WO2015089971A1 - 一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法 - Google Patents

一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法 Download PDF

Info

Publication number
WO2015089971A1
WO2015089971A1 PCT/CN2014/076323 CN2014076323W WO2015089971A1 WO 2015089971 A1 WO2015089971 A1 WO 2015089971A1 CN 2014076323 W CN2014076323 W CN 2014076323W WO 2015089971 A1 WO2015089971 A1 WO 2015089971A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
water
phosphorus
pyrrhotite
reactor
Prior art date
Application number
PCT/CN2014/076323
Other languages
English (en)
French (fr)
Inventor
李睿华
胡俊松
孙茜茜
张小梅
刘卓
占新民
李爱民
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US14/907,623 priority Critical patent/US10239774B2/en
Publication of WO2015089971A1 publication Critical patent/WO2015089971A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2826Anaerobic digestion processes using anaerobic filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms

Definitions

  • the invention belongs to the field of advanced treatment of sewage, and in particular to a natural pyrrhotite biofilter and a method for simultaneously removing nitrogen and phosphorus in water by using the same.
  • the traditional water treatment biological nitrogen removal process is that the digestive bacteria convert ammonium nitrogen into nitrate nitrogen under aerobic conditions, and the heterotrophic denitrifying bacteria convert nitrogen and nitrogen into nitrogen in the absence of oxygen to realize nitrogen removal in water.
  • the traditional water treatment biological phosphorus removal process is to remove phosphorus from anaerobic bacteria in the case of anaerobic conditions, excessive absorption of phosphorus in the case of aerobic conditions, and mass reproduction, and finally achieve phosphorus removal by removing the phosphorus-removing bacteria organism that excessively absorbs phosphorus. Removed in water. Both biological nitrogen removal and biological phosphorus removal have two phases of aerobic and anoxic (anaerobic).
  • sulfur autotrophic denitrification technology such as sulfur/limestone autotrophic denitrification system (SLAD)
  • SAD sulfur/limestone autotrophic denitrification system
  • the reactor has auxiliary material limestone, and its use is mainly to neutralize the H + produced to ensure the normal progress of nitrogen and phosphorus removal process.
  • Limestone itself does not play the role of simultaneous nitrogen and phosphorus removal, but it occupies a considerable volume of the reactor, reducing the efficiency of simultaneous nitrogen and phosphorus removal per unit volume of reactor.
  • the Chinese patent "a method for simultaneous nitrogen and phosphorus removal from nitrogen and phosphorus wastewater (Patent Application No.: 201210095370.9)" discloses a method for simultaneously removing nitrogen and phosphorus from water by using ferrous sulfide in an industrial product.
  • the method utilizes ferrous sulfide to achieve simultaneous removal of nitrogen and phosphorus in water under controlled anaerobic conditions in a batch reactor.
  • the removal rate of nitrogen and nitrogen was 73.6% and the removal rate of phosphorus was 97.4% after 2 days of treatment.
  • a good simultaneous nitrogen and phosphorus removal was obtained. effect.
  • this method cannot be continuously operated, and it is required to use a carbon dioxide blow-off to maintain strict anaerobic conditions, and a process of requiring solid-liquid separation after completion of the treatment, and the utility is inferior.
  • the present invention provides a natural pyrrhotite biofilter and a method for simultaneously removing nitrogen, nitrogen and phosphorus in water by using a single pyrrhotite, in the case of continuous water inflow, denitrification Thiobacillus uses pyrrhotite as a sulfur source to reduce nitrate to nitrogen. Metabolites iron ions and pyrrhotite are used to remove phosphorus from water to achieve efficient simultaneous nitrogen and phosphorus removal. The H+ produced by the simultaneous pyrogen removal and dephosphorization of pyrrhotite is rare, and no limestone is added for neutralization, thereby greatly improving the processing capacity of the unit reactor.
  • biofilter filler The pyrrhotite is prepared into a granular material with a particle size of 2-20 mm; the granular pyrrhotite is loaded into the reactor, and then the reactor is rinsed with water. When the pH of the effluent water is between 6 and 7, the rinsing is stopped. In actual use, the effluent of the water outlet can be stopped without being colored; the bottom of the reactor is provided with a water inlet, and the top is provided with a water outlet; The reactor is the best when it is a cylindrical reaction column;
  • step (2) Operation of biological filter:
  • the sewage to be treated is pumped through the water inlet into the reactor that has been started in step (2), and the hydraulic retention time is adjusted according to the concentration of nitrogen and nitrogen in the sewage to be between 12 and 48 hours. Nitrogen and phosphorus are removed simultaneously, and the effluent reaches the standard discharge.
  • the anaerobic sludge in the step (2) is an ordinary sewage treatment anaerobic sludge.
  • the hydraulic retention time of the mixed nutrient solution during the starting of the biological filter in the step (2) is 12-24 hours.
  • the composition and content of the nutrient solution in the step (2) are: Na 2 S 2 0 3 ⁇ 53 ⁇ 40 5g/L, KN0 3 2g/L, KH 2 P0 4 0.1g/L NaHC0 3 2g/L .
