WO2015083347A1 - 直動案内装置及びその製造方法 - Google Patents

直動案内装置及びその製造方法 Download PDF

Info

Publication number
WO2015083347A1
WO2015083347A1 PCT/JP2014/005917 JP2014005917W WO2015083347A1 WO 2015083347 A1 WO2015083347 A1 WO 2015083347A1 JP 2014005917 W JP2014005917 W JP 2014005917W WO 2015083347 A1 WO2015083347 A1 WO 2015083347A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
guide rail
raceway surface
track
raceway
Prior art date
Application number
PCT/JP2014/005917
Other languages
English (en)
French (fr)
Inventor
松本 淳
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP14866828.8A priority Critical patent/EP3059464B1/en
Priority to US15/100,744 priority patent/US9765814B2/en
Priority to CN201480054287.4A priority patent/CN105683599A/zh
Publication of WO2015083347A1 publication Critical patent/WO2015083347A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly
    • F16C29/0604Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly of the load bearing section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/009Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding profiled workpieces using a profiled grinding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/06Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for grinding races, e.g. roller races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/062Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels using rotary dressing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/07Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels by means of forming tools having a shape complementary to that to be produced, e.g. blocks, profile rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/075Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels for workpieces having a grooved profile, e.g. gears, splined shafts, threads, worms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/02Wheels in one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/14Zonally-graded wheels; Composite wheels comprising different abrasives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
    • F16C29/0647Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls with load directions in X-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances

Definitions

  • the present invention relates to a linear motion guide device and a manufacturing method thereof.
  • a linear motion guide device has a guide rail, a slider, and a plurality of rolling elements. And the said guide rail and the said slider each have the track surface which forms the rolling channel
  • These raceway surfaces extend in the longitudinal direction of the guide rail, the rolling elements (for example, steel balls) are disposed in the rolling passage, and the slider moves with respect to the guide rail via the rolling elements. .
  • the raceway surface is ground with an integrally formed grindstone (see Patent Document 1).
  • the technique which makes the maximum inclination of a rail grinding surface 10 degrees or more from horizontal is disclosed by patent document 2 for the purpose of suppressing the friction and heat_generation
  • Patent Document 3 discloses a linear motion guide device in which the roughness is changed for each track surface.
  • An aspect of the linear motion guide device for solving the above problem includes a guide rail, a slider, and a plurality of rolling elements,
  • the guide rail and the slider each have a raceway surface that forms a rolling passage of the rolling element at a position facing each other,
  • the raceway surface extends in the longitudinal direction of the guide rail,
  • the rolling element is disposed in the rolling passage,
  • At least one of the track surfaces of the slider and the guide rail is composed of a first track surface extending in the longitudinal direction and a second track surface extending on both sides of the first track surface in the longitudinal direction, and the second track.
  • the surface roughness of the surface is made rougher than the surface roughness of the first raceway surface.
  • the center line average roughness of the second track surface is preferably 1.5 to 3 times the center line average roughness of the first track surface.
  • a certain aspect of the manufacturing method of the linear motion guide device for solving the above-described problem is a surface processing step of performing a surface processing on a track surface extending along the longitudinal direction of at least one of the slider and the guide rail, A plurality of rolling elements are arranged in a rolling passage of a rolling element formed by the raceway surface of the slider and the raceway surface of the guide rail provided to face the raceway surface, and the rolling elements are interposed therebetween.
  • At least one raceway surface of the slider and the guide rail includes a first raceway surface extending in the longitudinal direction and a second raceway surface extending on both sides of the first raceway surface in the longitudinal direction.
  • the method for manufacturing the linear motion guide device includes a grindstone forming step of forming the grindstone with a rotary dresser, and the protruding amount of abrasive grains or abrasive grains in a region corresponding to the second raceway surface in the rotary dresser.
  • the diameter is preferably larger than the protruding amount of the abrasive grains in the region corresponding to the first raceway surface or the grain size of the abrasive grains.
  • a linear motion guide device that can improve the workability of the raceway surface and reduce the manufacturing cost, and a manufacturing method thereof.
  • FIG. 1 is a side view which shows the structure of the rotary dresser used for the grindstone formation process in 1st Embodiment of the manufacturing method of a linear guide apparatus
  • (b) is a principal part enlarged view of (a). It is an enlarged view of the 1st process part of FIG.5 (b). It is an enlarged view of the 2nd process part of FIG.5 (b). It is a figure which shows the production method of the rotary dresser used for the grindstone formation process in 1st Embodiment of the manufacturing method of a linear guide apparatus. It is a front view which shows the structure of the grindstone in 1st Embodiment of the manufacturing method of a linear guideway.
  • FIG. 10 is an enlarged view of FIG. 9.
  • FIG. 1 is an enlarged view of the 1st processing part in 2nd Embodiment of the manufacturing method of a linear motion guide apparatus
  • (b) is an expansion of the 2nd processing part in 2nd Embodiment of the manufacturing method of a linear motion guide apparatus.
  • FIG. It is a side view which shows the structure of the grindstone in 3rd Embodiment of the manufacturing method of a linear guide device. It is a side view which shows the structure of the grindstone in 4th Embodiment of the manufacturing method of a linear guide device. It is a side view which shows the modification of the manufacturing method of a linear guideway.
  • FIG. 1 is a cross-sectional view along the width direction showing the configuration of an embodiment of a linear guide device.
  • the linear motion guide device of the present embodiment includes a guide rail 1 that extends linearly in the longitudinal direction, and a slider 2 that straddles the guide rail 1.
  • the guide rail 1 is provided with bolt insertion holes (not shown) penetrating in the height direction from the upper surface 1a to the lower surface at predetermined intervals in the longitudinal direction.
  • the raceway surface 11 and the raceway surface 21 have a groove shape in which a cross section in the width direction (a direction orthogonal to the longitudinal direction and the height direction) is substantially arc-shaped.
  • the rolling path 3 is comprised by the raceway surface 11 and the raceway surface 21 which are installed facing these.
  • a plurality of rolling elements (for example, steel balls) 4 are inserted into the rolling passage 3 so as to freely roll.
  • the linear motion guide device according to the present embodiment is configured as described above, so that the slider 2 can be relatively moved along the longitudinal direction of the guide rail 1 via the plurality of rolling elements 4.
  • the track surface 21 of the slider 2 includes a first track surface 21A extending along the longitudinal direction, and second track surfaces 21B and 21B defined on both sides of the first track surface 21A. It consists of.
  • the region defined by the first raceway surface 21 ⁇ / b> A is indicated as “A 1 ”
  • the region defined by the second raceway surface 21 ⁇ / b> B is denoted by “A 2 ”.
  • the area not ground was indicated as“ A 3 ”.
  • region “A 1 ” defined by the first track surface 21A has an angle ⁇ of 77 ° formed along the track surface 21 with reference to the reference surface H that bisects the track surface 21 along the width direction of the slider.
  • the following regions are preferable.
  • the surface roughness of the second raceway surface 21B is made rougher than the surface roughness of the first raceway surface 21A.
  • the surface roughness (centerline average roughness) Ra 1 of the first track surface 21A is about 0.2 ⁇ m to 1.6 ⁇ m.
  • the surface roughness (center line average roughness) Ra 2 of the second raceway surface 21B is preferably 1.5 to 3 times the surface roughness Ra 1 of the first raceway surface 21A.
  • the raceway surface 21 of the slider 2 by constituting the raceway surface 21 of the slider 2 from the first raceway surface 21A and the second raceway surface 21B, the surface roughness Ra 2 of the second raceway surface 21B, the surface roughness Ra of the first raceway surface 21A By making it rougher than 1 , the workability of the second raceway surface 21B is good, and the surface roughness of the first raceway surface 21A can maintain an appropriate value. Therefore, it is possible to provide a linear motion guide device that does not have a performance degradation.
  • the manufacturing method of the linear guide device includes a surface processing step of performing surface processing on the raceway surface extending along the longitudinal direction of the slider, and an assembly step.
  • the surface processing step at least one raceway surface of the slider and the guide rail has a first raceway surface extending in the longitudinal direction, and a second raceway surface extending on both sides of the first raceway surface in the longitudinal direction. to consist of, and a step surface roughness Ra 2 of the second raceway surface 21B is that surface treatment at a time with the same grinding stone to be rougher than the surface roughness Ra 1 of the first raceway surface 21A.
  • a plurality of rolling elements are arranged in a rolling passage formed by the raceway surface of the slider and the raceway surface of the guide rail provided to face the raceway surface,
  • the longitudinal direction of the slider is a direction parallel to the longitudinal direction of the guide rail when assembled to the guide rail.
  • this step has an outer surface 81a that forms a surface (not shown) for transferring the first track surface 21A and the second track surface 21B with respect to the track surfaces 21, 21 of the slider 2.
  • the grindstone portion 81 includes a first machining portion 81A, a second machining portion 81B provided on the upper and lower surfaces along the rotation axis of the grindstone 8, and a third machining portion 81C provided between the second machining portions 81 and 81. Consists of. As shown in FIG. 4, the grindstone 8 is formed by precisely truing the grindstone portions 81, 81 with a rotary dresser 9.
  • the rotary dresser 9 has the formation parts 91 and 91 for forming the grindstone parts 81 and 81.
  • the forming portion 91 has a first surface 91A that forms a shape for transferring the first track surface 21A and the second track surface 21B, and a shape that transfers the second track surface 21B. It is comprised from the 2nd surface 91B.
  • the formation part 91 configured in this way is formed by arranging abrasive grains 93 in a desired shape on the surface and integrating them with a bond layer such as plating.
  • Examples of the abrasive grains 93 include brown alumina, white alumina, light red alumina, crushed alumina, artificial emery, alumina zirconia, black silicon carbide, green silicon carbide, diamond, and cubic boron nitride.
  • Examples of the diamond include natural diamond, single crystal diamond, and polycrystalline diamond. Among these, diamond that is more excellent in heat resistance and wear resistance than others is suitable as the abrasive grains 93.
  • the grain size of the abrasive grains 93 using diamond varies.
  • the average particle diameter of the abrasive grains 93 using diamond is about 50 ⁇ m to 300 ⁇ m.
  • the first surface 91A, the projection amount d 1 of the abrasive grains 93 with diamond is about 20 [mu] m ⁇ 200 [mu] m.
  • the projection amount d 1 is the dimension of the abrasive grains 93 projecting from the bond layer 92 of the first surface 91A.
  • This protrusion amount d 1 also varies for each of the 93 abrasive grains. Therefore, in the present embodiment, the protrusion amount of the abrasive grains 93 is defined by the average protrusion amount.
  • the projection amount d 2 of the abrasive grains 93 of the second surface 91B for forming the second track surface 21B is made larger than the projection amount d 1 of the abrasive grains 93 in the first surface 91A Yes.
  • the projection amount d 2 is also a size of the abrasive grains 93 projecting from the bond layer 92 on the second surface 91B.
  • the average grain size of the abrasive grains 93 constituting the second surface 91B is substantially the same as the average grain diameter of the abrasive grains 93 constituting the first surface 91A.
  • the projection amount d 2 of the second surface 91B is 1.5 to 3 times the projection amount d 1 of the first surface 91A is preferred.
  • a method for manufacturing a rotary dresser will be described with reference to FIG.
  • the rotary dresser 9 for forming a grindstone used in this embodiment is produced by uniformly arranging abrasive grains 93 (for example, diamond) on the surface of a base material.
  • the bond layer 92 (see FIGS. 6 and 7) is dissolved only in the second surface 91B.
  • the protrusion amount of the abrasive grains 93 on the second surface 91B can be made larger than the protrusion amount of the abrasive grains 93 on the first surface 91A.
  • the bond layer is dissolved too much, the abrasive grains 93 are likely to fall off.
  • the protruding amount of the abrasive grains 93 does not change much between the first surface 91A and the second surface 91B.
  • the projection amount d 2 of the abrasive grains 93 of the second surface 91B is about 1.5 to 3 times the projection amount d 1 of the abrasive grains 93 in the first surface 91A are preferred.
  • the grain size of the abrasive grains 93 constituting the rotary dresser 9 is uniform regardless of the location. For this reason, there exists an advantage which can produce the rotary dresser 9 comparatively easily.
  • the grinding wheel 8 is rotated to bring the grinding wheel portions 81, 81 into contact with the raceway surface 21 of the slider 2.
  • the second working portion 81B that grinds the second raceway surface 21B rotates the grindstone 8 compared to the first working portion 81A that grinds the first raceway surface 21A. The distance from the center is small.
  • the second processing portion 81B that grinds the second raceway surface 21B has a lower peripheral speed as a grindstone than the first processing portion 81A that grinds the first raceway surface 21A. For this reason, the grinding ability of the second machining part 81B is reduced as compared with the grinding ability of the first machining part 81A.
  • the difference in grinding ability between the first processing portion 81A and the second processing portion 81B may take time for the grinding processing or increase heat generation to cause alteration (tempering, etc.) due to heat.
  • it is larger than the projection amount d 1 of the abrasive grains 93 of the projection amount d 2 of the abrasive grains 93 of the second surface 91B of the rotary dresser 9 the second surface 91B.
  • the surface roughness of the first machining portion 81A is smaller than the surface roughness of the second machining portion 81B. Therefore, in this embodiment, there is an effect that the grindability of the second processed portion 81B is improved and the difference in the grinding ability between the first processed portion 81A and the second processed portion 81B is not significantly generated.
  • the grindstone portion 81 that grinds the raceway surface 21 of the slider 2 includes the first machining portion 81A and the second machining portion 81B.
  • the roughness is larger than the roughness of the first processed portion 81A. That is, if the surface of the raceway surface 21 of the slider 2 is processed (ground) using the grindstone 8, the surface roughness of the second raceway surface 21B is made larger than the surface roughness of the first raceway surface 21A. Can do.
  • the second raceway surface 21 ⁇ / b> B is processed by the second processing portion 81 ⁇ / b> B having a large roughness in the grindstone portion 81. The rougher the grindstone, the higher the grindability.
  • deterioration of the grindability on the second raceway surface 21B can be prevented, and as a result, the time required for grinding can be shortened and deterioration due to heat generation can also be prevented.
  • the grinding ability of the grindstone 8 is improved, it is conceivable to increase the roughness of both the first processed portion 81A and the second processed portion 81B.
  • the roughness of the first processed portion 81A becomes rougher than an appropriate value, and the first raceway surface 21A may be easily worn or damaged. In this embodiment, since the roughness of the first track surface 21A can be maintained appropriately, such a problem does not occur.
  • FIG. 11A is an enlarged view of the first surface of the rotary dresser in the present embodiment
  • FIG. 11B is an enlarged view of the second surface of the rotary dresser in the present embodiment. As shown in FIGS.
  • the protrusion amount of the abrasive grains 93 (for example, diamond) is not changed between the first surface 91A and the second surface 91B, but the ( The average particle size may be changed between the first surface 91A and the second surface 91B.
  • the grain size of the abrasive grains 93 on the second surface 91B is preferably about 1.5 to 3 times the grain size of the abrasive grains 93 on the second surface 91B.
  • the amount of projection of the abrasive grains 93 on the second surface 91B can be reduced.
  • the protruding amount of the abrasive grains 93 on the surface 91A can be made larger.
  • molded using such a rotary dresser 9 has the roughness of the 2nd process part 81B which grinds the 2nd track
  • FIG. 12 is a side view showing the configuration of the grindstone in this embodiment.
  • the protrusion amount of abrasive grains 93 for example, diamond
  • a rotary dresser for forming the grindstone 8
  • the second machining portion 81B and the third machining portion 81C constituting the grindstone portion 81 are used as a grindstone portion having a small particle size, and the first machining portion 81A is alternately sandwiched as a grindstone portion having a large particle size. And integrated. That is, the grain size of the second machining part 81B and the third machining part 81C for grinding the second raceway surface 21B of the slider 2 is coarser than the grain size of the first machining part 81A.
  • the part comprised with a different particle size about each process part was shown with different hatching.
  • the grindstone has a mesh grain size of about # 30 to # 400.
  • the particle size of the second processed portion 81B and the third processed portion 81C is preferably about 0.2 to 0.8 times the particle size of the first processed portion 81A.
  • FIG. 13 is a side view showing the configuration of the grindstone in this embodiment.
  • the protrusion amount of abrasive grains 93 for example, diamond
  • a rotary dresser for forming the grindstone 8
  • the grindstone 8 of the present embodiment is the second machining of the upper and lower ends along the rotation axis of the grindstone 8 among the first machining portion 81A, the second machining portion 81B, and the third machining portion 81C constituting the grindstone portion 81.
  • the portion 81B (81B ′) and the third processing portion 81C (81C ′) are made of a grindstone portion having a small particle size, and the first processing portion 81A, the second processing portion 81B, and the third processing portion 81C sandwiched between them have a particle size of It is integrated as a large grindstone part. Note that in FIG. 13, the portions constituted by different particle sizes for each processed portion are indicated by different hatching.
  • the grindstone may have a non-uniform grain size, and the protrusion amount and grain size of the abrasive grains 93 of the rotary dresser 9 may be non-uniform. By doing in this way, the grinding capability of the 2nd process part 81B can be improved further.
  • FIG. 14 is a side view showing a modification of the manufacturing method of the linear motion guide device.
  • the surface processing (grinding) step for the raceway surface 21 of the slider 2 has been described. However, this may be applied to the surface processing (grinding) step for the raceway surface 11 of the guide rail 1.
  • a plurality of grindstones that transfer a first raceway surface (not shown) and a second raceway surface (not shown) to the raceway surfaces 11, 11 of the guide rail 1.
  • the grindstone portions 81 and 81 are moved in the longitudinal direction to finish grinding (surface processing step).
  • the surface roughness of the second raceway surface of the guide rail 1 is made rougher than that of the first raceway surface.
  • the grindstone 8 is formed by precisely truing the grindstone portions 81, 81 with the rotary dresser 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 軌道面の加工性が向上し、製造コストを低減できる直動案内装置及びその製造方法を提供する。そのために、直動案内装置は、案内レール(1)と、スライダ(2)と、複数の転動体(4)とを有し、案内レール(1)及びスライダ(2)は、互いに対向する位置に、転動体(4)の転動通路(3)を形成する軌道面(11,21)をそれぞれ有する。そして、転動体(4)は、転動通路(3)に配置され、転動体(4)を介して案内レール(1)に対してスライダ(2)が移動する。スライダ(2)及び案内レール(1)の少なくとも一方の軌道面(21)は、第1軌道面(21A)と、その第1軌道面(21)の両側に延びる第2軌道面(21B)とからなり、その第2軌道面(21B)の表面粗さが第1軌道面(21A)の表面粗さよりも粗くされる。

Description

直動案内装置及びその製造方法
 本発明は、直動案内装置及びその製造方法に関する。
 従来より、直動案内装置は、案内レールと、スライダと、複数の転動体とを有する。そして、上記案内レール及び上記スライダは、互いに対向する位置に、上記転動体の転動通路を形成する軌道面をそれぞれ有する。これらの軌道面は、上記案内レールの長手方向に延び、上記転動体(例えば鋼球)は、上記転動通路に配置され、上記転動体を介して上記案内レールに対して上記スライダが移動する。
 このような直動案内装置において、上記軌道面は、一体成形された砥石で研削される(特許文献1参照)。そして、その研削時の摩擦や発熱を抑制することを目的として、レール研削面の最大傾斜を水平から10°以上にする技術が特許文献2に開示されている。また、特許文献3には、上記軌道面毎に粗さを変化させた直動案内装置が開示されている。
特開昭63-180437号公報 特開2008-175363号公報 特開2002-130271号公報
 しかしながら、特許文献2に記載の技術においては、水平方向からの傾斜が10°以上になるように、上記軌道面周辺の形状を制限しているため、上記軌道面の形状の設計に制限が加わってしまうため、検討の余地があった。
 また、特許文献3に記載の技術においては、上記軌道面の粗さを制御する方法として、超仕上げ・慣らし走行が開示されているが、これらの方法は、上記軌道面を研削加工した後に、別工程で実施する必要がある。従って、工程が増えて、コストが増すことがあり、検討の余地があった。
 本発明は上記課題に着目してなされたものであり、その目的は、軌道面の加工性が向上し、製造コストを低減できる直動案内装置及びその製造方法を提供することにある。
  上記課題を解決するための直動案内装置のある態様は、案内レールと、スライダと、複数の転動体とを有し、
 上記案内レール及び上記スライダは、互いに対向する位置に、上記転動体の転動通路を形成する軌道面をそれぞれ有し、
 上記軌道面は、上記案内レールの長手方向に延び、
 上記転動体は、上記転動通路に配置され、
 上記転動体を介して上記案内レールに対して上記スライダが移動する直動案内装置において、
 上記スライダ及び上記案内レールの少なくとも一方の軌道面が、上記長手方向に延びる第1軌道面と、その第1軌道面の上記長手方向の両側に延びる第2軌道面とからなり、その第2軌道面の表面粗さが第1軌道面の表面粗さよりも粗くされている。
 ここで、上記直動案内装置においては、第2軌道面の中心線平均粗さは、第1軌道面の中心線平均粗さの1.5倍~3倍であることが好ましい。
 また、上記課題を解決するための直動案内装置の製造方法のある態様は、スライダ及び案内レールの少なくとも一方の長手方向に沿って延びる軌道面に表面加工を施す表面加工工程と、
 上記スライダの軌道面と、その軌道面に対向して設けられた上記案内レールの軌道面とによって形成される転動体の転動通路に複数の転動体を配置して、それらの転動体を介して上記案内レールに対して上記スライダが移動可能となるように上記案内レールと上記スライダとを組み付ける組み立て工程とを含む直動案内装置の製造方法において、
 上記表面加工工程は、上記スライダ及び案内レールの少なくとも一方の軌道面が、上記長手方向に延びる第1軌道面と、その第1軌道面の上記長手方向の両側に延びる第2軌道面とからなるように、第2軌道面の表面粗さが第1軌道面の表面粗さよりも粗くなるように同一の砥石で一度に表面加工する工程である。
 また、上記直動案内装置の製造方法においては、上記砥石をロータリドレッサで成形する砥石成形工程を含み、上記ロータリドレッサにおける第2軌道面に対応する領域の砥粒の突出量又は砥粒の粒径を、第1軌道面に対応する領域の砥粒の突出量又は砥粒の粒径よりも大きくすることが好ましい。
 本発明の一態様によれば、軌道面の加工性が向上し、製造コストを低減できる直動案内装置及びその製造方法を提供することができる。
直動案内装置の第1実施形態における構成を示す幅方向に沿う断面図である。 直動案内装置の第1実施形態における軌道面の構成を示す幅方向に沿う断面図である。 直動案内装置の製造方法の第1実施形態におけるスライダの軌道面の加工工程を示す幅方向に沿う断面図である。 直動案内装置の製造方法の第1実施形態における砥石成形工程を示す幅方向に沿う断面図である。 (a)は直動案内装置の製造方法の第1実施形態における砥石成形工程に用いられるロータリドレッサの構成を示す側面図、(b)は(a)の要部拡大図である。 図5(b)の第1加工部の拡大図である。 図5(b)の第2加工部の拡大図である。 直動案内装置の製造方法の第1実施形態における砥石成形工程に用いられるロータリドレッサの作製方法を示す図である。 直動案内装置の製造方法の第1実施形態における砥石の構成を示す正面図である。 図9の拡大図である。 (a)は直動案内装置の製造方法の第2実施形態における第1加工部の拡大図であり、(b)は直動案内装置の製造方法の第2実施形態における第2加工部の拡大図である。 直動案内装置の製造方法の第3実施形態における砥石の構成を示す側面図である。 直動案内装置の製造方法の第4実施形態における砥石の構成を示す側面図である。 直動案内装置の製造方法の変形例を示す側面図である。
 以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
 以下、直動案内装置の実施形態について図面を参照して説明する。
(第1実施形態)
<直動案内装置の構成>
 図1は、直動案内装置のある実施形態における構成を示す幅方向に沿う断面図である。
 図1に示すように、本実施形態の直動案内装置は、直線状に長手方向に延びる案内レール1と、案内レール1に跨架されたスライダ2とを有する。案内レール1は、その上面1aから下面へ高さ方向に貫通するボルト挿通用の取付孔(図示せず)が長手方向に所定の間隔で穿設されている。
 案内レール1の幅方向の両側面には、上記長手方向に沿って形成された軌道面11,11が高さ方向にそれぞれ2列設けられている。また、スライダ2の幅方向の内側側面には、軌道面11に対向するように軌道面21,21が高さ方向にそれぞれ2列設けられている。
 軌道面11及び軌道面21は、幅方向(上記長手方向及び上記高さ方向に直交する方向)の断面が略円弧状の溝形状をなしている。そして、これら対向して設置される軌道面11と軌道面21によって転動通路3が構成される。この転動通路3には、複数の転動体(例えば鋼製のボール)4が転動自在に挿入されている。本実施形態の直動案内装置は、このように構成されることにより、スライダ2が、複数の転動体4を介して案内レール1の長手方向に沿って相対移動可能とされている。
 ここで、スライダ2の軌道面21は、図2に示すように、長手方向に沿って延びる第1軌道面21Aと、この第1軌道面21Aの両側に規定された第2軌道面21B,21Bとから構成される。なお、図2では、スライダ2において研削される軌道面21のうち、第1軌道面21Aで規定される領域を「A」と示し、第2軌道面21Bで規定される領域を「A」と示し、研削されない領域を「A」と示した。
 また、第1軌道面21Aで規定される領域「A」は、スライダの幅方向に沿って軌道面21を2分する基準面Hを基準として軌道面21に沿ってなす角度βが77°以下の領域とすることが好ましい。
 また、第2軌道面21Bの表面粗さは、第1軌道面21Aの表面粗さよりも粗くされている。例えば、第1軌道面21Aの表面粗さ(中心線平均粗さ)Raは0.2μm~1.6μm程度である。また、第2軌道面21Bの表面粗さ(中心線平均粗さ)Raは、第1軌道面21Aの表面粗さRaの1.5~3倍程度であることが好ましい。
 このように、スライダ2の軌道面21を第1軌道面21Aと第2軌道面21Bとから構成し、第2軌道面21Bの表面粗さRaを、第1軌道面21Aの表面粗さRaよりも粗くすることで、第2軌道面21Bの加工性がよく、第1軌道面21Aの表面粗さは適正値を保つことができる。よって、性能の低下がない直動案内装置を提供することができる。
<直動案内装置の製造方法>
 以下、本実施形態の直動案内装置の製造方法について図面を参照して説明する。本実施形態の直動案内装置の製造方法は、スライダの長手方向に沿って延びる軌道面に表面加工を施す表面加工工程と、組み立て工程とを含む。
 そして、上記表面加工工程は、上記スライダ及び案内レールの少なくとも一方の軌道面が、上記長手方向に延びる第1軌道面と、その第1軌道面の上記長手方向の両側に延びる第2軌道面とからなるように、かつ第2軌道面21Bの表面粗さRaが第1軌道面21Aの表面粗さRaよりも粗くなるように同一の砥石で一度に表面加工する工程である。
 また、上記組み立て工程は、スライダの軌道面と、その軌道面に対向して設けられた上記案内レールの軌道面とによって形成される転動体の転動通路に複数の転動体を配置して、それらの転動体を介して上記案内レールに対して上記スライダが移動可能となるように上記案内レールと上記スライダとを組み付ける工程である。
 なお、上記スライダの長手方向は、上記案内レールに組み付ける際に当該案内レールの長手方向に平行な方向である。
 この工程は、図3に示すように、スライダ2の軌道面21、21に対して、第1軌道面21A及び第2軌道面21Bを転写する面(図示せず)をなす外側面81aを有する複数の砥石部81,81が一体に成形された砥石8を用いて、砥石部81,81を長手方向に動かして研削仕上げをする。砥石部81は、第1加工部81Aと、砥石8の回転軸に沿う上下面に設けられた第2加工部81Bと、第2加工部81,81間に設けられた第3加工部81Cとからなる。なお、この砥石8は、図4に示すように、砥石部81,81がロータリドレッサ9で正確にツルーイングされて成形される。
 ここで、図5(a)に示すように、ロータリドレッサ9は、砥石部81、81を形成するための形成部91,91を有している。この形成部91は、図5(b)に示すように、第1軌道面21A及び第2軌道面21Bを転写する形状をなす第1面91Aと、第2軌道面21Bを転写する形状をなす第2面91Bとから構成される。
 このようにして構成される形成部91は、表面に砥粒93を所望の形状に並べて、めっき等のボンド層で一体化されてなる。砥粒93としては、褐色アルミナ、白色アルミナ、淡紅色アルミナ、解砕型アルミナ、人造エメリー、アルミナジルコニア、黒色炭化ケイ素、緑色炭化ケイ素、ダイヤモンド、立方晶窒化ホウ素が挙げられる。上記ダイヤモンドには、天然ダイヤモンド、単結晶ダイヤモンド、多結晶ダイヤモンドが挙げられる。これらの中でも、他より耐熱、耐摩耗に優れているダイヤモンドが砥粒93として好適である。
 次に、図5(b)に示す第1面91Aについて、図6を参照して説明する。図6に示すように、ダイヤモンドを用いた砥粒93の粒径にはばらつきがある。ダイヤモンドを用いた砥粒93の平均粒径は、50μm~300μm程度である。そして、第1面91Aにおいて、ダイヤモンドを用いた砥粒93の突出量dは、20μm~200μm程度である。この突出量dは、第1面91Aのボンド層92から突出した砥粒93の寸法である。この突出量dにも、砥粒93粒子ごとにばらつきがある。そこで、本実施形態においては、砥粒93の突出量としては、平均突出量で規定することとする。
 次に、図5(b)に示す第2面91Bについて、図7を参照して説明する。図7に示すように、第2軌道面21Bを形成するための第2面91Bにおける砥粒93の突出量dは、第1面91Aにおける砥粒93の突出量dよりも大きくしている。この突出量dも、第2面91Bのボンド層92から突出した砥粒93の寸法である。なお、第2面91Bを構成する砥粒93の平均粒径は、第1面91Aを構成する砥粒93の平均粒径とほぼ同じである。一方、第2面91Bの突出量dは、第1面91Aの突出量dの1.5~3倍程度が好ましい。
 次に、ロータリドレッサの製造方法について、図8を参照して説明する。本実施形態で用いられる砥石を成形するためのロータリドレッサ9は、図8(a)に示すように、基材の表面に砥粒93(例えばダイヤモンド)を一様に並べて、作製される。このときの砥粒93の突出量d(=d)は、第1面91A及び第2面91Bともに20μm~200μm程度である(なお、図8(a)では、第2面91Bを示している。)。
 その後、図8(b)に示すように、第2面91Bに対してのみ、ボンド層92(図6,図7参照)を溶解させる。これによって、第1面91Aの砥粒93の突出量よりも第2面91Bの砥粒93の突出量を大きくすることができる。ここで、ボンド層を溶解させすぎると、砥粒93が脱落しやすくなる。また、ボンド層92の溶解が足りないと砥粒93の突出量が第1面91Aと第2面91Bとであまり変化しない。
 そこで、第2面91Bにおける砥粒93の突出量dは、第1面91Aにおける砥粒93の突出量dの約1.5~3倍程度が好適である。
 このロータリドレッサの製造方法では、ロータリドレッサ9を構成する砥粒93の粒径が、場所によらず一様である。このため、ロータリドレッサ9を比較的容易に作製できる利点がある。
 次に、このロータリドレッサ9によって成形される砥石について図9を参照して説明する。本実施形態の直動案内装置の製造方法における表面加工工程は、この砥石8を回転させて砥石部81,81をスライダ2の軌道面21に当接させることで、第1軌道面21A及び第2軌道面21Bを研削加工する工程である。
 ここで、図10に示すように、砥石部81において、第2軌道面21Bを研削する第2加工部81Bは、第1軌道面21Aを研削する第1加工部81Aに比べて砥石8の回転中心からの距離が小さい。したがって、第2軌道面21Bを研削する第2加工部81Bは、第1軌道面21Aを研削する第1加工部81Aに比べて砥石としての周速度が小さくなる。このため、第2加工部81Bの研削能力は、第1加工部81Aの研削能力に比べて低下することになる。
 この第1加工部81Aと第2加工部81Bとの研削能力の差は、研削加工に時間がかかったり、発熱が増して熱による変質(焼き戻りなど)の発生を引き起こすことがある。
 しかしながら、本実施形態では、前述したように、ロータリドレッサ9の第2面91Bにおける砥粒93の突出量dを第2面91Bにおける砥粒93の突出量dよりも大きくした。このように設計されたロータリドレッサ9によって成形された砥石8の砥石部81は、第1加工部81Aの表面粗さが第2加工部81Bの表面粗さよりも小さくなっている。
 したがって、本実施形態では、第2加工部81Bの研削性を向上し、第1加工部81Aと第2加工部81Bとの研削能力の差が著しく生じないようにする効果を奏する。
 以上説明したように、本実施形態に用いられる砥石8は、スライダ2の軌道面21を研削する砥石部81が第1加工部81Aと第2加工部81Bとからなり、第2加工部81Bの粗さが、第1加工部81Aの粗さに比べて大きい。すなわち、この砥石8を用いて、スライダ2の軌道面21を表面加工(研削)すれば、第1軌道面21Aの表面粗さに比べて、第2軌道面21Bの表面粗さを粗くすることができる。ここで、第2軌道面21Bは、砥石部81において粗さが大きい第2加工部81Bで加工される。砥石部の粗さが粗いほど、研削性が高い。
 このため、本実施形態によれば、第2軌道面21Bにおける研削性の悪化を防ぐことができ、結果として、研削に要する時間を短くでき、発熱による変質も防ぐことができる。
 なお、砥石8の研削能力を向上させるだけならば、第1加工部81A及び第2加工部81Bの両方とも、粗さを大きくすることが考えられる。
 しかし、このような砥石8を採用すると、第1加工部81Aの粗さが適正値よりも粗くなり、第1軌道面21Aの摩耗や損傷が生じやすくなる可能性がある。
 本実施形態では、第1軌道面21Aの粗さを適正に保てるので、このような問題は生じない。
(第2実施形態)
 次に、直動案内装置の製造方法の第2実施形態について図面を参照して説明する。なお、本実施形態は、表面加工工程に用いられる砥石8を形成するロータリドレッサの形態が第1実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。
 図11(a)は本実施形態におけるロータリドレッサの第1面の拡大図であり、(b)は本実施形態におけるロータリドレッサの第2面の拡大図である。図11(a),(b)に示すように、本実施形態では、砥粒93(例えばダイヤモンド)の突出量を第1面91Aと第2面91Bとで変えるのでなく、砥粒93の(平均)粒径を第1面91Aと第2面91Bとで変えてもよい。例えば、第2面91Bの砥粒93の粒径は、第2面91Bの砥粒93の粒径の1.5~3倍程度が好ましい。
 このように、第2面91Bの砥粒93の粒径を、第1面91Aの砥粒93の粒径よりも大きくすることによって、第2面91Bにおける砥粒93の突出量を、第1面91Aにおける砥粒93の突出量よりも大きくすることができる。そして、このようなロータリドレッサ9を用いて成形された砥石8は、第2軌道部21Bを研削する第2加工部81Bの粗さが第1加工部81Aの粗さよりも大きくなる。
 したがって、第1実施形態と同様に、第2軌道部21Bの表面粗さが第1軌道部21Aの表面粗さよりも粗いスライダを有する直動案内装置を作製することができる。
(第3実施形態)
 次に、直動案内装置の製造方法の第3実施形態について図面を参照して説明する。なお、本実施形態は、表面加工工程に用いられる砥石8の形態が第1実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。
 図12は本実施形態における砥石の構成を示す側面図である。図12に示すように、本実施形態では、砥石8を成形するロータリドレッサ(図示せず)における砥粒93(例えばダイヤモンド)の突出量を一様にして、砥石部81の粒度を不均一にしている。すなわち、本実施形態の砥石8は、砥石部81を構成する第2加工部81B及び第3加工部81Cを粒度が小さい砥石部分とし、第1加工部81Aを粒度が大きい砥石部分として交互にサンドイッチして一体化されてなる。すなわち、スライダ2の第2軌道面21Bを研削する第2加工部81B及び第3加工部81Cの粒度が第1加工部81Aの粒度より粗くなっている。なお、図12では、各加工部について異なる粒径で構成される部分を異なるハッチングで示した。
 本実施形態において、砥石の粒度は、メッシュ粒度で#30~#400程度である。粒度が大きいほど粒径は小さい。また、第2加工部81B及び第3加工部81Cの粒度は、第1加工部81Aの粒度の0.2~0.8倍程度が好ましい。
 この砥石8を用いて表面加工工程を行うことにより、直動案内装置のスライダ2の第2軌道面21Bの表面粗さを第1軌道面21Aの表面粗さよりも大きくすることができる。
(第4実施形態)
 次に、直動案内装置の製造方法の第4実施形態について図面を参照して説明する。なお、本実施形態も、表面加工工程に用いられる砥石8の形態が第3実施形態と異なるだけであるので、上述の実施形態と同じ符号を付した同様の構成については説明を省略することがある。
 図13は本実施形態における砥石の構成を示す側面図である。図12に示すように、本実施形態では、砥石8を成形するロータリドレッサ(図示せず)における砥粒93(例えばダイヤモンド)の突出量を一様にして、砥石部81の粒度を不均一にしている。すなわち、本実施形態の砥石8は、砥石部81を構成する第1加工部81A、第2加工部81B、及び第3加工部81Cのうち、砥石8の回転軸に沿う上下端の第2加工部81B(81B’)及び第3加工部81C(81C’)を粒度が小さい砥石部分とし、それらに挟まれた第1加工部81A、第2加工部81B、及び第3加工部81Cを粒度が大きい砥石部分として一体化されてなる。なお、図13では、各加工部について異なる粒径で構成される部分を異なるハッチングで示した。
 本実施形態は、上述した第3実施形態に比べて、砥石の構成が容易であるため、砥石8の製造コストを低減することができる。
 ここで、第3実施形態の変形例として、砥石の粒度を不均一にするとともに、ロータリドレッサ9の砥粒93の突出量や粒径を不均一にしてもよい。このようにすることで、第2加工部81Bの研削能力を、一層向上させることができる。
 図14は、直動案内装置の製造方法の変形例を示す側面図である。上述の実施形態では、スライダ2の軌道面21に対する表面加工(研削)工程について述べたが、これを案内レール1の軌道面11に対する表面加工(研削)工程に適用してもよい。
 具体的には、図14に示すように、案内レール1の軌道面11、11に対して、第1軌道面(図示せず)及び第2軌道面(図示せず)を転写する複数の砥石部81,81が一体に成形された砥石8を用いて、砥石部81,81を長手方向に動かして研削仕上げ(表面加工工程)をする。この研削仕上げ(表面加工工程)を行うことによって、案内レール1の第2軌道面は、第1軌道面よりも表面粗さが粗くされる。なお、この砥石8は、図4を用いて上述したように、砥石部81,81がロータリドレッサ9で正確にツルーイングされて成形される。
 このように、案内レール1の軌道面11についても、上述したスライダ2の軌道面21に表面加工工程を施した場合と同様の効果を得ることができる。
 以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである。
1 案内レール
2 スライダ
21 軌道面
21A 第1軌道面
21B 第2軌道面
3 転動通路
4 転動体
8 砥石
9 ロータリドレッサ

Claims (4)

  1.  案内レールと、スライダと、複数の転動体とを有し、
     前記案内レール及び前記スライダは、互いに対向する位置に、前記転動体の転動通路を形成する軌道面をそれぞれ有し、
     前記軌道面は、前記案内レールの長手方向に延び、
     前記転動体は、前記転動通路に配置され、
     前記転動体を介して前記案内レールに対して前記スライダが移動する直動案内装置において、
     前記スライダ及び前記案内レールの少なくとも一方の軌道面が、前記長手方向に延びる第1軌道面と、その第1軌道面の前記長手方向の両側に延びる第2軌道面とからなり、その第2軌道面の表面粗さが第1軌道面の表面粗さよりも粗くされたことを特徴とする直動案内装置。
  2.  第2軌道面の中心線平均粗さは、第1軌道面の中心線平均粗さの1.5倍~3倍である請求項1に記載の直動案内装置。
  3.  スライダ及び案内レールの少なくとも一方の長手方向に沿って延びる軌道面に表面加工を施す表面加工工程と、
     前記スライダの軌道面と、その軌道面に対向して設けられた前記案内レールの軌道面とによって形成される転動体の転動通路に複数の転動体を配置して、それらの転動体を介して前記案内レールに対して前記スライダが移動可能となるように前記案内レールと前記スライダとを組み付ける組み立て工程とを含む直動案内装置の製造方法において、
     前記表面加工工程は、前記スライダ及び案内レールの少なくとも一方の軌道面が、前記長手方向に延びる第1軌道面と、その第1軌道面の前記長手方向の両側に延びる第2軌道面とからなるように、第2軌道面の表面粗さが第1軌道面の表面粗さよりも粗くなるように同一の砥石で一度に表面加工する工程であることを特徴とする直動案内装置の製造方法。
  4.  前記砥石をロータリドレッサで成形する砥石成形工程を含み、前記ロータリドレッサにおける第2軌道面に対応する領域の砥粒の突出量又は砥粒の粒径を、第1軌道面に対応する領域の砥粒の突出量又は砥粒の粒径よりも大きくした請求項3に記載の直動案内装置の製造方法。
PCT/JP2014/005917 2013-12-02 2014-11-26 直動案内装置及びその製造方法 WO2015083347A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14866828.8A EP3059464B1 (en) 2013-12-02 2014-11-26 Linear motion guide device and production method therefor
US15/100,744 US9765814B2 (en) 2013-12-02 2014-11-26 Linear motion guide device and production method therefor
CN201480054287.4A CN105683599A (zh) 2013-12-02 2014-11-26 直动引导装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013249481A JP2015105742A (ja) 2013-12-02 2013-12-02 直動案内装置及びその製造方法
JP2013-249481 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015083347A1 true WO2015083347A1 (ja) 2015-06-11

Family

ID=53273132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005917 WO2015083347A1 (ja) 2013-12-02 2014-11-26 直動案内装置及びその製造方法

Country Status (6)

