JP2011170609A - 数値制御装置 - Google Patents

数値制御装置 Download PDF

Info

Publication number
JP2011170609A
JP2011170609A JP2010033692A JP2010033692A JP2011170609A JP 2011170609 A JP2011170609 A JP 2011170609A JP 2010033692 A JP2010033692 A JP 2010033692A JP 2010033692 A JP2010033692 A JP 2010033692A JP 2011170609 A JP2011170609 A JP 2011170609A
Authority
JP
Japan
Prior art keywords
error correction
correction amount
position command
response
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033692A
Other languages
English (en)
Other versions
JP5460371B2 (ja
Inventor
Kotaro Nagaoka
弘太朗 長岡
Tomonori Sato
智典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010033692A priority Critical patent/JP5460371B2/ja
Publication of JP2011170609A publication Critical patent/JP2011170609A/ja
Application granted granted Critical
Publication of JP5460371B2 publication Critical patent/JP5460371B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

【課題】機械誤差補正後の軌跡と指令された軌跡とのずれを低減すること。
【解決手段】位置指令から検出器位置までの応答よりも誤差補正量から検出器位置までの応答が速くなるように位置指令および/または誤差補正量に対して演算を実行する演算処理実行部1、2と、演算処理実行部による演算後の位置指令および誤差補正量を合算して補正後位置指令を出力する加算器3と、検出器位置が補正後位置指令に追従するようにモータ5を動作させるサーボ制御部4と、を備える。
【選択図】図1