  • the inventors have unexpectedly discovered that when the pyrrhotite particle size is between 2 and 20 mm, since the natural pyrrhotite is slightly soluble in water, it can provide other nutrients required by the microorganism, and the nutrient solution only needs to provide microbial growth.
  • the microbial nutrient solution component of the present invention is greatly simplified.
  • the technical principle is to utilize the physiological and biochemical characteristics of sulphur autotrophic denitrifying bacteria. By controlling the particle size of the pyrrhotite and the starting parameters of the biological filter, the invention can make the sulphur autotrophic denitrifying bacteria breath nitrate denitrification.
  • the bacteria use natural pyrrhotite as energy source, and the metabolite of natural pyrrhotite is used to remove phosphorus, which realizes the natural coupling between biological nitrogen removal and chemical denitrification.
  • the pyrrhotite is under the action of microorganisms.
  • the reaction with nitrate is as follows:
  • One-third of ⁇ + greatly reduces the amount of alkalinity required, so that only the alkalinity in the water can be used to keep the ⁇ of the system small, so it is not necessary in the pyrrhotite biofilter of the present invention. Use limestone again.
  • the invention prepares pyrrhotite into a granular material with a particle size of 2-20 mm; fills the granular pyrrhotite into the reactor, and then the reactor is activated to simultaneously remove the low carbon to nitrogen ratio Nitrate and phosphorus in sewage, suitable for advanced treatment of nitrogen and phosphorus removal from sewage, and treatment of eutrophic water;
  • the pyrrhotite used in the present invention is cheap and easy to obtain. After the startup step of the present invention is started, the reactor does not generate H + during the treatment of the low carbon to nitrogen ratio sewage, and no neutralizing agent is added. Nucleating denitrification and chemical dephosphorization Combining, simultaneously removing nitrate and phosphorus from water;
  • the invention has high efficiency of nitrogen and phosphorus removal and good effect, and only needs to consume natural pyrrhotite.
  • the method is simple and practical, and the unit reactor has high processing capacity.
  • Embodiment 4 is a denitrification effect of treating secondary effluent from a sewage treatment plant in Embodiment 4 of the present invention
  • Fig. 5 is a view showing the phosphorus removal effect of the secondary effluent of the sewage treatment plant in the fourth embodiment of the present invention.
  • the treated object consists of artificially prepared sewage consisting of tap water, potassium dihydrogen phosphate and potassium nitrate.
  • the content of some pollutants is: N0 3 --N 27 mg/L, P0 4 3 "-P 6 mg/L, water temperature 18 °C.
  • the processing steps are as follows:
  • biofilter filler The pyrrhotite is prepared into a granular material with a particle size of 2-20 mm; the granular pyrrhotite is loaded into the reactor, and then the reactor is rinsed with clean water. The effluent from the outlet can be stopped without any color.
  • the pH of the rinse water is 6 and the inlet is provided with a water inlet at the bottom.
  • the reactor is a cylindrical reaction column with a height to diameter ratio of 3. : 1. The cone is connected to the cylinder to facilitate uniform water in and out;
  • the hydraulic retention time of the mixed nutrient solution in the starting process of the biological filter in the step (2) is 24 hours.
  • the reactor after completion of the startup was pumped into the wastewater to be treated, the hydraulic retention time was 24 hours, and the operation was carried out for one month, and samples were taken every 2 days.
  • the results are shown in Fig. 2.
  • the final effluent nitrate is stable at 1.13mg/L, and phosphate phosphate is stable at 0.22. Mg/L, the removal rate of nitrate nitrogen was 95.8%, and the removal rate of phosphorus was 96.3%.
  • step (2) the hydraulic retention time of the mixed nutrient solution during the start of the biological filter is 20 hours.
  • the outer shape of the reactor is a rectangular parallelepiped, and the ratio of the length to the width of the rectangular parallelepiped is equal to 3:1.
  • the test water consists of artificially prepared sewage consisting of tap water, potassium dihydrogen phosphate and potassium nitrate, N0 3 — -N 28 mg/L, P0 4 3 "-P 12 mg/L, water temperature 18 ° C; the reactor pump after completion is completed Enter the wastewater to be treated, the hydraulic retention time is 24 hours, run for one month, sample analysis every 2 days, the results are shown in Figure 3.
  • the final effluent nitrate is stable at 2.03mg / L
  • phosphate phosphate is stable at 0.47 mg / L
  • the removal rate of nitrate nitrogen was 92.8%
  • the removal rate of phosphorus was 96.1%.
  • the pyrrhotite biofilter treats the secondary effluent of a sewage treatment plant, and the average concentration of nitrate and phosphorus in the secondary effluent is 29.99 ⁇ 17.58 mg/L and 3.99 ⁇ , respectively. 2.36 mg/L. Samples were collected every two days. The results are shown in Figure 4 and Figure 5. The effluent nitrate and phosphorus concentrations were 4.02 ⁇ 3.61 mg / L and 0.37 ⁇ 0.25 mg / L, respectively. The average removal rates for nitrate and phosphorus were respectively It is 88.39 ⁇ 6.08% and 86.99 ⁇ 11.4%.
  • the shape of the reactor is cuboid, and the ratio of length to width is equal to 3:1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

 本发明公开了一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法,属于污水深度处理领域。其方法的步骤为:(1)生物滤池填料制备与构建;(2)生物滤池的启动;(3)生物滤池的运行。其利用硫自养反硝化菌以磁黄铁矿为电子供体,将水中的硝酸根还原为氮气,去除水中硝氮;磁黄铁及其氧化产物通过吸附、化学沉淀等方式除磷,从而实现同步去除水中的硝氮和磷。本发明的生物滤池构造简单、启动方便、运行稳定、脱氮除磷效率高,不用添加其它辅助材料,用于对污水的深度处理。

Description

一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方 法
技术领域
本发明属于污水深度处理领域, 具体地说, 涉及一种天然磁黄铁矿生物滤池以及利用其 同步去除水中硝氮和磷的方法。
背景技术
传统的水处理生物脱氮过程是消化菌在好氧的情况下将铵氮转化为硝氮, 异养反硝化菌 在缺氧的情况下将硝氮转化为氮气, 实现水中氮的去除。 传统的水处理生物除磷过程是除磷 菌在厌氧的情况下释放磷, 在好氧的情况下过量吸收磷, 并大量繁殖, 最终通过排出过量吸 收磷的除磷菌生物体实现磷从水中去除。生物脱氮和生物除磷这两个过程都有好氧和缺氧(厌 氧)两个阶段, 当将它们串联使用或者合并使用 (即为 A2/0同步脱氮除磷工艺) 时, 整个水 处理工艺非常长而复杂。 脱氮和除磷这两个过程分别以脱氮菌和除磷菌的生命活动为基础, 在除磷过程中它们的污泥龄不同, 对厌氧环境的要求不同, 都需要溶解氧和碳源。 因此当将 这两种微生物整合在一个工艺里进行同步脱氮除磷时, 不可避免地存在污泥龄与厌氧条件的 平衡问题、 微生物之间不可避免地存在对溶解氧和有机物的竞争。 这种平衡与竞争使得在水 处理过程中工艺控制困难, 脱氮效果和除磷效果难以兼得。 而且这个工艺都依赖于水中的有 机物, 当水中有机物不足 (低 C/N比) 时, 为了取得好的脱氮除磷效果不得不向水中添加甲 醇等有机物, 这又增加了水处理成本, 而且也带来了出水 COD不达标的风险。
针对低 C/N比污水的脱氮问题, 人们研发了硫自养反硝化技术, 如硫黄 /石灰石自养反硝 化系统 (SLAD), 该技术不需要碳源就可实现反硝化脱氮。 但是该技术存在出水中钙离子、 硫酸盐浓度过高, 除磷效果差的问题。
针对 SLAD 存在的问题, 中国专利 "黄铁矿作为生化填料脱氮除磷的方法 (ZL201010524339.3 ) "公开了黄铁矿和石灰石配合实现同步脱氮除磷的方法。该方法依靠黄 铁矿的厌氧生物氧化过程实线了硫自养反硝化脱氮和化学除磷的有机结合。 但是存在需要石 灰石中和水的 pH、 钙离子含量仍然很高、 脱氮能力不高, 需要 5天时间才能将 30 mg/L硝氮 从污水中完全去除, 且低于 20Γ时效果不佳。
无论是 SLAD还是利用黄铁矿的同步脱氮除磷方法, 其反应器中都有辅助材料石灰石, 其用途主要是中和所产生的 H+, 保证脱氮除磷过程的正常进行。 石灰石本身并不起到同步脱 氮除磷的作用却占据了反应器相当大的体积, 减少了单位体积反应器同步脱氮除磷的效率。 中国专利 "一种含氮磷污水同步脱氮除磷的方法 (专利申请号: 201210095370.9) "公开 了利用工业产品硫化亚铁同步去除水中氮和磷的方法。 该方法利用硫化亚铁在间歇反应器中 在严格控制厌氧条件下实现水中氮和磷的同步去除。 对于含 53 mg/L硝氮, 1.14 mg/L磷的废 水, 经该方法处理 2d后, 硝氮去除率为 73.6%, 磷的去除率为 97.4%, 取得了较好的同步脱 氮除磷效果。 但是该方法不能连续运行、 需要使用二氧化碳吹脱保持严格的厌氧条件、 处理 完毕后还需要固液分离的工序等问题, 实用性较差。
发明内容
1、 要解决的问题
针对处理低碳氮比污水时传统生物水处理工艺如 A2/0等同步脱氮除磷效果不佳; 硫黄 / 石灰石系统具有很好的脱氮效果, 但是基本没有除磷效果; 黄铁矿 /石灰石系统有很好的脱氮 除磷效果, 但是脱氮速率很低, 而且需要添加辅助材料石灰石; 利用工业品硫化亚铁的硫自 养脱氮除磷系统在保持较高脱氮除磷效果的情况下提高了脱氮速率, 但是该技术对厌氧环境 要求较高, 只能间歇运行, 处理水的能力不佳, 微生物培养液复杂, 处理成本较高, 实际应 用价值低等现有技术存在的问题, 本发明提供了一种天然磁黄铁矿生物滤池以及利用其同步 去除水中硝氮和磷的方法, 其利用单一磁黄铁矿, 在连续进水的情况下, 脱氮硫杆菌以磁黄 铁矿为硫源还原硝酸根为氮气, 代谢产物铁离子及磁黄铁矿本身用来去除水中的磷, 实现高 效同步脱氮除磷, 在磁黄铁矿进行同步脱氮除磷的过程中产生的 H+很少, 不需要添加石灰石 进行中和, 从而大大提高了单位反应器处理能力。
2、 技术方案
为了解决上述问题, 本发明所采用的技术方案如下:
一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法, 其步骤为:
( 1 ) 生物滤池填料制备与构建: 将磁黄铁矿制备成颗粒材料, 粒度在 2-20mm之间; 将 颗粒状磁黄铁矿装填于反应器之中,然后用清水冲洗反应器, 当冲洗出水的 pH在 6-7之间则 停止冲洗, 实际使用时, 等出水口的出水基本不带颜色则可以停止冲洗; 所述的反应器底部 设有进水口, 顶部设有出水口; 反应器为圆柱形反应柱时效果最佳;
(2)生物滤池的启动: 将厌氧污泥与营养液混合成混合营养液, 用泵将混合营养液从进 水口泵入反应器的底部, 混合营养液从出水口流出后再从进水口泵入反应器, 循环泵入, 直 到硝氮去除率基本稳定;
(3) 生物滤池的运行: 将待处理污水通过进水口泵入经过步骤 (2) 中完成启动的反应 器, 根据污水硝氮浓度调节水力停留时间在 12-48小时之间, 完成污水中硝氮与磷的同步去 除, 出水达标排放。 优选地, 所述的步骤 (2 ) 中厌氧污泥为普通的污水处理厌氧污泥。
优选地, 所述的步骤 (2 ) 中生物滤池的启动过程中混合营养液的水力停留时间为 12-24 小时。
优选地,所述的步骤(2 )中营养液的成分及含量为: Na2S203 ·5¾0 5g/L、 KN03 2g/L、 KH2P04 0.1g/L NaHC03 2g/L。 本发明人意外的发现, 在磁黄铁矿的粒度在 2-20mm之间 时, 由于天然磁黄铁矿微溶于水, 能够提供微生物所需的其它营养元素, 营养液只需提供微 生物生长所需的主要元素, 因此相比中国专利 "黄铁矿作为生化填料脱氮除磷的方法
( ZL201010524339.3 ) 和 "一种含氮磷污水同步脱氮除磷的方法 (专利申请号: 201210095370.9 ) 中的微生物培养液, 本发明中的微生物营养液成分得到大幅度的简化。 本发明的技术原理是利用硫自养反硝化细菌的生理生化特性,通过控制磁黄铁矿的粒度、 生物滤池的启动参数控制, 使得本发明一方面可以使硫自养反硝化细菌呼吸硝酸根脱氮, 另 一方面该类细菌以天然磁黄铁矿为能源, 天然磁黄铁矿的代谢产物用来除磷, 实现生物脱氮 与化学脱氮的自然耦合。 磁黄铁矿在微生物的作用下与硝酸根的反应式如下:
s e s . , 1 Λ i ,
3 S 9 " 9 - ' - 2 " " 9 (1)
中国专利 "黄铁矿作为生化填料脱氮除磷的方法 (ZL201010524339.3 ) 中黄铁矿在微生 物的作用下与硝酸根的反应式如下:
1 2 1 2 , 1 1 ^
NQ^ + - FeS2 +― 0→— 7 + - SO " + - Fe(OH), + (2)
" 3 ^ 3 — 2 " 3 3 3
从中可见去除同样多的硝酸根, 使用磁黄铁矿时所产生的 Η+只有使用黄铁矿时产生的
Η+的三分之一, 极大地减少了碱度的需求量, 因而只需利用水中的碱度就可以保持系统的 ρΗ 变化不大, 因此在本发明的磁黄铁矿生物滤池中无需再使用石灰石。
一种利用天然磁黄铁矿同步去除水中硝氮和磷的生物滤池, 为上面经过步骤(1 )和步骤
( 2 ) 处理后的反应器。
3、 有益效果
相比于现有技术, 本发明的有益效果为:
( 1 )本发明将磁黄铁矿制备成颗粒材料, 粒度在 2-20mm之间; 将颗粒状磁黄铁矿装填 于反应器之中, 然后反应器经过启动, 可以同步去除低碳氮比污水中的硝酸盐和磷, 适合于 污水脱氮除磷深度处理, 以及富营养化水体的处理;
( 2 )本发明所用的磁黄铁矿廉价易得, 经过本发明的启动步骤启动后反应器在处理低碳 氮比污水时, 反应过程中基本不产生 H+, 无需添加中和剂, 自养反硝化脱氮与化学除磷有机 结合, 同时去除水中的硝酸盐和磷;
( 3 )本发明脱氮除磷效率高、 效果好, 只需消耗天然磁黄铁矿, 方法简单、 实用, 单位 反应器处理能力高。
附图说明
图 1是本发明实施例 1中处理人工配水同步脱氮除磷效果;
图 2是本发明实施例 2中处理人工配水同步脱氮除磷效果;
图 3是本发明实施例 3中处理人工配水同步脱氮除磷效果;
图 4是本发明实施例 4中处理污水处理厂二级出水的脱氮效果;
图 5是本发明实施例 4中处理污水处理厂二级出水的除磷效果。
具体实 式
下面结合具体实施例对本发明做进一步详细的说明。
实施例 1
处理对象由自来水、 磷酸二氢钾和硝酸钾组成的人工配制污水, 其中部分污染物的含量 为: N03--N 27mg/L, P04 3"-P 6mg/L, 水温 18°C。 其处理步骤为:
( 1 ) 生物滤池填料制备与构建: 将磁黄铁矿制备成颗粒材料, 粒度在 2-20mm之间; 将 颗粒状磁黄铁矿装填于反应器之中, 然后用清水冲洗反应器, 等出水口的出水基本不带颜色 则可以停止冲洗; 测量发现冲洗水 pH为 6, 反应器底部设有进水口, 顶部设有出水口; 反应 器为圆柱形反应柱, 其高径比为 3 : 1。 圆柱体上连接圆锥体, 便于均匀进出水;
(2)生物滤池的启动: 将厌氧污泥与营养液混合成混合营养液, 用泵将混合营养液从进 水口泵入反应器的底部, 水力停留时间为 12小时, 混合营养液从出水口流出后再从进水口泵 入反应器, 循环泵入, 直到硝氮去除率基本稳定; 营养液的成分及含量为: Na2S203 * 5H20 5g/L、 KN03 2g/L、 KH2P04 0.1g/L、 NaHC03 2g/L; 混合营养液的水力停留时间为 12小 时;
( 3 ) 生物滤池的运行: 将待处理人工配制污水通过进水口泵入经过步骤 (2) 中完成启 动的反应器, 本实施例的水力停留时间为 12小时, 运行一个月, 每 2天取样分析, 结果如图 1 所示; 完成污水中硝氮与磷的同步去除, 出水达标排放。 最终出水硝氮稳定在 7mg/L, 磷 酸盐磷稳定在 0.3 mg/L, 硝氮去除率 74%, 磷去除率 95%。
实施例 2
同实施例 1, 所不同的是: 步骤 (2 ) 中生物滤池的启动过程中混合营养液的水力停留时 间为 24小时。 将完成启动后的反应器泵入待处理废水, 水力停留时间为 24小时, 运行一个 月,每 2天取样分析,结果如图 2所示。最终出水硝氮稳定在 1.13mg/L,磷酸盐磷稳定在 0.22 mg/L, 硝氮去除率 95.8%, 磷去除率 96.3%。
实施例 3
同实施例 1, 所不同的是: 步骤 (2 ) 中生物滤池的启动过程中混合营养液的水力停留时 间为 20小时。 反应器的外形结构为长方体, 则长方体长与宽之比等于 3: 1。
试验用水由自来水、 磷酸二氢钾和硝酸钾组成的人工配制污水, N03— -N 28mg/L, P04 3"-P 12mg/L, 水温 18°C ; 将完成启动后的反应器泵入待处理废水, 水力停留时间为 24小时, 运 行一个月, 每 2天取样分析, 结果如图 3所示。 最终出水硝氮稳定在 2.03mg/L, 磷酸盐磷稳 定在 0.47 mg/L, 硝氮去除率 92.8%, 磷去除率 96.1%。
实施例 4
同实施例 1, 所不同的是: 磁黄铁矿生物滤池处理的是某污水处理厂的二级出水, 该二 级出水硝氮与磷平均浓度分别为 29.99±17.58mg/L和 3.99±2.36 mg/L。 每两天采集一次样本, 测量结果如图 4和图 5所示, 出水硝氮、 磷浓度分别为 4.02±3.61mg/L和 0.37±0.25 mg/L, 对 硝氮、 磷的平均去除率分别为 88.39±6.08%和 86.99±11.4%。 反应器的外形结构为长方体, 长 与宽之比等于 3: 1。

Claims

权 利 要 求 书
1.一种利用天然磁黄铁矿生物滤池同步去除水中硝氮和磷的方法, 其步骤为:
( 1 ) 生物滤池填料制备与构建: 将磁黄铁矿制备成颗粒材料, 粒度在 2-20mm之间; 将 颗粒状磁黄铁矿装填于反应器之中,然后用清水冲洗反应器, 当冲洗出水的 pH在 6-7之间则 停止冲洗; 所述的反应器底部设有进水口, 顶部设有出水口;
(2)生物滤池的启动: 将厌氧污泥与营养液混合成混合营养液, 用泵将混合营养液从进 水口泵入反应器的底部, 混合营养液从出水口流出后再从进水口泵入反应器, 循环泵入, 直 到硝氮去除率基本稳定;
(3 ) 生物滤池的运行: 将待处理污水通过进水口泵入经过步骤 (2) 中完成启动的反应 器, 调节水力停留时间在 12-48小时之间, 完成污水中硝氮与磷的同步去除, 出水达标排放。
2. 按照权利要求 1 所述的一种利用天然磁黄铁矿生物滤池同步去除水中硝氮和磷的方 法, 其特征在于, 所述的步骤 (2) 中厌氧污泥为普通的污水处理厌氧污泥。
3. 按照权利要求 1 所述的一种利用天然磁黄铁矿生物滤池同步去除水中硝氮和磷的方 法, 其特征在于, 所述的步骤 (2 ) 中生物滤池的启动过程中混合营养液的水力停留时间为 12-24小时。
4. 按照权利要求 1-3中任意一项所述的一种利用天然磁黄铁矿生物滤池同步去除水中硝 氮和磷的方法,其特征在于,所述的步骤(2)中营养液的成分及含量为: Na2S203 ·5¾0 5g/L、 KN03 2g/L、 KH2PO4 0.1g/L、 NaHC03 2g/L。
5.一种利用天然磁黄铁矿同步去除水中硝氮和磷生物滤池, 为权利要求 1-4中经过步骤 ( 1 ) 和步骤 (2) 处理后的反应器。
PCT/CN2014/076323 2013-12-17 2014-04-28 一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法 WO2015089971A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,623 US10239774B2 (en) 2013-12-17 2014-06-28 Natural pyrrhotite biological filter and method for utilizing same to synchronously remove nitrate-nitrogen and phosphorus from water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310695460.6 2013-12-17
CN201310695460.6A CN103626293B (zh) 2013-12-17 2013-12-17 一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法

Publications (1)

Publication Number Publication Date
WO2015089971A1 true WO2015089971A1 (zh) 2015-06-25

Family

ID=50207792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076323 WO2015089971A1 (zh) 2013-12-17 2014-04-28 一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法

Country Status (3)

Country Link
US (1) US10239774B2 (zh)
CN (1) CN103626293B (zh)
WO (1) WO2015089971A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156267A (zh) * 2019-05-30 2019-08-23 中国科学院生态环境研究中心 催化氧化-微氧强化净水方法及净水系统
CN112573652A (zh) * 2020-12-24 2021-03-30 华夏碧水环保科技有限公司 一种硫自养反硝化脱氮反应装置
CN112607847A (zh) * 2020-11-19 2021-04-06 西北工业大学 一种污水脱氮除磷处理方法、装置及应用
CN115650426A (zh) * 2022-11-08 2023-01-31 合肥工业大学 一种基于微电解废铁泥基填充材料的高效脱氮工艺
CN117303602A (zh) * 2023-10-10 2023-12-29 中国海洋大学 一种采用黄铁矿生物滤池净化养殖废水中硝态氮的方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626293B (zh) * 2013-12-17 2016-05-04 南京大学 一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法
CN105417691B (zh) * 2014-09-18 2017-11-10 重庆大学 一种缺氧生物滤池反硝化同步除磷脱氮深度处理系统的构建方法
CN104692526B (zh) * 2015-03-18 2017-03-01 合肥工业大学 一种利用针铁矿提高废水处理过程反硝化脱氮速率的方法
CN105293695A (zh) * 2015-12-04 2016-02-03 天津邦盛净化设备工程有限公司 混合反应器
CN105923757A (zh) * 2016-05-11 2016-09-07 深圳市瑞清环保科技有限公司 一种铁单质协同硫自养反硝化除磷脱氮的方法
CN106380044B (zh) * 2016-11-15 2019-11-08 江南大学 一种生态安全的污水处理厂脱氮除磷的方法
CN106315848B (zh) * 2016-11-17 2019-08-06 南京大学 一种利用天然磁黄铁矿同步去除地下水中硝酸盐和砷的方法及其应用
CN106927574B (zh) * 2017-04-18 2019-10-25 南京大学 一种含有天然矿物的潜流人工湿地及其处理草甘膦废水的方法和应用
CN107304075B (zh) * 2017-07-06 2019-12-13 南京大学 一种同步脱氮除磷去氨氮的废水处理方法
CN108439613B (zh) * 2018-04-23 2020-06-26 南京大学 一种基于硫自养反硝化的模块化污水脱氮除磷处理工艺
CN109052641B (zh) * 2018-09-05 2020-12-18 南京大学 一种耦合填料自养反硝化生物滤池及应用
CN111484129A (zh) * 2019-01-25 2020-08-04 宝山钢铁股份有限公司 一种硫自养反硝化填料、其制备方法及用途
CN109851144B (zh) * 2019-04-03 2021-09-28 南京大学 一种磁化粉末强化的硝态氮和无机磷去除方法
CN110002806B (zh) * 2019-04-23 2020-10-23 南京大学 一种轻质缓释脱氮除磷材料及其制备方法与应用
CN110040916A (zh) * 2019-05-25 2019-07-23 安徽华骐环保科技股份有限公司 一种黑臭水体的成套处理系统及其处理方法
CN111018132B (zh) * 2019-12-19 2021-09-28 南京大学 一种脱氮除磷的水处理装置及其处理方法
CN113135635A (zh) * 2020-01-17 2021-07-20 深圳市深水生态环境技术有限公司 一种河道污水处理系统及方法
CN111547839A (zh) * 2020-04-07 2020-08-18 水艺控股集团股份有限公司 一种复合硫基多孔填料
CN111606419B (zh) * 2020-06-01 2022-05-06 北京工业大学 一种能源自给的污水处理系统及方法
CN111892166A (zh) * 2020-08-11 2020-11-06 南通大学 一种活性生物滤料及使用其的污水高效脱氮除磷方法
CN112142197B (zh) * 2020-09-17 2022-11-08 安徽中环环保科技股份有限公司 一种自养反硝化滤池污水处理系统
CN112340844B (zh) * 2020-11-19 2023-06-09 海天水务集团股份公司 一种生活污水深度脱氮装置
CN114644397B (zh) * 2021-06-25 2023-11-10 无锡映川环境技术有限公司 一种自养异养协同反硝化复合脱氮滤料及其制备方法
CN113912184A (zh) * 2021-10-22 2022-01-11 广州市香港科大霍英东研究院 一种提高低cn比污水处理效果的方法
CN115246666B (zh) * 2022-06-02 2023-10-27 四川师范大学 一种利用黄铁矿去除水中硝酸盐氮的方法
CN115259372A (zh) * 2022-08-29 2022-11-01 合肥工业大学 一种自养反硝化法脱氮用材料及其制备方法、应用
CN115583719A (zh) * 2022-09-15 2023-01-10 天津若金智能环保科技有限公司 一种自养反硝化滤料及其制备方法和应用
CN115520955B (zh) * 2022-09-23 2023-08-25 清华大学 生物填料及其制备方法、应用和水质中硝酸盐的去除方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474598A (ja) * 1990-07-13 1992-03-09 Meidensha Corp 窒素およびリンの同時除去方法およびその装置
CN101973629A (zh) * 2010-10-29 2011-02-16 南京大学 黄铁矿作为生化填料脱氮除磷的方法
CN102603064A (zh) * 2012-04-01 2012-07-25 南京大学 一种含氮磷污水同步脱氮除磷的方法
CN102923861A (zh) * 2012-11-30 2013-02-13 南京大学 一种利用矿物处理低碳氮比污水的人工湿地
CN103626293A (zh) * 2013-12-17 2014-03-12 南京大学 一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412547B (zh) * 2008-10-27 2010-11-10 合肥工业大学 用来消除湖泊内源污染的矿物复合材料及应用
CN101723506B (zh) * 2009-08-31 2011-06-08 合肥工业大学 净化饮用水中砷酸盐和铬酸盐的材料、其制备方法及应用
CN102295352A (zh) * 2010-06-28 2011-12-28 新日铁化学株式会社 硝酸盐氮除去方法及用于所述方法的装置
CN102085473A (zh) * 2010-12-17 2011-06-08 合肥工业大学 一种铁硫化物矿石的用途及用铁硫化物矿石吸附水中微量磷的方法
CN102923961A (zh) 2012-09-17 2013-02-13 江西沃格光电科技有限公司 提高强化玻璃切割后抗压强度的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474598A (ja) * 1990-07-13 1992-03-09 Meidensha Corp 窒素およびリンの同時除去方法およびその装置
CN101973629A (zh) * 2010-10-29 2011-02-16 南京大学 黄铁矿作为生化填料脱氮除磷的方法
CN102603064A (zh) * 2012-04-01 2012-07-25 南京大学 一种含氮磷污水同步脱氮除磷的方法
CN102923861A (zh) * 2012-11-30 2013-02-13 南京大学 一种利用矿物处理低碳氮比污水的人工湿地
CN103626293A (zh) * 2013-12-17 2014-03-12 南京大学 一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156267A (zh) * 2019-05-30 2019-08-23 中国科学院生态环境研究中心 催化氧化-微氧强化净水方法及净水系统
CN112607847A (zh) * 2020-11-19 2021-04-06 西北工业大学 一种污水脱氮除磷处理方法、装置及应用
CN112573652A (zh) * 2020-12-24 2021-03-30 华夏碧水环保科技有限公司 一种硫自养反硝化脱氮反应装置
CN115650426A (zh) * 2022-11-08 2023-01-31 合肥工业大学 一种基于微电解废铁泥基填充材料的高效脱氮工艺
CN115650426B (zh) * 2022-11-08 2024-04-02 合肥工业大学 一种基于微电解废铁泥基填充材料的高效脱氮工艺
CN117303602A (zh) * 2023-10-10 2023-12-29 中国海洋大学 一种采用黄铁矿生物滤池净化养殖废水中硝态氮的方法
CN117303602B (zh) * 2023-10-10 2024-04-16 中国海洋大学 一种采用黄铁矿生物滤池净化养殖废水中硝态氮的方法

Also Published As

Publication number Publication date
CN103626293B (zh) 2016-05-04
US10239774B2 (en) 2019-03-26
CN103626293A (zh) 2014-03-12
US20160311712A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
WO2015089971A1 (zh) 一种天然磁黄铁矿生物滤池以及利用其同步去除水中硝氮和磷的方法
Liu et al. Removal of nitrogen from low pollution water by long-term operation of an integrated vertical-flow constructed wetland: Performance and mechanism
CN104193003B (zh) 富集聚磷菌的厌氧/好氧sndpr系统处理低cn比生活污水的工艺
CN105110572B (zh) 一种碳源吸附/硝化/部分反硝化/厌氧氨氧化耦合工艺处理低c/n城市污水的装置与方法
CN102173506B (zh) 一种生物活性复合填料
CN1354143A (zh) 废水中氮和磷的同时去除法
Shi et al. Simultaneous carbon reutilization for primary sludge and stable nitrite production in a hydrolytic acidification coupled with partial denitrification system to treat nitrate contaminant
CN107651815A (zh) 一种磁性树脂促进反硝化去除水中硝态氮的方法
CN113636640B (zh) 一种生物滴滤中试装置及利用其短程硝化驯化的方法
CN104176824A (zh) 一种硝酸铵废水生化处理装置及运行方法
Liu et al. The combination of external conditioning and Ca2+ addition prior to the reintroduction of effluent sludge into SBR sharply accelerates the formation of aerobic granules
CN108558065A (zh) 一种使用联合工艺处理含盐泡菜废水的方法
CN103387289B (zh) 一种利用零价铁强化偶氮染料生物降解的方法
CN103787511A (zh) 一种通过缩短沉降时间实现短程硝化反硝化的方法
Zhou et al. Sulfur-pyrite-limestone biological filter for simultaneous nitrogen and phosphorus removal from wastewater treatment plant effluent: Interaction mechanisms of autotrophic and heterotrophic denitrification
CN109879353A (zh) 一种水产养殖废水处理工艺
CN109626729A (zh) 一种生活污水有机物回收耦合铁自养反硝化/硝化脱氮及除磷的方法
CN102092851A (zh) 协同去除污水中碳氮磷的方法
CN203653325U (zh) 游离氨与游离亚硝酸协同抑制硝化菌活性实现短程硝化的装置
CN115124139B (zh) 低温环境硫自养反硝化系统的启动方法
Yang et al. Fast start-up of partial nitrification for high-ammonia wastewater treatment using zeolite with in-situ bioregeneration
CN111875052B (zh) 一种蒙脱石-硫铁矿复合生物载体材料及其制备方法和应用方法
CN101708922B (zh) 一种反硝化除磷反应器
KR101179049B1 (ko) 황탈질 미생물에 의한 아질산성 질소 제거 장치 및 방법
CN114590888A (zh) 一种用于源分离尿液污水的高效生物硝化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14907623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871733

Country of ref document: EP

Kind code of ref document: A1