WO2015083275A1 - 軌跡測定装置、数値制御装置および軌跡測定方法 - Google Patents

軌跡測定装置、数値制御装置および軌跡測定方法 Download PDF

Info

Publication number
WO2015083275A1
WO2015083275A1 PCT/JP2013/082742 JP2013082742W WO2015083275A1 WO 2015083275 A1 WO2015083275 A1 WO 2015083275A1 JP 2013082742 W JP2013082742 W JP 2013082742W WO 2015083275 A1 WO2015083275 A1 WO 2015083275A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
trajectory
command
axes
movable
Prior art date
Application number
PCT/JP2013/082742
Other languages
English (en)
French (fr)
Inventor
弘太朗 長岡
智哉 藤田
正啓 小澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/082742 priority Critical patent/WO2015083275A1/ja
Priority to CN201380081410.7A priority patent/CN105814502B/zh
Priority to JP2014531027A priority patent/JP5738490B1/ja
Priority to US15/035,503 priority patent/US9921568B2/en
Publication of WO2015083275A1 publication Critical patent/WO2015083275A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34015Axis controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42342Path, trajectory tracking control

Definitions

  • the present invention relates to a trajectory measuring device, a numerical control device, and a trajectory measuring method for measuring a motion trajectory when a command is given to an axial feed drive system such as a machine.
  • Machines such as machine tools (for example, machining centers and laser processing machines) control the position of the processing head and the like by driving a servo motor. At that time, the machining head is controlled so that the path between the start point and the end point of the movement accurately follows the commanded path.
  • a shaft driven by the servo motor is called a feed shaft, and a movement trajectory having a two-dimensional shape or a three-dimensional shape is realized by using a plurality of feed shafts.
  • position detectors such as encoders and linear scales are attached to each feed shaft, and feedback control is performed so that the difference between the position detected by the position detector (feedback position) and the command position becomes small. Done. Thereby, the machining head moves while following the given command path.
  • the trajectory of the feedback position is preferably coincident with the trajectory of the command position (command trajectory), but actually, a trajectory error occurs between the feedback trajectory and the command trajectory due to various factors.
  • the measured data of each axis is displayed as it is. Therefore, when there are three or more axes of the machine, in order to evaluate a trajectory such as a command shape on a plurality of planes, for each measurement plane, The machining program had to be executed. For this reason, it took a long time for the measurement.
  • the present invention has been made in view of the above, and an object thereof is to obtain a trajectory measuring device, a numerical control device, and a trajectory measuring method capable of efficiently measuring a trajectory with respect to a machine having three or more feed axes. To do.
  • the present invention provides a trajectory measuring apparatus for measuring a moving trajectory of a moving object of a machine having three or more moving axes with respect to the moving object.
  • a command condition for the moving object including a phase difference between the axes, a command signal to the movable shaft generated based on the phase difference between the axes, and a position of the movable shaft to follow the command signal.
  • the feedback signal indicating the position of the movable axis when the movable axis is feedback-controlled, and the movement trajectory in a plane having two movable axes as the coordinate axes is determined for each plane.
  • a trajectory calculation unit for calculating is provided.
  • FIG. 1 is a block diagram showing an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a triaxial processing machine.
  • FIG. 3 is a block diagram showing a configuration of the trajectory measuring apparatus according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration of an X-axis feedback control system.
  • FIG. 5 is a diagram showing temporal changes in the X-axis command position and the feedback position in the first embodiment.
  • FIG. 6 is a diagram illustrating temporal changes in the Y-axis command position and the feedback position in the first embodiment.
  • FIG. 7 is a diagram illustrating temporal changes in the Z-axis command position and the feedback position in the first embodiment.
  • FIG. 8 is a diagram showing a change in position of the machining head in the three-dimensional space in the first embodiment.
  • FIG. 9 is a diagram illustrating a feedback position locus on the XY plane in the first embodiment.
  • FIG. 10 is a diagram illustrating a feedback position locus on the YZ plane in the first embodiment.
  • FIG. 11 is a diagram showing a feedback position locus on the XZ plane in the first embodiment.
  • FIG. 12 is a diagram illustrating temporal changes in the X-axis command position and the feedback position in the second embodiment.
  • FIG. 13 is a diagram illustrating temporal changes in the Y-axis command position and the feedback position in the second embodiment.
  • FIG. 14 is a diagram illustrating temporal changes in the Z-axis command position and the feedback position in the second embodiment.
  • FIG. 15 is a diagram showing a change in the position of the machining head in the three-dimensional space in the second embodiment.
  • FIG. 16 is a diagram illustrating a feedback position locus on the XY plane in the second embodiment.
  • FIG. 17 is a diagram showing a feedback position locus on the YZ plane in the second embodiment.
  • FIG. 18 is a diagram illustrating a feedback position locus on the XZ plane in the second embodiment.
  • FIG. 1 is a block diagram showing an embodiment of the present invention.
  • the machine tool 1 is, for example, a laser processing machine.
  • the machine tool 1 includes a trajectory measuring device 10, an NC device 50, servo control units 20 to 22, a mechanical system 30, and a moving object 40.
  • the moving object 40 is a processing head or a processing table.
  • the trajectory measurement device 10 is a computer or the like that measures the trajectory of the position where the moving object 40 moves.
  • the trajectory measuring device 10 is connected to the NC device 50, and calculates the trajectory of the moving object 40 using information acquired from the NC device 50 (a feedback signal S2 described later).
  • An NC (Numerical Control) device 50 is a controller on the upper side of the servo control units 20 to 22, and is connected to the trajectory measurement device 10 and the servo control units 20 to 22.
  • the NC device 50 receives a motion command for each axis (S1X, S1Y, S1Z described later) from the command signal S1. And output to the servo control units 20 to 22 for the X, Y, and Z axes, respectively.
  • the NC device 50 controls the servo control units 20 to 22 of each axis using the command signal S1 from the trajectory measuring device 10.
  • the feedback signals S2X, S2Y, S2Z are input from the servo control unit 20, the NC device 50 outputs all feedback signals S2 obtained by collecting the feedback signals of the respective axes to the trajectory measuring device 10.
  • the servo control unit (amplifier) 20 is a device that feedback-controls a motor (a motor 32 described later) so that the position of the X axis follows the command signal S1X.
  • the servo control unit 20 controls the mechanical system 30 using the command signal S1X and the feedback signal S2X acquired from the mechanical system 30.
  • the servo control unit 20 outputs an instruction to drive the motor 32 to the mechanical system 30 (a motor torque signal S5X described later) and obtains a feedback signal S2X from the mechanical system 30.
  • the servo control unit 20 performs feedback control of the mechanical system 30 using the feedback signal S2X, and outputs the feedback signal S2X to the NC device 50.
  • the mechanical system 30 moves the moving object 40 using the motor torque signal S5X.
  • the servo control unit 21 controls the Y axis
  • the servo control unit 22 controls the Z axis.
  • FIG. 2 is a diagram schematically showing a 3-axis processing machine.
  • FIG. 2 shows a part of a mechanical system 30 having a three-axis feed axis as an example of a processing machine (machine tool) to be controlled.
  • the trajectory measuring apparatus 10 measures an arc trajectory will be described.
  • the trajectory measured by the trajectory measuring apparatus 10 is not limited to an arc, but any shape (an arc shape other than an arc, a curved shape, a straight line). Etc.).
  • the laser beam machine includes a machining head 64, an X-axis movable unit 61 that moves the machining head 64 in the X-axis direction, a Y-axis movable unit 62 that moves the machining head 64 in the Y-axis direction, and a machining head 64 that moves in the Z-axis direction. And a Z-axis movable portion 63 that is movable in the direction. Note that the machining head 64 shown in FIG. 2 corresponds to the moving object 40 shown in FIG.
  • the processing head 64 of the laser processing machine is attached to the Z-axis movable unit 63 and is driven in the Z-axis direction by a Z-axis motor (not shown).
  • a Z-axis drive mechanism including a Z-axis movable unit 63 and a Z-axis motor is attached to the Y-axis movable unit 62 and is driven in the Y-axis direction by a Y-axis motor (not shown).
  • a Y-axis drive mechanism including a Y-axis movable unit 62 and a Y-axis motor is attached to the X-axis movable unit 61 and is driven in the X-axis direction by an X-axis motor (not shown).
  • An X-axis drive mechanism including the X-axis movable unit 61 and the X-axis motor is attached to the machine body of the laser processing machine. It is assumed that the X axis, the Y axis, and the Z axis are orthogonal to each other. Further, the X-axis motor, the Y-axis motor, and the Z-axis motor here are motors 32 described later.
  • the machining head 64 is moved along a movement path that draws, for example, an arc by being moved in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the movement path (trajectory) of the machining head 64 is measured by the trajectory measuring device 10.
  • FIG. 3 is a block diagram showing a configuration of the trajectory measuring apparatus according to the first embodiment.
  • the trajectory measurement apparatus 10 includes a command condition input unit 11, a command generation unit 12, a feedback signal acquisition unit 13, a display target axis designation unit 14, an arc trajectory calculation unit 15, and a display unit 16.
  • the command condition C1 to the machining head 64 is input to the command condition input unit 11.
  • the command condition C1 for moving the machining head 64 so that the movement path of the machining head 64 draws an arc is an arc radius, a feed speed, an inter-axis phase difference, and the like.
  • the command condition input unit 11 outputs the arc radius, the feed rate, and the phase difference between the axes to the command generation unit 12 and the arc locus calculation unit 15.
  • the command generation unit 12 generates a command program for causing the servo control units 20 to 22 to perform a predetermined operation based on information in the machining program. Specifically, the command generation unit 12 generates a sinusoidal command signal S1 based on the arc radius, the feed speed, and the inter-axis phase difference sent from the command condition input unit 11. This command signal S1 is implemented as a G code program describing movement commands for the X, Y, and Z axes. The command generation unit 12 sends the generated command signal S1 to the feedback signal acquisition unit 13 and the arc locus calculation unit 15.
  • the feedback signal acquisition unit 13 sends the command signal S1 to the NC device 50 and acquires the entire feedback signal S2 from the NC device 50.
  • the feedback signal S2X is a signal measured by the motor 32 when the servo control unit 20 performs feedback control of the motor 32.
  • the position of the motor 32 of each axis, which is the feedback signal S2X, is measured using a position detector (a position detector 35 described later) such as an encoder or a linear scale.
  • the feedback signal acquisition unit 13 acquires the measured feedback signals S2X, S2Y, S2Z as all feedback signals S2 via the NC device 50.
  • the feedback signal acquisition unit 13 sends the feedback signal S ⁇ b> 2 to the arc locus calculation unit 15.
  • the display target axis designating unit 14 designates two axes to be displayed as arcs.
  • the display target axis designating unit 14 sends information on the designated axis to the arc locus calculating unit 15.
  • the display target axis designating unit 14 sets, for example, three combinations of the X axis and the Y axis, the Y axis and the Z axis, and the X axis and the Z axis, and sends them to the arc locus calculation unit 15.
  • the display target axis designating unit 14 may designate an axis based on the machining program, or may designate an axis according to an instruction from the user.
  • the arc trajectory calculation unit 15 calculates arc trajectory data for display based on the feedback signal S2, the command signal S1, and the command condition C1.
  • the arc locus calculation unit 15 calculates arc locus data for display with respect to the axis specified by the display target axis specifying unit 14.
  • the arc locus calculation unit 15 sends the calculation result (arc locus data) to the display unit 16.
  • the display unit (display control unit) 16 displays the arc locus data calculated by the arc locus calculating unit 15 on an external display device (not shown) such as a display device.
  • FIG. 4 is a diagram showing the configuration of the X-axis feedback control system.
  • the X-axis feedback control system is configured using a servo control unit 20 and a mechanical system 30. 4 shows only the feedback control system for one axis, the machine tool 1 has a feedback control system as shown in FIG. 4 for each of the X, Y, and Z axes. Yes.