Country Link
US (1) US9765814B2 (ja)
EP (1) EP3059464B1 (ja)
JP (1) JP2015105742A (ja)
CN (1) CN105683599A (ja)
TW (1) TWI558924B (ja)
WO (1) WO2015083347A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180437A (ja) 1987-01-19 1988-07-25 Nippon Seiko Kk リニアガイド装置
JPH05220669A (ja) * 1992-02-07 1993-08-31 O S G Kk 複合研削砥石
JPH08328376A (ja) * 1995-06-01 1996-12-13 Canon Inc 画像形成装置用円筒部材およびその製造方法
JP2002130271A (ja) 2000-10-23 2002-05-09 Nsk Ltd 直動転がり案内装置
JP2006105197A (ja) * 2004-10-01 2006-04-20 Nsk Ltd リニアガイド装置
JP2008175363A (ja) 2007-01-22 2008-07-31 Nsk Ltd リニアガイド
JP2009208179A (ja) * 2008-03-03 2009-09-17 Canon Inc 弾性体ローラの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969521A (ja) * 1982-10-09 1984-04-19 Hiroshi Teramachi 同時研削型ベアリング本体及びこれを用いた無限摺動ベアリングユニツト
JPH023970U (ja) * 1988-06-17 1990-01-11
JP2900527B2 (ja) * 1990-06-06 1999-06-02 日本精工株式会社 自動調心ころ軸受
JP4298818B2 (ja) * 1998-08-18 2009-07-22 Thk株式会社 直線転がり案内装置
JP4586248B2 (ja) * 1999-12-08 2010-11-24 日本精工株式会社 直動案内レールの加工方法
DE10005719A1 (de) * 2000-02-09 2001-08-16 Schaeffler Waelzlager Ohg Linearwälzlager
US6520680B2 (en) * 2000-07-13 2003-02-18 Nsk Ltd. Linear guide
JP4154931B2 (ja) * 2001-06-21 2008-09-24 日本精工株式会社 リニアガイドのレールの素材、リニアガイドのレール、リニアガイドのレールの製造方法、及びリニアガイド
JP2003148464A (ja) * 2001-11-13 2003-05-21 Nsk Ltd リニアガイド装置
EP1310689B1 (en) * 2001-11-13 2007-06-27 NSK Ltd. Linear guide bearing apparatus
JP2004316699A (ja) * 2003-04-11 2004-11-11 Nsk Ltd 直動案内軸受装置
JP2005090615A (ja) * 2003-09-17 2005-04-07 Nsk Ltd 自動調心ころ軸受および該軸受の加工方法
JPWO2007013422A1 (ja) * 2005-07-27 2009-02-05 Thk株式会社 運動案内装置の製造方法、およびこの方法を用いて製造される運動案内装置
JP2013174339A (ja) * 2012-02-27 2013-09-05 Seiko Instruments Inc 転がり軸受、軸受装置、情報記録再生装置及び転がり軸受の製造方法
WO2015175603A1 (en) * 2014-05-15 2015-11-19 The Timken Company Bearing and method of forming a bearing
JP6365026B2 (ja) * 2014-07-03 2018-08-01 日本精工株式会社 直動案内装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180437A (ja) 1987-01-19 1988-07-25 Nippon Seiko Kk リニアガイド装置
JPH05220669A (ja) * 1992-02-07 1993-08-31 O S G Kk 複合研削砥石
JPH08328376A (ja) * 1995-06-01 1996-12-13 Canon Inc 画像形成装置用円筒部材およびその製造方法
JP2002130271A (ja) 2000-10-23 2002-05-09 Nsk Ltd 直動転がり案内装置
JP2006105197A (ja) * 2004-10-01 2006-04-20 Nsk Ltd リニアガイド装置
JP2008175363A (ja) 2007-01-22 2008-07-31 Nsk Ltd リニアガイド
JP2009208179A (ja) * 2008-03-03 2009-09-17 Canon Inc 弾性体ローラの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3059464A4

Also Published As

Publication number Publication date
CN105683599A (zh) 2016-06-15
JP2015105742A (ja) 2015-06-08
US9765814B2 (en) 2017-09-19
EP3059464A1 (en) 2016-08-24
US20160305477A1 (en) 2016-10-20
EP3059464B1 (en) 2018-11-21
EP3059464A4 (en) 2017-04-12
TWI558924B (zh) 2016-11-21
TW201537051A (zh) 2015-10-01

Similar Documents

Publication Publication Date Title
US9089947B2 (en) Spherical body polishing apparatus, method for polishing spherical body and method for manufacturing spherical member
DE102009038942B4 (de) Vorrichtung zur beidseitigen Bearbeitung von flachen Werkstücken sowie Verfahren zur gleichzeitigen beidseitigen Material abtragenden Bearbeitung mehrerer Halbleiterscheiben
CN102985219B (zh) 边缘精修设备
JP4730844B2 (ja) 複数の半導体ウェハを同時に両面研磨する方法および半導体ウェハ
KR101256310B1 (ko) 양면 연마 장치의 가공층을 트리밍하는 트리밍 방법 및 트리밍 장치
KR102192452B1 (ko) 레진 본드 지석의 연마용 홈의 제작 방법, 레진 본드 지석, 판상체의 가공 장치 및 판상체의 가공 방법
US20090298397A1 (en) Method of grinding semiconductor wafers and device for grinding both surfaces of semiconductor wafers
CN108262678B (zh) 一种硅片研磨装置及其研磨方法
CN101163564B (zh) 金刚石工具的切削分段和具有该切削分段的金刚石工具
EP3067194A3 (en) Manufacturing method of honeycomb structure, and grinding wheel
WO2015083347A1 (ja) 直動案内装置及びその製造方法
JP2015104771A5 (ja) 磁気ディスク用基板の製造方法及び研磨処理用キャリア
JP2007301700A (ja) 多層構造を有する研削砥石
JP2004130475A (ja) Cmpパッドコンディショナー
CN102179760A (zh) 一种柔性可控环形气压砂轮光整工具
CN105291271A (zh) 刻划轮及其制造方法
JP2004138145A (ja) トラクションドライブ用転動体の製造方法
CN104858759B (zh) 一种精密球的交错辊式超精密抛光装置
US11040430B2 (en) Texture pattern for abrasive tool
JP2010269381A (ja) ドレッサ
CN202045563U (zh) 一种柔性可控环形气压砂轮光整工具
DE102006062871B4 (de) Verfahren zum gleichzeitigen beidseitigen Schleifen mehrerer Halbleiterscheiben
JP2015058501A (ja) ワークの研磨装置及びワークの製造方法
JP2003148479A (ja) 転がり軸受転がり軸受の製造方法
US20190358773A1 (en) Formed rotary dresser and dressing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866828

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014866828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15100744

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE