WO2015083313A1 - 通電加熱式触媒装置及びその製造方法 - Google Patents

通電加熱式触媒装置及びその製造方法 Download PDF

Info

Publication number
WO2015083313A1
WO2015083313A1 PCT/JP2014/005129 JP2014005129W WO2015083313A1 WO 2015083313 A1 WO2015083313 A1 WO 2015083313A1 JP 2014005129 W JP2014005129 W JP 2014005129W WO 2015083313 A1 WO2015083313 A1 WO 2015083313A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
wiring member
electrically heated
wiring
outer cylinder
Prior art date
Application number
PCT/JP2014/005129
Other languages
English (en)
French (fr)
Inventor
雅夫 中山
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP14867014.4A priority Critical patent/EP3078410B1/en
Priority to US15/031,382 priority patent/US10071343B2/en
Priority to CN201480058372.8A priority patent/CN105682777B/zh
Publication of WO2015083313A1 publication Critical patent/WO2015083313A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • F01N2350/04Fitting ceramic monoliths in a metallic housing with means compensating thermal expansion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an electrically heated catalyst device and a manufacturing method thereof.
  • EHC Electrically-Heated-Catalyst
  • a surface electrode extending in the axial direction of the carrier is formed on the outer peripheral surface of a cylindrical carrier having a honeycomb structure on which a catalyst such as platinum or palladium is supported. . Then, comb-like wiring is connected to the surface electrode, and current is supplied. When this current spreads in the direction of the carrier axis in the surface electrode, the whole carrier is heated by energization. As a result, the catalyst supported on the carrier is activated, and unburned HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide), etc. in the exhaust gas passing through the carrier are purified by the catalytic reaction.
  • HC hydrocarbon
  • CO carbon monoxide
  • NOx nitrogen oxide
  • FIG. 8 is a diagram for explaining the problem of the present invention, and is a cross-sectional view showing an example of the configuration of a conventional electrically heated catalyst device.
  • the carrier 20 including the surface electrode 30 and the wiring member 4 is covered with an outer cylinder 70 via a mat 60.
  • the wiring member 4 is a plate-like member fixed to each of the pair of front surface electrodes 30 disposed to face the outer peripheral surface of the carrier 20. Since each wiring member 4 is connected to an external electrode (not shown), the wiring member 4 is led out of the outer cylinder 70 through the opening 61 of the mat 60 and the opening 71 of the outer cylinder 70.
  • the carrier 20 is covered with the outer cylinder 70 by welding the divided outer cylinders 70a and 70b as shown in FIG.
  • the flange part 72 is formed in the joining location of the outer cylinders 70a and 70b vertically divided, and the flange parts 72 are welded to each other.
  • a normal cylinder an undivided cylinder
  • the lead-out portion of the wiring member 4 interferes with the outer cylinder 70 and the carrier 20 including the wiring member 4 cannot be inserted into the outer cylinder 70.
  • the electrically heated catalyst device is A support on which a catalyst is supported; A thin plate-like wiring member fixed to the outer peripheral surface of the carrier; An outer cylinder that covers the outer peripheral surface of the carrier and has an opening on the side surface for pulling out the wiring member to the outside; A holding member that is filled between the carrier and the outer cylinder and holds the carrier; An electrically heated catalyst device in which the carrier is energized and heated through the wiring member, The lead-out portion of the wiring member drawn out through the opening is formed in a bellows shape.
  • the lead portion of the wiring member is formed in a bellows shape, when the carrier is covered with the outer cylinder, the lead portion can be folded and divided.
  • the wiring member is preferably made of an annealed material having an elongation of 15% or more. With such a configuration, the drawer portion can be easily formed in a bellows shape.
  • the outer peripheral surface of the carrier further includes a surface electrode extending in the axial direction of the carrier, the wiring member is fixed to the surface electrode, and the wiring member extends in the circumferential direction of the carrier.
  • the comb-tooth-shaped 1st wiring connected to the center part of the said axial direction in the said surface electrode, The comb-tooth shape extended in the said axial direction toward the both ends of the said surface electrode from the said 1st wiring
  • the second wiring is preferably provided. With such a configuration, even when a crack in the carrier circumferential direction occurs on the surface electrode, the current spread in the carrier axial direction is maintained by the second wiring.
  • the wiring member is fixed to the surface electrode by a plurality of button-shaped fixing layers that are provided apart from each other on the first wiring and the second wiring. With such a configuration, thermal strain (thermal stress) can be relaxed.
  • a method for producing an electrically heated catalyst device includes: A method for producing an electrically heated catalyst device in which a carrier carrying a catalyst is electrically heated through a thin wiring member, Fixing the wiring member folded in a bellows-like shape to the outer peripheral surface of the carrier; Covering the outer peripheral surface of the carrier to which the wiring member is fixed with a holding member for holding the carrier; Pressing the carrier covered with the holding member into the outer cylinder; A step of pulling out the drawer portion to the outside of the outer cylinder through an opening formed in a side surface of the outer cylinder by stretching the drawer portion folded in a bellows shape.
  • the drawer portion is pulled out to the outside of the outer cylinder by extending the drawer section folded in a bellows shape after press-fitting the carrier into the outer cylinder. Therefore, when the carrier is covered with the outer cylinder, it is not necessary to weld the divided outer cylinder, and the productivity is excellent. It is preferable to use an annealed material having an elongation of 15% or more for the wiring member. With such a configuration, the drawer portion can be easily formed in a bellows shape.
  • FIG. 1 is a perspective view of an electrically heated catalyst device 100 according to Embodiment 1.
  • FIG. It is the perspective view which removed the outer cylinder 70 in FIG.
  • FIG. 3 is a plan view seen from directly above a surface electrode 30 in FIG. 2.
  • FIG. 4 is a transverse sectional view taken along the line IV-IV in FIG. 3.
  • FIG. 3 is a transverse cross-sectional view for describing a method for manufacturing the electrically heated catalyst device 100 according to the first embodiment.
  • FIG. 3 is a transverse cross-sectional view for describing a method for manufacturing the electrically heated catalyst device 100 according to the first embodiment.
  • FIG. 6 is a longitudinal sectional view showing how the carrier 20 is press-fitted into the outer cylinder 70. It is a figure for demonstrating the subject of this invention, Comprising: It is a cross-sectional view which shows an example of a structure of the conventional electrically heated catalyst apparatus.
  • FIG. 1 is a perspective view of an electrically heated catalyst device 100 according to the first embodiment.
  • FIG. 2 is a perspective view with the outer cylinder 70 removed in FIG.
  • FIG. 3 is a plan view as viewed from directly above the surface electrode 30 in FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • the right-handed xyz coordinates shown in the drawings are for convenience in explaining the positional relationship between the components.