  • the servo control unit 20 includes a subtractor 26, a position controller 27, a subtractor 28, a speed controller 29, and a differentiator 25.
  • the servo control unit 20 calculates a motor torque signal S5X for controlling the mechanical system 30 using the command signal S1X sent from the NC device 50.
  • the command signal S1X sent from the NC device 50 is a command related to the motion of the X-axis motor generated by the NC device 50 from the movement command S1 generated by the trajectory measuring device 10.
  • the subtracter 26 receives the command signal S1X sent from the NC device 50 and the feedback signal S2X sent from the mechanical system 30.
  • the subtractor 26 calculates the position error of the motor 32 by subtracting the feedback signal S2X from the command signal S1X.
  • the subtractor 26 outputs the calculated position error to the position controller 27.
  • the position controller 27 has a function of performing control such as proportional control with respect to the position error.
  • the position controller 27 here calculates a speed signal corresponding to the calculated position error and outputs it to the subtractor 28.
  • the differentiator 25 calculates a speed signal by differentiating the feedback signal S ⁇ b> 2 ⁇ / b> X and outputs it to the subtractor 28.
  • the subtractor 28 calculates the speed error of the motor 32 by subtracting the speed signal output from the differentiator 25 from the speed signal output from the position controller 27.
  • the subtracter 28 outputs the calculated speed error to the speed controller 29.
  • the speed controller 29 has a function of performing control such as proportional / integral control with respect to the speed error.
  • the speed controller 29 here calculates a motor torque signal S5X corresponding to the speed error and outputs it to the mechanical system 30.
  • the mechanical system 30 is driven by a motor torque signal S5X.
  • the mechanical system 30 has a motor 32 and a load 33.
  • the load 33 corresponds to the movable part 61 of each axis.
  • the Y-axis feedback control system corresponds to the Y-axis movable unit 62
  • the Z-axis feedback control system corresponds to the Z-axis movable unit 63.
  • the position of the movable part is detected using the position detector 35 attached to the motor 32, and is output to the servo control unit 20 as a feedback signal S2X.
  • the feedback signal S2X is sent to the feedback signal acquisition unit 13 via the NC device 50.
  • the feedback signal S ⁇ b> 2 ⁇ / b> X is input to the subtractor 26 and the differentiator 25.
  • a disturbance acts due to the influence of friction and elastic deformation of the mechanical system 30, thereby affecting the feedback signal S2X.
  • the machine tool 1 such as a laser beam machine controls the position of the machining head 64 and the like by driving a motor 32 (servo motor). At that time, the machining head 64 is controlled so that the path between the start point and the end point of the movement accurately follows the path specified by the command signal S1.
  • This control is called trajectory control or contour motion control.
  • a trajectory passing on a route specified by the command signal S1 or the like is called a command trajectory, and a trajectory that the machining head 64 or the like passes as a result of control is called a response trajectory.
  • the machine tool 1 causes the machining head 64 to draw a trajectory of a two-dimensional shape or a three-dimensional shape by using a plurality of feed axes driven by the motor 32.
  • a position detector 35 is attached to each feed shaft, and feedback control of the motor 32 is performed using detection signals detected by these position detectors 35. Specifically, feedback control is performed so that the difference between the position of the motor 32 (feedback position) detected by the position detector 35 and the command position of the motor 32 specified by the command signal S1 is reduced. As a result, the machining head 64 moves while following the given command path with high accuracy.
  • each feed axis moves to draw a sinusoidal trajectory.
  • arc trajectory arc shape
  • the X axis has a sine wave
  • the Y axis has a waveform that is 90 ° out of phase with the sine wave of the X axis.
  • the feedback trajectory preferably matches the command trajectory, but actually, a trajectory error occurs between the feedback trajectory and the command trajectory due to various factors.
  • a quadrant protrusion is a typical trajectory error. This is a phenomenon in which the moving direction of one of the feed axes is reversed at the point (position) where the quadrant of the arc is switched.
  • friction is generated at contact portions such as a ball screw and a guide and acts as a disturbance on the control system. Since the disturbance due to friction acts in the direction opposite to the moving direction, the direction in which the friction acting as a disturbance changes at the point where the moving direction is reversed.
  • the trajectory error that appears in the feedback trajectory includes an inner loop due to a servo response delay.
  • the frequency characteristic of the control system from the command position of each axis to the feedback position generally decreases as the frequency increases.
  • each axis has a sinusoidal motion whose frequency is a value obtained by dividing the command speed by the arc radius, so that the radius of the feedback trajectory decreases as the gain of the control system at that frequency decreases.
  • the feedback trajectory goes around the command trajectory.
  • the frequency of the arc increases, that is, the smaller the radius and the larger the command speed, the greater the degree of inward rotation of the feedback locus with respect to the command radius.
  • the feedback locus is distorted elliptically with respect to the coordinate axis direction. It becomes a shape.
  • the gain characteristics are different, distortion occurs in the axial direction such as the X axis and the Y axis.
  • the phase characteristics are different, the shape is distorted in an oblique direction with respect to the axial direction.
  • the trajectory measurement apparatus 10 measures a trajectory error that occurs in the feedback trajectory due to the influence of quadrant projections, inner circumferences, or response differences between axes when performing an arc motion.
  • the trajectory measuring apparatus 10 of the present embodiment generates a specified two-axis arc trajectory using data of three or more axes measured (command signal S1, command condition C1, and feedback signal S2).
  • command signal S1, command condition C1, and feedback signal S2 In the machine tool 1, control parameters are adjusted and the machine configuration is reviewed based on the measurement result. Thereby, the machine tool 1 performs highly accurate processing.
  • the command condition input unit 11 receives the radius of the arc command, the feed speed, and the phase difference between the axes as the command condition C1 (numerical data). These command conditions C1 are input by a user, for example.
  • R (m) is input to the command condition input unit 11 as the radius of the arc command
  • F (m / s) is input as the feed speed.
  • the inter-axis phase difference is set for each combination of two arbitrary axes of the machine movable axes.
  • the inter-axis phase difference between the X axis and the Y axis is ⁇ xy (rad)
  • the inter-axis phase difference between the X axis and the Z axis is ⁇ xz (rad). It is input to the condition input unit 11.
  • the inter-axis phase difference ⁇ xz between the X axis and the Z axis and the inter-axis phase difference ⁇ xy between the X axis and the Y axis are determined, the inter-axis position between the Y axis and the Z axis
  • the command condition input unit 11 outputs the command condition C1 to the command generation unit 12 and the arc locus calculation unit 15.
  • the command generator 12 generates a sine wave signal used as a position command for each of the X, Y, and Z axes. In a normal circular arc command, two sine wave signals having phases different by 90 ° are generated and used as command signals for two axes. In this embodiment, the command generation unit 12 has three sine wave signals (command signal S1). ) According to the following conditions.
  • the arc radius R is set for any axis.
  • a sine wave Y-axis is assumed to be delayed by a phase difference phi xy between axes between the X and Y axes with respect to the sine wave of the X-axis.
  • the Z-axis sine wave is delayed from the X-axis sine wave by an inter-axis phase difference ⁇ xz between the X-axis and the Z-axis.
  • command signals for each axis generated according to the above conditions are X r (t), Y r (t), and Z r (t)
  • these command signals are expressed by the following equation (1).
  • the origin of the coordinate system is set at the center of the arc, the origin of the coordinate system may be translated to an arbitrary position as necessary.
  • the command generation unit 12 sends the generated command signal S1 to the feedback signal acquisition unit 13.
  • the feedback signal acquisition unit 13 performs servo control for each of the X, Y, and Z axes.
  • the servo control unit 20 makes the feedback position (X (t), Y (t), Z (t)) measured by the position detector 35 attached to each axis follow the command signal S1 for each axis. Perform feedback control.
  • the machine tool 1 uses, for example, the feedback control system shown in FIG. 4 as the feedback control system for each axis. In addition, you may apply feedforward control to the machine tool 1 as needed.
  • the display target axis designating unit 14 outputs to the arc trajectory calculating unit 15 a set of two axes that are the target of arc trajectory display (arc trajectory calculation target).
  • the display target axis designating unit 14 since there are three movable axes, the X axis, the Y axis, and the Z axis, the display target axis designating unit 14 includes the X axis and the Y axis, the Y axis and the Z axis, and the X axis and the Z axis. Set and output three combinations.
  • the arc locus calculation unit 15 calculates data for drawing the arc locus of the combination (plane) of the axes specified by the display target axis specifying unit 14 based on the command signal S1, the feedback signal S2, and the command condition C1. To do.
  • the arc trajectory calculation unit 15 sends drawing data (arc trajectory data) as a calculation result to the display unit 16.
  • the display unit 16 displays the arc trajectory data calculated by the arc trajectory calculating unit 15 on an external display device (not shown) such as a display device.
  • the arc locus calculation unit 15 can perform the same calculation even when the combination of the display target axes is another combination.
  • the arc trajectory calculation unit 15 sets one of the two axes that are display target axes as a reference axis and the other as an adjustment axis.
  • a case will be described in which the arc locus calculation unit 15 sets the X axis as the reference axis and the Y axis as the adjustment axis, but the reference axis and the adjustment axis may be reversed.
  • the arc locus calculation unit 15 uses the X-axis command signal S1 and the X-axis feedback signal S2 as they are as the display command signal S1 and the display feedback signal S2 with respect to the X-axis that is the reference axis. To do. Therefore, the display X-axis command signal X rd1 (t) and the display X-axis feedback signal X d1 (t) are expressed by the following equations (2) and (3), respectively.
  • the arc trajectory calculation unit 15 adjusts the timing so that the phase difference from the X axis (phase difference between axes) is 90 °, that is, (pi / 2) rad, with respect to the Y axis that is the adjustment axis. To do. This operation corresponds to shifting the time by a quarter period with respect to the time-series data of the Y-axis command signal S1.
  • the arc trajectory calculation unit 15 adjusts the timing as follows. First, the arc locus calculator 15 extracts a command signal S1 and a feedback signal S2 used for two movable axes that are coordinate axes of a plane (XY plane) to be calculated.
  • the arc locus calculation unit 15 obtains the cycle of the arc command from the arc radius and the feed speed.
  • the arc locus calculation unit 15 obtains a time T d corresponding to the commanded inter-axis phase difference.
  • the arc locus calculating section 15 a time obtained by subtracting the time T d corresponding 1/4 time period T of the arc instruction to the phase difference between the axes, and the timing adjustment time T a.
  • the cycle T of the arc command is determined from the arc radius and the feed rate, and the time Td is determined from the phase difference between the axes to be calculated and the cycle of the arc command.
  • the timing adjustment time Ta1 when the X axis is the reference axis and the Y axis is the adjustment axis is expressed by the following equation (4).
  • ( ⁇ / 2) rad that is, a value obtained by multiplying the value obtained by subtracting the inter-phase phase difference between the reference axis and the adjustment axis from 90 ° by the arc radius and further dividing by the feed speed is the timing adjustment time. T a1 .
  • the arc locus calculation unit 15 sets the display adjustment axis command signal to a signal delayed by the timing adjustment time Ta1 with respect to the original command signal S1.
  • the Y-axis is the adjustment axis
  • the Y-axis command signal Y rd1 (t) for display is expressed by the following equation (5).
  • the Y-axis command signal Y rd (t) for display is a signal that is 90 ° out of phase with the X-axis command signal X r (t).
  • X r (t) and Y rd (t) are plotted on the XY plane, a complete arc locus is obtained.
  • the arc locus calculator 15 calculates a signal delayed by the timing adjustment time Ta1 with respect to the original feedback signal. Then, the arc trajectory calculation unit 15 sets the calculation result to the feedback signal S2 of the adjustment axis for display.