Description

本発明は、工作機械等の被制御装置を数値制御する数値制御装置に関し、特に被制御装置が備えるテーブルや主軸ヘッド等の機械位置を移動させるための位置指令に対して機械誤差の補正を行う数値制御装置に関する。
工作機械に存在する機械的な誤差(真直度誤差や直角度誤差等)を補正するために、あらかじめ測定した機械誤差の量にもとづいて補正量を決定し、その補正量を指令値に加算することにより機械的な誤差の補正を行っていた(例えば特許文献1参照)。この補正はピッチエラー補正あるいはピッチ誤差補正と呼ばれている。
特開2009−104317号公報 特開2000−172341号公報
位置決め時の機械誤差を補正する場合には補正量を指令値に加算する上記した従来の技術で補正を行うことが可能である。しかしながら、軌跡制御を行う場合、すなわち時々刻々の位置が変化するような指令を与え、その指令された位置の軌跡に実際の機械位置の軌跡が追従するように制御を行う場合、サーボ系の応答遅れの影響により、補正量を加算する位置と実際に補正量が加算される位置がずれてしまい、本来補正したいタイミングと異なったタイミングで補正量が加算され、補正した結果の軌跡が指令された軌跡と一致しなくなるという問題があった。この現象は、指令速度が大きい場合や、サーボ系の応答遅れが大きい場合に特に顕著となる。
また、機械誤差が周期的である場合、すなわち機械誤差が一定間隔で正の値と負の値をくりかえすような場合は、位置指令に加算する補正量も周期的な量となるが、サーボ系の応答遅れが大きい場合、実際に作用する補正量の位相が元々の補正量の位相とずれてしまい、この位相差が180度(degree)付近になった場合には、補正を行うことによりかえって機械誤差を増大させてしまうという問題があった。
本発明は、上記に鑑みてなされたものであって、機械誤差補正後の軌跡と指令された軌跡とのずれを低減した数値制御を実行する数値制御装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、位置検出器による機械位置の検出値である検出器位置と、外部から入力される位置指令と、前記検出器位置と前記機械位置との誤差を補正する外部から入力される誤差補正量と、を用いて、前記位置指令に前記機械位置が追従するようにモータを制御する数値制御装置であって、前記位置指令から前記検出器位置までの応答よりも前記誤差補正量から前記検出器位置までの応答が速くなるように前記位置指令および/または前記誤差補正量に対して演算を実行する演算処理実行部と、前記演算処理実行部による演算後の位置指令および/または誤差補正量を合算して補正後位置指令を出力する加算器と、前記検出器位置が前記補正後位置指令に追従するように前記モータを動作させるサーボ制御部と、を備えることを特徴とする。
本発明によれば、機械誤差補正後の軌跡と指令された軌跡とのずれを低減した数値制御を実行する数値制御装置を得ることができるという効果を奏する。
図1は、本発明の実施の形態1の数値制御装置の構成を示すブロック図である。 図2は、軸数が2軸の場合の数値制御装置の構成を示すブロック図である。 図3は、機械誤差について説明する図である。 図4は、サーボ系の応答遅れがある場合の従来の数値制御装置による制御を説明する図である。 図5は、本発明の実施の形態1の数値制御装置による制御を説明する図である。 図6は、本発明の実施の形態2の数値制御装置の構成を示すブロック図である。 図7は、本発明の実施の形態3の数値制御装置の構成を示すブロック図である。 図8は、本発明の実施の形態4の数値制御装置の構成を示すブロック図である。
以下に、本発明にかかる数値制御装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は本発明の実施の形態1の数値制御装置の構成を示すブロック図である。図示するように、数値制御装置30は、モータ5およびモータ5により駆動される負荷6を備える機械10に接続されている。モータ5には機械位置を検出する位置検出器7が取り付けられている。なお、位置検出器7が検出した機械位置を検出器位置ということとする。
数値制御装置30には、位置指令が入力される。また、数値制御装置30は、機械10が備える位置検出器7が検出した検出器位置が入力される。数値制御装置30は、検出器位置が位置指令により指令された位置に追従するように、モータ5を駆動するモータ駆動トルクを生成する。
数値制御装置30は軸制御系9を有している。軸制御系9は、前記した位置指令と誤差補正量とが入力され、位置検出器7によって検出された検出器位置が入力された位置指令に追従するようにモータ駆動トルクを生成し、生成したモータ駆動トルクをモータ5に与える。誤差補正量は、検出器位置と実際の機械の位置(機械位置)の間の誤差(機械誤差)を補正するためのものである。誤差補正量に関する詳細な説明は後述する。
