定位以获取所述缺陷像素的中心坐标; 根据所述中心坐标 对所述缺陷像素进行修复。
另一方面, 本发明的实施例还提供了一种修复缺陷像素的系统, 包括: 中心定位单元, 对所述缺陷像素进行中心定位以获取所述缺陷像素的中心坐 标; 以及修复单元, 根据所述中心坐标对所述缺陷像素进行修复。
再一方面, 本发明的实施例还提供了一种显示面板, 所述显示面板为经 过上述的修复缺陷像素的方法进行修复得到的显示面板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1是本发明实施例一中对缺陷像素进行像素坐标定位;
图 2是本发明实施例一中对缺陷像素进行中心坐标定位;
图 3是本发明实施例一中镜头定位在缺陷像素的像素坐标时的示意图; 图 4是本发明实施例一中镜头定位在缺陷像素的中心坐标时的示意图; 图 5是本发明实施例一中调整亮度后的示意图;
图 6为本发明实施例一中进行激光自动修复的示意图;
图 7为本发明实施例一中对修复效果进行检测的示意图;
图 8为本发明实施例二中提供的一种修复缺陷像素的系统的组成框图; 图 9为本发明实施例二中提供的中心定位单元的组成框图;
图 10为本发明实施例二中提供的修复监控单元的组成框图;
图 11为本发明实施例二中提供的检测模块的结构框图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
下面结合附图, 对本发明的实施例作进一步详细描述。 以下实施例仅是 示例, 不是用来限制本发明实施例的保护范围。
实施例一
本发明实施例一提供了一种修复缺陷像素的方法, 包括以下步骤: 步骤 Sl、 对缺陷像素进行中心定位以获取缺陷像素的中心坐标; 步骤 S2、 根据中心坐标对缺陷像素进行修复。
基于上述修复缺陷像素的方法, 通过对缺陷像素进行中心定位, 而不仅 仅定位到像素区域, 而是精确定位到缺陷像素的中心坐标, 之后根据该中心 坐标对缺陷像素进行修复,由于无需人工对待修复的缺陷像素进行精确定位, 从而可以提高修复的速度和准确性。
这里应该注意的是,所获得的中心坐标可能在容许范围内存在一定偏差, 也就是, 所获得的中心坐标可能与精确的中心坐标存在一定的偏差, 但是该 偏差是在容许范围内。 另外, 如果该像素区域是不规格形状, 该中心坐标就 是该像素区域的大致中心坐标, 本发明的实施例对此不做限定, 这可以视具 体情况而定, 如果该像素区域是规则形状, 例如, 正方形, 则这里所确定的 中心坐标就是精确的中心坐标。
备选地, 本实施例的步骤 S1 中对缺陷像素进行中心定位以获取所述缺 陷像素的中心坐标之前还包括, 进行缺陷像素定位, 得到该缺陷像素的像素 坐标, 且得到的像素坐标和中心坐标不重合。 对于某一个缺陷像素, 以图 1 中的缺陷像素为例, 镜头画面的中心坐标如图中的十字形标记所示, 也就是 镜头画面的中心对准缺陷像素所在的像素区域内的一个像素坐标, 并不在像 素区域的中心位置, 由图 1中也可以看出像素区域的像素坐标 Add ( X, Y ) 位于中心偏右的位置。 对缺陷像素进行修复时, 只能通过对准缺陷像素的像 素坐标将镜头移动到缺陷像素的像素区域, 移动精度只能保证是在像素区域 范围内, 但是在进行修复过程中还要需要预先对像素区域的中心进行精确定 位, 即找到中心坐标, 中心坐标位于缺陷像素的中心点上。
进一步地, 本实施例中得到缺陷像素的像素坐标之后, 对缺陷像素进行 中心定位包括:
以像素坐标为中心, 向上、 向下、 向左和向右四个方向分别进行扫描, 直到扫描到缺陷像素的上边缘、 下边缘、 左边缘和右边缘, 以获取上边缘坐 标、 下边缘坐标、 左边缘坐标和右边缘坐标;
根据上边缘坐标和下边缘坐标计算得到中心坐标的横坐标, 根据左边缘 坐标和右边缘坐标计算得到中心坐标的纵坐标, 至此得到中心坐标。
备选地, 对于上述获取上边缘坐标、 下边缘坐标、 左边缘坐标和右边缘 坐标的步骤, 包括: 从像素坐标开始分别向上、 下、 左、 右四个方向进行扫 描, 当扫描到像素坐标对应的灰度值发生变化时, 则确定四个灰度值发生变 化时的坐标分别作为上边缘坐标、 下边缘坐标、 左边缘坐标和右边缘坐标。