  • the Y axis is the adjustment axis
  • the Y axis feedback signal Y d1 (t) for display is expressed by the following equation (7).
  • the arc locus calculation unit 15 adjusts the timing of the feedback signal S2 by the same amount as the timing adjustment time when the inter-axis phase difference of the command signal S1 is 90 °, thereby displaying The phase difference between the axes of the feedback signal is set to 90 ° accurately.
  • the arc locus calculation unit 15 displays the same as in the case of the combination of the X axis and the Y axis by changing the timing adjustment time of Expression (4).
  • a circular arc trajectory can be obtained.
  • the timing adjustment time Ta2 when the Y axis is the reference axis and the Z axis is the adjustment axis is expressed by the following equation (8).
  • the arc locus calculator 15 displays the Y-axis command signal Y rd2 (t) for display, the Y-axis feedback signal Y d2 (t), the Z-axis command signal Z rd2 (t), and the Z-axis feedback signal Z d2 ( t) is obtained by the following equations (9) to (12), respectively.
  • timing adjustment time Ta3 when the X axis is the reference axis and the Z axis is the adjustment axis is expressed by the following equation (13).
  • the arc locus calculator 15 displays the X-axis command signal X rd3 (t) for display, the X-axis feedback signal X d3 (t), the Z-axis command signal Z rd3 (t), and the Z-axis feedback signal Z d3 ( t) is obtained by the following equations (14) to (17), respectively.
  • the position controller 27 was set to proportional control, the proportional gain was set to 100 rad / s, and the proportional gain and integral gain of the speed controller 29 were set to 600 rad / s and 150 rad / s, respectively. The same value was set for the gain of each axis.
  • the mechanical system 30 to be controlled is assumed to be a rigid body, and the inertia of the mechanical system 30 of each axis is assumed to be 0.001 kgm 2 . Furthermore, the motor 32 is assumed to be subjected to Coulomb friction. The magnitude of the Coulomb friction was set to double the Y axis with the X axis as a reference, and the magnitude of the Z axis was set to 4 times. The greater the Coulomb friction, the larger the quadrant protrusion when the moving direction is reversed.
  • a 1.5-cycle sine wave signal is used as the command signal S1. This is because, when measuring the circular arc command for one round, extra data is required for the timing adjustment time, and at a constant feed rate except for the transitional part at the start and end of the circular motion. This is because a stationary part to be extracted is extracted.
  • the timing adjustment time is a value obtained by subtracting the phase difference between axes from the 1/4 cycle.
  • the phase difference between the axes is 0, it is at least a quarter cycle that data needs to be acquired by the timing adjustment time.
  • the trajectory measuring apparatus 10 acquires extra data for a period corresponding to this total time.
  • the servo response delay time is approximately equal to the reciprocal of the position proportional gain. Since the position proportional gain is set to 100 rad / s, the time of the transitional portion is about 20 ms that is the sum of the command start time and the command end time. Since the cycle of the circular arc command is 0.628 seconds, it is sufficient to acquire extra data for a quarter cycle for the influence of the transitional part.
  • the trajectory measuring apparatus 10 has an extra 1 ⁇ 2 period that is a sum of a 1 ⁇ 4 period corresponding to the timing adjustment time and a 1 ⁇ 4 period for excluding the influence of the transient portion.
  • the data is to be measured.
  • FIG. 5 is a diagram showing temporal changes in the X-axis command position and the feedback position in the first embodiment.
  • FIG. 6 is a diagram illustrating temporal changes in the Y-axis command position and the feedback position in the first embodiment.
  • FIG. 7 is a diagram illustrating temporal changes in the Z-axis command position and the feedback position in the first embodiment. 5 to 7, the horizontal axis represents time, and the vertical axis represents the position of the machining head 64 (command position and feedback position). Of the characteristics shown in FIGS. 5 to 7, the solid line represents the command position, and the broken line represents the feedback position.
  • FIG. 8 is a diagram showing a change in position of the machining head in the three-dimensional space in the first embodiment.
  • the position command after the machining head 64 reaches (10, 10, 10) mm, the movement direction is reversed and the machining head 64 reaches ( ⁇ 10, ⁇ 10, ⁇ 10) mm.
  • the position command after the machining head 64 has reached ( ⁇ 10, ⁇ 10, ⁇ 10) mm, the movement direction is reversed again to reach (10, 10, 10) mm, and the movement direction is once again. Is reversed.
  • the position command ends the machining head 64 at a position of (0, 0, 0) mm.
  • the position command here is a command to reciprocate a linear route in the three-dimensional space.
  • the feedback signal S2 for each axis follows the command signal S1 for each axis with a delay of about 10 ms.
  • the arc trajectory calculation unit 15 sets the display target axes to (a) X axis and Y axis, (b) Y axis and Z axis, and (c) X axis and Z axis, respectively.
  • the arc trajectory for display is calculated.
  • the arc locus calculation unit 15 uses data for one cycle from the 3/8 cycle as display data for the X axis.
  • the data in between is used as display data for the Y axis.
  • the data in between is used as Z-axis display data.
  • the arc locus calculation unit 15 uses data for one cycle from the 3/8 cycle as display data for the X axis.
  • the data in between is used as Z-axis display data.
  • FIG. 9 is a diagram illustrating a feedback position locus on the XY plane in the first embodiment.
  • FIG. 10 is a diagram illustrating a feedback position locus on the YZ plane in the first embodiment.
  • FIG. 11 is a diagram showing a feedback position locus on the XZ plane in the first embodiment.
  • the locus is plotted by enlarging the error 50 times in the radial direction (20 ⁇ m / 1 scale). As shown in FIG. 9 to FIG. 11, an inner loop due to a servo response delay occurs on each plane. Further, the quadrant protrusion has a larger Y axis than the X axis and a larger Z axis than the Y axis, corresponding to the magnitude of the Coulomb friction of each axis. This indicates that the feedback trajectory display of each planar arc is correctly performed.
  • the trajectory measuring apparatus 10 uses the measured data of three or more axes to generate the specified two-axis arc trajectory, so that the arc trajectory of each plane can be obtained by one measurement. It is possible to display. Therefore, the measurement time can be greatly shortened.
  • the trajectory measuring apparatus 10 adjusts the timing of the feedback signal S2 by the same amount as the timing adjustment time when the inter-axis phase difference of the command signal S1 becomes 90 °, the command data (command signal S1) and the feedback data ( The locus can be drawn in time with the feedback signal S2).
  • the time obtained by subtracting the time T d corresponding 1/4 time period of arc instruction to the phase difference between the axes can be determined timing adjustment time T a precise It becomes.
  • the movement path under measurement becomes a straight line. Therefore, it is easier to secure a range necessary for the operation of the tool end (tip portion of the machining head 64) than when moving along an arcuate path.
  • the trajectory measuring apparatus 10 can shorten the parameter adjustment time of the feedback control system by shortening the arc trajectory measurement time.
  • the servo control system has parameters such as a control gain and a friction correction parameter. These parameters need to be adjusted while confirming the feedback trajectory so that the error (inner loop amount and quadrant projection amount) of the feedback trajectory with respect to the command trajectory is small. It can be shortened.
  • the specified two-axis arc trajectory is generated using the data of three or more measured axes, so that the machine tool 1 having three or more feed axes can be used.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • the trajectory measuring apparatus 10 having the same configuration as that of the first embodiment is used.
  • the difference between the second embodiment and the first embodiment is the setting of the inter-axis phase difference.
  • the inter-axis phase difference is set to a value that is neither 0 ° nor a multiple of 90 ° as follows.
  • Other command conditions and feedback control system parameters are the same as those in the first embodiment. Changes in the command signal and feedback signal over time at each axis are shown in FIGS.
  • FIG. 12 is a diagram showing temporal changes in the X-axis command position and the feedback position in the second embodiment.
  • FIG. 13 is a diagram illustrating temporal changes in the Y-axis command position and the feedback position in the second embodiment.
  • FIG. 14 is a diagram illustrating temporal changes in the Z-axis command position and the feedback position in the second embodiment. 12 to 14, the horizontal axis represents time, and the vertical axis represents the position of the machining head 64 (command position and feedback position). Of the characteristics shown in FIGS. 12 to 14, the solid line represents the command position, and the broken line represents the feedback position.
  • FIG. 15 is a diagram showing a change in the position of the machining head in the three-dimensional space in the second embodiment.
  • the command path of the machining head 64 is shown.
  • the feedback signal S2 for each axis follows the command signal S1 for each axis with a delay of about 10 ms.
  • the arc trajectory calculation unit 15 sets the display target axes to (a) X axis and Y axis, (b) Y axis and Z axis, and (c) X axis and Z axis, respectively.
  • the display arc locus is calculated.
  • the arc locus calculation unit 15 uses data for one cycle from the 3/8 cycle as display data for the X axis.
  • the data is used as Y axis display data.
  • the arc locus calculation unit 15 uses data for one cycle from the 3/8 cycle as display data for the X axis.
  • FIG. 16 is a diagram illustrating a feedback position locus on the XY plane in the second embodiment.
  • FIG. 17 is a diagram showing a feedback position locus on the YZ plane in the second embodiment.
  • FIG. 18 is a diagram illustrating a feedback position locus on the XZ plane in the second embodiment.
  • the locus is plotted with the error magnified 50 times in the radial direction.
  • Each plane has an inward rotation due to a delay in servo response.
  • the quadrant protrusion has a larger Y axis than the X axis and a larger Z axis than the Y axis, corresponding to the magnitude of the Coulomb friction of each axis. This indicates that the feedback trajectory display of each planar arc is correctly performed.
  • the trajectory measurement apparatus 10 according to the second embodiment can display the arc trajectory of each plane in a single measurement, as with the trajectory measurement apparatus 10 according to the first embodiment, and can greatly reduce the measurement time. Is possible.
  • the trajectory measuring apparatus 10 can generate a specified two-axis arc trajectory from the measured data of three or more axes and can draw the command data and the feedback data at the same timing. It is possible to accurately determine the adjustment time.
  • the phase difference between the axes is set to a value that is neither 0 ° nor a multiple of 90 °, the reversal of the movable axis does not occur at the same time. Therefore, it is possible to accurately measure the quadrant protrusion error at the time of reversing the moving axis movement direction when a shock occurs at the time of reversing the movement of the movable axis and affects the behavior of other axes.
  • the specified two-axis arc trajectory is generated using the measured data of three or more axes, so that the machine tool 1 having three or more feed axes can be used.
  • the number of axes of the machine tool 1 is 3 has been described, but the number of axes may be 4 or more.
  • the trajectory measuring apparatus 10 calculates and displays an arc trajectory in a plane having two arbitrary axes as coordinate axes from a command signal and a feedback signal obtained as a result of inputting a sine wave signal. Can do.
  • the trajectory measuring device 10 and the NC device 50 are configured separately, but the trajectory measuring device 10 may be arranged in the NC device 50.
  • the trajectory measurement device 10 and the servo control unit 20 are connected via the NC device 50.
  • the trajectory measurement device 10 and the servo control unit 20 are connected without passing through the NC device 50. May be.
  • command signals S1X, S1Y, and S1Z are sent from the feedback signal acquisition unit 13 to the servo control unit 20.
  • feedback signals S2X, S2Y, and S2Z are sent from the servo control units 20 to 22 to the feedback signal acquisition unit 13, respectively.
  • the NC device 50 may independently generate the command signal S1. Further, the trajectory measuring apparatus 10 may measure the movement trajectory of the machining head 64 using the command signal S1 generated by the NC apparatus 50. Moreover, although the case where the trajectory measuring apparatus 10 is applied to the machine tool 1 has been described in the present embodiment, the trajectory measuring apparatus 10 may be applied to a machine other than the machine tool 1.
  • the trajectory measuring device, the numerical control device, and the trajectory measuring method according to the present invention are suitable for measuring a motion trajectory when a command is given to the axial feed drive system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