軸制御系9は、モデル位置指令演算部1と、モデル誤差補正量演算部2と、加算器3と、サーボ制御部4と、を備えている。モデル位置指令演算部1は、入力された位置指令に基づいてモデル位置指令を算出する。また、モデル誤差補正量演算部2は、入力された誤差補正量に基づいてモデル誤差補正量を算出する。モデル位置指令演算部1およびモデル誤差補正量演算部2の応答特性については後述する。
加算器3は、モデル位置指令演算部1が算出したモデル位置指令とモデル誤差補正量演算部2が算出したモデル誤差補正量とを加算し、加算結果(補正後モデル位置指令)をサーボ制御部4へ出力する。サーボ制御部4は、入力された補正後モデル位置指令と検出器位置とが一致するようにモータ駆動トルクを生成する。
機械10に複数の軸が存在する場合、複数の軸の夫々に対応して数値制御装置30にも複数の軸制御系を設置することができる。図2は軸数が2軸の場合の数値制御装置30の構成を示すブロック図である。機械10は第1軸モータ15と第1軸モータ15の負荷としての第1軸負荷16と第1軸位置検出器17とからなる1軸目と、第2軸モータ25と第2軸モータ25の負荷としての第2軸負荷26と第2軸位置検出器27とからなる2軸目と、を備えている。それぞれの負荷16、26は、ボールねじとボールねじによって駆動されるテーブルから構成される。第1軸と第2軸の移動方向は直交するように配置されており、第1軸によって機械位置のX座標を、第2軸によって機械位置のY座標を制御するものとする。一方、数値制御装置30は第1軸制御系19と第2軸制御系29を持つ。これらの軸制御系19、29の構成は、それぞれ図1における軸制御系9と同一の構成となっている。軸制御系19は、第1軸位置指令と第1軸誤差補正量とが入力され、第1軸位置検出器17から第1軸検出器位置が入力され、第1軸モータ15に供給する第1軸モータ駆動トルクを生成する。また、軸制御系29は、第2軸位置指令と第2軸誤差補正量とが入力され、第2軸位置検出器27から第2軸検出器位置が入力され、第2軸モータ25に供給する第2軸モータ駆動トルクを生成する。
このようにして機械の位置を制御することができるが、通常、位置検出器7は機械10の中の実際に制御したい位置(機械位置)とは離れた位置に取り付けられている。例えば、図2の1軸目の場合、位置検出器17は、負荷16を構成するテーブルではなく、第1軸モータ15に取り付けられている。このように機械位置と位置検出器17が取り付けられている位置との間に差異があると、数値制御装置30によって検出器位置が位置指令に追従するように制御したとしても機械位置と位置指令との間には誤差(機械誤差)が生じてしまう。機械位置と位置指令との間の差異としては、機械の真直度誤差や直角度誤差、ボールねじのピッチ誤差などがある。機械位置を直接計測してその位置を検出器位置として用いることができれば理想的であるが、機械位置を直接計測するためには特別な計測機器を設置しなければならず、工作機械ではそのような計測機器を取り付けると加工を行うことができなくなるといった問題や、機械の特性が閉ループ制御系の中に入るため、機械共振があると制御系が発振してしまうといった問題があり、現実的ではない。
そのため、あらかじめ検出器位置と機械位置の間の関係を計測機器を利用して測定した値に基づいて誤差補正パラメータを設定しておき、機械位置と検出器位置の間の誤差補正するための誤差補正量を位置指令に加算することが行われる。誤差補正パラメータは一般に位置によって変化するため、位置についての関数やテーブルとして与えられる。誤差補正量は、位置指令と誤差補正パラメータによって決定される。このように誤差補正量を加算することにより、検出器位置は位置指令と異なった値となるが、機械位置は位置指令に追従するようになり、機械位置を高い精度で制御することが可能となる。
検出器位置と機械位置の間の誤差補正パラメータについては、あらかじめ所定の複数の位置に位置決めした場合の機械位置をレーザ測長器や接触式変位計といった機械位置を直接測定できる計測機器を用いて測定し、その結果から各位置における検出器位置と機械位置の差を各位置における誤差補正パラメータとして設定しておく。誤差補正パラメータを位置に関するテーブルとして設定した場合、誤差補正量は現在位置に対応する誤差補正パラメータを当該テーブルから参照して決定される。
ところが、軌跡制御を行う間の移動経路内で誤差補正量が時々刻々変化するような場合で、移動速度が速い場合やサーボ系の応答遅れが大きい場合、検出器位置が誤差補正量に追従しなくなる。その結果、実際の機械位置の軌跡が指令された軌跡とずれてしまい、意図したとおりの補正が行えなくなるという問題がある。そこで、本発明の実施の形態1では、実際の機械位置の軌跡を指令された軌跡に近づけるために、位置指令にモデル位置指令演算部1を挿入し、誤差補正量にモデル誤差補正量演算部2を挿入し、かつモデル誤差補正量演算部2の応答特性がモデル位置指令演算部1の応答特性よりも高くなるように設定して、誤差補正量から検出器位置までの応答が位置指令から検出器位置までの応答よりも速くなるようにした。
応答性の高さや応答の速さは、ゲイン応答の高さに置き換えて考えることができる。すなわち、同一周波数における周波数応答のゲインが高い方が、応答性が高く、応答が速い。したがって、誤差補正量から検出器位置までの周波数応答のゲインが、位置指令から検出器位置までの周波数応答のゲインよりも高くなるように、モデル誤差補正量演算部2の周波数応答のゲインがモデル位置指令演算部1の周波数応答のゲインよりも高くなるように設定する。あるいは、応答性の高さや応答の速さの指標として、ステップ応答の応答遅れ時間を用いることもできる。これは、ステップ応答の応答遅れ時間はステップ応答の値が目標値の所定倍(例えば0.5倍)に到達するまでの時間として定義され、この時間が短いほうが、応答が速い。
本実施の形態1では、位置指令や誤差補正量に含まれる高周波数領域の成分を除去して機械振動などが励起されにくくするために、モデル位置指令演算部1およびモデル誤差補正量演算部2を、低域通過特性をもつフィルタとする。一般的なフィルタの入出力特性は伝達関数で表すことができる。ここでは、モデル位置指令演算部1の伝達関数をGr(s)、モデル誤差補正量演算部2の伝達関数をGe(s)とおく(sは、ラプラス演算子)。周波数応答のゲインは、伝達関数の絶対値を計算することにより求められる。よって、モデル誤差補正量演算部2の周波数応答のゲイン|Ge(jω)|が、モデル位置指令演算部1の周波数応答のゲイン|Gr(jω)|よりも高くなるようにモデル位置指令演算部1およびモデル誤差補正量演算部2を設定すればよい。ただし、jは虚数単位、ωは周波数を表す。
低域通過特性を持つフィルタの場合、応答帯域を高く設定することにより、入力に対する出力の応答を速くすることができる。応答帯域は、周波数応答のゲインが所定の値(例えば0.707)以上である最大の周波数ωとして定義することができる。モデル位置指令演算部1は、位置指令に対して所望の応答特性を持つように設計される。例えば、2次の重根をもつフィルタとして、Gr(s)を次式のように設定する。
Gr(s)=Kr2/(s2+2Kr・s+Kr2) (1)
ここで、Krはモデル位置応答のゲインであり、モデル位置指令演算部1の応答帯域に相当する。Krを大きく設定すると、それに伴ってモデル位置指令演算部1の伝達関数Gr(s)の応答帯域が高くなり、モデル位置指令は位置指令に早く追従するようになり、結果として検出器位置が位置指令に早く追従するようになる。
また、モデル誤差補正量演算部も、同様に次式のような伝達関数Ge(s)をもつように設定する。
Ge(s)=Ke2/(s2+2Ke・s+Ke2) (2)
ここで、Keはモデル誤差補正量応答のゲインであり、モデル誤差補正量演算部2の応答帯域に相当する。Keを大きく設定すると、それに伴ってモデル誤差補正量演算部2の伝達関数Ge(s)の応答帯域が高くなり、モデル誤差補正量は誤差補正量に早く追従するようになり、結果として検出器位置が誤差補正量に早く追従するようになる。
そこで、KeをKrよりも大きく設定することにより、モデル誤差補正量演算部2の応答帯域がモデル位置指令演算部1の応答帯域よりも高くなるようにし、位置指令から検出器位置までの応答よりも誤差補正量から検出器位置までの応答の方が速くなるようにすることができる。
サーボ制御部4の構成は、例えば特許文献2に開示されているように、位置ループの内部に速度ループ・電流ループをもつカスケード構造のフィードバック制御系に、位置および速度のフィードフォワードを行う制御系とするとよい。
次に、図3〜図5を参照して、本発明の実施の形態1による効果を説明する。図3は、機械誤差について説明する図である。図3(a)において、太い実線は指令経路を表す。この指令経路はX方向に位置指令が移動する経路であるが、機械誤差により、実際の機械位置はY方向にも変位し、図3(a)中の破線に示すようになる場合を考える。このような場合、検出器位置での軌跡を図の細い実線のように制御することができれば、実際の機械位置を指令経路と一致させることができる。そこで、時々刻々の図の細い実線上の位置と図の太い実線上の位置の差、すなわち検出器位置と機械位置の差が誤差補正量として数値制御装置30に入力される。図3(b)は位置指令の時間変化を、図3(c)は誤差補正量の時間変化を示す。X軸の位置指令は一定速度で増加するのに対し、Y軸の位置指令は一定値を保つ。また、X軸の誤差補正量は常に0であるのに対し、Y軸の誤差補正量はX軸が移動することによる機械誤差量の変化に対応して時間と共に変化する。
図4は、サーボ系の応答遅れがある場合の従来の数値制御装置による制御を説明する図である。従来の数値制御装置によれば、サーボ系の応答遅れが大きい場合、補正後のサーボ応答の経路すなわち検出器位置の軌跡は図4(a)の破線のようになる。つまり、図4(b)に示すように、位置指令は一定速度の移動のため、位置指令に対するサーボ応答は位置指令に追従するが、図4(c)に示すように、誤差補正量は時々刻々変化するために誤差補正量に対するサーボ応答は与えられた誤差補正量に対して遅れて変化する。その結果、実際の機械位置の軌跡は指令経路からずれてしまう。
図5は、本発明の実施の形態1の数値制御装置30による制御を説明する図である。数値制御装置30によれば、誤差補正量から検出器位置までの応答が位置指令から検出器位置までの応答よりも速くなるように制御することにより、補正後のサーボ応答経路を図5(a)の破線のように、補正後の指令経路に近づけることができ、その結果実際の機械位置の軌跡が指令経路に精度よく追従させることができる。すなわち、機械誤差補正後の軌跡と指令された軌跡とのずれを低減することができる。その際の位置指令に対するサーボ応答の時間変化は図5(b)のようになり、誤差補正量のサーボ応答の時間変化は図5(c)のようになる。
以上述べたように、本発明の実施の形態1によれば、位置指令に対する応答よりも誤差補正量に対する応答を速く設定することにより、誤差補正量に実際の軌跡が素早く追従するようになってサーボ応答遅れにより生じる機械誤差補正後の軌跡と指令された軌跡とのずれを低減することができる。したがって、サーボ系の応答遅れや送り速度に関係なく機械誤差を意図したとおりに補正することができるようになる。機械誤差を意図したとおりに補正することができるので、機械位置で加工される製品の歩留まりを向上させることができる。
また、モデル位置指令演算部1とモデル誤差補正量演算部2を、低域通過特性をもつフィルタとし、モデル誤差補正量演算部2のフィルタの応答帯域をモデル位置指令演算部1のフィルタの応答帯域よりも高くするようにしたので、機械誤差補正後の軌跡と指令された軌跡とのずれを低減することができるとともに、位置指令や誤差補正量に含まれる高周波数領域の成分を除去して機械振動などが励起されにくくすることができる。
実施の形態2.
図6は、本発明の実施の形態2の数値制御装置の構成を示すブロック図である。ここでは、実施の形態1と等しい構成要素には同じ符号を付し、該構成要素に関する詳細な説明は省略する。
図6に示すように、実施の形態2の数値制御装置40は、モデル位置指令演算部1、モデル誤差補正量演算部42、加算器3、サーボ制御部4を有する軸駆動系41を備えている。加算器3は、モデル位置指令演算部1が算出したモデル位置指令とモデル誤差補正量演算部42が算出したモデル誤差補正量とを加算し、補正後モデル位置指令を算出する。
ここで、モデル誤差補正量演算部42は、むだ時間要素として機能する。モデル誤差補正量演算部42のむだ時間には、モデル位置指令の応答遅れ時間と同じ時間が設定される。応答遅れ時間とは、定常状態における遅れ時間である。定常状態における遅れ時間は、サーボ系に一定速度の入力が与えられたときの指令に対する応答の定常的な遅れ時間をラプラス変換の最終値定理を用いて求めることにより得られる。
実施の形態1と同様にモデル位置指令演算部1としてゲインKrの2次の重根をもつフィルタを用いた場合、応答遅れ時間はゲインKrの逆数1/Krとなる。したがって、モデル誤差補正量演算部42はモデル位置指令の応答遅れ時間1/Krと等しいむだ時間を持つようにするとよい。ただし、数値制御装置40に離散時間系の制御を実行させる場合、モデル位置指令の応答遅れ時間1/Krと全く等しい時間をモデル誤差補正量演算部42のむだ時間に設定することは一般に不可能であるため、そのような場合、サンプル周期の整数倍のうちモデル位置指令の応答遅れ時間1/Krに最も近い時間を設定するようにするとよい。
このように、本発明の実施の形態2では、モデル誤差補正量演算部42は、モデル位置指令の応答遅れ時間と等しいむだ時間を持つむだ時間要素として機能するように構成した。これにより、モデル誤差補正量演算部42のゲイン特性は1となり、モデル位置指令演算部1の応答特性よりも速い特性となるが、モデル誤差補正量演算部42の定常状態における応答遅れ時間はモデル位置指令演算部1と等しくなる。したがって、本発明の実施の形態2によれば、モデル位置指令演算部1の応答遅れが大きい場合に誤差補正量を加算するタイミングが早くなりすぎるといった状態に至ることを防ぐことができるので、機械誤差補正後の軌跡と指令された軌跡とのずれを低減することができる。
また、モデル位置指令演算部1を、低域通過特性をもつフィルタとしたことにより、位置指令に含まれる高周波数領域の成分を除去して機械振動などが励起されにくくすることができる。
実施の形態3.
誤差補正量が時間に対して周期的な関数であれば、サーボ応答遅れによる位相遅れはあらかじめ求めることができる。そこで、実施の形態3では、実施の形態1からモデル誤差補正量演算部を省き、モデル位置指令演算部では、サーボ系において誤差補正量の位相が遅れる分だけ位置指令の位相を遅らせることにより、誤差補正量に対するサーボ応答のタイミングと位置指令に対するサーボ応答のタイミングを合わせるようにした。図7は、本発明の実施の形態3の数値制御装置の構成を示すブロック図である。なお、実施の形態3に関し、実施の形態1と等しい構成要素には同じ符号を付し、該構成要素に関する詳細な説明は省略する。
図7に示すように、実施の形態3の数値制御装置50は、モデル位置指令演算部52、加算器3、サーボ制御部4を有する軸駆動系51を備えている。加算器3は、モデル位置指令演算部52が算出したモデル位置指令と数値制御装置50に入力された誤差補正量とを加算し、サーボ制御部4に供給する補正後モデル位置指令を算出する。
モデル位置指令演算部52は、位相遅れフィルタとしての特性を備えている。誤差補正量から検出器位置までの伝達関数をGed(s)とし、誤差補正量が周波数ωeで変化するとすると、モデル位置指令演算部52の周波数ωeにおける位相遅れが、周波数ωeにおける誤差補正量から検出器位置までの伝達関数の位相遅れ量∠Ged(j・ωe)と等しくなるように、モデル位置指令演算部52の位相遅れフィルタGr(s)が設計される。位相遅れフィルタとしては、例えば次式に示す1次の低域通過フィルタが設定される。
Gr(s)=1/(Tr・s+1) (3)
Trは低域通過フィルタの時定数であり、モデル位置指令演算部の周波数ωeにおける位相遅れ∠Gr(j・ωe)が、周波数ωeにおける誤差補正量から検出器位置までの伝達関数の位相遅れ量∠Ged(j・ωe)と等しくなるように設定される。
このように、実施の形態3では、誤差補正量が所定周波数で変化する場合において、誤差補正量は操作せず、モデル位置指令演算部52は、誤差補正量から検出器位置までの前記所定周波数における位相遅れ量と等しい位相遅れ量を持つ位相遅れフィルタ特性を備えるように構成したので、実施の形態1に比して簡易な構成で機械誤差補正後の軌跡と指令された軌跡とのずれを低減することができる。
実施の形態4.
実施の形態3で述べたように、誤差補正量が時間に対して周期的な関数であれば、サーボ応答遅れによる位相遅れはあらかじめ求めることができる。実施の形態4では、位置指令の位相を操作せず、誤差補正量の位相を進ませることによって、誤差補正量に対するサーボ応答のタイミングと位置指令に対するサーボ応答のタイミングを合わせるようにした。図8は本発明の実施の形態4の数値制御装置の構成を示すブロック図である。実施の形態4に関し、実施の形態1と等しい構成要素には同じ符号を付し、該構成要素に関する詳細な説明は省略する。
図8に示すように、実施の形態4の数値制御装置60は、モデル誤差補正量演算部62、加算器3、サーボ制御部4を有する軸駆動系61を備えている。加算器3は、数値制御装置60に入力された位置指令とモデル誤差補正量演算部62が算出したモデル誤差補正量とを加算し、サーボ制御部4に供給する補正後モデル位置指令を算出する。
モデル誤差補正量演算部62は、位相進みフィルタとしての特性を備えている。誤差補正量から検出器位置までの伝達関数をGed(s)とし、誤差補正量が周波数ωeで変化するとすると、モデル誤差補正量演算部62の周波数ωeにおける位相進み量が、周波数ωeにおける誤差補正量から検出器位置までの伝達関数の位相遅れ量∠Ged(j・ωe)と等しくなるように、モデル誤差補正量演算部62の位相進みフィルタGe(s)が設定される。モデル誤差補正量演算部62の位相進みフィルタとしては、例えば次式に示す1次の零点をもつフィルタが設定される。
Ge(s)=Te・s+1 (4)
Teはフィルタの時定数であり、モデル位置指令演算部の周波数ωeにおける位相進み量(位相遅れ量を符号反転した値)−∠Ge(j・ωe)が、周波数ωeにおける誤差補正量から検出器位置までの伝達関数の位相遅れ量∠Ged(j・ωe)と等しくなるように設定される。
このように、実施の形態4では、誤差補正量が所定周波数で変化する場合において、位置指令は操作せず、モデル誤差補正量演算部62は、誤差補正量から前記検出器位置までの前記所定周波数における位相遅れ量と等しい量だけ位相を進める位相進みフィルタ特性を備えるように構成したので、実施の形態1に比して簡易な構成で機械誤差補正後の軌跡と指令された軌跡とのずれを低減することができる。
以上のように、本発明にかかる数値制御装置は、工作機械等の被制御装置を数値制御する数値制御装置に有用であり、特に、被制御装置が備えるテーブルや主軸ヘッド等の機械位置を移動させるための位置指令に対して機械誤差の補正を行う数値制御装置に適している。
1 モデル位置指令演算部
2 モデル誤差補正量演算部
3 加算器
4 サーボ制御部
5 モータ
6 負荷
7 位置検出器
9 軸制御系
10 機械
15 第1軸モータ
16 第1軸負荷
17 第1軸位置検出器
19 第1軸制御系
25 第2軸モータ
26 第2軸負荷
27 第2軸位置検出器
29 第2軸制御系
30 数値制御装置
40 数値制御装置
41 軸駆動系
42 モデル誤差補正量演算部
50 数値制御装置
51 軸駆動系
52 モデル位置指令演算部
60 数値制御装置
61 軸駆動系
62 モデル誤差補正量演算部

Claims (6)

  1. 位置検出器による機械位置の検出値である検出器位置と、外部から入力される位置指令と、前記検出器位置と前記機械位置との誤差を補正する外部から入力される誤差補正量と、を用いて、前記位置指令に前記機械位置が追従するようにモータを制御する数値制御装置であって、
    前記位置指令から前記検出器位置までの応答よりも前記誤差補正量から前記検出器位置までの応答が速くなるように前記位置指令および/または前記誤差補正量に対して演算を実行する演算処理実行部と、
    前記演算処理実行部による演算後の位置指令および/または誤差補正量を合算して補正後位置指令を出力する加算器と、
    前記検出器位置が前記補正後位置指令に追従するように前記モータを動作させるサーボ制御部と、
    を備えることを特徴とする数値制御装置。
  2. 前記演算処理実行部による演算は、前記外部から入力された位置指令および誤差補正量に対して夫々低域通過特性を持つフィルタを作用させることであって、
    前記誤差補正量に作用させるフィルタの応答帯域は前記位置指令に作用させるフィルタの応答帯域よりも高いことを特徴とする請求項1に記載の数値制御装置。
  3. 前記演算処理実行部による演算は、前記外部から入力された位置指令に対して応答遅れ時間を有する所定のフィルタを作用させ、かつ前記外部から入力された誤差補正量に対して前記所定のフィルタの応答遅れ時間に等しい時間をむだ時間とする処理を実行することである、
    ことを特徴とする請求項1に記載の数値制御装置。
  4. 前記所定のフィルタは、低域通過特性を持つフィルタである、ことを特徴とする請求項3に記載の数値制御装置。
  5. 前記外部から入力される誤差補正量は時間に対して所定周波数の周期的に変化し、
    前記演算処理実行部による演算は、前記外部から入力された誤差補正量から前記検出器位置までの前記所定周波数における位相遅れ量と等しい位相遅れ量を有する位相遅れフィルタを前記外部から入力された位置指令に対して作用させることである、
    ことを特徴とする請求項1に記載の数値制御装置。
  6. 前記外部から入力される誤差補正量は時間に対して所定周波数の周期的に変化し、
    前記演算処理実行部による演算は、前記外部から入力された誤差補正量から前記検出器位置までの前記所定周波数における位相遅れ量と等しい量だけ位相を進める位相進みフィルタを前記外部から入力された誤差補正量に対して作用させることである、
    ことを特徴とする請求項1に記載の数値制御装置。
JP2010033692A 2010-02-18 2010-02-18 数値制御装置 Active JP5460371B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033692A JP5460371B2 (ja) 2010-02-18 2010-02-18 数値制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033692A JP5460371B2 (ja) 2010-02-18 2010-02-18 数値制御装置

Publications (2)

Publication Number Publication Date
JP2011170609A true JP2011170609A (ja) 2011-09-01
JP5460371B2 JP5460371B2 (ja) 2014-04-02

Family

ID=44684672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033692A Active JP5460371B2 (ja) 2010-02-18 2010-02-18 数値制御装置

Country Status (1)

Country Link
JP (1) JP5460371B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362146B1 (ja) * 2012-07-17 2013-12-11 三菱電機株式会社 数値制御装置および数値制御システム
JP2020038569A (ja) * 2018-09-05 2020-03-12 オークマ株式会社 数値制御方法及び数値制御装置
US10606235B2 (en) 2016-09-08 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Motor control device, motor position control method, and industrial machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278603A (ja) * 1991-03-06 1992-10-05 Mitsubishi Heavy Ind Ltd 送り駆動装置
JP2000091911A (ja) * 1998-09-16 2000-03-31 Toshiba Corp スペクトル拡散通信機の遅延ロックループ回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278603A (ja) * 1991-03-06 1992-10-05 Mitsubishi Heavy Ind Ltd 送り駆動装置
JP2000091911A (ja) * 1998-09-16 2000-03-31 Toshiba Corp スペクトル拡散通信機の遅延ロックループ回路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362146B1 (ja) * 2012-07-17 2013-12-11 三菱電機株式会社 数値制御装置および数値制御システム
WO2014013550A1 (ja) * 2012-07-17 2014-01-23 三菱電機株式会社 数値制御装置および数値制御システム
CN104508580A (zh) * 2012-07-17 2015-04-08 三菱电机株式会社 数控装置以及数控系统
CN104508580B (zh) * 2012-07-17 2016-08-24 三菱电机株式会社 数控装置以及数控系统
US9823644B2 (en) 2012-07-17 2017-11-21 Mitsubishi Electric Corporation Numerical control device and numerical control system
US10606235B2 (en) 2016-09-08 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Motor control device, motor position control method, and industrial machine
JP2020038569A (ja) * 2018-09-05 2020-03-12 オークマ株式会社 数値制御方法及び数値制御装置
JP7134031B2 (ja) 2018-09-05 2022-09-09 オークマ株式会社 数値制御方法及び数値制御装置

Also Published As

Publication number Publication date
JP5460371B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5885883B2 (ja) サーボ制御装置
JP4335123B2 (ja) 制御装置
JP5411978B2 (ja) ボールネジの伸縮量を補正する機能を備えたサーボ制御装置
JP6316323B2 (ja) モータ制御装置
JP2004288164A (ja) 同期制御装置
JP2004280772A (ja) サーボモータ駆動制御装置
JP6592143B2 (ja) 電動機の制御装置
US11175647B2 (en) Motor controller
WO2013140679A1 (ja) 軌跡制御装置
JP2007219812A (ja) サーボモータの制御装置
JPH0569275A (ja) 数値制御装置
JP2017068625A (ja) 学習制御器の特性測定を行う機能を有するサーボ制御装置
JP6412071B2 (ja) モータ制御装置、モータ制御方法及びモータ制御用プログラム
EP2996003B1 (en) Device and method for moving an object
JP5460371B2 (ja) 数値制御装置
WO2015083275A1 (ja) 軌跡測定装置、数値制御装置および軌跡測定方法
KR20140024809A (ko) 모터 제어 장치
JP5319167B2 (ja) 制御装置
EP3076260B1 (en) Device and method for assisting in design improvement work for mechanical device
JP2010045957A (ja) モータ制御装置とバックラッシ同定方法
JP2007299122A (ja) サーボ制御装置とその調整方法
JP2008011655A (ja) パルスモータ制御装置
JP6391489B2 (ja) モータ制御装置
JP6048174B2 (ja) 数値制御装置とロストモーション補償方法
JP2007122549A (ja) Xyテーブルの円弧補間制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5460371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250