  • the y-axis direction in the drawing is the axial direction of the carrier 20.
  • the electrically heated catalyst device 100 is provided on an exhaust path of, for example, an automobile and purifies exhaust gas discharged from the engine.
  • the electrically heated catalyst device 100 includes a carrier 20 and an outer cylinder 70.
  • the electrically heated catalyst device 100 includes a surface electrode 30, a wiring member 40, and a fixed layer 50 on a carrier 20.
  • the electrically heated catalyst device 100 includes a mat 60 between the carrier 20 and the outer cylinder 70. That is, the electrically heated catalyst device 100 includes the carrier 20, the surface electrode 30, the wiring member 40, the fixed layer 50, the mat 60, and the outer cylinder 70.
  • FIG. 1 the mat 60 is omitted.
  • FIG. 3 shows the positional relationship of the one surface electrode 30 with the carrier 20, the wiring member 40, and the fixed layer 50, but the same applies to the other surface electrode 30.
  • the two surface electrodes 30 have a mirror-symmetrical positional relationship with respect to a plane parallel to the yz plane.
  • the carrier 20 is a porous member that supports a catalyst such as platinum or palladium. Further, since the carrier 20 itself is energized and heated, it is made of a ceramic having conductivity, specifically, for example, SiC (silicon carbide). As shown in FIG. 2, the carrier 20 has a substantially cylindrical shape and has a honeycomb structure inside. As indicated by the arrow, the exhaust gas passes through the inside of the carrier 20 in the axial direction of the carrier 20 (y-axis direction).
  • the surface electrode 30 is a pair of electrodes that are formed on the outer peripheral surface of the carrier 20 and arranged to face each other with the carrier 20 interposed therebetween.
  • the surface electrode 30 is in physical contact with and electrically connected to the carrier 20.
  • each surface electrode 30 has a rectangular planar shape, and extends in the carrier axis direction (y-axis direction).
  • the surface electrode 30 is not formed near both ends in the carrier axial direction.
  • the surface electrode 30 is electrically connected to the battery 83 via the wiring member 40, the external electrode 81, and the external wiring 82. With such a configuration, an electric current is supplied to the carrier 20 and energized and heated.
  • One of the pair of surface electrodes 30 is a positive electrode and the other is a negative electrode.
  • any surface electrode 30 may be a positive electrode or a negative electrode. That is, the direction of the current flowing through the carrier 20 is not limited.
  • the surface electrode 30 is a sprayed coating having a thickness of about 50 to 200 ⁇ m formed by plasma spraying, for example. Since the surface electrode 30 is energized in the same manner as the wiring member 40, the thermal spray coating needs to be a metal base.
  • the metal that forms the matrix of the thermal spray coating is a Ni-Cr alloy with excellent oxidation resistance at high temperatures (with a Cr content of 20-60 mass%) to withstand use at high temperatures of 800 ° C or higher. ), MCrAlY alloy (where M is at least one of Fe, Co and Ni).
  • the NiCr alloy and MCrAlY alloy may contain other alloy elements.
  • the thermal spray coating constituting the surface electrode 30 may be porous. By being porous, the function to relieve stress is enhanced.
  • the wiring member 40 is arrange
  • the entire wiring member 40 is a thin metal plate having a thickness of about 0.1 mm, for example.
  • the width of the first wiring 41 and the second wiring 42 is, for example, about 1 mm.
  • the wiring member 40 is preferably made of a heat-resistant (oxidation-resistant) alloy such as a stainless alloy, a Ni-based alloy, or a Co-based alloy in order to endure use at a high temperature of 800 ° C. or higher.
  • a heat-resistant (oxidation-resistant) alloy such as a stainless alloy, a Ni-based alloy, or a Co-based alloy in order to endure use at a high temperature of 800 ° C. or higher.
  • stainless steel alloys are preferable.
  • the plurality of first wirings 41 are extended in the carrier circumferential direction over the entire region where the surface electrode 30 is formed. Further, all the first wirings 41 are connected to the lead portion 43 on the plus side in the z-axis direction of the formation region of the surface electrode 30. On the other hand, the plurality of first wirings 41 are arranged in parallel on the surface electrode 30 at substantially equal intervals along the carrier axis direction. Further, the first wiring 41 is disposed only in the center portion of the surface electrode 30 in the carrier axial direction. In the example of FIG. 3, six first wirings 41 are provided in the center part in the axial direction of the carrier 20 on each surface electrode 30. Here, the two outermost first wirings 41 are formed thicker than the other four first wirings 41. As a matter of course, the number of the first wirings 41 is not limited to six and is appropriately determined.
  • the second wiring 42 is continuously extended from the two first wirings 41 located on the outermost side to the end of the surface electrode 30 in the carrier axis direction.
  • four second wirings 42 are extended from each of the two first wirings 41 located on the outermost side.
  • the number of the second wirings 42 is not limited to the predetermined number, and is appropriately determined.
  • Both the first wiring 41 and the second wiring 42 are fixed to the surface electrode 30 by the fixing layer 50 and are electrically connected.
  • the lead portion 43 is not fixed to the surface electrode 30 and is drawn to the outside of the outer cylinder 70.
  • drawing-out part 43 has a some bending part, and is formed so that expansion-contraction is possible. Details of the drawer 43 will be described later.
  • the second wire 42 extends from the first wire 41 disposed only at the center in the carrier axial direction of the surface electrode 30 to the end in the carrier axial direction of the surface electrode 30. Has been. Therefore, even when cracks in the carrier circumferential direction occur in the surface electrode 30 due to deterioration, the current spread in the carrier axial direction is maintained by the second wiring 42. Therefore, the vicinity of the central portion in the axial direction of the carrier 20 is not intensively heated, and thermal stress cracking due to this intensive heating can be avoided.
  • the fixed layer 50 is a button-shaped sprayed coating having a thickness of about 300 to 500 ⁇ m formed on the first wiring 41 and the second wiring 42.
  • the fixed layer 50 can be formed by disposing the wiring member 40 on the surface electrode 30, disposing the masking jig jig thereon, and performing plasma spraying.
  • the composition of the thermal spray coating may be the same as that of the surface electrode 30 described above.
  • the first wiring 41 and the second wiring 42 are fixed to the surface electrode 30 and electrically connected by the fixing layer 50.
  • the four inner first wires 41 and all the second wires 42 are fixed to the surface electrode 30 by two fixing layers 50 that are provided apart from each other.
  • the first wiring 41 and the second wiring 42 are not fixed to the surface electrode between the adjacent fixed layers 50.
  • the mat (holding member) 60 is a heat insulating member having flexibility.
  • the mat 60 is wound around substantially the entire carrier 20 as indicated by a broken line in FIG.
  • the mat 60 is filled between the carrier 20 and the outer cylinder 70 as shown in FIG.
  • the carrier 20 is fixed and held on the outer cylinder 70 by the mat 60.
  • the mat 60 also serves to seal the exhaust gas and prevent it from leaking outside the outer cylinder 70.