仍以图 1为例, 镜头画面的中心不在缺陷像素区域的中心, 其坐标(也 就是像素坐标)为 Add ( X, Y ), 根据目标像素的颜色(本实施例中以绿色 为例) 向上方开始扫描, 直至达到像素区域上边缘, 因为除了像素区域之外 的区域都被黑矩阵覆盖, 所以灰度值将发生变化, 由原来的绿色灰度值变为 黑色灰度值, 因此确定缺陷像素区域的上边缘, 即沿着像素坐标 Add ( X, Y ) 向上扫描得到的上边缘坐标为 Offset U。 同理对于其它三个方向的边缘坐标 进行确定, 向下进行扫描, 直到扫描到缺陷像素区域的下边缘, 得到下边缘 坐标 Offset D; 向左进行扫描, 直到扫描到缺陷像素区域的左边缘, 得到左 边缘坐标 Offset L; 向右进行扫描, 直到扫描到缺陷像素区域的右边缘, 得 到右边缘坐标 Offset R。 确定四个方向的边缘坐标之后, 根据上边缘坐标 Offset U和下边缘坐标 Offset D求平均值计算得到中心坐标的横坐标, 根据 左边缘坐标 Offset L和右边缘坐标 Offset 计算得到中心坐标的纵坐标, 至 此得到中心坐标 Offset ( X, Y ) , 因此 Offset ( X, Y ) =0ffset ( ( Offset L + Offset ) /2, ( Offset U + Offset D ) /2 ) 。
示例性地, 以像素坐标为中心向上、 下进行扫描, 是指 X坐标不变的情 况下以像素坐标为中心沿 Y轴方向上下扫描, 以像素坐标为中心向以像素坐 标为中心向左、 右进行扫描, 是指 Y坐标不变的情况下以像素坐标为中心沿 X轴方向左右扫描。
此外, 还应该注意的是, 图 2示出的像素区域为不规则区域, 这仅是示 例, 实际上该像素区域是根据实际情况确定的, 对于不规则的像素区域, 以 像素坐标为中心上、 下、 左和右扫描确定的上边缘、 下边缘、 左边缘和右边 缘可能并不是该像素区域的最上边缘、 最下边缘、 最左边缘、 最右边缘, 但 是这样确定的中心坐标也是在误差容许范围内的。 而且, 如果像素区域是规 则形状, 例如, 长方形, 则以上确定的上边缘、 下边缘、 左边缘和右边缘就 是该像素区域的最上边缘、 最下边缘、 最左边缘、 最右边缘, 由此确定的中 心坐标是精确的中心坐标。
确定缺陷像素的中心坐标之后, 将镜头移动到中心坐标的位置, 如图 2 所示, 图 2中的十字形标记就是像素区域中心坐标的位置。 将激光对准缺陷 像素的中心坐标, 对其周边黑矩阵进行粉碎扩散, 进而实现物理性遮光, 实 现对缺陷像素进行修复的效果。
备选地, 本实施例修复缺陷像素的方法还包括对修复结果进行监控的步 骤, 包括:
在根据中心坐标对缺陷像素进行修复之前, 检测缺陷像素区域的亮度大 小, 得到预设亮度;
在对缺陷像素进行修复之后, 对未修复像素进行遮挡, 以对修复完的缺 陷像素进行亮度检测, 得到修复亮度; 以及
根据预设亮度和修复亮度对修复效果进行判定。
也就是, 对缺陷像素进行修复之后, 需要将缺陷像素在修复前后的亮度 进行比较, 并以此确认像素覆盖效果是否符合要求。 示例性地, 在黑矩阵 ( BM )扩散修复光路中增加感光测试模块, 修复之前, 检测缺陷像素区域 的预设亮度大小为 S(cd/m2), 对该缺陷像素进行修复之后, 对未修复像素进 行遮挡, 以对所修复的缺陷像素进行亮度检测, 得到此时的修复亮度大小为 SA(cd/m2), 并以进一步的根据 S与 SA的大小对修复效果是否合格进行监控 以及判定, 其标准为:
如果 S-SA > d, 则判定修复合格;
如果 S-SA< d, 则判定修复不合格,
其中 d为在预设亮度 S下, 修复覆盖合格像素区域亮度较修复前亮度减 少的最小值,也就是判定阔值, 该判定阔值可以为近似 0的值, 或者其他值, 本发明的实施例对比不做限定, 该判定阔值可以根据实验或者需要设置。
以对图 1中的缺陷像素进行修复为例, 釆用上述修复方法的过程如下:
1 )首先是镜头移动到缺陷像素的像素区域, 定位在像素坐标 Add ( X, Y ) 。 如图 3所示, 镜头定位在缺陷像素所在的像素区域上, 即定位在像素 坐标上。 假设该缺陷像素所在的是绿色像素所在的一列, 向左一列为红色像 素, 向右一列为蓝色像素。
2 )之后, 以像素坐标为中心分别向上下左右四个方向进行扫描, 直到确 定四个方向的边缘坐标, 再根据边缘坐标计算得到缺陷像素的中心坐标, 将 镜头定位在缺陷像素的中心坐标, 如图 4所示。 3 )确定缺陷像素的中心坐标之后激光修复设备可根据中心坐标对缺陷像 素进行修复, 进行激光自动修复的示意图如图 6所示。
4 )修复完成之后还要对修复效果进行检测; 示例性地, 对未修复像素进 行遮挡, 以对所修复的缺陷像素进行亮度检测, 得到修复亮度; 再根据预设 亮度和修复亮度对修复效果进行判定, 其中的预设亮度是在进行修复之前通 过检测缺陷像素的亮度大小得到的。 对修复效果进行检测的示意图如图 7所 示。
因此通过实施例一提供的修复缺陷像素的方法, 能够定位到显示面板上 的缺陷像素的中心坐标, 实现准确定位, 之后根据所得的中心坐标对缺陷像 素进行修复, 用自动进行的中心坐标定位代替原有的人工对位操作, 不仅加 快对缺陷像素的修复速度,还能提高修复效率,提高设备的整体效率及产能, 同时还能避免由于人工操作产生误差带来的修复不成功的问题, 进行自动的 中心定位可以提高修复的准确性。
实施例二
本发明的实施例二中还提供了一种修复缺陷像素的系统, 组成框图如图
8所示, 包括:
中心定位单元 10,用于对缺陷像素进行中心定位以获取缺陷像素的中心 坐标;
修复单元 20, 用于根据中心坐标对缺陷像素进行修复。
备选地,本实施例中的中心定位单元 10的组成框图如图 9所示, 包括第 一定位单元 11, 用于对缺陷像素进行定位, 得到缺陷像素的像素坐标。 示例 性地, 中心定位单元 10还包括第二定位单元 12, 在得到的缺陷像素的像素 坐标的基础上,进一步对缺陷像素进行中心定位以获取缺陷像素的中心坐标, 且像素坐标和中心坐标不重合。
备选地, 本实施例中的第二定位单元 12包括:
边缘确定单元 121, 用于以像素坐标为中心, 向上、 向下、 向左和向右 进行扫描, 直到扫描到缺陷像素的上边缘、 下边缘、 左边缘和右边缘, 以获 取上边缘坐标、 下边缘坐标、 左边缘坐标和右边缘坐标。
示例性地, 边缘确定单元用于从像素坐标开始分别向上、 下、 左、 右四 个方向进行扫描, 当扫描到像素坐标对应的灰度值发生变化时, 则确定四个 灰度值发生变化时的坐标分别作为上边缘坐标、 下边缘坐标、 左边缘坐标和 右边缘坐标。
本实施例的第二定位单元 12还包括: 中心确定单元 122, 用于根据上边 缘坐标和下边缘坐标计算得到中心坐标的横坐标, 根据左边缘坐标和右边缘 坐标计算得到中心坐标的纵坐标, 至此得到中心坐标。 根据上边缘坐标、 下 边缘坐标、 左边缘坐标和右边缘坐标计算中心坐标的方法同上述实施例一中 的计算方法, 此处不再赘述。
进一步地,找到中心坐标之后,修复单元 20按照得到的最佳亮度发射激 光, 对准缺陷像素进行照射, 实现对缺陷像素区域的黑矩阵进行粉碎扩散, 实现穗缺陷处的物理性遮光性, 完成修复。
备选地, 修复完成之后, 还要对其修复的结果进行监测, 因此该系统还 包括修复监控单元 30, 组成框图如图 10所示, 用于对修复结果进行监控, 包括:
检测模块 31,用于在对缺陷像素修复之前和之后分别对所述缺陷像素进 行检测得到预设亮度和修复亮度。
判定模块 32, 用于根据预设亮度和修复亮度对修复效果进行判定。 示例 性地,当预设亮度与修复亮度的差值小于判定阔值则判定模块 32确定修复成 功; 而当预设亮度与修复亮度的差值大于判定阔值则返回修复单元再次根据 中心坐标对缺陷像素进行修复。
示例性地, 检测模块 31的组成结构如图 11所示, 包括: 光源发射单元
01、反射光模块 02、 棱镜组、相机 04和感光模块 05, 光源发射单元 01位于 显示面板 00的下方, 用于向显示面板 00发射预设亮度的光, 反射光模块 02 位于显示面板的上方,用于将透过显示面板 00的光反射到棱镜组,经过棱镜 组的反射分为两路,一路反射至相机 04以获取图像,另一路反射至感光模块 05;其中感光模块 05根据反射光在修复之前对缺陷像素区域进行检测得到预 设亮度, 并在对缺陷像素进行修复之后, 在未修复的像素被遮挡的情况下对 修复后的缺陷像素再次进行亮度检测, 得到修复亮度。
这里, 图 11中的虚线表示激光的路径,对于棱镜组中各块棱镜的位置和 角度等都是根据实际需要进行设置的。本实施例图 11中提供的棱镜组中包括 3块棱镜,其中第一块棱镜 031的主要作用是接收反射光模块 02反射来的激 光,之后通过反射和折射分成两路,一路向水平方向,再经过第二块棱镜 032 的发射, 使得位于其上方的相机获取图像; 经过第二块棱镜 032折射之后得 到的另一路向垂直方向, 再经过第三块棱镜 033的反射, 使得位于其水平方 向上的感光模块能对光的亮度进行测量。
在对缺陷像素进行定位时, 打开光源发射单元 01, 关闭反射光模块 02, 此时光源发射单元 01相当于背光, 光通过缺陷像素后可显示出相应的颜色, 比如, 红色、 绿色或蓝色等, 而黑矩阵遮挡的区域为黑色, 因此, 可方便根 据缺陷像素的灰度值对缺陷像素进行中心定位。 修复之前, 打开光源发射单 元 01和反射光模块 02, 通过感光模块 05检测缺陷像素区域的亮度大小, 得 到预设亮度 s。 对缺陷像素进行修复之后, 对未修复像素进行遮挡, 此时, 光源发射单元 01产生的光反射到棱镜组后其中有一路反射至感光模块,感光 模块 05可根据所述反射光,在缺陷像素未修复像素被遮挡的情况下对修复后 的缺陷像素进行亮度检测, 得到修复亮度得到修复亮度 SA, 然后判定模块 可通过修复亮度 SA和预设亮度 S的差值判定修复效果, 即如果 S-SA > d, 则判定修复合格; 如果 S-SA<d, 则判定修复不合格, 其中 d为判定阔值。
备选地, 本实施例中的相机 04 为 CCD 相机, 即, 电荷辆合元件 ( Charge-coupled Device ) , 也可以为图像传感器。
基于上述修复像素缺陷的系统, 能够定位到显示模板上存在的亮点的缺 陷像素的中心坐标, 实现准确定位, 之后根据所得的中心坐标对缺陷像素进 行修复, 用自动进行的中心坐标定位代替原有的人工对位操作, 不仅加快对 缺陷像素的修复速度, 还能提高修复效率, 提高设备的整体效率及产能, 同 时还能避免由于人工操作产生误差带来的修复不成功的问题, 进行自动的中 心定位可以提高修复的准确性。
进一步地, 本实施例提供的系统还包括感光模块, 能够在修复过程中自 动对亮度进行调整, 并通过修复前后的缺陷像素区域的亮度进行比较, 能够 确认修复是否合格。 该系统不仅仅能够对缺陷像素进行修复, 还能对修复的 结果进行监控, 可以提高产能。
实施例三
本发明实施例三还提供了一种显示面板, 是基于上述实施例一提供的修 复缺陷像素的方法进行修复得到的显示面板。 以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。
本申请要求于 2013年 12月 18曰递交的中国专利申请第 201310700535.5 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1、 一种修复缺陷像素的方法, 包括:
对所述缺陷像素进行中心定位以获取所述缺陷像素的中心坐标; 根据所述中心坐标对所述缺陷像素进行修复。
2、 如权利要求 1所述的方法, 还包括:
对所述缺陷像素进行修复之前, 检测所述缺陷像素的亮度大小, 得到预 设亮度;
在对所述缺陷像素进行修复之后, 对未修复的像素进行遮挡, 以对所述 缺陷像素进行亮度检测, 得到修复亮度; 以及
根据所述预设亮度和所述修复亮度对修复效果进行判定。
3、如权利要求 1或 2所述的方法,还包括: 在所述对缺陷像素进行中心 定位以获取所述缺陷像素的中心坐标之前, 进行缺陷像素定位, 得到所述缺 陷像素的像素坐标, 且所述像素坐标和所述中心坐标不重合。
4、如权利要求 3所述的方法,其中所述对缺陷像素进行中心定位以获取 所述缺陷像素的中心坐标包括:
以所述像素坐标为中心, 向上、 向下、 向左和向右进行扫描, 直到扫描 到所述缺陷像素的上边缘、 下边缘、 左边缘和右边缘, 并获取上边缘坐标、 下边缘坐标、 左边缘坐标和右边缘坐标;
根据所述上边缘坐标和所述下边缘坐标计算得到所述中心坐标的横坐 标,根据所述左边缘坐标和所述右边缘坐标计算得到所述中心坐标的纵坐标, 从而得到所述中心坐标。
5、 如权利要求 4所述的方法, 其中所述获取上边缘坐标、 下边缘坐标、 左边缘坐标和右边缘坐标, 包括:
从所述像素坐标开始分别向上、 下、 左、 右四个方向进行扫描, 当扫描 到所述像素坐标对应的灰度值发生变化时, 则确定四个灰度值发生变化时的 坐标分别作为所述上边缘坐标、 下边缘坐标、 左边缘坐标和右边缘坐标。
6、如权利要求 2所述的方法,其中所述根据预设亮度和修复亮度对修复 效果进行判定, 包括:
当所述预设亮度与所述修复亮度的差值小于判定阔值则确定修复成功; 否则再次执行根据所述中心坐标对所述缺陷像素进行修复的步骤。
7、如权利要求 1-6中任一项所述的方法, 其中所述根据所述中心坐标对 所述缺陷像素进行修复, 包括: 将激光对准缺陷像素的中心坐标, 对其周边 黑矩阵进行粉碎扩散以修改所述缺陷像素。
8、 一种修复缺陷像素的系统, 包括:
中心定位单元, 对所述缺陷像素进行中心定位以获取所述缺陷像素的中 心坐标; 以及
修复单元, 根据所述中心坐标对所述缺陷像素进行修复。
9、 如权利要求 8所述的系统, 还包括: 修复监控单元, 对修复结果进行 监控, 包括:
检测模块, 检测所述缺陷像素修复之前和之后的所述缺陷像素区域的预 设亮度和修复亮度; 以及
判定模块, 根据所述预设亮度和修复亮度对修复效果进行判定。
10、如权利要求 9所述的系统, 其中所述检测模块包括: 光源发射单元、 反射光模块、 棱镜组、 相机和感光模块, 所述光源发射单元位于显示面板的 下方, 用于向所述显示面板发射预设亮度的光, 所述反射光模块位于所述显 示面板的上方, 用于将透过所述显示面板的光反射到所述棱镜组, 经过所述 棱镜组的反射所述光分为两路, 一路反射至所述相机以获取图像, 另一路反 射至所述感光模块;
感光模块根据所述反射光在修复之前对缺陷像素区域进行检测得到预设 亮度, 并在对所述缺陷像素进行修复之后, 在所述未修复的像素被遮挡的情 况下对被修复的所述缺陷像素再次进行亮度检测, 得到修复亮度。
11、 如权利要求 8所述的系统, 其中所述中心定位单元包括:
第一定位单元, 对缺陷像素进行定位, 得到所述缺陷像素的像素坐标; 第二定位单元, 在所述像素坐标的基础上, 对缺陷像素进行中心定位以 获取所述缺陷像素的中心坐标, 且所述像素坐标和所述中心坐标不重合。
12、 如权利要求 11所述的系统, 其中所述第二定位单元包括: 边缘确定单元, 以所述像素坐标为中心, 向上、 向下、 向左和向右进行 扫描, 直到扫描到所述缺陷像素的上边缘、 下边缘、 左边缘和右边缘, 以获 取上边缘坐标、 下边缘坐标、 左边缘坐标和右边缘坐标; 以及 中心确定单元, 根据所述上边缘坐标和所述下边缘坐标计算得到所述中 心坐标的横坐标, 根据所述左边缘坐标和所述右边缘坐标计算得到所述中心 坐标的纵坐标, 至此得到所述中心坐标。
13、如权利要求 12所述的系统,其中所述边缘确定单元从所述像素坐标 开始分别向上、 下、 左、 右四个方向进行扫描, 当扫描到所述像素坐标对应 边缘坐标、 下边缘坐标、 左边缘坐标和右边缘坐标。
14、 如权利要求 9所述的系统, 其中当所述预设亮度与所述修复亮度的 差值小于判定阔值所述判定模块确定修复成功; 当所述预设亮度与所述修复 亮度的差值小于判定阔值所述判定模块确定修复未成功, 则修复单元再次根 据所述中心坐标对所述缺陷像素进行修复。
15、 一种显示面板, 所述显示面板为经过权利要求 1-7所述的修复缺陷 像素的方法进行修复得到的显示面板。
PCT/CN2014/082564 2013-12-18 2014-07-18 修复缺陷像素的方法、系统及显示面板 WO2015090060A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/429,885 US9791725B2 (en) 2013-12-18 2014-07-18 Method and system for repairing defective pixel, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310700535.5A CN103676236B (zh) 2013-12-18 2013-12-18 一种修复缺陷像素的方法、系统及显示面板
CN201310700535.5 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015090060A1 true WO2015090060A1 (zh) 2015-06-25

Family

ID=50314289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082564 WO2015090060A1 (zh) 2013-12-18 2014-07-18 修复缺陷像素的方法、系统及显示面板

Country Status (3)

Country Link
US (1) US9791725B2 (zh)
CN (1) CN103676236B (zh)
WO (1) WO2015090060A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676236B (zh) * 2013-12-18 2017-01-04 合肥京东方光电科技有限公司 一种修复缺陷像素的方法、系统及显示面板
CN107544163A (zh) * 2016-06-28 2018-01-05 帆宣系统科技股份有限公司 彩色滤光片的自动修补方法
KR102049681B1 (ko) * 2016-11-30 2019-11-27 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 이미지 데드 픽셀 보상 방법, 장치 및 비 일시적 컴퓨터 판독 저장 매체
TWI662638B (zh) * 2017-04-21 2019-06-11 台灣愛司帝科技股份有限公司 半導體晶片修補方法以及半導體晶片修補裝置
CN107979918A (zh) * 2017-11-27 2018-05-01 合肥通彩自动化设备有限公司 一种玻璃板缺陷印刷电路修复检测系统及方法
CN108469707A (zh) * 2018-02-27 2018-08-31 昆山国显光电有限公司 一种显示面板的修复系统及修复方法
CN110444157B (zh) * 2019-08-15 2020-12-08 京东方科技集团股份有限公司 灰阶补偿关系及补偿值的获取方法、显示装置
CN110517616B (zh) * 2019-09-10 2022-08-23 重庆汉朗精工科技有限公司 一种oled显示屏坏点掩膜定位系统
CN111179775B (zh) * 2020-02-22 2022-02-18 禹创半导体(南京)有限公司 一种微型micro LED显示器
CN112086048B (zh) * 2020-08-31 2022-09-23 苏州迈为科技股份有限公司 一种oled屏幕暴亮点修复方法及装置
CN111933760B (zh) * 2020-09-28 2020-12-29 苏州科韵激光科技有限公司 微型led像素修复设备及微型led像素修复方法
CN112599713A (zh) * 2020-12-17 2021-04-02 安徽熙泰智能科技有限公司 一种高分辨率微显示器缺陷修复方法
CN112904605B (zh) * 2021-03-31 2023-03-28 长沙惠科光电有限公司 彩膜缺陷的测高方法、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122123A1 (en) * 2001-03-01 2002-09-05 Semiconductor Energy Laboratory Co., Ltd. Defective pixel specifying method, defective pixel specifying system, image correcting method, and image correcting system
JP2006323032A (ja) * 2005-05-17 2006-11-30 Sony Corp フラットパネルディスプレイディバイスの欠陥画素リペア装置及びその欠陥画素リペア方法
JP2007086206A (ja) * 2005-09-20 2007-04-05 Sharp Corp 欠陥画素修復装置、欠陥画素修復システム及び欠陥画素修復方法
CN102202226A (zh) * 2010-03-23 2011-09-28 夏普株式会社 校准装置、缺陷检测装置、缺陷修复装置、校准方法
CN102629043A (zh) * 2011-05-27 2012-08-08 京东方科技集团股份有限公司 薄膜晶体管像素结构及其修复方法
CN102654661A (zh) * 2012-05-04 2012-09-05 京东方科技集团股份有限公司 液晶显示面板的修复方法
CN103676236A (zh) * 2013-12-18 2014-03-26 合肥京东方光电科技有限公司 一种修复缺陷像素的方法、系统及显示面板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320292A (en) * 1979-08-22 1982-03-16 Nippon Telegraph And Telephone Public Corporation Coordinate input apparatus
US5420703A (en) * 1990-02-01 1995-05-30 Canon Kabushiki Kaisha Color image processing system having multi-image processing capabilities
US5243332A (en) * 1991-10-31 1993-09-07 Massachusetts Institute Of Technology Information entry and display
US6035526A (en) * 1997-11-18 2000-03-14 Ntn Corporation Method of repairing defect and apparatus for repairing defect
JP4197217B2 (ja) * 2000-05-08 2008-12-17 株式会社半導体エネルギー研究所 装置
JP2007136330A (ja) * 2005-11-17 2007-06-07 Sharp Corp インク吐出装置及びインク吐出方法
KR101060472B1 (ko) * 2007-11-30 2011-08-29 엘지디스플레이 주식회사 액정표시패널의 불량셀 리페어방법
CN102428378B (zh) * 2009-06-29 2014-07-30 夏普株式会社 有源矩阵基板的制造装置和制造方法以及显示面板的制造装置和制造方法
CN103558698B (zh) * 2013-11-05 2016-01-13 合肥京东方光电科技有限公司 激光修复设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122123A1 (en) * 2001-03-01 2002-09-05 Semiconductor Energy Laboratory Co., Ltd. Defective pixel specifying method, defective pixel specifying system, image correcting method, and image correcting system
JP2006323032A (ja) * 2005-05-17 2006-11-30 Sony Corp フラットパネルディスプレイディバイスの欠陥画素リペア装置及びその欠陥画素リペア方法
JP2007086206A (ja) * 2005-09-20 2007-04-05 Sharp Corp 欠陥画素修復装置、欠陥画素修復システム及び欠陥画素修復方法
CN102202226A (zh) * 2010-03-23 2011-09-28 夏普株式会社 校准装置、缺陷检测装置、缺陷修复装置、校准方法
CN102629043A (zh) * 2011-05-27 2012-08-08 京东方科技集团股份有限公司 薄膜晶体管像素结构及其修复方法
CN102654661A (zh) * 2012-05-04 2012-09-05 京东方科技集团股份有限公司 液晶显示面板的修复方法
CN103676236A (zh) * 2013-12-18 2014-03-26 合肥京东方光电科技有限公司 一种修复缺陷像素的方法、系统及显示面板

Also Published As

Publication number Publication date
CN103676236A (zh) 2014-03-26
CN103676236B (zh) 2017-01-04
US20160033796A1 (en) 2016-02-04
US9791725B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
WO2015090060A1 (zh) 修复缺陷像素的方法、系统及显示面板
JP2007303853A (ja) 端部検査装置
KR20070092430A (ko) 표시 장치의 픽셀 수리 장치
US11567293B2 (en) Autofocus device, and optical apparatus and microscope including the same
US20160299365A1 (en) Laser Repairing Apparatus
TW201740484A (zh) 視覺化檢驗裝置
JP5245212B2 (ja) 端部検査装置
KR101474969B1 (ko) 기판 처리 장치, 투광 부재 및 뷰포트를 갖는 챔버
US20170219339A1 (en) Measuring and correcting optical misalignment
JP2008068284A (ja) 欠陥修正装置、欠陥修正方法、及びパターン基板の製造方法
JP6160255B2 (ja) 太陽電池セル検査装置および太陽電池セル検査装置の画像位置補正方法
JP2014182228A (ja) 液晶表示パネルの輝点欠陥除去方法及び装置
KR101198406B1 (ko) 패턴 검사 장치
JP2008091843A (ja) 基板の圧着状態検査装置
JP2007212429A (ja) ヘッドライトの光軸調整方法におけるエルボー点検出方法
TWM549447U (zh) 基板對準及檢測裝置與基板處理機台
JP2005249946A (ja) 表示装置の欠陥検査装置
CN206649283U (zh) 一种焦点探测侧面式光刻焦面位置的检测装置
US10269105B2 (en) Mask inspection device and method thereof
JP6196148B2 (ja) デフォーカス制御装置およびデフォーカス制御方法
TWI749409B (zh) 光學量測方法
JPS63113339A (ja) ヘツドライトの主光軸検査方法
KR200406537Y1 (ko) 엘시디 패널 에지 자동 검사장치
KR20180026943A (ko) 디스플레이용 윈도우 글래스의 부착 위치 검사장치
KR101027473B1 (ko) 기판 검사 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14429885

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.11.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14870731

Country of ref document: EP

Kind code of ref document: A1