移動対象に対して3軸以上の可動軸を有する機械の移動対象(40)の移動軌跡を測定する軌跡測定装置(10)において、可動軸間の軸間位相差を含む移動対象(40)への指令条件(C1)と、軸間位相差に基づいて生成された可動軸への指令信号(S1)と、指令信号(S1)に可動軸の位置が追従するように可動軸をフィードバック制御した際の可動軸の位置を示すフィードバック信号(S2)と、を用いて、可動軸のうちの2つの可動軸を座標軸とした平面における移動軌跡を、平面ごとに演算する軌跡演算部を、備える。

Description

軌跡測定装置、数値制御装置および軌跡測定方法
 本発明は、機械などの軸送り駆動系に指令を与えた際の運動軌跡を測定する軌跡測定装置、数値制御装置および軌跡測定方法に関する。
 工作機械などの機械(例えば、マシニングセンタやレーザ加工機)は、サーボモータを駆動することによって、加工ヘッドなどの位置を制御する。その際に、加工ヘッドは、移動の始点と終点との間の経路が指令された経路に正確に追従するように制御される。サーボモータによって駆動される軸は送り軸と呼ばれ、複数の送り軸を用いることによって二次元形状や三次元形状の移動軌跡が実現される。
 加工ヘッドでは、それぞれの送り軸にエンコーダやリニアスケールなどの位置検出器が取り付けられており、位置検出器で検出された位置(フィードバック位置)と指令位置との差が小さくなるようにフィードバック制御が行なわれる。これにより、加工ヘッドは、与えられた指令経路に追従しながら移動する。
 フィードバック位置の軌跡(フィードバック軌跡)は、指令位置の軌跡(指令軌跡)に一致することが望ましいが、実際には様々な要因によってフィードバック軌跡と指令軌跡との間に軌跡誤差が発生する。
 近年の機械では、軌跡誤差が大きいと加工した際の加工精度が悪化するので、円弧運動などを行った際の軌跡誤差が測定され、その測定結果に基づいて制御パラメータの調整や機械構成の見直しなどが行われている。従来は、運動時の軌跡誤差を評価する場合には、複数の軸を用いて運動が行なわれ、その際のフィードバック軌跡が測定されていた。例えば、特許文献1の数値制御装置は、サーボ軸の位置とスピンドル軸の位置とを同一のタイミングで所定周期毎に収集し、収集した位置データを変換して加工形状データを求めている。
特開2002-120128号公報
 しかしながら、上記従来の技術では、測定した各軸のデータをそのまま表示するので、機械の軸数が3軸以上ある場合に指令形状などの軌跡を複数の平面で評価するには、測定平面ごとに加工プログラムを実行する必要があった。このため、測定に長時間を要していた。
 例えば、X軸、Y軸、Z軸の3つの送り軸を有する機械に対して、XY平面、YZ平面、XZ平面の各平面での指令時の軌跡誤差を評価する場合には、3回の測定が必要であった。
 また、指令半径が大きい場合には、機械が広い範囲で動くので、機械同士の干渉が生じたり、機械によっては機械の可動範囲が不足したりして測定を行うことができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、3つ以上の送り軸を有する機械に対して軌跡を効率良く測定できる軌跡測定装置、数値制御装置および軌跡測定方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、移動対象に対して3軸以上の可動軸を有する機械の前記移動対象の移動軌跡を測定する軌跡測定装置において、前記可動軸間の軸間位相差を含む前記移動対象への指令条件と、前記軸間位相差に基づいて生成された前記可動軸への指令信号と、前記指令信号に前記可動軸の位置が追従するように前記可動軸をフィードバック制御した際の前記可動軸の位置を示すフィードバック信号と、を用いて、前記可動軸のうちの2つの可動軸を座標軸とした平面における前記移動軌跡を、前記平面ごとに演算する軌跡演算部を、備えることを特徴とする。
 本発明によれば、3軸以上の可動軸を有する機械に対して移動軌跡を効率良く測定することが可能になるという効果を奏する。
図1は、本発明の実施形態を示すブロック図である。 図2は、3軸の加工機を模式的に示す図である。 図3は、実施の形態1に係る軌跡測定装置の構成を示すブロック図である。 図4は、X軸のフィードバック制御系の構成を示す図である。 図5は、実施の形態1における、X軸の指令位置およびフィードバック位置の時間変化を示す図である。 図6は、実施の形態1における、Y軸の指令位置およびフィードバック位置の時間変化を示す図である。 図7は、実施の形態1における、Z軸の指令位置およびフィードバック位置の時間変化を示す図である。 図8は、実施の形態1における、3次元空間内における加工ヘッドの位置変化を示す図である。 図9は、実施の形態1における、XY平面のフィードバック位置軌跡を示す図である。 図10は、実施の形態1における、YZ平面のフィードバック位置軌跡を示す図である。 図11は、実施の形態1における、XZ平面のフィードバック位置軌跡を示す図である。 図12は、実施の形態2における、X軸の指令位置およびフィードバック位置の時間変化を示す図である。 図13は、実施の形態2における、Y軸の指令位置およびフィードバック位置の時間変化を示す図である。 図14は、実施の形態2における、Z軸の指令位置およびフィードバック位置の時間変化を示す図である。 図15は、実施の形態2における、3次元空間内における加工ヘッドの位置変化を示す図である。 図16は、実施の形態2における、XY平面のフィードバック位置軌跡を示す図である。 図17は、実施の形態2における、YZ平面のフィードバック位置軌跡を示す図である。 図18は、実施の形態2における、XZ平面のフィードバック位置軌跡を示す図である。
 以下に、本発明の実施の形態に係る軌跡測定装置、数値制御装置および軌跡測定方法を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施形態を示すブロック図である。工作機械1は、例えばレーザ加工機である。工作機械1は、軌跡測定装置10と、NC装置50と、サーボ制御部20~22と、機械系30と、移動対象40とを備えている。
 工作機械1がレーザ加工機の場合、移動対象40は加工ヘッドや加工テーブルなどである。軌跡測定装置10は、移動対象40が移動する位置の軌跡を測定するコンピュータなどである。軌跡測定装置10は、NC装置50に接続されており、NC装置50から取得した情報(後述するフィードバック信号S2)を用いて、移動対象40の軌跡を算出する。
 NC(Numerical Control)装置50は、サーボ制御部20~22の上位側のコントローラであり、軌跡測定装置10およびサーボ制御部20~22に接続されている。NC装置50は、移動対象40の軌跡の指示(後述する指令信号S1)が軌跡測定装置10から入力されると、この指令信号S1から各軸の運動指令(後述するS1X,S1Y,S1Z)を生成し、それぞれX軸、Y軸、Z軸のサーボ制御部20~22に出力する。これにより、NC装置50は、軌跡測定装置10からの指令信号S1を用いて各軸のサーボ制御部20~22を制御する。また、NC装置50は、サーボ制御部20からフィードバック信号S2X,S2Y,S2Zが入力されると、各軸のフィードバック信号をまとめた全フィードバック信号S2を軌跡測定装置10に出力する。
 サーボ制御部(アンプ)20は、X軸の位置が指令信号S1Xに追従するようにモータ(後述するモータ32)をフィードバック制御する装置である。サーボ制御部20は、指令信号S1Xと機械系30から取得したフィードバック信号S2Xとを用いて機械系30を制御する。サーボ制御部20は、機械系30にモータ32を駆動させる指示(後述するモータトルク信号S5X)を出力するとともに、機械系30からフィードバック信号S2Xを取得する。サーボ制御部20は、このフィードバック信号S2Xを用いて機械系30をフィードバック制御するとともに、フィードバック信号S2XをNC装置50に出力する。機械系30は、モータトルク信号S5Xを用いて移動対象40を移動させる。同様に、サーボ制御部21は、Y軸を制御し、サーボ制御部22は、Z軸を制御する。
 図2は、3軸の加工機を模式的に示す図である。図2では、制御の対象としている加工機(工作機械)の一例として、3軸の送り軸を有した機械系30の一部を示している。なお、本実施形態では、軌跡測定装置10が円弧の軌跡を測定する場合について説明するが、軌跡測定装置10が測定する軌跡は円弧に限らず何れの形状(円弧以外の弧状、曲線状、直線状など)であってもよい。
 レーザ加工機は、加工ヘッド64と、加工ヘッド64をX軸方向に可動させるX軸可動部61と、加工ヘッド64をY軸方向に可動させるY軸可動部62と、加工ヘッド64をZ軸方向に可動させるZ軸可動部63と、を有している。なお、図2に示す加工ヘッド64が、図1に示した移動対象40に対応している。
 レーザ加工機の加工ヘッド64は、Z軸可動部63に取り付けられており、図示しないZ軸モータによってZ軸方向に駆動される。また、Z軸可動部63およびZ軸モータからなるZ軸駆動機構は、Y軸可動部62に取り付けられており、図示しないY軸モータによってY軸方向に駆動される。さらに、Y軸可動部62およびY軸モータからなるY軸駆動機構は、X軸可動部61に取り付けられており、図示しないX軸のモータによってX軸方向に駆動される。そして、X軸可動部61およびX軸モータからなるX軸駆動機構は、レーザ加工機の機械本体に取り付けられている。なお、X軸と、Y軸と、Z軸とは、それぞれ互いに直交しているものとする。また、ここでのX軸モータ、Y軸モータおよびZ軸モータが、後述するモータ32である。
 加工ヘッド64は、X軸方向、Y軸方向およびZ軸方向に移動させられることによって、例えば、円弧などを描くような移動経路に沿って移動させられる。加工ヘッド64の移動経路(軌跡)は、軌跡測定装置10によって測定される。
 図3は、実施の形態1に係る軌跡測定装置の構成を示すブロック図である。軌跡測定装置10は、指令条件入力部11と、指令生成部12と、フィードバック信号取得部13と、表示対象軸指定部14と、円弧軌跡演算部15と、表示部16とを備えている。
 指令条件入力部11へは、加工ヘッド64への指令条件C1が入力される。例えば、加工ヘッド64の移動経路が円弧を描くよう加工ヘッド64を移動させる場合の指令条件C1は、円弧半径、送り速度および軸間位相差などである。指令条件入力部11は、円弧半径、送り速度および軸間位相差を、指令生成部12および円弧軌跡演算部15へ出力する。
 指令生成部12は、加工プログラム内の情報に基づいて、サーボ制御部20~22に所定の動作を行わせるための指令プログラムを生成する。具体的には、指令生成部12は、指令条件入力部11から送られてきた円弧半径、送り速度および軸間位相差に基づいて、正弦波状の指令信号S1を生成する。この指令信号S1は、X軸、Y軸およびZ軸の移動指令を記述したGコードプログラムとして実装される。指令生成部12は、生成した指令信号S1をフィードバック信号取得部13および円弧軌跡演算部15に送る。
 フィードバック信号取得部13は、NC装置50に指令信号S1を送るとともに、NC装置50から全フィードバック信号S2を取得する。フィードバック信号S2Xは、サーボ制御部20が、モータ32をフィードバック制御する際にモータ32で測定された信号である。フィードバック信号S2Xである各軸のモータ32の位置は、エンコーダやリニアスケールなどの位置検出器(後述する位置検出器35)を用いて測定される。
 フィードバック信号取得部13は、測定されたフィードバック信号S2X,S2Y,S2Zを、NC装置50を介して全フィードバック信号S2として取得する。フィードバック信号取得部13は、フィードバック信号S2を円弧軌跡演算部15に送る。
 表示対象軸指定部14では、円弧表示の対象とする2つの軸が指定される。表示対象軸指定部14は、指定した軸の情報を円弧軌跡演算部15に送る。表示対象軸指定部14は、例えば、X軸とY軸、Y軸とZ軸、X軸とZ軸の3通りの組み合わせを設定して円弧軌跡演算部15に送る。表示対象軸指定部14は、加工プログラムに基づいて軸を指定してもよいし、ユーザからの指示に従って軸を指定してもよい。
 円弧軌跡演算部15は、フィードバック信号S2と、指令信号S1と、指令条件C1とに基づいて、表示用の円弧軌跡データを演算する。円弧軌跡演算部15は、表示対象軸指定部14で指定された軸に対して、表示用の円弧軌跡データを演算する。円弧軌跡演算部15は、演算結果(円弧軌跡データ)を表示部16に送る。表示部(表示制御部)16は、円弧軌跡演算部15で演算された円弧軌跡データを、ディスプレイ装置などの外部表示装置(図示せず)に表示させる。
 図4は、X軸のフィードバック制御系の構成を示す図である。X軸のフィードバック制御系は、サーボ制御部20と機械系30とを用いて構成されている。なお、図4では、1軸分のフィードバック制御系のみを図示しているが、工作機械1では、X軸、Y軸、Z軸のそれぞれで図4に示すようなフィードバック制御系が構成されている。
 サーボ制御部20は、減算器26と、位置制御器27と、減算器28と、速度制御器29と、微分器25とを有している。サーボ制御部20は、NC装置50から送られてくる指令信号S1Xを用いて、機械系30を制御するモータトルク信号S5Xを演算する。NC装置50から送られてくる指令信号S1Xは、軌跡測定装置10で生成された移動指令S1からNC装置50が生成したX軸のモータの運動に関する指令である。
 減算器26へは、NC装置50から送られてくる指令信号S1Xと、機械系30から送られてくるフィードバック信号S2Xとが入力される。減算器26は、指令信号S1Xからフィードバック信号S2Xを減算することによってモータ32の位置誤差を算出する。減算器26は、算出した位置誤差を位置制御器27に出力する。
 位置制御器27は、位置誤差に対して比例制御等の制御を行う機能を有している。ここでの位置制御器27は、算出した位置誤差に応じた速度信号を算出し、減算器28に出力する。微分器25は、フィードバック信号S2Xを微分することによって速度信号を算出し、減算器28に出力する。
 減算器28は、位置制御器27から出力された速度信号から、微分器25から出力された速度信号を減算することによってモータ32の速度誤差を算出する。減算器28は、算出した速度誤差を速度制御器29に出力する。
 速度制御器29は、速度誤差に対して比例・積分制御等の制御を行なう機能を有している。ここでの速度制御器29は、速度誤差に応じたモータトルク信号S5Xを算出して機械系30に出力する。
 機械系30は、モータトルク信号S5Xによって駆動される。機械系30は、モータ32と負荷33とを有している。負荷33は、各軸の可動部61に相当する。同様に、Y軸のフィードバック制御系であれば、Y軸可動部62に対応し、Z軸のフィードバック制御系であれば、Z軸可動部63に対応する。
 機械系30では、モータ32に付属している位置検出器35を用いて、可動部の位置が検出され、フィードバック信号S2Xとしてサーボ制御部20へ出力される。このフィードバック信号S2Xは、NC装置50を介してフィードバック信号取得部13に送られる。また、サーボ制御部20では、フィードバック信号S2Xが減算器26および微分器25に入力される。モータ32では、機械系30の摩擦や弾性変形などの影響によって外乱が作用し、これによりフィードバック信号S2Xに影響を及ぼす。
 つぎに、円弧軌跡を測定する際の工作機械1の動作について説明する。レーザ加工機などの工作機械1は、加工ヘッド64などの位置を、モータ32(サーボモータ)を駆動することによって制御する。その際に、加工ヘッド64は、移動の始点と終点との間の経路が、指令信号S1で指定された経路に正確に追従するように制御される。この制御は、軌跡制御あるいは輪郭運動制御と呼ばれる。また、指令信号S1などで指定された経路上を通る軌跡は、指令軌跡と呼ばれ、制御の結果として加工ヘッド64などが通る軌跡は応答軌跡と呼ばれる。
 工作機械1は、モータ32によって駆動される送り軸を複数用いることによって、加工ヘッド64に、二次元形状や三次元形状の軌跡を描かせる。工作機械1では、それぞれの送り軸に位置検出器35が取り付けられており、これらの位置検出器35によって検出された検出信号を用いてモータ32のフィードバック制御が行われる。具体的には、位置検出器35で検出したモータ32の位置(フィードバック位置)と、指令信号S1で指定されたモータ32の指令位置との差が小さくなるように、フィードバック制御が行われる。これにより、加工ヘッド64は、与えられた指令経路に高い精度で追従しながら移動する。
 加工ヘッド64に円弧形状(円弧軌跡)の移動指令を与えた場合、各送り軸は、正弦波状の軌跡を描くよう運動を行う。例えば、XY平面内で円弧指令を与えた場合、X軸は正弦波、Y軸はX軸の正弦波に対して90°位相のずれた波形となる。フィードバック軌跡は、指令軌跡に一致することが望ましいが、実際には様々な要因によってフィードバック軌跡と指令軌跡との間に軌跡誤差が発生する。
 軌跡誤差の代表的なものとして、象限突起がある。これは、円弧の象限が切替る点(位置)において、何れかの送り軸の移動方向が反転する現象である。送り軸では、ボールねじやガイド等の接触部で摩擦が発生し、制御系に外乱として作用する。摩擦による外乱は移動方向と反対方向に作用するので、移動方向が反転する点では、外乱である摩擦が作用する向きが変化する。
 その際に、外乱の変化に対して制御系が一定の遅れをもって応答するので、応答軌跡に追従誤差が生じることとなる。その結果、象限の切替わり直後に応答軌跡が指令軌跡の少し外側を通ることとなる。この誤差は、通常は非常にわずかな誤差であるので、指令軌跡の半径に対する応答軌跡の半径の誤差分を拡大してプロットする方法が行われる。このようにプロットすると、象限切替り直後の追従遅れによる誤差は、外側への突起として現れるので、この誤差が象限突起と呼ばれる。
 また、フィードバック軌跡に現れる軌跡誤差としては、サーボ応答遅れによる内回りが挙げられる。各軸の指令位置からフィードバック位置までの制御系の周波数特性は、一般的に周波数が高くなるに従ってゲイン特性が下がるものとなる。円弧指令時には、各軸は指令速度を円弧半径で除した値を周波数とする正弦波運動となるので、その周波数における制御系のゲインの減少にしたがってフィードバック軌跡の半径が減少する。その結果、フィードバック軌跡は、指令軌跡の内側を回ることとなる。一般に円弧の周波数が高くなるにつれて、すなわち半径が小さいほど、また、指令速度が大きいほど、指令半径に対するフィードバック軌跡の内回りの度合いは大きくなる。
 また、複数の送り軸を有した工作機械1では、それぞれ独立してフィードバック制御が行なわれる。このため、制御系の設定や機械系30の剛性などの影響で、各軸の指令位置からフィードバック位置までの応答特性に差が生じる場合には、フィードバック軌跡が座標軸方向に対して楕円状にひずんだ形となる。特に、ゲイン特性が異なると、X軸やY軸といった軸方向にひずみが生じる。一方、位相特性が異なると、軸方向に対して斜め方向にひずんだ形となる。
 軌跡誤差が大きい場合、加工ヘッド64で加工した際の加工精度が悪化する。このため、軌跡測定装置10は、円弧運動を行った際の、象限突起、内回りまたは軸間の応答差などの影響でフィードバック軌跡に生じる軌跡誤差を測定する。本実施の形態の軌跡測定装置10は、測定した3つ以上の軸のデータ(指令信号S1、指令条件C1、フィードバック信号S2)を用いて、指定された2軸の円弧軌跡を生成する。そして、工作機械1では、測定結果に基づいて、制御パラメータの調整や機械構成の見直しなどが行なわれる。これにより、工作機械1は、高精度な加工を行う。
 つぎに、円弧軌跡を測定する際の工作機械1の処理手順について説明する。指令条件入力部11へは、円弧指令の半径と、送り速度と、軸間位相差とが、指令条件C1(数値データ)として入力される。これらの指令条件C1は、例えばユーザによって入力される。
 例えば、指令条件入力部11へは、円弧指令の半径としてR(m)が入力され、送り速度としてF(m/s)が入力される。また、軸間位相差は、機械可動軸のうちの任意の2つの軸の組み合わせのそれぞれに対して設定される。例えば、X軸とY軸との間の軸間位相差をφxy(rad)、X軸とZ軸との間の軸間位相差をφxz(rad)とした軸間位相差が、指令条件入力部11に入力される。
 X軸とZ軸との間の軸間位相差φxzと、X軸とY軸との間の軸間位相差φxyとが決定すれば、Y軸とZ軸との間の軸間位相差φyzは、両者の差として自動的に決定される。すなわち、軸間位相差φyzは、φyz=φxz-φxyとなる。指令条件入力部11は、指令条件C1を指令生成部12および円弧軌跡演算部15へ出力する。
 指令生成部12は、X軸、Y軸、Z軸の各軸の位置指令として用いる正弦波信号を生成する。通常の円弧指令では位相が90°異なる2つの正弦波信号を生成して2つの軸の指令信号とするが、本実施の形態では、指令生成部12が、3つの正弦波信号(指令信号S1)を以下の条件に従って生成する。
 (A)正弦波の振幅は、何れの軸も円弧半径Rとする。
 (B)正弦波の周波数は、送り速度Fを円弧半径Rで除した値とする。すなわち、正弦波の周波数をω(rad/s)で表すと、周波数は、ω=F/Rとなる。
 (C)Y軸の正弦波は、X軸の正弦波に対してX軸とY軸との間の軸間位相差φxyだけ遅れているものとする。同様に、Z軸の正弦波は、X軸の正弦波に対してX軸とZ軸との間の軸間位相差φxzだけ遅れているものとする。
 以上の条件に従って生成される各軸の指令信号をXr(t)、Yr(t)、Zr(t)とすると、これらの指令信号は、以下の式(1)で表される。なお、座標系の原点は、円弧の中心に設定されているが、座標系の原点は、必要に応じて任意の位置に平行移動させてもよい。
Figure JPOXMLDOC01-appb-M000001
 指令生成部12は、生成した指令信号S1をフィードバック信号取得部13に送る。フィードバック信号取得部13は、X軸、Y軸、Z軸の軸ごとにサーボ制御を行う。サーボ制御部20は、各軸に取り付けられた位置検出器35で測定されるフィードバック位置(X(t)、Y(t)、Z(t))が各軸の指令信号S1に追従するようにフィードバック制御を行なう。
 フィードバック制御としては、例えばPID制御などのサーボ制御が行われる。本実施の形態の工作機械1は、例えば、図4に示すフィードバック制御系を各軸のフィードバック制御系に用いる。なお、工作機械1には、必要に応じてフィードフォワード制御を適用してもよい。
 表示対象軸指定部14は、円弧軌跡表示の対象(円弧軌跡の演算対象)とする2つの軸の組を、円弧軌跡演算部15に出力する。本実施の形態では、可動軸がX軸、Y軸、Z軸の3つであるので、表示対象軸指定部14は、X軸とY軸、Y軸とZ軸、X軸とZ軸の3通りの組み合わせを設定して出力する。
 円弧軌跡演算部15は、表示対象軸指定部14で指定された軸の組み合わせ(平面)の円弧軌跡を描画するためのデータを、指令信号S1とフィードバック信号S2と指令条件C1とに基づいて演算する。円弧軌跡演算部15は、演算結果である描画データ(円弧軌跡データ)を、表示部16に送る。これにより、表示部16は、円弧軌跡演算部15で演算された円弧軌跡データを、ディスプレイ装置などの外部表示装置(図示せず)に表示させる。
 以下では、表示対象軸の組み合わせがX軸とY軸の場合について説明するが、円弧軌跡演算部15は、表示対象軸の組み合わせが他の組み合わせであっても同様に演算することができる。
 円弧軌跡演算部15は、表示対象軸である2つの軸のうち一方を基準軸に設定し、もう一方を調整軸に設定する。ここでは、円弧軌跡演算部15がX軸を基準軸に設定し、Y軸を調整軸に設定する場合について説明するが、基準軸と調整軸とは逆であってもよい。
 円弧軌跡演算部15は、基準軸であるX軸に対しては、X軸の指令信号S1とX軸のフィードバック信号S2とを、表示用の指令信号S1と表示用のフィードバック信号S2としてそのまま使用する。したがって、表示用のX軸指令信号Xrd1(t)と表示用のX軸フィードバック信号Xd1(t)とは、それぞれ以下の式(2)および式(3)で表される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 また、円弧軌跡演算部15は、調整軸であるY軸に対しては、X軸との位相差(軸間位相差)が90°、すなわち(pi/2)radとなるようにタイミングを調整する。この操作は、Y軸の指令信号S1の時系列データに対して、1/4周期だけ時間をシフトさせることに相当する。
 具体的には、円弧軌跡演算部15は、タイミングの調整を以下のように行う。まず、円弧軌跡演算部15は、演算対象とする平面(XY平面)の座標軸である2つの可動軸に対して用いられる指令信号S1とフィードバック信号S2とを抽出する。
 そして、円弧軌跡演算部15は、円弧指令の周期を円弧半径および送り速度から求める。円弧軌跡演算部15は、円弧半径に2π(πは円周率)を乗じ、送り速度で除した値を円弧指令の周期Tとする。したがって、円弧指令の周期Tは、T=2πR/Fとなる。
 さらに、円弧軌跡演算部15は、指令の軸間位相差に相当する時間Tdを求める。この時間Tdは、基準軸と調整軸との間の軸間位相差を2πで除した値に、円弧指令の周期を乗ずることで求められる。したがって、時間Tdは、Td=φxy・T/(2π)=φxy・R/Fとなる。また、円弧軌跡演算部15は、円弧指令の周期Tの1/4の時間から軸間位相差に対応する時間Tdを減じた時間を、タイミング調整時間Taとする。円弧指令の周期Tは、円弧半径および送り速度から定まるものであり、時間Tdは、演算対象軸間の軸間位相差および円弧指令の周期から定まるものである。X軸を基準軸とし、Y軸を調整軸とした場合のタイミング調整時間Ta1は、以下の式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 このように、(π/2)rad、すなわち90°から基準軸と調整軸との間の軸間位相差を減じた値に円弧半径を乗じてさらに送り速度で除した値が、タイミング調整時間Ta1となる。
 円弧軌跡演算部15は、表示用の調整軸の指令信号を、もとの指令信号S1に対してタイミング調整時間Ta1だけ遅らせた信号に設定する。ここでは、Y軸が調整軸となるので、表示用のY軸の指令信号Yrd1(t)は、以下の式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 式(4)を式(5)に代入し、ω=F/Rの関係を用いて式(5)を整理すると、表示用のY軸の指令信号Yrd1(t)は以下の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 このように、表示用のY軸の指令信号Yrd(t)は、X軸の指令信号Xr(t)と90°位相がずれた信号となる。そして、Xr(t)とYrd(t)とがXY平面にプロットされると、完全な円弧軌跡となる。
 次に、円弧軌跡演算部15は、もとのフィードバック信号に対してタイミング調整時間Ta1だけ遅らせた信号を演算する。そして、円弧軌跡演算部15は、演算結果を、表示用の調整軸のフィードバック信号S2に設定する。ここではY軸が調整軸となるので、表示用のY軸フィードバック信号Yd1(t)は、以下の式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 指令信号S1は、完全な正弦波として演算されているので位相の調整が容易であるが、フィードバック信号S2は外乱などが作用するため位相の調整が難しかった。そこで、本実施の形態では、円弧軌跡演算部15は、指令信号S1の軸間位相差が90°になるときのタイミング調整時間と同じだけフィードバック信号S2のタイミングを調整することで、表示用のフィードバック信号の軸間位相差が正確に90°となるようにしている。
 表示対象軸がX軸とY軸の組み合わせ以外の場合には、円弧軌跡演算部15が、式(4)のタイミング調整時間を変えることで、X軸とY軸の組み合わせの場合と同様に表示用の円弧軌跡を求めることができる。Y軸を基準軸とし、Z軸を調整軸とした場合のタイミング調整時間Ta2は、以下の式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
 この場合、円弧軌跡演算部15は、表示用のY軸指令信号Yrd2(t)、Y軸フィードバック信号Yd2(t)、Z軸指令信号Zrd2(t)、Z軸フィードバック信号Zd2(t)を、それぞれ以下の式(9)~(12)により求める。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 また、X軸を基準軸とし、Z軸を調整軸とした場合のタイミング調整時間Ta3は、以下の式(13)で表される。
Figure JPOXMLDOC01-appb-M000013
 この場合、円弧軌跡演算部15は、表示用のX軸指令信号Xrd3(t)、X軸フィードバック信号Xd3(t)、Z軸指令信号Zrd3(t)、Z軸フィードバック信号Zd3(t)を、それぞれ以下の式(14)~(17)により求める。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 つぎに、本実施の形態における工作機械1の動作例について説明する。ここでは、X軸、Y軸、Z軸を有する工作機械1の円弧半径を10mm、送り速度を6m/minとし、軸間位相差が全て0である場合の動作例について説明する。したがって、ここでの軸間位相差は、φxy=φxz=0である。このとき、円弧指令の周期は、0.628秒となる。
 また、制御系の条件としては、位置制御器27を比例制御とし、比例ゲインを100rad/sとし、速度制御器29の比例ゲインおよび積分ゲインを、それぞれ600rad/s、150rad/sとした。そして、各軸のゲインには、全て同じ値を設定しておいた。
 また、制御対象である機械系30は剛体であるものとし、各軸の機械系30のイナーシャは0.001kgm2であるものとした。さらに、モータ32には、クーロン摩擦が作用するものとした。クーロン摩擦の大きさは、X軸を基準にY軸は2倍に設定し、Z軸は4倍の大きさに設定した。クーロン摩擦が大きいほど、移動方向反転時の象限突起が大きくなる。
 さらに、軌跡測定の際には、1.5周期の正弦波信号を指令信号S1として用いるものとする。これは、一周分の円弧指令を測定するにあたり、タイミング調整時間の分だけ余分にデータが必要であるのと、円弧運動開始時および終了時の過渡的な部分を除いて一定の送り速度で運動する定常的な部分を抽出するためである。
 タイミング調整時間は、1/4周期から軸間位相差を減じた値である。ここでは軸間位相差は0であるので、タイミング調整時間の分だけ余分にデータを取得する必要があるのは少なくとも1/4周期分ということになる。
 また、過渡的な部分の時間は、概ね加減速時定数と、サーボの応答遅れ時間との合計となるので、軌跡測定装置10は、この合計時間に相当する周期だけデータを余分に取得する。サーボの応答遅れ時間は、位置比例ゲインの逆数とほぼ等しくなる。位置比例ゲインは、100rad/sに設定されているので、過渡的な部分の時間は、指令開始時と終了時とを合わせた20ms程度となる。円弧指令の周期が0.628秒であるので、過渡的な部分の影響については、1/4周期分余分にデータを取得しておけば十分である。
 したがって、軌跡測定装置10は、タイミング調整時間に相当する1/4周期分と、過渡的な部分の影響を除外するための1/4周期分との合計である1/2周期分だけ余分にデータを測定することとしている。
 以上の条件にて指令信号を生成した場合の円弧軌跡の妥当性を確認するために、各軸のフィードバック信号を数値シミュレーションによって求めた。図5~図7は、各軸の指令位置およびフィードバック位置の時間変化を示している。
 図5は、実施の形態1における、X軸の指令位置およびフィードバック位置の時間変化を示す図である。図6は、実施の形態1における、Y軸の指令位置およびフィードバック位置の時間変化を示す図である。図7は、実施の形態1における、Z軸の指令位置およびフィードバック位置の時間変化を示す図である。図5~図7の横軸は時刻であり、縦軸は加工ヘッド64の位置(指令位置およびフィードバック位置)である。図5~図7に示す特性のうち、実線は指令位置を表し、破線はフィードバック位置を表している。
 図8は、実施の形態1における、3次元空間内における加工ヘッドの位置変化を示す図である。図8では、加工ヘッド64の指令経路を示している。位置指令は、(X,Y,Z)=(0,0,0)mmからスタートする。そして、位置指令では、加工ヘッド64を、(10,10,10)mmに到達させた後、移動方向を反転させ、(-10,-10,-10)mmまで到達させる。さらに、位置指令では、加工ヘッド64を、(-10,-10,-10)mmまで到達させた後、再度移動方向を反転させて(10,10,10)mmまで到達させ、もう一度移動方向を反転させる。そして、位置指令は、加工ヘッド64を、(0,0,0)mmの位置で終了させる。
 このように、ここでの位置指令は、3次元空間内では、直線状の経路を往復させる指令である。また、各軸のフィードバック信号S2は、各軸の指令信号S1に対して10ms程度遅れて追従する。
 次に、円弧軌跡演算部15は、表示対象軸を(a)X軸およびY軸、(b)Y軸およびZ軸、(c)X軸およびZ軸の3通りに設定した場合のそれぞれに対して表示用の円弧軌跡の演算を行う。
表示対象軸を(a)X軸およびY軸とした場合(XY平面の円弧軌跡を求める場合)
 この場合、円弧軌跡演算部15は、3/8周期から1周期分のデータをX軸の表示用のデータとする。すなわち、円弧軌跡演算部15は、0.628×3/8=0.236秒~0.628秒の間のデータをX軸の表示用のデータとして用いる。タイミング調整時間は、式(4)より、0.157秒である。したがって、タイミング調整時間は、X軸のデータから0.157秒遅れたデータである、このため、円弧軌跡演算部15は、0.236-0.157=0.079秒~0.628秒の間のデータをY軸の表示用データとして用いる。
表示対象軸を(b)Y軸およびZ軸とした場合(YZ平面の円弧軌跡を求める場合)
 この場合、円弧軌跡演算部15は、3/8周期から1周期分のデータをY軸の表示用のデータとする。すなわち、円弧軌跡演算部15は、0.628×3/8=0.236秒~0.628秒の間のデータをY軸の表示用のデータとして用いる。タイミング調整時間は、式(8)より、0.157秒である。したがって、タイミング調整時間は、Y軸のデータから0.157秒遅れたデータである、このため、円弧軌跡演算部15は、0.236-0.157=0.079秒~0.628秒の間のデータをZ軸の表示用データとして用いる。
表示対象軸を(c)X軸およびZ軸とした場合(XZ平面の円弧軌跡を求める場合)
 この場合、円弧軌跡演算部15は、3/8周期から1周期分のデータをX軸の表示用のデータとする。すなわち、円弧軌跡演算部15は、0.628×3/8=0.236秒~0.628秒の間のデータをX軸の表示用のデータとして用いる。タイミング調整時間は、式(13)より、0.157秒である。したがって、タイミング調整時間は、X軸のデータから0.157秒遅れたデータである、このため、円弧軌跡演算部15は、0.236-0.157=0.079秒から0.628秒の間のデータをZ軸の表示用データとして用いる。
 以上のようにフィードバック位置の軌跡から求めた半径10mmのXY平面、YZ平面、XZ平面の円弧軌跡をそれぞれ図9~図11に示す。図9は、実施の形態1における、XY平面のフィードバック位置軌跡を示す図である。図10は、実施の形態1における、YZ平面のフィードバック位置軌跡を示す図である。図11は、実施の形態1における、XZ平面のフィードバック位置軌跡を示す図である。
 図9~図11では、誤差を半径方向に50倍に拡大して軌跡をプロットしている(20μm/1目盛り)。図9~図11に示すように、各平面ともに、サーボ応答遅れによる内回りが生じている。また、象限突起は、各軸のクーロン摩擦の大きさに対応して、X軸よりもY軸が大きく、またY軸よりもZ軸がさらに大きくなっている。これは、各平面円弧のフィードバック軌跡表示が正しく行えていることを示している。
 従来、例えばX軸、Y軸、Z軸の3軸を有する機械の場合、XY平面、YZ平面、XZ平面の各平面での円弧軌跡を表示するためには、3回の測定が必要であった。一方、実施の形態1の軌跡測定装置10は、測定した3つ以上の軸のデータを用いて、指定された2軸の円弧軌跡を生成するので、1回の測定で各平面の円弧軌跡を表示することが可能となる。したがって、測定時間を大幅に短縮することが可能となる。
 また、軌跡測定装置10は、指令信号S1の軸間位相差が90°になるときのタイミング調整時間と同じだけフィードバック信号S2のタイミングを調整するので、指令データ(指令信号S1)とフィードバックデータ(フィードバック信号S2)とのタイミングを合わせて軌跡を描画することができる。
 また、円弧指令の周期の1/4の時間から軸間位相差に相当する時間Tdを減じた時間を、タイミング調整時間Taとするので、タイミング調整時間Taを正確に求めることが可能となる。
 さらに、軸間位相差を全て0に設定することによって、測定中の移動経路が直線となる。したがって、円弧状の経路を運動する場合に比べて、工具端(加工ヘッド64の先端部)の動作に必要な範囲の確保が容易になる。
 また、軌跡測定装置10は、円弧軌跡の測定時間を短くすることによって、フィードバック制御系のパラメータ調整時間を短くすることができる。サーボ制御系には、制御ゲインや摩擦補正パラメータなどのパラメータがある。これらのパラメータは、フィードバック軌跡の指令軌跡に対する誤差(内回り量や象限突起量)が小さくなるように、フィードバック軌跡を確認しながら調整する必要があるが、本実施の形態では、その確認作業時間を短縮することが可能となる。
 このように、実施の形態1によれば、測定した3つ以上の軸のデータを用いて、指定された2軸の円弧軌跡を生成するので、3つ以上の送り軸を有する工作機械1に対して移動軌跡を効率良く測定することが可能になる。
実施の形態2.
 つぎに、図12~図18を用いてこの発明の実施の形態2について説明する。実施の形態2では、実施の形態1と同一の構成を有した軌跡測定装置10を用いる。実施の形態2が実施の形態1と相違する点は、軸間位相差の設定である。
 実施の形態2では、軸間位相差を、以下のように0°でも90°の倍数でもない値に設定する。本実施の形態では、Y軸はX軸よりも30°位相が遅れており、Z軸はX軸よりも60°位相が遅れている場合について説明する。具体的には、本実施の形態の軸間位相差は、φxy=30(°)=π/6(rad)、φxz=60(°)=π/3(rad)である。その他の指令条件やフィードバック制御系のパラメータは実施の形態1と同様とする。このときの、各軸の指令信号とフィードバック信号時間変化を図12~図14に示す。
 図12は、実施の形態2における、X軸の指令位置およびフィードバック位置の時間変化を示す図である。図13は、実施の形態2における、Y軸の指令位置およびフィードバック位置の時間変化を示す図である。図14は、実施の形態2における、Z軸の指令位置およびフィードバック位置の時間変化を示す図である。図12~図14の横軸は時刻であり、縦軸は加工ヘッド64の位置(指令位置およびフィードバック位置)である。図12~図14に示す特性のうち、実線は指令位置を表し、破線はフィードバック位置を表している。
 図15は、実施の形態2における、3次元空間内における加工ヘッドの位置変化を示す図である。図15では、加工ヘッド64の指令経路を示している。ここでの位置指令は、(X,Y,Z)=(0,5,8.66)mmからスタートする指令であり、且つ3次元空間内では、楕円状の経路を移動させる指令である。また、各軸のフィードバック信号S2は、各軸の指令信号S1に対して10ms程度遅れて追従する。
 次に、円弧軌跡演算部15は、表示対象軸を(a)X軸およびY軸、(b)Y軸およびZ軸、(c)X軸およびZ軸の3通りに設定した場合のそれぞれに対して表示用円弧軌跡の演算を行う。
表示対象軸を(a)X軸およびY軸とした場合(XY平面の円弧軌跡を求める場合)
 この場合、円弧軌跡演算部15は、3/8周期から1周期分のデータをX軸の表示用のデータとする。すなわち、円弧軌跡演算部15は、0.628×3/8=0.236秒~0.628秒の間のデータをX軸の表示用のデータとして用いる。タイミング調整時間は、式(4)より、0.105秒である。したがって、タイミング調整時間は、X軸のデータから0.105秒遅れたデータである、このため、タイミング調整時間は、0.236-0.105=0.131秒~0.628秒の間のデータをY軸の表示用データとして用いる。
表示対象軸を(b)Y軸およびZ軸とした場合(YZ平面の円弧軌跡を求める場合)
 この場合、円弧軌跡演算部15は、3/8周期から1周期分のデータをY軸の表示用のデータとする。すなわち、円弧軌跡演算部15は、0.628×3/8=0.236秒~0.628秒の間のデータをY軸の表示用のデータとして用いる。タイミング調整時間は、式(8)より、0.105秒である。したがって、タイミング調整時間は、Y軸のデータから0.105秒遅れたデータである、このため、円弧軌跡演算部15は、0.236-0.105=0.131秒~0.628秒の間のデータをZ軸の表示用データとして用いる。
表示対象軸を(c)X軸およびZ軸とした場合(XZ平面の円弧軌跡を求める場合)
 この場合、円弧軌跡演算部15は、3/8周期から1周期分のデータをX軸の表示用のデータとする。すなわち、円弧軌跡演算部15は、0.628×3/8=0.236秒~0.628秒の間のデータをX軸の表示用のデータとして用いる。タイミング調整時間は、式(13)より、0.052秒である。したがって、タイミング調整時間は、X軸のデータから0.052秒遅れたデータである、0.236-0.052=0.184秒~0.628秒の間のデータをZ軸の表示用データとして用いる。
 以上のようにフィードバック位置の軌跡から求めたXY平面、YZ平面、XZ平面の円弧軌跡を図16~図18に示す。図16は、実施の形態2における、XY平面のフィードバック位置軌跡を示す図である。図17は、実施の形態2における、YZ平面のフィードバック位置軌跡を示す図である。図18は、実施の形態2における、XZ平面のフィードバック位置軌跡を示す図である。
 図16~図18では、誤差を半径方向に50倍に拡大して軌跡をプロットしている。各平面ともに、サーボ応答遅れによる内回りが生じている。また、象限突起は、各軸のクーロン摩擦の大きさに対応して、X軸よりもY軸が大きく、またY軸よりもZ軸がさらに大きくなっている。これは、各平面円弧のフィードバック軌跡表示が正しく行えていることを示している。
 実施の形態2の軌跡測定装置10は、実施の形態1の軌跡測定装置10と同様に、1回の測定で各平面の円弧軌跡を表示することが可能となり、測定時間を大幅に短縮することが可能となる。
 また、軌跡測定装置10は、測定した3つ以上の軸のデータから指定した2軸の円弧軌跡を生成し、指令データとフィードバックデータとのタイミングを合わせて描画することができ、その際のタイミング調整時間を正確に求めることが可能となる。
 さらに、軸間位相差を0°でも90°の倍数でもない値に設定しているので、可動軸の反転が同時に起こらなくなる。したがって、可動軸の移動反転時にショックが生じて他の軸の挙動に影響を与えるような場合に、可動軸移動方向反転時の象限突起誤差を正確に測定することが可能となる。
 このように、実施の形態2によれば、測定した3つ以上の軸のデータを用いて、指定された2軸の円弧軌跡を生成するので、3つ以上の送り軸を有する工作機械1に対して移動軌跡を効率良く測定することが可能になる。
 なお、実施の形態1,2では工作機械1の軸数が3軸である場合について説明したが、軸数は4軸以上であってもよい。例えば、3つの直進軸と2つの回転軸とを備えた5軸加工機においても、直進軸および回転軸の全軸に同時に正弦波信号が入力される。この場合も、軌跡測定装置10は、正弦波信号が入力された結果得られた指令信号とフィードバック信号とから任意の2つの軸を座標軸とする平面内での円弧軌跡を演算して表示することができる。
 また、本実施の形態では、軌跡測定装置10とNC装置50とを別構成としたが、NC装置50内に軌跡測定装置10を配置してもよい。また、本実施の形態では、NC装置50を介して、軌跡測定装置10とサーボ制御部20とを接続したが、NC装置50を介することなく、軌跡測定装置10とサーボ制御部20とを接続してもよい。この場合、フィードバック信号取得部13からサーボ制御部20に指令信号S1X,S1Y,S1Zが送られる。また、サーボ制御部20~22からフィードバック信号取得部13にフィードバック信号S2X,S2Y,S2Zがそれぞれ送られる。
 また、NC装置50は、独自に指令信号S1を生成してもよい。また、軌跡測定装置10は、NC装置50が生成した指令信号S1を用いて加工ヘッド64の移動軌跡を測定してもよい。また、本実施の形態では、軌跡測定装置10を工作機械1に適用する場合について説明したが、軌跡測定装置10を工作機械1以外の機械に適用してもよい。
 以上のように、本発明に係る軌跡測定装置、数値制御装置および軌跡測定方法は、軸送り駆動系に指令を与えた際の運動軌跡の測定に適している。
 1 工作機械、10 軌跡測定装置、11 指令条件入力部、12 指令生成部、13 フィードバック信号取得部、14 表示対象軸指定部、15 円弧軌跡演算部、16 表示部、20 サーボ制御部、30 機械系、32 モータ、33 負荷、35 位置検出器、40 移動対象、50 NC装置、61 X軸可動部、62 Y軸可動部、63 Z軸可動部、64 加工ヘッド、C1 指令条件、S1 指令信号、S2 フィードバック信号、S5 モータトルク信号。

Claims (10)

  1.  移動対象に対して3軸以上の可動軸を有する機械の前記移動対象の移動軌跡を測定する軌跡測定装置において、
     前記可動軸間の軸間位相差を含む前記移動対象への指令条件と、前記軸間位相差に基づいて生成された前記可動軸への指令信号と、前記指令信号に前記可動軸の位置が追従するように前記可動軸をフィードバック制御した際の前記可動軸の位置を示すフィードバック信号と、を用いて、前記可動軸のうちの2つの可動軸を座標軸とした平面における前記移動軌跡を、前記平面ごとに演算する軌跡演算部を、備えることを特徴とする軌跡測定装置。
  2.  前記移動軌跡は、弧状の軌跡を含み、
     前記指令条件は、弧の半径と、前記移動対象の送り速度と、前記軸間位相差とを含み、
     前記指令信号は、正弦波信号であり、
     前記正弦波信号は、前記弧の半径が振幅であり、前記送り速度を前記半径で除した値が周波数であり、前記可動軸毎に前記軸間位相差に基づいた位相を有していることを特徴とする請求項1に記載の軌跡測定装置。
  3.  前記軌跡演算部は、
     演算対象とする平面の座標軸である2つの可動軸に対して用いられる前記指令信号および前記フィードバック信号を抽出し、前記2つの可動軸への指令信号の軸間位相差が90°となるよう前記2つの可動軸の一方の可動軸のタイミングを調整するとともに、当該タイミングの調整時間を算出し、前記一方の可動軸のフィードバック信号のタイミングを前記調整時間と同じ時間を用いて調整することを特徴とする請求項2に記載の軌跡測定装置。
  4.  前記調整時間は、前記半径および前記送り速度から定まる指令周期の1/4に対応する時間から、演算対象軸間の前記軸間位相差および前記指令周期から定まる前記軸間位相差に対応する時間を減じた値であることを特徴とする請求項3に記載の軌跡測定装置。
  5.  前記軸間位相差は、何れの軸間においても0°に設定されていることを特徴とする請求項1に記載の軌跡測定装置。
  6.  前記軸間位相差は、0°ではなく、且つ90°の倍数でもない値に設定されていることを特徴とする請求項1に記載の軌跡測定装置。
  7.  前記指令条件を入力する指令条件入力部と、
     前記軸間位相差に基づいて、前記指令信号を前記可動軸毎に生成する指令生成部と、
     前記フィードバック信号を取得するフィードバック信号取得部と、
     をさらに備えることを特徴とする請求項1から6のいずれか1つに記載の軌跡測定装置。
  8.  3軸以上の可動軸を用いて移動対象を移動させる機械に対して前記可動軸への指令信号を用いたフィードバック制御を行うサーボ制御部と、
     前記移動対象の移動軌跡を測定する軌跡測定装置と、
     を有し、
     前記軌跡測定装置は、
     前記可動軸間の軸間位相差を含む前記移動対象への指令条件と、前記軸間位相差に基づいて生成された前記可動軸への指令信号と、前記指令信号に前記可動軸の位置が追従するように前記可動軸をフィードバック制御した際の前記可動軸の位置を示すフィードバック信号と、を用いて、前記可動軸のうちの2つの可動軸を座標軸とした平面における前記移動軌跡を、前記平面ごとに演算する軌跡演算部を、備えることを特徴とする数値制御装置。
  9.  前記軌跡演算部で演算された移動軌跡を外部表示装置に表示させる表示制御部を、さらに備えることを特徴とする請求項8に記載の数値制御装置。
  10.  移動対象に対して3軸以上の可動軸を有する機械の前記移動対象の移動軌跡を測定する軌跡測定方法において、
     前記可動軸間の軸間位相差を含む前記移動対象への指令条件と、前記軸間位相差に基づいて生成された前記可動軸への指令信号と、前記指令信号に前記可動軸の位置が追従するように前記可動軸をフィードバック制御した際の前記可動軸の位置を示すフィードバック信号と、を用いて、前記可動軸のうちの2つの可動軸を座標軸とした平面における前記移動軌跡を、前記平面ごとに演算する軌跡演算ステップを、含むことを特徴とする軌跡測定方法。 
PCT/JP2013/082742 2013-12-05 2013-12-05 軌跡測定装置、数値制御装置および軌跡測定方法 WO2015083275A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/082742 WO2015083275A1 (ja) 2013-12-05 2013-12-05 軌跡測定装置、数値制御装置および軌跡測定方法
CN201380081410.7A CN105814502B (zh) 2013-12-05 2013-12-05 轨迹测定装置、数控装置以及轨迹测定方法
JP2014531027A JP5738490B1 (ja) 2013-12-05 2013-12-05 軌跡測定装置、数値制御装置および軌跡測定方法
US15/035,503 US9921568B2 (en) 2013-12-05 2013-12-05 Trajectory measuring device, numerical control device, and trajectory measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082742 WO2015083275A1 (ja) 2013-12-05 2013-12-05 軌跡測定装置、数値制御装置および軌跡測定方法

Publications (1)

Publication Number Publication Date
WO2015083275A1 true WO2015083275A1 (ja) 2015-06-11

Family

ID=53273067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082742 WO2015083275A1 (ja) 2013-12-05 2013-12-05 軌跡測定装置、数値制御装置および軌跡測定方法

Country Status (4)

Country Link
US (1) US9921568B2 (ja)
JP (1) JP5738490B1 (ja)
CN (1) CN105814502B (ja)
WO (1) WO2015083275A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181504A1 (ja) * 2015-05-12 2016-11-17 三菱電機株式会社 数値制御装置
JP6683748B2 (ja) * 2018-02-23 2020-04-22 ファナック株式会社 数値制御装置
JP6954193B2 (ja) * 2018-03-12 2021-10-27 オムロン株式会社 制御装置、制御方法、およびプログラム
JP7024751B2 (ja) * 2019-03-20 2022-02-24 オムロン株式会社 制御装置および制御プログラム
CN113874922B (zh) * 2019-05-29 2023-08-18 亚萨合莱有限公司 基于样本的相位差来确定移动钥匙装置的位置
CN116963865A (zh) * 2021-03-26 2023-10-27 三菱电机株式会社 激光加工装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274228A (ja) * 1993-03-18 1994-09-30 Mitsubishi Electric Corp 数値制御装置
JP2002103182A (ja) * 2000-10-03 2002-04-09 Fukuoka Prefecture 工作機械の精度測定装置
WO2010067651A1 (ja) * 2008-12-09 2010-06-17 三菱電機株式会社 機械運動軌跡測定装置、数値制御工作機械および機械運動軌跡測定方法
JP2010211554A (ja) * 2009-03-11 2010-09-24 Yaskawa Electric Corp 円弧軌跡表示システム及び円弧軌跡表示方法、円弧軌跡表示装置
JP2011115885A (ja) * 2009-12-02 2011-06-16 Mitsubishi Electric Corp 軌跡測定装置
JP2011165066A (ja) * 2010-02-12 2011-08-25 Jtekt Corp 工作機械の誤差表示装置
JP2013214231A (ja) * 2012-04-03 2013-10-17 Yaskawa Electric Corp モータ制御装置、モータ制御システム、及び切削加工装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177408A (ja) * 1990-11-08 1992-06-24 Fanuc Ltd 数値制御装置の精度評価方法
JP2002120128A (ja) 2000-10-17 2002-04-23 Fanuc Ltd サーボモータとスピンドルモータを制御する数値制御装置
JP4256353B2 (ja) 2005-02-17 2009-04-22 ファナック株式会社 サーボ制御装置及びサーボ系の調整方法
JP5266373B2 (ja) * 2011-09-26 2013-08-21 ファナック株式会社 工具の軌跡表示機能を備えた数値制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274228A (ja) * 1993-03-18 1994-09-30 Mitsubishi Electric Corp 数値制御装置
JP2002103182A (ja) * 2000-10-03 2002-04-09 Fukuoka Prefecture 工作機械の精度測定装置
WO2010067651A1 (ja) * 2008-12-09 2010-06-17 三菱電機株式会社 機械運動軌跡測定装置、数値制御工作機械および機械運動軌跡測定方法
JP2010211554A (ja) * 2009-03-11 2010-09-24 Yaskawa Electric Corp 円弧軌跡表示システム及び円弧軌跡表示方法、円弧軌跡表示装置
JP2011115885A (ja) * 2009-12-02 2011-06-16 Mitsubishi Electric Corp 軌跡測定装置
JP2011165066A (ja) * 2010-02-12 2011-08-25 Jtekt Corp 工作機械の誤差表示装置
JP2013214231A (ja) * 2012-04-03 2013-10-17 Yaskawa Electric Corp モータ制御装置、モータ制御システム、及び切削加工装置

Also Published As

Publication number Publication date
JP5738490B1 (ja) 2015-06-24
CN105814502A (zh) 2016-07-27
CN105814502B (zh) 2018-06-08
US9921568B2 (en) 2018-03-20
US20160370786A1 (en) 2016-12-22
JPWO2015083275A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5738490B1 (ja) 軌跡測定装置、数値制御装置および軌跡測定方法
JP6199003B1 (ja) 機械運動軌跡測定装置
US10108177B2 (en) Control parameter adjustment device
US9915516B2 (en) Method for controlling shape measuring apparatus
US9772619B2 (en) Motor control device
WO2010067651A1 (ja) 機械運動軌跡測定装置、数値制御工作機械および機械運動軌跡測定方法
JP4819665B2 (ja) 非真円形状加工装置
US9304504B2 (en) Servo controller for reducing interference between axes in machining
Kato et al. Analysis of circular trajectory equivalent to cone-frustum milling in five-axis machining centers using motion simulator
JP5388823B2 (ja) 軌跡測定装置
US8970156B2 (en) Path display apparatus considering correction data
JP2008210273A (ja) 摩擦補償方法、摩擦補償器及びモータ制御装置
JP6359210B1 (ja) 制御パラメータ調整装置
JP5404507B2 (ja) 補正パラメータ調整装置
US20150323924A1 (en) Servo control device
JP2010186461A (ja) 軌跡制御のための教示信号発生法、軌跡制御装置、および工作機械
US10452051B2 (en) Numerical control device
JP5677343B2 (ja) 象限突起測定装置および象限突起測定方法
JP5460371B2 (ja) 数値制御装置
WO2019239594A1 (ja) 数値制御装置
JP6038063B2 (ja) 軌跡誤差表示装置
JP5225060B2 (ja) 機械運動測定装置
JP2007179364A (ja) 主軸変位量補正装置
Chong et al. AR-CM NCTF Control for Precision Positioning Systems--Concept and Results
JP2018128350A (ja) 位置検出装置、ステージ装置、および形状測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014531027

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15035503

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898751

Country of ref document: EP

Kind code of ref document: A1