  • the mat 60 is provided with an opening 61 for leading the lead-out portion 43 of the wiring member 40 to the outside of the outer cylinder 70.
  • Two openings 61 are provided in the central portion in the axial direction of the carrier 20 corresponding to the positions where the respective lead portions 43 are formed. Further, as shown in FIG. 4 (in a cross-sectional view), the two openings 61 are arranged in mirror symmetry with respect to a plane parallel to the yz plane on the slightly upper side (z-axis direction plus side) from the center. Yes.
  • the shape of the opening 61 is rectangular, but is not particularly limited.
  • the shape of the opening 61 may be circular or elliptical.
  • the outer cylinder 70 is a casing for accommodating the carrier 20 and is a pipe having a diameter that is slightly larger than that of the cylindrical carrier 20. As shown in FIG. 1, the outer cylinder 70 covers substantially the entire carrier 20 via a mat 60. Here, the outer cylinder 70 is not a welded segmented outer cylinder as shown in FIG. 8, but is a normal pipe.
  • the outer cylinder 70 is preferably made of a metal such as a stainless alloy.
  • an opening 71 is provided on the side surface of the outer cylinder 70 for leading the lead-out portion 43 of the wiring member 40 to the outside of the outer cylinder 70. Therefore, as shown in FIG. 1, the opening 71 is provided at two positions in the central portion in the axial direction of the outer cylinder 70 corresponding to the position where the lead-out portion 43 is formed. Further, as shown in FIG. 4 (in a cross-sectional view), the two openings 71 are arranged in mirror symmetry with respect to a plane parallel to the yz plane on the slightly upper side (z-axis direction plus side) from the center. Yes.
  • the shape of the opening 71 is circular, but is not particularly limited.
  • the shape of the opening 71 may be an elliptical shape or a rectangular shape.
  • the carrier 20 is electrically heated between the pair of surface electrodes 30, and the catalyst supported on the carrier 20 is activated.
  • unburned HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide) and the like in the exhaust gas passing through the carrier 20 are purified by the catalytic reaction.
  • the lead-out portion 43 of the wiring member 40 has a plurality of bent portions and is formed to be extendable.
  • the drawer part 43 is formed in a bellows shape.
  • the bellows is a repeated structure of mountain folds and valley folds.
  • the bellows shape in this specification means that there is at least one mountain fold and one valley fold.
  • the lead-out portion 43 has three bent portions (two mountain folds and one valley fold when viewed from the plus side in the z-axis direction) and is formed in an M-shaped cross section.
  • the lead-out portion 43 may have two bent portions (one mountain fold and one valley fold) and may be formed in an N-shaped cross section.
  • drawing-out part 43 may have four or more bending parts.
  • the bellows-like lead-out portion 43 is in a folded state at the manufacturing stage. Therefore, the lead part 43 of the wiring member 40 and the outer cylinder 70 do not interfere with each other, and the carrier 20 provided with the wiring member 40 can be inserted into the outer cylinder 70. Then, after the carrier 20 is inserted into the outer cylinder 70, the drawer portion 43 can be easily pulled out to the outside of the outer cylinder 70. That is, in the electrically heated catalyst device 100 according to the first embodiment, when the carrier 20 is covered with the outer cylinder 70, it is not necessary to weld the divided outer cylinder, and the productivity is excellent. The details of the method for manufacturing the electrically heated catalyst device 100 according to Embodiment 1 will be described later.
  • the wiring member 40 an annealed material (elongation: 15 to 25%) obtained by annealing a cold-rolled thin plate is used as the wiring member 40. Therefore, the drawer part 43 can be easily folded into a bellows shape.
  • the elongation of the wiring member 40 is preferably at least 15% or more.
  • an insulating coating for insulating the outer cylinder 70 and the carrier 20 is applied to the entire inner peripheral surface of the outer cylinder 70.
  • the insulating coating cannot be applied to the welded portion (flange portion 72) of the outer cylinder.
  • the electrically heated catalyst device 100 according to the first embodiment does not have a welded portion, an insulating coating can be applied to the entire inner peripheral surface of the outer cylinder 70, and the insulation between the outer cylinder 70 and the carrier 20 can be applied. Can be secured.
  • 5 and 6 are cross-sectional views for explaining a method of manufacturing the electrically heated catalyst device 100 according to the first embodiment. 5 and 6 correspond to the cross-sectional view of FIG.
  • the surface electrode 30 is formed on the surface of the carrier 20 by, for example, plasma spraying.
  • the wiring member 40 in which the lead portion 43 is folded in a bellows shape is disposed on the surface electrode 30, and the fixed layer 50 is formed on the wiring member 40 by plasma spraying using a masking jig. Thereby, the wiring member 40 is fixed on the surface electrode 30.
  • a mat 60 is wound on the outer peripheral surface of the carrier 20 on which the surface electrode 30, the wiring member 40, and the fixed layer 50 are formed.
  • the mat 60 is preferably provided with an opening 61 in advance.
  • the lead-out portion 43 remains folded in a bellows shape.
  • the carrier 20 around which the mat 60 is wound is press-fitted into the outer cylinder 70.
  • FIG. 7 is a longitudinal sectional view showing a state in which the carrier 20 is press-fitted into the outer cylinder 70.
  • a ring-shaped press-fitting guide 90 is installed at the upper end (end on the positive side in the y-axis direction) of the outer cylinder 70. Since the carrier 20 around which the mat 60 is wound is inserted from the upper side of the press-fit guide 90 (plus side in the y-axis direction), the inner peripheral surface of the press-fit guide 90 has a taper shape that increases in diameter upward (y-axis plus direction). is doing.
  • a notch for fitting with the outer cylinder 70 is formed at the lower end (end on the negative side in the y-axis direction) of the inner peripheral surface of the press-fitting guide 90.
  • the axial direction (y-axis direction) of the carrier 20 coincides with the vertical direction.
  • the drawer 43 is pulled out to the outside of the outer cylinder 70 through the opening 71 by extending the drawer 43 folded in a bellows shape. Finally, the lead portion 43 is fixed to the external electrode 81 by screwing or welding.
  • the drawer portion 43 is folded in a bellows shape. It has become. Specifically, as shown in FIG. 5, the drawer 43 is housed in the opening 61 of the mat 60 in a folded state. Therefore, as shown in FIG. 6, the carrier 20 provided with the wiring member 40 can be inserted into the outer cylinder 70 without interference between the drawing portion 43 and the outer cylinder 70. Then, as shown in FIG. 4, after inserting the carrier 20 into the outer cylinder 70, the drawer portion 43 can be easily pulled out to the outside of the outer cylinder 70. That is, in the manufacturing method of the electrically heated catalyst device 100 according to the first embodiment, when the carrier 20 is covered with the outer cylinder 70, it is not necessary to weld the divided outer cylinder, and the productivity is excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 本発明の一態様に係る通電加熱式触媒装置100は、触媒が担持された担体20と、担体20の外周面に固定された薄板状の配線部材40と、担体20の外周面を覆うとともに、配線部材40を外側へ引き出すための開口部71を側面に有する外筒70と、担体20と外筒70との間に充填され、担体20を保持する保持部材60と、を備え、配線部材40を介して担体20が通電加熱される。開口部71を介して引き出された配線部材40の引出部43が、蛇腹状に形成されている。

