WO2015083462A1 - サイドギヤの移動範囲測定装置 - Google Patents

サイドギヤの移動範囲測定装置 Download PDF

Info

Publication number
WO2015083462A1
WO2015083462A1 PCT/JP2014/078665 JP2014078665W WO2015083462A1 WO 2015083462 A1 WO2015083462 A1 WO 2015083462A1 JP 2014078665 W JP2014078665 W JP 2014078665W WO 2015083462 A1 WO2015083462 A1 WO 2015083462A1
Authority
WO
WIPO (PCT)
Prior art keywords
side gear
jig
actuator
inclined surface
gear
Prior art date
Application number
PCT/JP2014/078665
Other languages
English (en)
French (fr)
Inventor
貴久 増山
賢一 佐保
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201480065979.9A priority Critical patent/CN105793619B/zh
Priority to US15/036,073 priority patent/US9920825B2/en
Priority to DE112014005474.7T priority patent/DE112014005474B4/de
Publication of WO2015083462A1 publication Critical patent/WO2015083462A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms

Definitions

  • the present invention relates to a technique of a side gear movement range measuring device.
  • the differential unit mainly includes a differential case, a pair of pinion gears that rotate (revolve) together with the differential case, and a pair of side gears that mesh with the pinion gear.
  • the differential unit absorbs the rotational speed difference between the left and right wheels by utilizing the fact that the rotational speed of each side gear changes when the pinion gear rotates (spins).
  • a differential unit that includes a spring between the differential case and the side gear and biases the side gear (see, for example, Patent Document 1).
  • Such a differential unit has an advantage that the impact force when the side gear collides with the differential case can be attenuated by the contraction of the spring.
  • the structure is such that the side gear can move by contracting the spring, it is necessary to individually measure the movement range of the side gear and determine whether it is appropriate.
  • a moving range measuring device capable of measuring the moving range of the side gear.
  • the moving range measuring device includes a mechanism that approaches the side gear from a direction perpendicular to the central axis direction of the side gear and pushes the side gear in a direction parallel to the central axis direction.
  • a moving range measuring device has a complicated mechanism composed of a plurality of actuators, there is a problem that the cost is high.
  • it is necessary to insert a part of the mechanism into the differential case and push the side gear in a direction orthogonal to the insertion direction there is a problem that measurement is difficult.
  • the object of the present invention is to provide a side gear movement range measuring device that has a simple mechanism constituted by one or a small number of actuators and has reduced costs. At the same time, it is an object of the present invention to provide a side gear movement range measuring device that facilitates measurement.
  • a side gear moving range measuring device includes a differential case, a side gear disposed inside the differential case, and a spring that urges the side gear in parallel to the central axis direction of the side gear.
  • the side gear is a bevel gear
  • the inclined surface is in contact with a tooth end surface of the side gear.
  • the side gear movement range measuring device further includes a controller capable of recognizing the sliding speed of the jig, and the controller stops the actuator when the sliding speed of the jig rapidly decreases.
  • the apparatus further includes a controller, the actuator includes an electric motor, the controller is configured to be able to recognize a voltage of the electric motor, When the voltage rises rapidly, the actuator is stopped.
  • the side gear can be moved in the other direction only by the actuator that slides the jig in one direction. Therefore, it is possible to realize a simple mechanism constituted by one or a small number of actuators and to realize cost reduction. Further, since the jig is merely slid and inserted into the differential case, the measurement becomes easy.
  • the second invention there is no need to provide a portion where the jig contacts the side gear. Therefore, it is possible to use the differential unit without changing the structure and components.
  • the movement limit of the side gear can be grasped. Therefore, it is possible to measure the movement range of the side gear.
  • the movement limit of the side gear can be grasped. Therefore, it is possible to measure the movement range of the side gear.
  • the figure which shows a differential unit The figure which shows the internal structure of a differential unit. The figure which shows the operation
  • FIG. 1 shows the differential unit 1.
  • FIG. 2 shows the internal structure of the differential unit 1.
  • FIG. 3 shows an operation mode of the differential unit 1.
  • the differential unit 1 absorbs the difference in rotational speed between the left and right wheels.
  • the differential unit 1 includes a differential case 11, a pinion gear 12, and a side gear 13.
  • the differential case 11 is a component having a hollow inside.
  • the differential case 11 has a flange portion 11F formed at one end thereof, and a final gear 15 is attached to the flange portion 11F.
  • the differential case 11 rotates together with the final gear 15 (see arrow Ra in FIG. 3).
  • the pinion gear 12 is disposed inside the differential case 11.
  • the differential unit 1 includes a pair of pinion gears 12 that face each other.
  • the pair of pinion gears 12 is rotatably supported by a pinion shaft 16 (see arrow Rb in FIG. 3).
  • the pinion shaft 16 is supported while being inserted into the shaft hole 11 h of the differential case 11. Therefore, the pinion gear 12 rotates with the differential case 11 (see arrow Rc in FIG. 3).
  • the movement of the pinion gear 12 rotating around the pinion shaft 16 is also referred to as “spinning”, and the movement of the pinion gear 12 rotating together with the differential case 11 is also referred to as “revolution”.
  • the pinion gear 12 is a so-called bevel gear.
  • the side gear 13 is disposed inside the differential case 11.
  • the differential unit 1 includes a pair of side gears 13 that face each other.
  • the pair of side gears 13 are rotatably supported while being engaged with the pinion gears 12 (see arrow Rd in FIG. 3). Therefore, the side gear 13 rotates with the rotation (revolution) of the pinion gear 12 (see arrows Re and Rf in FIG. 3).
  • the rotation speed of each side gear 13 changes. Specifically, when the pinion gear 12 rotates (rotates) in one direction, the rotational speed of each side gear 13 has a relationship of Re ⁇ Rf. On the contrary, when the pinion gear 12 rotates (spins) to the other side, the rotational speed of each side gear 13 is in a relationship of Re> Rf.
  • the side gear 13 is a so-called bevel gear.
  • the differential unit 1 can absorb the rotational speed difference between the left and right wheels by utilizing the fact that the rotational speed of each side gear 13 changes when the pinion gear 12 rotates (spins).
  • the differential unit 1 includes a spring 14.
  • the spring 14 is disposed inside the differential case 11.
  • a spring 14 is disposed between the differential case 11 and the side gear 13.
  • the spring 14 urges the side gear 13 in parallel to the central axis direction (axial direction of the central axis As) (see arrow F in FIG. 2). Therefore, the side gear 13 is pressed against the pinion gear 12, and the free movement to the differential case 11 side is restricted. Further, when the side gear 13 moves to the differential case 11 side, the moving speed is reduced by the spring 14. That is, when the spring 14 contracts, the momentum of the side gear 13 moving toward the differential case 11 is weakened.
  • the spring 14 is a so-called conical spring washer.
  • the differential unit 1 can attenuate the impact force when the side gear 13 collides with the differential case 11 by the spring 14 contracting.
  • FIG. 4 shows the moving range measuring device 2.
  • FIG. 5 shows an operation mode of the moving range measuring apparatus 2.
  • 6A shows a state where the side gear 13 and the jig 22 are in contact with each other, and
  • FIG. 6B shows a state where the jig 22 is further slid.
  • the moving range measuring device 2 is used in a process of measuring the moving range of the side gear 13 and determining whether or not it is appropriate.
  • the moving range measuring device 2 includes a table 21, a jig 22, and an actuator 23.
  • the table 21 is a component having a flat upper surface.
  • the table 21 is provided with a unit holder 25 at the center thereof, and the differential unit 1 is fixed to the unit holder 25.
  • the differential unit 1 is fixed with the flange portion 11F facing down.
  • the jig 22 is disposed above the table 21.
  • the moving range measuring apparatus 2 includes a pair of jigs 22 that face each other.
  • the pair of jigs 22 are slidably supported in a direction close to or away from each other in conjunction with the feed mechanism 26 (see arrow Sa in FIG. 5).
  • the jig 22 slides in a direction close to each other, the jig 22 is inserted into the differential case 11 from the work window 11 w of the differential case 11. Therefore, the jig 22 can approach the side gear 13 and abut on the side gear 13.
  • Each jig 22 slides parallel to the table 21.
  • the jig 22 slides perpendicularly to the central axis direction of the pinion gear 12 (axial center direction of the central axis Ap).
  • the jig 22 also slides perpendicularly to the central axis direction of the side gear 13 (axial direction of the central axis As). That is, the differential unit 1 is fixed so that the sliding direction of the jig 22 has such a relationship.
  • Actuator 23 is arranged on the upper surface of table 21.
  • the moving range measuring apparatus 2 includes one actuator 23 that slides a pair of jigs 22.
  • the actuator 23 includes an electric motor 27 and the like in addition to the feeding mechanism 26 described above.
  • the feed mechanism 26 uses a ball screw mechanism and converts rotational motion into feed motion. Therefore, the actuator 23 can slide each jig 22 in a predetermined direction using the rotational power of the electric motor 27 (see arrow Sa in FIG. 5).
  • the feed mechanism 26 uses a ball screw mechanism, but other mechanisms may be used and the present invention is not limited to this. Further, a configuration in which one jig 22 is slid by one actuator 23 may be adopted.
  • the jig 22 is formed in a substantially cylindrical shape. Moreover, the front-end
  • the jig 22 is inserted into the differential case 11 from the work window 11w of the differential case 11 when sliding in a direction close to each other. Then, the tip of the jig 22 comes into contact with the side gears 13 at the same time. Specifically, the inclined surface 22R of the jig 22 abuts on one side gear 13 and also abuts on the other side gear 13 (see FIG. 6A).
  • the moving range measuring apparatus 2 further slides the jig 22. That is, the jigs 22 are slid in directions close to each other (directions in which the side gears 13 are pressed against each jig 22). Then, the jig 22 moves each side gear 13 by the tip portion. Specifically, the inclined surface 22R of the jig 22 pushes up one side gear 13 upward and pushes down the other side gear 13 downward (see FIG. 6B).
  • the tip of the jig 22 has a tapered shape. That is, the jig 22 has an inclined surface 22R that forms a predetermined angle with respect to the central axis Aj.
  • the inclined surface 22R of the jig 22 is formed to be parallel or substantially parallel to the tooth end surface 13P of the side gear 13.
  • the force and direction in which the jig 22 slides are represented by an arrow Vj.
  • the force with which the jig 22 slides is a force that moves the side gear 13 via the inclined surface 22R. That is, the force with which the jig 22 slides is disassembled and used as a force for moving the side gear 13.
  • the side gear 13 moves in a direction different from the direction in which the jig 22 slides.
  • the side gear 13 relatively moves along the inclined surface 22R of the jig 22 (see arrow S in FIG. 6).
  • an arrow Vs is obtained.
  • the moving range measuring apparatus 2 includes the jig 22 on which the inclined surface 22R is formed.
  • an actuator 23 that slides the jig 22 perpendicularly to the central axis As of the side gear 13 is provided.
  • the jig 22 is further slid by the actuator 23 from the state in which the jig 22 is slid to bring the inclined surface 22R into contact with the side gear 13, whereby the side gear is moved along the inclined surface.
  • the side gear 13 can be moved in the other direction (90-degree direction) only by the actuator 23 that slides the jig 22 in one direction (0-degree direction). Therefore, it is possible to realize a simple mechanism constituted by one or a small number of actuators 23 and to realize cost reduction.
  • the jig 22 since the jig 22 is only slid and inserted into the differential case 11, the measurement becomes easy.
  • an inclined surface 22R is formed in the circumferential direction of the jig 22, and the inclined surface 22R simultaneously contacts the pair of side gears 13. Therefore, by sliding the jig 22 further, the two side gears 13 can be simultaneously moved along the inclined surface 22R. Specifically, one side gear 13 can be moved upward, and the other side gear 13 can be moved downward. Therefore, it is possible to realize a simpler mechanism and reduce the cost.
  • the side gear 13 is a so-called bevel gear.
  • the inclined surface 22R comes into contact with the tooth end surface 13P of the side gear 13. Thereby, it is not necessary to provide the site
  • FIG. 7A shows the change with time of the sliding speed of the jig 22
  • FIG. 7B shows the change with time of the voltage of the electric motor 27.
  • the moving range measuring apparatus 2 includes a controller 24 (see FIG. 4).
  • the controller 24 is disposed behind the table 21.
  • a rotary encoder (not shown) is attached to the feed mechanism 26.
  • the controller 24 is electrically connected to the rotary encoder, and can recognize the sliding speed of the jig 22 from the number of signals per unit time.
  • the controller 24 can recognize the sliding speed of the jig 22 based on the electrical signal from the rotary encoder.
  • other devices may be used and the present invention is not limited to this. is not.
  • the sliding speed Vj of the jig 22 rapidly decreases at a certain time Tx. This indicates that the spring 14 is completely contracted at the time Tx and the side gear 13 cannot move.
  • the controller 24 transmits an electric signal for stopping the electric motor 27 and stops the actuator 23. Thus, the controller 24 grasps the movement limit of the side gear 13.
  • the moving range measuring apparatus 2 includes the controller 24 that can recognize the sliding speed of the jig 22. And the controller 24 will stop the actuator 23, if the sliding speed of the jig
  • a voltage sensor (not shown) is attached to the electric motor 27.
  • the controller 24 is electrically connected to the voltage sensor and can recognize the sliding speed of the jig 22 from the signal amount per unit time. In the present embodiment, the controller 24 can recognize the sliding speed of the jig 22 based on the electrical signal from the voltage sensor.
  • other devices may be used and the present invention is not limited to this.
  • the voltage Ej of the electric motor 27 increases rapidly at a certain time Tx. This indicates that the spring 14 is completely contracted at the time Tx and the side gear 13 cannot move.
  • the controller 24 transmits an electric signal for stopping the electric motor 27 and stops the actuator 23. Thus, the controller 24 grasps the movement limit of the side gear 13.
  • the moving range measuring device 2 includes the controller 24 that can recognize the voltage of the electric motor 27. Then, the controller 24 stops the actuator 23 when the voltage of the electric motor 27 suddenly increases. Thereby, the movement limit of the side gear 13 can be grasped. Therefore, the moving range of the side gear 13 can be measured.
  • the present invention can be used for an apparatus for measuring a moving range of a side gear used for a differential unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Retarders (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Gear Transmission (AREA)

Abstract

 一つ又は少数のアクチュエータによって構成される簡素な機構とし、コストを低減させたサイドギヤの移動範囲測定装置を提供することを目的としている。同時に、測定が容易となるサイドギヤの移動範囲測定装置を提供することを目的としている。デフケース11と、デフケース11の内部に配置されるサイドギヤ13と、サイドギヤ13を中心軸Asに対して平行に付勢するスプリング14と、を備えたデファレンシャルユニット1に使用されるサイドギヤ13の移動範囲測定装置2であって、傾斜面22Rが形成され、サイドギヤ13の中心軸Asに対して垂直に摺動可能に構成されたジグ22と、ジグ22を摺動させるアクチュエータ23とを具備し、アクチュエータ23は、傾斜面22Rがサイドギヤ13に当接した状態で、ジグ22をサイドギヤ13に近接するように摺動させることにより、サイドギヤ13を傾斜面22Rに沿って移動させる。

Description

サイドギヤの移動範囲測定装置
 本発明は、サイドギヤの移動範囲測定装置の技術に関する。
 従来、左右の車輪の回転速度差を吸収するデファレンシャルユニットが知られている。デファレンシャルユニットは、主に、デフケースと、デフケースとともに回転(公転)する一対のピニオンギヤと、ピニオンギヤに噛み合う一対のサイドギヤと、で構成される。デファレンシャルユニットは、ピニオンギヤが回転(自転)すると各サイドギヤの回転速度が変化することを利用し、左右の車輪の回転速度差を吸収する。
 ところで、デフケースとサイドギヤとの間にスプリングを備え、該サイドギヤを付勢したデファレンシャルユニットが存在する(例えば、特許文献1参照)。このようなデファレンシャルユニットは、スプリングが収縮することにより、サイドギヤがデフケースに衝突する際の衝撃力を減衰できるという利点がある。しかし、スプリングが収縮することによってサイドギヤが移動できる構造であるため、個々にサイドギヤの移動範囲を測定し、適正であるか否かを見極める工程が必要となる。
 かかる工程においては、サイドギヤの移動範囲を測定できる移動範囲測定装置が使用される。移動範囲測定装置は、サイドギヤの中心軸方向に対して垂直となる方向から該サイドギヤに近づくとともに、中心軸方向に対して平行となる方向へ該サイドギヤを押す機構を備えている。しかし、このような移動範囲測定装置は、複数のアクチュエータによって構成される複雑な機構を有するため、コストが高いという問題があった。また、機構の一部をデフケースの内部に挿入し、その挿入方向に対して直交する方向へサイドギヤを押す必要があるため、測定が困難であるという問題もあった。
特開2013-127280号公報
 本発明は、一つ又は少数のアクチュエータによって構成される簡素な機構とし、コストを低減させたサイドギヤの移動範囲測定装置を提供することを目的としている。同時に、測定が容易となるサイドギヤの移動範囲測定装置を提供することを目的としている。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 第一の発明に係るサイドギヤの移動範囲測定装置は、デフケースと、前記デフケースの内部に配置されるサイドギヤと、前記サイドギヤを該サイドギヤの中心軸方向に対して平行に付勢するスプリングと、を備えたデファレンシャルユニットに使用されるサイドギヤの移動範囲測定装置であって、傾斜面が形成され、前記サイドギヤの中心軸方向に対して垂直に摺動可能に構成されたジグと、前記ジグを摺動させるアクチュエータと、を具備し、前記アクチュエータは、前記ジグの前記傾斜面が前記サイドギヤに当接した状態で、前記ジグを前記サイドギヤに近接するように摺動させることにより、前記サイドギヤを前記傾斜面に沿って移動させる。
 第二の発明に係るサイドギヤの移動範囲測定装置において、前記サイドギヤは、ベベルギヤであり、前記傾斜面は、前記サイドギヤの歯端面に当接する。
 第三の発明に係るサイドギヤの移動範囲測定装置において、前記ジグの摺動速度を認識できるコントローラを更に具備し、前記コントローラは、前記ジグの摺動速度が急激に低下すると前記アクチュエータを停止させる。
 第四の発明に係るサイドギヤの移動範囲測定装置において、コントローラを更に具備し、前記アクチュエータは、電動モータを有し、前記コントローラは、前記電動モータの電圧を認識可能に構成され、前記電動モータの電圧が急激に上昇すると前記アクチュエータを停止させる。
 本発明の効果として、以下に示すような効果を奏する。
 第一の発明によれば、ジグを一方向へ摺動させるアクチュエータのみでサイドギヤを他方向へ移動させることができる。従って、一つ又は少数のアクチュエータによって構成される簡素な機構とし、コストの低減を実現することが可能となる。更に、ジグを摺動させてデフケースの内部に挿入するのみであるので、測定が容易となる。
 第二の発明によれば、サイドギヤにジグが当接する部位を設ける必要がない。従って、デファレンシャルユニットの構造や構成部品を変更せずに使用することが可能となる。
 第三の発明によれば、サイドギヤの移動限界を把握できる。従って、サイドギヤの移動範囲を測定することが可能となる。
 第四の発明によれば、サイドギヤの移動限界を把握できる。従って、サイドギヤの移動範囲を測定することが可能となる。
デファレンシャルユニットを示す図。 デファレンシャルユニットの内部構造を示す図。 デファレンシャルユニットの動作態様を示す図。 移動範囲測定装置を示す図。 移動範囲測定装置の動作態様を示す図。 サイドギヤとジグが当接した状態と更にジグを摺動させた状態を示す図。 ジグの摺動速度および電動モータの電圧の経時変化を示す図。
 まず、一般的なデファレンシャルユニット1について説明する。
 図1は、デファレンシャルユニット1を示している。図2は、デファレンシャルユニット1の内部構造を示している。そして、図3は、デファレンシャルユニット1の動作態様を示している。
 デファレンシャルユニット1は、左右の車輪の回転速度差を吸収する。デファレンシャルユニット1は、デフケース11と、ピニオンギヤ12と、サイドギヤ13と、を備えている。
 デフケース11は、その内部が空洞となった構成部品である。また、デフケース11は、その一端部分にフランジ部11Fが形成されており、該フランジ部11Fにファイナルギヤ15が取り付けられている。そして、デフケース11は、ファイナルギヤ15と一体となって回転する(図3の矢印Ra参照)。
 ピニオンギヤ12は、デフケース11の内部に配置されている。本デファレンシャルユニット1では、互いに対向する一対のピニオンギヤ12を備える。これら一対のピニオンギヤ12は、ピニオンシャフト16によって回転自在に支持されている(図3の矢印Rb参照)。また、ピニオンシャフト16は、デフケース11の軸孔11hに挿入された状態で支持されている。そのため、ピニオンギヤ12は、デフケース11とともに回転する(図3の矢印Rc参照)。なお、ピニオンギヤ12がピニオンシャフト16を中心に回転する運動を「自転」、ピニオンギヤ12がデフケース11とともに回転する運動を「公転」ともいう。本ピニオンギヤ12は、いわゆるベベルギヤである。
 サイドギヤ13は、デフケース11の内部に配置されている。本デファレンシャルユニット1では、互いに対向する一対のサイドギヤ13を備える。これら一対のサイドギヤ13は、各ピニオンギヤ12に噛み合わされた状態で回転自在に支持されている(図3の矢印Rd参照)。そのため、サイドギヤ13は、ピニオンギヤ12の回転(公転)に伴って回転する(図3の矢印Re・Rf参照)。また、その状態でピニオンギヤ12が回転(自転)すると各サイドギヤ13の回転速度が変化することとなる。具体的には、ピニオンギヤ12が一方へ回転(自転)すると各サイドギヤ13の回転速度がRe<Rfの関係となる。反対に、ピニオンギヤ12が他方へ回転(自転)すると各サイドギヤ13の回転速度がRe>Rfの関係となる。本サイドギヤ13は、いわゆるベベルギヤである。
 このように、デファレンシャルユニット1は、ピニオンギヤ12が回転(自転)すると各サイドギヤ13の回転速度が変化することを利用し、左右の車輪の回転速度差を吸収できるのである。
 更に、本デファレンシャルユニット1は、スプリング14を備えている。
 スプリング14は、デフケース11の内部に配置されている。本デファレンシャルユニット1では、デフケース11とサイドギヤ13の間にスプリング14が配置されている。スプリング14は、サイドギヤ13を中心軸方向(中心軸Asの軸心方向)に対して平行に付勢している(図2の矢印F参照)。そのため、サイドギヤ13は、ピニオンギヤ12に押し付けられ、デフケース11側への自由移動が制限されている。また、サイドギヤ13は、デフケース11側へ移動する場合に、スプリング14によって移動速度が減速される。つまり、スプリング14が収縮することにより、サイドギヤ13がデフケース11側へ移動する勢いを弱めるのである。本スプリング14は、いわゆるコニカルスプリングワッシャである。
 このように、デファレンシャルユニット1は、スプリング14が収縮することにより、サイドギヤ13がデフケース11に衝突する際の衝撃力を減衰できるのである。
 次に、本願の発明である移動範囲測定装置2について説明する。
 図4は、移動範囲測定装置2を示している。図5は、移動範囲測定装置2の動作態様を示している。また、図6の(A)は、サイドギヤ13とジグ22が当接した状態を示し、図6の(B)は、更にジグ22を摺動させた状態を示している。
 移動範囲測定装置2は、サイドギヤ13の移動範囲を測定し、適正であるか否かを見極める工程で使用される。移動範囲測定装置2は、テーブル21と、ジグ22と、アクチュエータ23と、を備えている。
 テーブル21は、その上面が平らになった構成部品である。また、テーブル21は、その中央部分にユニットホルダ25が設けられており、該ユニットホルダ25にデファレンシャルユニット1が固定される。なお、デファレンシャルユニット1は、フランジ部11Fを下にして固定される。
 ジグ22は、テーブル21の上方に配置されている。本移動範囲測定装置2では、互いに対向する一対のジグ22を備える。これら一対のジグ22は、送り機構26と連動され、互いに近接又は離間する方向へ摺動自在に支持されている(図5の矢印Sa参照)。そして、ジグ22は、互いに近接する方向へ摺動した場合、デフケース11の作業窓11wから該デフケース11の内部に挿入される。そのため、ジグ22は、サイドギヤ13に近づき、該サイドギヤ13に当接することができる。なお、それぞれのジグ22は、テーブル21に対して平行に摺動する。従って、ジグ22は、ピニオンギヤ12の中心軸方向(中心軸Apの軸心方向)に対して垂直に摺動する。また、ジグ22は、サイドギヤ13の中心軸方向(中心軸Asの軸心方向)に対しても垂直に摺動する。即ち、ジグ22の摺動方向がそのような関係となるようにデファレンシャルユニット1を固定するのである。
 アクチュエータ23は、テーブル21の上面に配置されている。本移動範囲測定装置2では、一対のジグ22を摺動させる一のアクチュエータ23を備える。アクチュエータ23は、上述した送り機構26のほか、電動モータ27などで構成されている。送り機構26は、ボールネジ機構を用いており、回転運動を送り運動へ変換する。そのため、アクチュエータ23は、電動モータ27の回転動力を利用して各ジグ22を所定の方向へ摺動させることができる(図5の矢印Sa参照)。なお、送り機構26は、ボールネジ機構を用いているが、他の機構であってもよく、これに限定するものではない。また、一のジグ22を一のアクチュエータ23で摺動させる構成としてもよい。
 以下に、ジグ22の形状を説明するとともに、本移動範囲測定装置2の動作態様について詳細に説明する。
 ジグ22は、略円筒形状に形成されている。また、その先端部分は、端に近づくに従って直径が小さくなるテーパー形状となっている(図6の※印部参照)。つまり、ジグ22は、先端部分が楔形状となった丸棒である。なお、本願では、テーパー形状(楔形状)の周面を「傾斜面22R」と定義している。
 上述したように、ジグ22は、互いに近接する方向へ摺動した場合、デフケース11の作業窓11wから該デフケース11の内部に挿入される。すると、ジグ22は、その先端部分が各サイドギヤ13に同時に当接することとなる。詳細には、ジグ22の傾斜面22Rが一方のサイドギヤ13に当接するとともに、他方のサイドギヤ13にも当接するのである(図6の(A)参照)。
 その後、本移動範囲測定装置2は、更にジグ22を摺動させる。つまり、各ジグ22を互いに近接する方向(各ジグ22でサイドギヤ13を圧接する方向)へ摺動させる。すると、ジグ22は、その先端部分によって各サイドギヤ13を移動させることとなる。詳細には、ジグ22の傾斜面22Rが一方のサイドギヤ13を上方へ押し上げ、他方のサイドギヤ13を下方へ押し下げるのである(図6の(B)参照)。
 かかる技術的思想について更に詳しく説明する。
 上述したように、ジグ22は、その先端部分がテーパー形状となっている。即ち、ジグ22は、中心軸Ajに対して所定の角度をなす傾斜面22Rを有している。ジグ22の傾斜面22Rは、サイドギヤ13の歯端面13Pに対して平行又は略平行となるように形成されている。
 ここで、ジグ22が摺動する力と方向をベクトルで表すと矢印Vjとなる。ジグ22が摺動する力は、傾斜面22Rを介してサイドギヤ13を移動させる力となる。つまり、ジグ22が摺動する力を分解し、サイドギヤ13を移動させる力とするのである。こうして、サイドギヤ13は、ジグ22が摺動する方向と異なる方向へ移動することとなる。詳細には、サイドギヤ13が相対的にジグ22の傾斜面22Rに沿って移動するのである(図6の矢印S参照)。サイドギヤ13が移動する力と方向をベクトルで表すと矢印Vsとなる。
 このように、本移動範囲測定装置2は、傾斜面22Rが形成されたジグ22を具備する。また、ジグ22をサイドギヤ13の中心軸Asに対して垂直に摺動させるアクチュエータ23を具備する。そして、ジグ22を摺動させて傾斜面22Rをサイドギヤ13に当接させた状態から、アクチュエータ23によって更に該ジグ22を摺動させることにより、サイドギヤを傾斜面に沿って移動させる。これにより、ジグ22を一方向(0度方向)へ摺動させるアクチュエータ23のみでサイドギヤ13を他方向(90度方向)へ移動させることができる。従って、一つ又は少数のアクチュエータ23によって構成される簡素な機構とし、コストの低減を実現することが可能となる。更に、ジグ22を摺動させてデフケース11の内部へ挿入するのみであるので、測定が容易となる。
 また、本移動範囲測定装置2は、ジグ22の周方向に傾斜面22Rが形成されており、該傾斜面22Rが一対のサイドギヤ13に同時に当接する。そのため、更にジグ22を摺動させることにより、二つのサイドギヤ13を同時に傾斜面22Rに沿って移動させることができる。詳しくは、一方のサイドギヤ13を上方へ、他方のサイドギヤ13を下方へ移動させることができる。従って、更に簡素な機構とし、コストの低減を実現することが可能となる。
 加えて、本移動範囲測定装置2は、サイドギヤ13がいわゆるベベルギヤである。そして、傾斜面22Rがサイドギヤ13の歯端面13Pに当接する。これにより、サイドギヤ13にジグ22が当接する部位を設ける必要がない。従って、デファレンシャルユニット1の構造や構成部品を変更せずに使用することが可能となる。
 次に、本移動範囲測定装置2の他の特徴点について説明する。
 図7の(A)は、ジグ22の摺動速度の経時変化を示し、図7の(B)は、電動モータ27の電圧の経時変化を示している。
 本移動範囲測定装置2は、コントローラ24を備えている(図4参照)。
 コントローラ24は、テーブル21の後方に配置されている。また、本移動範囲測定装置2では、送り機構26にロータリエンコーダ(図示せず)が取り付けられている。そして、コントローラ24は、ロータリエンコーダと電気的に接続されており、単位時間当たりの信号数からジグ22の摺動速度を認識できる。なお、本移動範囲測定装置2において、コントローラ24は、ロータリエンコーダからの電気信号に基づいてジグ22の摺動速度を認識できるとしているが、他のデバイスを用いてもよく、これに限定するものではない。
 図7の(A)に示すように、ジグ22の摺動速度Vjは、ある時刻Txで急激に低下する。これは、時刻Txでスプリング14が完全に収縮し、サイドギヤ13が移動できなくなったことを表す。このとき、コントローラ24は、電動モータ27を止める電気信号を発信し、アクチュエータ23を停止させる。こうして、コントローラ24は、サイドギヤ13の移動限界を把握するのである。
 このように、本移動範囲測定装置2は、ジグ22の摺動速度を認識できるコントローラ24を具備する。そして、コントローラ24は、ジグ22の摺動速度が急激に低下するとアクチュエータ23を停止させる。これにより、サイドギヤ13の移動限界を把握できる。従って、サイドギヤ13の移動範囲を測定することが可能となる。
 また、他の実施形態として、以下のように構成してもよい。
 即ち、電動モータ27に電圧センサ(図示せず)を取り付ける。そして、コントローラ24は、電圧センサと電気的に接続されており、単位時間毎の信号量からジグ22の摺動速度を認識できるとする。なお、本実施形態において、コントローラ24は、電圧センサからの電気信号に基づいてジグ22の摺動速度を認識できるとしているが、他のデバイスを用いてもよく、これに限定するものではない。
 図7の(B)に示すように、電動モータ27の電圧Ejは、ある時刻Txで急激に上昇する。これは、時刻Txでスプリング14が完全に収縮し、サイドギヤ13が移動できなくなったことを表す。このとき、コントローラ24は、電動モータ27を止める電気信号を発信し、アクチュエータ23を停止させる。こうして、コントローラ24は、サイドギヤ13の移動限界を把握するのである。
 このように、本移動範囲測定装置2は、電動モータ27の電圧を認識できるコントローラ24を具備する。そして、コントローラ24は、電動モータ27の電圧が急激に上昇するとアクチュエータ23を停止させる。これにより、サイドギヤ13の移動限界を把握できる。従って、サイドギヤ13の移動範囲を測定することが可能となる。
 本発明は、デファレンシャルユニットに使用されるサイドギヤの移動範囲を測定する装置に利用できる。
 1    デファレンシャルユニット
 11   デフケース
 12   ピニオンギヤ
 13   サイドギヤ
 13P  歯端面
 14   スプリング
 2    移動範囲測定装置
 21   テーブル
 22   ジグ
 22R  傾斜面
 23   アクチュエータ
 Aj   中心軸
 Ap   中心軸
 As   中心軸
 Vj   ベクトル
 Vs   ベクトル

Claims (4)

  1.  デフケースと、
     前記デフケースの内部に配置されるサイドギヤと、
     前記サイドギヤを該サイドギヤの中心軸方向に対して平行に付勢するスプリングと、を備えたデファレンシャルユニットに使用されるサイドギヤの移動範囲測定装置であって、
     傾斜面が形成され、前記サイドギヤの中心軸方向に対して垂直に摺動可能に構成されたジグと、
     前記ジグを摺動させるアクチュエータと、を具備し、
     前記アクチュエータは、前記ジグの前記傾斜面が前記サイドギヤに当接した状態で、前記ジグを前記サイドギヤに近接するように摺動させることにより、前記サイドギヤを前記傾斜面に沿って移動させる、ことを特徴としたサイドギヤの移動範囲測定装置。
  2.  前記サイドギヤは、ベベルギヤであり、
     前記傾斜面は、前記サイドギヤの歯端面に当接する、ことを特徴とした請求項1に記載のサイドギヤの移動範囲測定装置。
  3.  前記ジグの摺動速度を認識できるコントローラを更に具備し、
     前記コントローラは、前記ジグの摺動速度が急激に低下すると前記アクチュエータを停止させる、ことを特徴とした請求項1又は請求項2に記載のサイドギヤの移動範囲測定装置。
  4.  コントローラを更に具備し、
     前記アクチュエータは、電動モータを有し、
     前記コントローラは、前記電動モータの電圧を認識可能に構成され、前記電動モータの電圧が急激に上昇すると前記アクチュエータを停止させる、ことを特徴とした請求項1又は請求項2に記載のサイドギヤの移動範囲測定装置。
PCT/JP2014/078665 2013-12-02 2014-10-28 サイドギヤの移動範囲測定装置 WO2015083462A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480065979.9A CN105793619B (zh) 2013-12-02 2014-10-28 半轴齿轮的移动范围测定装置
US15/036,073 US9920825B2 (en) 2013-12-02 2014-10-28 Device for measuring moving range of side gear
DE112014005474.7T DE112014005474B4 (de) 2013-12-02 2014-10-28 Vorrichtung zum Messen des Bewegungsbereichs eines Achswellenrads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013249662A JP5962638B2 (ja) 2013-12-02 2013-12-02 サイドギヤの移動範囲測定装置
JP2013-249662 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015083462A1 true WO2015083462A1 (ja) 2015-06-11

Family

ID=53273237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078665 WO2015083462A1 (ja) 2013-12-02 2014-10-28 サイドギヤの移動範囲測定装置

Country Status (5)

Country Link
US (1) US9920825B2 (ja)
JP (1) JP5962638B2 (ja)
CN (1) CN105793619B (ja)
DE (1) DE112014005474B4 (ja)
WO (1) WO2015083462A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990807U (ja) * 1982-12-13 1984-06-20 株式会社ミツトヨ 内径測定機
JPH102150A (ja) * 1996-06-14 1998-01-06 Nabco Ltd 自動ドア装置の開閉端検出装置
JPH1194703A (ja) * 1997-09-19 1999-04-09 Nissan Motor Co Ltd 差動歯車装置の検査方法および検査装置
JP2010264580A (ja) * 2009-04-13 2010-11-25 Sanyo Mach Works Ltd デファレンシャルギア組立装置および方法
JP2011247300A (ja) * 2010-05-24 2011-12-08 Toyota Motor Corp ディファレンシャル装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911855A (en) * 1957-09-30 1959-11-10 Librascope Inc Bearing spacer
US3708857A (en) * 1971-06-21 1973-01-09 R Pfeiffer A method for assembling a differential
JP2751639B2 (ja) * 1991-01-25 1998-05-18 日産自動車株式会社 差動歯車噛合い間隙測定装置
US5307676A (en) * 1992-08-12 1994-05-03 Gei Systems, Inc. Controllable gear testing system
JP2792372B2 (ja) * 1992-11-25 1998-09-03 トヨタ自動車株式会社 差動歯車装置用ディファレンシャルケースの組立方法および装置
JPH10184851A (ja) 1996-12-27 1998-07-14 Tochigi Fuji Ind Co Ltd デファレンシャル装置
JP4591663B2 (ja) * 2004-06-30 2010-12-01 トヨタ自動車株式会社 ディファレンシャルキャリアアッセンブリのサイドシム選択方法及びサイドシム選択装置
CN100590407C (zh) * 2008-11-07 2010-02-17 辽宁曙光汽车集团股份有限公司 驱动桥总成之通用半轴齿轮调整垫圈测选系统及测选方法
CN201318939Y (zh) * 2008-12-10 2009-09-30 中国科学院沈阳自动化研究所 差速器半轴齿轮间隙测量选片机
US9091298B2 (en) * 2011-08-19 2015-07-28 Ford Global Technologies, Llc Pinion assembly preloading system
JP5853665B2 (ja) * 2011-12-16 2016-02-09 トヨタ自動車株式会社 車両用デファレンシャル装置
JP5895930B2 (ja) * 2013-12-25 2016-03-30 トヨタ自動車株式会社 ダミーシャフトを用いるデファレンシャルユニットの組立装置並びにデファレンシャルユニットの製造方法
JP6487664B2 (ja) * 2014-10-22 2019-03-20 武蔵精密工業株式会社 差動装置
JP2016172266A (ja) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 リングギヤをデフケースに取り付ける方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990807U (ja) * 1982-12-13 1984-06-20 株式会社ミツトヨ 内径測定機
JPH102150A (ja) * 1996-06-14 1998-01-06 Nabco Ltd 自動ドア装置の開閉端検出装置
JPH1194703A (ja) * 1997-09-19 1999-04-09 Nissan Motor Co Ltd 差動歯車装置の検査方法および検査装置
JP2010264580A (ja) * 2009-04-13 2010-11-25 Sanyo Mach Works Ltd デファレンシャルギア組立装置および方法
JP2011247300A (ja) * 2010-05-24 2011-12-08 Toyota Motor Corp ディファレンシャル装置

Also Published As

Publication number Publication date
JP5962638B2 (ja) 2016-08-03
US9920825B2 (en) 2018-03-20
US20160290465A1 (en) 2016-10-06
CN105793619B (zh) 2018-09-04
JP2015105745A (ja) 2015-06-08
CN105793619A (zh) 2016-07-20
DE112014005474T5 (de) 2016-08-25
DE112014005474B4 (de) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2013118920A1 (ja) 回転機器の回転制限装置
US8726772B2 (en) Self-centering steady rest
CN105698721B (zh) 测量装置
US20150285610A1 (en) Device for inspecting a profiled workpiece
CN103438790B (zh) 一种内沟槽检具及内沟槽的测量方法
EP3239654B1 (en) Roundness measurement device
JP5962638B2 (ja) サイドギヤの移動範囲測定装置
JP4520534B2 (ja) 電動ハンド
JP2017166888A5 (ja) 転がり軸受の楕円測定装置、楕円測定方法、及び転がり軸受の製造方法
CN208636035U (zh) 丝杆跑合机
JP2017067512A (ja) 外径測定器およびそれを用いた研削装置
CN104511861A (zh) 一种天线罩用六导柱可移动定位装置
JP5807558B2 (ja) 駆動機構
CN103528529A (zh) 螺母驱动型滚珠丝杠副行程偏差和行程变动量的检测装置
TW201738484A (zh) 驅動傳達機構及利用該機構的機械裝置
CN111981957A (zh) 一种绳式六自由度测量装置
JPH0763503A (ja) ギヤの歯溝の振れ測定装置
CN102661725A (zh) 一种利用直线光栅尺定位角度的装置
CN104165212B (zh) 直线驱动摆角装置
CN203679938U (zh) 一种准确测量主轴动平衡值的装置
JP2013167642A (ja) ボールねじ測定装置およびその測定方法
JP2014163853A (ja) 形状検出装置
WO2008129842A1 (ja) 自動工具交換装置
CN103983281A (zh) 主动式半捷联系统同轴度误差解析评定与补偿方法
CN203249560U (zh) 一种位置度检具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15036073

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014005474

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867165

Country of ref document: EP

Kind code of ref document: A1