Description

通電加熱式触媒装置及びその製造方法
 本発明は通電加熱式触媒装置及びその製造方法に関する。
 近年、自動車等のエンジンから排出される排気ガスを浄化する排気浄化装置として通電加熱式触媒(EHC:Electrically Heated Catalyst)装置が注目されている。EHCでは、エンジンの始動直後などのように排気ガスの温度が低く、触媒が活性化し難い条件下であっても、通電加熱により強制的に触媒を活性化させ、排気ガスの浄化効率を高めることができる。
 特許文献1に開示されたEHCでは、白金やパラジウム等の触媒が担持されたハニカム構造を有する円筒状の担体の外周面に、当該担体の軸方向に延設された表面電極が形成されている。そして、表面電極に櫛歯状の配線が接続され、電流が供給される。この電流が表面電極において担体軸方向に広がることにより、担体全体が通電加熱される。これにより、担体に担持された触媒が活性化され、担体を通過する排気ガス中の未燃焼HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)等が触媒反応により浄化される。
特開2012-066188号公報
 発明者は、上述の通電加熱式触媒装置に関し、以下の課題を見出した。
 図8は本発明の課題を説明するための図であって、従来の通電加熱式触媒装置の構成の一例を示す横断面図である。図8に示すように、この通電加熱式触媒装置では、表面電極30及び配線部材4を備えた担体20が、マット60を介して外筒70に覆われている。ここで、配線部材4は、担体20の外周面に対向配置された一対の表面電極30のそれぞれに固定された板状の部材である。それぞれの配線部材4は、外部電極(不図示)と接続されるため、マット60の開口部61と外筒70の開口部71とを介して、外筒70の外側へ導出されている。
 このように、通電加熱式触媒装置では、表面電極30に固定された配線部材4を、外筒70の側面に形成された開口部71を介して外筒70の外側へ導出する必要がある。そこで、従来の通電加熱式触媒装置では、図8に示すように、分割された外筒70a、70bを溶接することにより、担体20を外筒70で覆っていた。図8の例では、縦割りされた外筒70a、70bの接合箇所にそれぞれフランジ部72が形成されており、フランジ部72同士が溶接されている。
 換言すると、従来の通電加熱式触媒装置では、通常の筒(分割されていない筒)を外筒70として用いることができなかった。配線部材4の引出部と外筒70とが干渉してしまい、配線部材4を備えた担体20を外筒70に挿入することができないからである。
 以上に説明した通り、従来の通電加熱式触媒装置では、担体を外筒で覆う際、分割された外筒を溶接していたため、生産性に劣るという問題があった。
 本発明は、上記を鑑みなされたものであって、生産性に優れる通電加熱式触媒装置を提供することを目的とする。
 本発明の一態様に係る通電加熱式触媒装置は、
 触媒が担持された担体と、
 前記担体の外周面に固定された薄板状の配線部材と、
 前記担体の外周面を覆うとともに、前記配線部材を外側へ引き出すための開口部を側面に有する外筒と、
 前記担体と前記外筒との間に充填され、前記担体を保持する保持部材と、を備え、
 前記配線部材を介して前記担体が通電加熱される、通電加熱式触媒装置であって、
 前記開口部を介して引き出された前記配線部材の引出部が、蛇腹状に形成されたものである。
 本発明の一態様に係る通電加熱式触媒装置では、配線部材の引出部が蛇腹状に形成されているため、担体を外筒で覆う際、引出部を折り畳んでおくことができ、分割された外筒を溶接する必要がない。そのため、生産性に優れている。
 前記配線部材が、伸びが15%以上の焼鈍材からなることが好ましい。このような構成により、前記引出部を容易に蛇腹状に形成することができる。
 前記担体の外周面において、前記担体の軸方向に延設された表面電極を更に備え、前記配線部材が前記表面電極に固定されており、前記配線部材は、前記担体の周方向に延設され、かつ、前記表面電極における前記軸方向の中央部に接続された櫛歯状の第1配線と、前記第1配線から前記表面電極の両端へ向かって前記軸方向に延設された櫛歯状の第2配線と、を備えることが好ましい。このような構成により、表面電極に担体円周方向のクラックが発生した場合であっても、第2配線により担体軸方向への電流の広がりが保持される。そのため、担体の軸方向中央部近傍が集中的に加熱されることがなく、この集中加熱による熱応力割れを回避することができる。
 また、前記第1配線及び前記第2配線上において互いに離間して設けられたボタン形状の複数の固定層により、前記配線部材が前記表面電極に固定されていることが好ましい。このような構成により、熱ひずみ(熱応力)を緩和することができる。
 本発明の一態様に係る通電加熱式触媒装置の製造方法は、
 薄板状の配線部材を介して、触媒が担持された担体が通電加熱される通電加熱式触媒装置の製造方法であって、
 引出部が蛇腹状に折り畳まれた前記配線部材を、前記担体の外周面に固定する工程と、
 前記配線部材が固定された前記担体の外周面を、前記担体を保持するための保持部材により覆う工程と、
 前記保持部材により覆われた担体を外筒に圧入する工程と、
 蛇腹状に折り畳まれた前記引出部を引き伸ばすことにより、前記外筒の側面に形成された開口部を介して、前記外筒の外側に前記引出部を引き出す工程と、を備えるものである。
 本発明の一態様に係る通電加熱式触媒装置の製造方法では、担体を外筒に圧入した後に蛇腹状に折り畳まれた引出部を引き伸ばすことにより、外筒の外側に引出部を引き出す。そのため、担体を外筒で覆う際、分割された外筒を溶接する必要がなく、生産性に優れている。
 前記配線部材に、伸びが15%以上の焼鈍材を用いることが好ましい。このような構成により、前記引出部を容易に蛇腹状に形成することができる。
 本発明により、生産性に優れる通電加熱式触媒装置を提供することができる。
実施の形態1に係る通電加熱式触媒装置100の斜視図である。 図1において外筒70を取り除いた斜視図である。 図2において表面電極30の真上から見た平面図である。 図3におけるIV-IV切断線による横断面図である。 実施の形態1に係る通電加熱式触媒装置100の製造方法について説明するための横断面図である。 実施の形態1に係る通電加熱式触媒装置100の製造方法について説明するための横断面図である。 担体20を外筒70に圧入する様子を示す縦断面図である。 本発明の課題を説明するための図であって、従来の通電加熱式触媒装置の構成の一例を示す横断面図である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
(実施の形態1)
 まず、図1~4を参照して、実施の形態1に係る通電加熱式触媒装置について説明する。図1は、実施の形態1に係る通電加熱式触媒装置100の斜視図である。図2は、図1において外筒70を取り除いた斜視図である。図3は、図2において表面電極30の真上(x軸方向プラス側)から見た平面図である。図4は、図3におけるIV-IV切断線による横断面図である。
 なお、当然のことながら、図面に示した右手系xyz座標は、構成要素の位置関係を説明するための便宜的なものである。図面におけるy軸方向が担体20の軸方向である。ここで、通電加熱式触媒装置100を使用する際には、図4に示すようにz軸方向プラス向きを鉛直方向上向きに一致させることが好ましい。
 通電加熱式触媒装置100は、例えば自動車等の排気経路上に設けられ、エンジンから排出される排気ガスを浄化する。図1に示すように、通電加熱式触媒装置100は、担体20及び外筒70を備えている。また、図2に示すように、通電加熱式触媒装置100は、担体20上に、表面電極30、配線部材40、固定層50を備えている。さらに、図3、4に示すように、通電加熱式触媒装置100は、担体20と外筒70との間にマット60を備えている。すなわち、通電加熱式触媒装置100は、担体20、表面電極30、配線部材40、固定層50、マット60、外筒70を備えている。
 なお、図1では、マット60は省略されている。また、図3では一方の表面電極30について、担体20、配線部材40、固定層50との位置関係が示されているが、他方の表面電極30についても同様である。具体的には、図2、4に示すように、2つの表面電極30は、yz平面に平行な面に関して鏡面対称な位置関係にある。
 担体20は、白金やパラジウム等の触媒を担持する多孔質部材である。また、担体20自体は、通電加熱されるため、導電性を有するセラミックス、具体的には例えばSiC(炭化珪素)からなる。図2に示すように、担体20は、外形が略円柱形状であって、内部はハニカム構造を有している。矢印で示すように、排気ガスが担体20の内部を担体20の軸方向(y軸方向)に通過する。
 表面電極30は、図2に示すように、担体20の外周面に形成され、かつ、担体20を介して互いに対向配置された一対の電極である。表面電極30は、担体20と物理的に接触しているとともに電気的に接続されている。また、図3に示すように、それぞれの表面電極30は、矩形状の平面形状を有し、担体軸方向(y軸方向)に延設されている。なお、表面電極30は、担体軸方向の両端近傍には形成されていない。さらに、図4に示すように、表面電極30は、配線部材40、外部電極81、外部配線82を介して、バッテリ83に電気的に接続されている。このような構成により、担体20に電流が供給され、通電加熱される。なお、一対の表面電極30のうちの一方がプラス極、他方がマイナス極であるが、いずれの表面電極30がプラス極あるいはマイナス極になってもよい。つまり、担体20を流れる電流の向きは限定されない。
 また、表面電極30は、例えばプラズマ溶射により形成された厚さ50~200μm程度の溶射皮膜である。表面電極30は、配線部材40と同様に通電するため、この溶射皮膜は金属ベースである必要がある。溶射皮膜のマトリクスを構成する金属としては、800℃以上の高温下での使用に耐えるため、高温下での耐酸化性に優れたNi-Cr合金(但し、Cr含有量は20~60質量%)、MCrAlY合金(但し、MはFe、Co、Niのうち少なくとも一種)が好ましい。ここで、上記NiCr合金、MCrAlY合金は、他の合金元素を含んでいてもよい。表面電極30を構成する溶射皮膜は、多孔質であってもよい。多孔質であることにより、応力を緩和する機能が高まる。
 配線部材40は、図3に示すように、それぞれの表面電極30の上に配置されている。配線部材40は、図3に示すように、表面電極30上において担体円周方向に延設された櫛歯状の第1配線41、表面電極30上において担体軸方向に延設された櫛歯状の第2配線42、外部電極81(図4)へ接続される引出部43を有している。配線部材40は、全体が例えば厚さ0.1mm程度の金属薄板である。第1配線41及び第2配線42の幅は、例えば1mm程度である。また、配線部材40は、800℃以上の高温下での使用に耐えるため、例えばステンレス系合金、Ni基系合金、Co基系合金などの耐熱(耐酸化)合金からなることが好ましい。電気伝導度、耐熱性、高温下における耐酸化性、排気ガス雰囲気における耐腐食性等の性能やコストを考慮すると、ステンレス系合金が好ましい。
 図3に示すように、複数の第1配線41は、表面電極30の形成領域の全体に亘って担体円周方向に延設されている。さらに、全ての第1配線41は、表面電極30の形成領域のz軸方向プラス側において引出部43に接続されている。他方、複数の第1配線41は、担体軸方向に沿って、表面電極30上に略等間隔で並設されている。また、第1配線41は、表面電極30の担体軸方向中央部のみに配置されている。図3の例では、それぞれの表面電極30上の担体20の軸方向中央部に6本ずつの第1配線41が設けられている。ここで、最も外側に位置する2本の第1配線41は、他の4本の第1配線41に比べ、太く形成されている。なお、当然のことながら、第1配線41の本数は6本に限定されるものではなく、適宜決定される。
 第2配線42は、最も外側に位置する2本の第1配線41から連続して担体軸方向に表面電極30の端部まで延設されている。図3の例では、最も外側に位置する2本の第1配線41のそれぞれから4本の第2配線42が延設されている。なお、当然のことながら、第2配線42の本数も所定の本数に限定されるものではなく、適宜決定される。
 第1配線41及び第2配線42は、いずれも固定層50により表面電極30に固定されるととともに電気的に接続されている。
 一方、引出部43は、表面電極30に固定されておらず、外筒70の外側へ引き出されている。ここで、引出部43は、複数の屈曲部を有し、伸縮可能に形成されている。引出部43の詳細については後述する。
 本実施の形態に係る通電加熱式触媒装置100では、表面電極30の担体軸方向中央部のみに配置された第1配線41から第2配線42が表面電極30の担体軸方向端部へ延設されている。そのため、劣化により表面電極30に担体円周方向のクラックが発生した場合であっても、第2配線42により担体軸方向への電流の広がりが保持される。そのため、担体20の軸方向中央部近傍が集中的に加熱されることがなく、この集中加熱による熱応力割れを回避することができる。
 固定層50は、第1配線41及び第2配線42上に形成された厚さ300~500μm程度のボタン形状の溶射皮膜である。表面電極30上に配線部材40を配置し、その上にマスキングジグ治具を配置し、プラズマ溶射を行うことにより、固定層50を形成することができる。溶射皮膜の組成などについては、上述した表面電極30と同様にすればよい。
 固定層50により、第1配線41及び第2配線42が表面電極30に固定されるとともに電気的に接続される。図3の例では、互いに離間して設けられた2つの固定層50により、内側4本の第1配線41及び全ての第2配線42が、それぞれ表面電極30に固定されている。換言すると、隣接する固定層50の間においては、第1配線41及び第2配線42は表面電極に固定されていない。このような構成により、金属をベースとする溶射皮膜である表面電極30及び固定層50と、セラミックスからなる担体20との線膨張係数差に基づく熱ひずみ(熱応力)を緩和することができる。つまり、個々の固定層50を極力小さい形状とし、点在させることにより、上記熱ひずみ(熱応力)を緩和している。なお、配置する固定層50の個数及び間隔は適宜決定すればよい。
 マット(保持部材)60は、可撓性を有する断熱部材である。マット60は、図3に破線で示すように、担体20の略全体に巻き付けられている。そして、マット60は、図4に示すように、担体20と外筒70との間に充填されている。マット60により、担体20が外筒70に固定・保持される。また、マット60は、排気ガスをシールし、外筒70の外部へ漏らさない役割も担っている。
 マット60には、図3、4に示すように、配線部材40の引出部43を外筒70の外側へ導出するための開口部61が設けられている。開口部61は、それぞれの引出部43の形成位置に対応して、担体20の軸方向中央部に2箇所設けられている。また、図4に示すように(横断面視では)、2つの開口部61は、中心部よりもやや上側(z軸方向プラス側)において、yz平面に平行な面に関して鏡面対称に配置されている。なお、図面の例では、開口部61の形状は矩形状であるが、特に限定されるものではない。例えば、開口部61の形状は、円形状や楕円形状などであってもよい。
 外筒70は、担体20を収納するための筐体であって、円柱状の担体20よりも一回り大きい直径を有するパイプである。図1に示すように、外筒70はマット60を介して担体20の略全体を覆っている。ここで、外筒70は、図8に示したような分割された外筒を溶接したものではなく、通常のパイプである。外筒70は、例えばステンレス系合金などの金属からなることが好ましい。
 外筒70の側面には、図1、4に示すように、配線部材40の引出部43を外筒70の外側へ導出するための開口部71が設けられている。そのため、図1に示すように、開口部71は、引出部43の形成位置に対応して、外筒70の軸方向中央部に2箇所設けられている。また、図4に示すように(横断面視では)、2つの開口部71は、中心部よりもやや上側(z軸方向プラス側)において、yz平面に平行な面に関して鏡面対称に配置されている。なお、図面の例では、開口部71の形状は円形状であるが、特に限定されるものではない。例えば、開口部71の形状は、楕円形状や矩形状などであってもよい。
 上記構成により、通電加熱式触媒装置100では、一対の表面電極30間において担体20が通電加熱され、担体20に担持された触媒が活性化される。これにより、担体20を通過する排気ガス中の未燃焼HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)等が触媒反応により浄化される。
 実施の形態1に係る通電加熱式触媒装置100では、図4などに示すように配線部材40の引出部43が複数の屈曲部を有し、伸縮可能に形成されている点に1つの特徴を有している。換言すると、引出部43が蛇腹状に形成されている。ここで、蛇腹とは、山折りと谷折りとの繰り返し構造である。本明細書における蛇腹状とは、山折りと谷折りとが、少なくとも1つずつあることを意味する。図面の例では、例えば図4に示すように、引出部43が3つの屈曲部(z軸方向プラス側から見て2つの山折りと1つの谷折り)を有し、断面M字状に形成されている。引出部43が2つの屈曲部(1つの山折りと1つの谷折り)を有し、断面N字状に形成されていてもよい。さらに、引出部43が4つ以上の屈曲部を有していてもよい。
 蛇腹状の引出部43は、製造段階では折り畳まれた状態になっている。そのため、配線部材40の引出部43と外筒70とが干渉することがなく、配線部材40を備えた担体20を外筒70に挿入することができる。そして、担体20を外筒70に挿入した後、引出部43を外筒70の外側へ容易に引き出すことができる。すなわち、実施の形態1に係る通電加熱式触媒装置100では、担体20を外筒70で覆う際、分割された外筒を溶接する必要がなく、生産性に優れている。なお、実施の形態1に係る通電加熱式触媒装置100の製造方法の詳細については後述する。
 ここで、図8に示した従来の通電加熱式触媒装置では、配線部材4として、冷間圧延された薄板すなわち加工材(伸び1%程度)を使用していた。そのため、配線部材4の引出部を、製造段階において蛇腹状に折り畳むことが難しかった。これに対し、実施の形態1に係る通電加熱式触媒装置100では、配線部材40として、冷間圧延された薄板を焼鈍した焼鈍材(伸び15~25%)を使用している。そのため、引出部43を容易に蛇腹状に折り畳むことができる。ここで、配線部材40の伸びは、少なくとも15%以上であることが好ましい。
 さらに、図示されていないが、外筒70の内周面全体には外筒70と担体20とを絶縁するための絶縁コーティングが施されている。しかしながら、図8に示した従来の通電加熱式触媒装置では、外筒70の溶接部(フランジ部72)には絶縁コーティングを施すことができない。使用により、この溶接部に排気ガス中に含まれる煤が溜まると、外筒70と担体20との絶縁が確保できないという問題があった。これに対し、実施の形態1に係る通電加熱式触媒装置100には溶接部がないため、外筒70の内周面全体に絶縁コーティングを施すことができ、外筒70と担体20との絶縁を確保することができる。
 次に、図5、6を参照して、実施の形態1に係る通電加熱式触媒装置100の製造方法について説明する。図5、6は、実施の形態1に係る通電加熱式触媒装置100の製造方法について説明するための横断面図である。図5、6は図4の横断面図に対応している。
 まず、図5に示すように、担体20の表面に、例えばプラズマ溶射により表面電極30を形成する。
 次に、表面電極30上に、引出部43が蛇腹状に折り畳まれた配線部材40を配置し、マスキングジグ治具を用いたプラズマ溶射により、配線部材40上に固定層50を形成する。これにより、表面電極30上に配線部材40が固定される。
 次に、表面電極30、配線部材40、固定層50が形成された担体20の外周面上に、図5に示すように、マット60を巻き付ける。マット60には予め開口部61が設けられていることが好ましい。ここで、図5に示すように、引出部43は蛇腹状に折り畳まれたままである。
 次に、図6に示すように、マット60が巻き付けられた担体20を外筒70に圧入する。
 ここで、図7は、担体20を外筒70に圧入する様子を示す縦断面図である。図7に示すように、外筒70の上端(y軸方向プラス側の端部)にリング状の圧入ガイド90が設置されている。圧入ガイド90の上側(y軸方向プラス側)からマット60が巻き付けられた担体20を挿入するため、圧入ガイド90の内周面は上方向(y軸プラス方向)に拡径するテーパー形状を有している。圧入ガイド90の内周面の下端(y軸方向マイナス側の端部)には、外筒70と嵌合するための切欠部が形成されている。なお、図7に示すように、担体20を外筒70に圧入する際には、担体20の軸方向(y軸方向)を鉛直方向に一致させることが好ましい。
 次に、蛇腹状に折り畳まれた引出部43を引き伸ばすことにより、開口部71を介して外筒70の外側へ引出部43を引き出す。
 最後に、ネジ止めや溶接などにより、引出部43を外部電極81に固定する。
 以上の工程により、図4に示すように、実施の形態1に係る通電加熱式触媒装置100を得ることができる。
 上述のように、実施の形態1に係る通電加熱式触媒装置100の製造方法では、マット60が巻き付けられた担体20を外筒70に圧入する際、引出部43が蛇腹状に折り畳まれた状態になっている。具体的には、図5に示すように、マット60の開口部61に引出部43が折り畳まれた状態で収納されている。そのため、図6に示すように、引出部43と外筒70とが干渉することがなく、配線部材40を備えた担体20を外筒70に挿入することができる。そして、図4に示すように、担体20を外筒70に挿入した後、引出部43を外筒70の外側へ容易に引き出すことができる。すなわち、実施の形態1に係る通電加熱式触媒装置100の製造方法では、担体20を外筒70で覆う際、分割された外筒を溶接する必要がなく、生産性に優れている。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 この出願は、2013年12月4日に出願された日本出願特願2013-251128を基礎とする優先権を主張し、その開示の全てをここに取り込む。
20 担体
30 表面電極
40 配線
41 第1配線
42 第2配線
43 引出部
50 固定層
60 マット
61 開口部
70 外筒
71 開口部
81 外部電極
82 外部配線
83 バッテリ
90 圧入ガイド
100 通電加熱式触媒装置

Claims (6)

  1.  触媒が担持された担体と、
     前記担体の外周面に固定された薄板状の配線部材と、
     前記担体の外周面を覆うとともに、前記配線部材を外側へ引き出すための開口部を側面に有する外筒と、
     前記担体と前記外筒との間に充填され、前記担体を保持する保持部材と、を備え、
     前記配線部材を介して前記担体が通電加熱される、通電加熱式触媒装置であって、
     前記開口部を介して引き出された前記配線部材の引出部が、蛇腹状に形成された、
    通電加熱式触媒装置。
  2.  前記配線部材が、伸びが15%以上の焼鈍材からなる、
    請求項1に記載の通電加熱式触媒装置。
  3.  前記担体の外周面において、前記担体の軸方向に延設された表面電極を更に備え、
     前記配線部材が前記表面電極に固定されており、
     前記配線部材は、
     前記担体の周方向に延設され、かつ、前記表面電極における前記軸方向の中央部に接続された櫛歯状の第1配線と、
     前記第1配線から前記表面電極の両端へ向かって前記軸方向に延設された櫛歯状の第2配線と、を備える、
    請求項1又は2に記載の通電加熱式触媒装置。
  4.  前記第1配線及び前記第2配線上において互いに離間して設けられたボタン形状の複数の固定層により、前記配線部材が前記表面電極に固定されている、
    請求項3に記載の通電加熱式触媒装置。
  5.  薄板状の配線部材を介して、触媒が担持された担体が通電加熱される通電加熱式触媒装置の製造方法であって、
     引出部が蛇腹状に折り畳まれた前記配線部材を、前記担体の外周面に固定する工程と、
     前記配線部材が固定された前記担体の外周面を、前記担体を保持するための保持部材により覆う工程と、
     前記保持部材により覆われた担体を外筒に圧入する工程と、
     蛇腹状に折り畳まれた前記引出部を引き伸ばすことにより、前記外筒の側面に形成された開口部を介して、前記外筒の外側に前記引出部を引き出す工程と、を備える、
    通電加熱式触媒装置の製造方法。
  6.  前記配線部材に、伸びが15%以上の焼鈍材を用いる、
    請求項5に記載の通電加熱式触媒装置の製造方法。
PCT/JP2014/005129 2013-12-04 2014-10-08 通電加熱式触媒装置及びその製造方法 WO2015083313A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14867014.4A EP3078410B1 (en) 2013-12-04 2014-10-08 Method for producing an electrically heated catalyst device
US15/031,382 US10071343B2 (en) 2013-12-04 2014-10-08 Electrically heated catalyst device and its manufacturing method
CN201480058372.8A CN105682777B (zh) 2013-12-04 2014-10-08 通电加热式催化装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251128A JP5910620B2 (ja) 2013-12-04 2013-12-04 通電加熱式触媒装置及びその製造方法
JP2013-251128 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083313A1 true WO2015083313A1 (ja) 2015-06-11

Family

ID=53273102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005129 WO2015083313A1 (ja) 2013-12-04 2014-10-08 通電加熱式触媒装置及びその製造方法

Country Status (5)

Country Link
US (1) US10071343B2 (ja)
EP (1) EP3078410B1 (ja)
JP (1) JP5910620B2 (ja)
CN (1) CN105682777B (ja)
WO (1) WO2015083313A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074033A (ja) * 2017-10-17 2019-05-16 トヨタ自動車株式会社 電気加熱式触媒
DE102018127092A1 (de) * 2018-10-30 2020-04-30 Faurecia Emissions Control Technologies, Germany Gmbh Katalysatorkörper, elektrisch beheizbarer Katalysator und Kraftfahrzeug mit einem Katalysator
JP7082597B2 (ja) * 2019-08-30 2022-06-08 日本碍子株式会社 電気加熱式担体、排気ガス浄化装置及び排気ガス浄化装置の製造方法
JP7182530B2 (ja) * 2019-09-24 2022-12-02 日本碍子株式会社 電気加熱式担体及び排気ガス浄化装置
JP7279609B2 (ja) * 2019-10-09 2023-05-23 トヨタ自動車株式会社 電気加熱式触媒装置
JP7448632B2 (ja) 2020-03-05 2024-03-12 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式担体
JP7347334B2 (ja) * 2020-05-29 2023-09-20 トヨタ自動車株式会社 電気加熱式触媒装置
JP7251521B2 (ja) * 2020-06-02 2023-04-04 トヨタ自動車株式会社 電気加熱式触媒装置
JP7327289B2 (ja) * 2020-06-04 2023-08-16 トヨタ自動車株式会社 電気加熱式触媒装置
CN114618515B (zh) * 2022-03-16 2023-11-14 华中科技大学 一种低温制氢催化剂及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326526A (ja) * 1995-05-30 1996-12-10 Nippon Steel Corp 電気加熱式金属触媒担体
JP2002231564A (ja) * 2001-01-31 2002-08-16 Tdk Corp セラミックコンデンサ
JP2007141684A (ja) * 2005-11-18 2007-06-07 Kojima Press Co Ltd 接点装置
JP2011125767A (ja) * 2009-12-15 2011-06-30 Toyota Motor Corp 触媒コンバータ装置
JP2012066188A (ja) 2010-09-22 2012-04-05 Toyota Motor Corp 電気加熱型触媒
JP2012112302A (ja) * 2010-11-24 2012-06-14 Toyota Motor Corp 触媒コンバータ装置
JP2013002331A (ja) * 2011-06-15 2013-01-07 Toyota Motor Corp 内燃機関の排気浄化システム
JP2013136997A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 通電加熱式触媒装置及びその製造方法
WO2013140845A1 (ja) * 2012-03-22 2013-09-26 日本碍子株式会社 ヒーター

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029288B2 (en) * 2003-03-24 2006-04-18 Che-Yu Li Electrical contact and connector and method of manufacture
EP2591855B1 (en) * 2010-11-11 2016-02-10 Toyota Jidosha Kabushiki Kaisha Electrically heated catalyst
EP2657477B1 (en) 2010-12-21 2016-09-14 Toyota Jidosha Kabushiki Kaisha Catalytic converter
JP2013181413A (ja) * 2012-02-29 2013-09-12 Toyota Motor Corp 触媒コンバータ装置
JP5761161B2 (ja) 2012-11-30 2015-08-12 トヨタ自動車株式会社 通電加熱式触媒装置及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326526A (ja) * 1995-05-30 1996-12-10 Nippon Steel Corp 電気加熱式金属触媒担体
JP2002231564A (ja) * 2001-01-31 2002-08-16 Tdk Corp セラミックコンデンサ
JP2007141684A (ja) * 2005-11-18 2007-06-07 Kojima Press Co Ltd 接点装置
JP2011125767A (ja) * 2009-12-15 2011-06-30 Toyota Motor Corp 触媒コンバータ装置
JP2012066188A (ja) 2010-09-22 2012-04-05 Toyota Motor Corp 電気加熱型触媒
JP2012112302A (ja) * 2010-11-24 2012-06-14 Toyota Motor Corp 触媒コンバータ装置
JP2013002331A (ja) * 2011-06-15 2013-01-07 Toyota Motor Corp 内燃機関の排気浄化システム
JP2013136997A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 通電加熱式触媒装置及びその製造方法
WO2013140845A1 (ja) * 2012-03-22 2013-09-26 日本碍子株式会社 ヒーター

Also Published As

Publication number Publication date
EP3078410B1 (en) 2019-02-27
US20160271561A1 (en) 2016-09-22
EP3078410A1 (en) 2016-10-12
US10071343B2 (en) 2018-09-11
EP3078410A4 (en) 2016-11-02
CN105682777B (zh) 2017-09-01
CN105682777A (zh) 2016-06-15
JP2015107452A (ja) 2015-06-11
JP5910620B2 (ja) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5910620B2 (ja) 通電加熱式触媒装置及びその製造方法
JP6052250B2 (ja) 通電加熱式触媒装置
JP5761161B2 (ja) 通電加熱式触媒装置及びその製造方法
US5174968A (en) Structure for electrically heatable catalytic core
US9295944B2 (en) Electrically heated catalyst device and its manufacturing method
JP5967127B2 (ja) 通電加熱式触媒装置及びその製造方法
JPH04284852A (ja) 触媒コンバーター用触媒コア
JPH05212293A (ja) 電気加熱可能な触媒的変換器用コア
JP5967128B2 (ja) 通電加熱式触媒装置及びその製造方法
JP5783037B2 (ja) 通電加熱式触媒装置及びその製造方法
JP6113164B2 (ja) 排ガス処理装置
JP5765221B2 (ja) 通電加熱式触媒装置及びその製造方法
JP6079716B2 (ja) 通電加熱式触媒装置
JP6036716B2 (ja) 触媒コンバータ装置
JP5664517B2 (ja) 通電加熱式触媒装置
JP2015169167A (ja) 通電加熱式触媒装置及びその製造方法
JP2016030238A (ja) 通電加熱式触媒装置
JP2016037867A (ja) 通電加熱式触媒装置
JP3208020B2 (ja) 電気加熱式触媒装置用金属担体
JP5691773B2 (ja) 触媒コンバータ装置
JP2013136967A (ja) 通電加熱式触媒装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15031382

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014867014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867014

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE