WO2015081737A1 - 绿色聚噻吩类电致变色材料及其制备方法与含有该材料的组件 - Google Patents

绿色聚噻吩类电致变色材料及其制备方法与含有该材料的组件 Download PDF

Info

Publication number
WO2015081737A1
WO2015081737A1 PCT/CN2014/086066 CN2014086066W WO2015081737A1 WO 2015081737 A1 WO2015081737 A1 WO 2015081737A1 CN 2014086066 W CN2014086066 W CN 2014086066W WO 2015081737 A1 WO2015081737 A1 WO 2015081737A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
bis
green
hours
Prior art date
Application number
PCT/CN2014/086066
Other languages
English (en)
French (fr)
Inventor
徐春叶
米赛
郑建明
Original Assignee
京东方科技集团股份有限公司
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 中国科学技术大学 filed Critical 京东方科技集团股份有限公司
Priority to US14/436,701 priority Critical patent/US9926406B2/en
Publication of WO2015081737A1 publication Critical patent/WO2015081737A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3247Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing combinations of different heteroatoms other than nitrogen and oxygen or nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/54Physical properties electrochromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/64Solubility

Definitions

  • Embodiments of the present invention relate to a soluble green polythiophene electrochromic material, a method of preparing the same, and an assembly containing the same.
  • Electrochromic materials are one of the hotspots in material science research in recent years. Compared with inorganic and organic small molecule electrochromic materials, polymer electrochromic materials have advantages of better coloring efficiency; fast electrochromic response; good chemical stability; easy preparation; high cycle life; Memory function; color shade can be adjusted.
  • the rigidity of the conductive polymer backbone often makes the polythiophene insoluble and infusible.
  • the conventional method uses electrochemical polymerization to form a polymer film on the surface of the electrode.
  • electrochemical polymerization is difficult to prepare for large-area electrochromic devices.
  • researchers have introduced various forms of side chain groups for polythiophene derivatives by chemical modification methods to weaken the interaction between polymer molecular chains and obtain the solubility of the polymer in organic solvents.
  • a sprayable operation of a polythiophene electrochromic material is
  • An embodiment of the present invention provides a green polythiophene electrochromic material represented by formula (I), which is poly[2,3-bis(3,4-dialkoxyphenyl)-5,8-di (3,4-ethylenedioxythiophenyl)quinoxaline],
  • n is an integer between 40 and 200
  • R C m H 2m+1
  • m is an integer between 8 and 14.
  • Embodiments of the present invention also provide a method for preparing the above polymer, comprising:
  • Step 1 reacting catechol with an alkyl bromide having an alkyl chain length of from 8 to 14 carbon atoms under the action of potassium hydroxide to obtain 1,2-dialkoxybenzene as compound 1;
  • Step 2 electrophilic substitution reaction of compound 1 and oxalyl chloride under the action of anhydrous aluminum chloride to obtain 1,2-bis(3,4-dialkoxyphenyl)-1,2-dione, Is compound 2;
  • Step 3 halogenation reaction of 2,1,3-benzothiadiazole with bromine to obtain 4,7-dibromo-2,1,3 benzothiadiazole as compound 3;
  • Step 4 Reduction of compound 3 with sodium borohydride to obtain 3,6-dibromo-o-phenylenediamine as compound 4;
  • Step 5 reacting Compound 2 and Compound 4 under p-toluenesulfonic acid to obtain 2,3-bis(3,4-dialkoxyphenyl)-5,8-dibromoquinoxaline as a compound 5;
  • Step 6 reacting 3,4-ethylenedioxythiophene with n-butyllithium and tributyltin chloride to obtain 2-tributyltin-3,4-ethylenedioxythiophene as compound 6;
  • Step 7 Stille coupling reaction of compound 5 and compound 6 under the catalysis of bistriphenylphosphine palladium dichloride or palladium acetate to obtain 2,3-bis(3,4-dialkoxyphenyl)-5 , 8-bis(3,4-ethylenedioxythiophenyl)quinoxaline, which is compound 7;
  • Step 8 Polymerization of compound 7 under the conditions of catalytic oxidation of ferric chloride to obtain poly[2,3-bis(3,4-dialkoxyphenyl)-5,8-di (3,4) -Ethylenedioxythiophenyl)quinoxaline], which is Compound 8.
  • Embodiments of the present invention provide the green polythiophene electrochromic material in the manufacture of electrochromism Application in the device.
  • Embodiments of the present invention also provide poly[2,3-bis(3,4-dialkoxyphenyl)]-5,8-di(3,4-ethylene 2) containing the above green polythiophene electrochromic material.
  • Example 1 is a Fourier transform infrared spectrum of a monomer prepared according to Example 1 of the present invention, in which the ordinate represents the transmittance of infrared light, and the abscissa represents the wavelength;
  • Example 3 is a nuclear magnetic hydrogen spectrum diagram of a monomer prepared according to Example 1 of the present invention, wherein the ordinate represents peak intensity and the abscissa represents chemical shift;
  • Example 4 is a nuclear magnetic carbon spectrum of a monomer prepared according to Example 1 of the present invention, wherein the ordinate represents peak intensity and the abscissa represents chemical shift;
  • Figure 5 is a cyclic voltammetry graph of a polymer film prepared according to Example 10 of the present invention, wherein the ordinate represents the magnitude of the current and the abscissa represents the applied voltage;
  • Figure 6 is a multi-potential step diagram of a polymer film prepared according to Example 10 of the present invention, wherein the ordinate represents the magnitude of the current and the abscissa represents the time;
  • Figure 7 is a schematic view showing the transmittance of a colored state and a decolorized state of a polymer film prepared according to Example 10 of the present invention, wherein the ordinate represents transmittance and the abscissa represents wavelength;
  • Figure 8 is a schematic view showing the difference in transmittance between a colored state and an achromatic state of a polymer film prepared according to the practice 10 of the present invention, wherein the ordinate represents the transmittance and the abscissa represents the wavelength, and the numerical value of the ordinate of the curve is achromatic.
  • the state transmittance is obtained by subtracting the transmittance of the colored state.
  • the present disclosure relates to a novel soluble green polythiophene electrochromic material whose color can be converted between green and transparent.
  • the polymer material is soluble in a polar organic solvent and thus can be formed by spin coating or spraying on the surface of the ITO glass.
  • the film has a low driving voltage, It has fast response time, transparent oxidation state and high transmittance. It can be used in electrochromic windows, rearview mirrors, color-changing displays and other devices.
  • An embodiment of the present invention provides a green polythiophene electrochromic material represented by formula (I), poly[2,3-bis(3,4-dialkoxyphenyl)-5,8-di ( 3,4-ethylenedioxythiophenyl)quinoxaline],
  • n is an integer between 40 and 200
  • R C m H 2m+1
  • m is an integer between 8 and 14.
  • n is an integer between 10-12.
  • the obtained polymer is called poly[2,3-bis(3,4-dioctyloxyphenyl)-5,8-di(3,4-ethylenedioxythiophenyl)quinaquine. Porphyrin].
  • the number average molecular weight of the polymer according to the embodiment of the present invention ranges from about 20,000 to 100,000, and the preferred number average molecular weight ranges from 50,000 to 70,000.
  • the material is poly[2,3-bis(3,4-di(dodecyloxy)phenyl)-5,8-di (as shown in formula (II)). 3,4-ethylenedioxythiophenyl)quinoxaline]
  • n is an integer between 40 and 200.
  • the above polymers have desirable physical and chemical properties, and the color can be converted between green and transparent, and the cycle life is more than 10,000 times. It can be sprayed onto the surface of the ITO glass to form a film. It is characterized by low driving voltage (within ⁇ 1V), fast response time (within 3s), and large difference in transmittance between the colored state and the decolorized state (up to 50%). Therefore, the polymer can be used for electrochromism. Windows, rearview mirrors, color-changing displays and other devices.
  • the embodiment of the invention further provides a preparation method of the above green polythiophene electrochromic material, and the preparation method comprises the following steps:
  • Step 1 reacting catechol with an alkyl bromide having an alkyl chain length of from 8 to 14 carbon atoms under the action of potassium hydroxide to obtain 1,2-dialkoxybenzene as compound 1;
  • Step 2 Electrophilic substitution reaction of 1,2-dialkoxybenzene and oxalyl chloride under the action of anhydrous aluminum chloride to obtain 1,2-bis(3,4-dialkoxyphenyl)- 1,2-dione, which is compound 2;
  • Step 3 halogenation reaction of 2,1,3-benzothiadiazole with bromine to obtain 4,7-dibromo-2,1,3 benzothiadiazole as compound 3;
  • Step 4 Reduction of compound 3 with sodium borohydride to obtain 3,6-dibromo-o-phenylenediamine as compound 4;
  • Step 5 reacting Compound 2 and Compound 4 under p-toluenesulfonic acid to obtain 2,3-bis(3,4-dialkoxyphenyl)-5,8-dibromoquinoxaline as a compound 5;
  • Step 6 reacting 3,4-ethylenedioxythiophene with n-butyllithium and tributyltin chloride to obtain 2-tributyltin-3,4-ethylenedioxythiophene as compound 6;
  • Step 7 Stille coupling reaction of compound 5 and compound 6 under the catalysis of bistriphenylphosphine palladium dichloride or palladium acetate to obtain 2,3-bis(3,4-dialkoxyphenyl)-5 , 8-bis(3,4-ethylenedioxythiophenyl)quinoxaline, which is compound 7;
  • Step 8 Polymerization of compound 7 under the conditions of catalytic oxidation of ferric chloride to obtain poly[2,3-bis(3,4-dialkoxyphenyl)-5,8-di (3,4) -Ethylenedioxythiophenyl)quinoxaline], which is Compound 8.
  • the ratio of the amount of catechol to alkyl bromide in the step 1 is 1:2 to 1:4, preferably 1:3, the reaction solvent is ethanol, and the reaction temperature is 60 to 80 ° C, preferably 60.
  • the reaction time is 4 to 10 hours, preferably 10 hours. Under this condition, the reaction has the advantage of saving raw materials and increasing the reaction yield.
  • step 2 the ratio of the amount of the compound 1 and the anhydrous aluminum chloride is 1:1 to 1:1.2 on a molar basis. 1:1.1; compound 1 and oxalyl chloride are used in an amount of 1:0.5 to 1:0.6, preferably 1:0.6, the reaction solvent is carbon disulfide, the reaction temperature is 0 ° C, and the reaction time is 18 to 24 hours, preferably 24 hour. The reaction can be carried out under these conditions to increase the reaction yield.
  • step 3 the ratio of the amount of 2,1,3-benzothiadiazole and bromine is 1:2 to 1:4, preferably 1:3, and the reaction solvent is an aqueous solution of hydrobromic acid (mass concentration: 14%).
  • the reaction temperature is 80 to 100 ° C, preferably 80 ° C, and the reaction time is 8 to 12 hours, preferably 12 hours. The reaction can be carried out under these conditions to increase the reaction yield.
  • the amount of the compound 3 and sodium borohydride in the step 4 is 1:5 to 1:10, preferably 1:10 on a molar basis; the reaction solvent is ethanol, and the reaction temperature is room temperature. The reaction can be carried out under these conditions to increase the reaction yield.
  • the amount of the compound 2 and the compound 4 in the step 5 is 1:1 to 1:1.2, preferably 1:1 by mole; the catalyst is p-toluenesulfonic acid, and the amount of the catalyst is 5% to 10% of the compound 4, Preferably 10%.
  • the reaction solvent is chloroform or ethanol, preferably chloroform.
  • the reaction temperature is 60 to 80 ° C, preferably 80 ° C.
  • the reaction time is 10 to 12 hours, preferably 12 hours. Carrying out the reaction under such conditions can save raw materials and increase the reaction yield.
  • the amount ratio of 3,4-ethylenedioxythiophene and n-butyllithium in the step 6 is 1:1 to 1:1.2, preferably 1:1.2 on a molar basis.
  • the reaction conditions are stirred at -78 ° C for 0.5 to 1 hour, preferably 1 hour.
  • the ratio of the amount of 3,4-ethylenedioxythiophene and tributyltin chloride is from 1:1 to 1:1.2, preferably 1:1.2 on a molar basis.
  • the reaction conditions are room temperature reaction for 16 to 24 hours, preferably 24 hours. The reaction can be carried out under these conditions to increase the reaction yield.
  • the amount of the compound 5 and the compound 6 in the step 7 is from 1:2 to 1:2.5, preferably 1:2.5 on a molar basis.
  • the reaction solvent is anhydrous tetrahydrofuran
  • the catalyst is bistriphenylphosphine palladium dichloride or palladium acetate, preferably bistriphenylphosphine palladium dichloride
  • the amount of the catalyst is 5% to 10%, preferably 8 of the compound 5. %.
  • the reaction temperature is 70 to 100 ° C, preferably 80 ° C
  • the reaction time is 24 to 48 hours, preferably 48 hours. The reaction can be carried out under these conditions to increase the reaction yield.
  • the amount of the compound 7 and ferric chloride used in the step 8 is from 1:3 to 1:5, preferably 1:5, on a molar basis.
  • the reaction conditions are stirred at room temperature, and the reaction time is 24 to 48 hours, preferably 48 hours. Carrying out the reaction under such conditions can increase the reaction yield and increase the degree of polymerization.
  • the preparation method is reasonable in design, wherein the yield of each step reaches a desired level, and the purity of the final product is as high as 99% or more.
  • the preparation method is as follows:
  • Embodiments of the present invention also provide the use of the green polythiophene electrochromic material in the manufacture of an electrochromic device.
  • the electrochromic device includes, but is not limited to, an electrochromic window, a rear view mirror, a color change display, and the like.
  • embodiments of the present invention also provide a green polythiophene-based electrochromic material (ie, poly[2,3-bis(3,4-dialkoxyphenyl)-5,8-di(3,4-). A component of ethylene dioxythienyl)quinoxaline]).
  • the component described in the embodiment of the present invention is, for example, an electrochromic thin film having a low driving voltage (redox potentials of 0.6 V and 0.25 V, respectively), and a fast response time (required for current from highest to zero) 95% of the time is the response time, coloring and fading require 2.0s and 2.5s respectively.), the color is pure (selectively transmits green light in the wavelength range of 500-600nm in the visible light region), the oxidation state is transparent and the transmittance is high. (At 590 nm, the transmittance reaches 71%, and the transmittance difference at 650 nm and 462 nm reaches 53% and 48%, respectively).
  • the electrochromic film according to the embodiment of the present invention can be prepared by any film forming method disclosed in the prior art.
  • a uniform electrochromic film is formed by the compound 8 (poly[2,3-bis(3,4-dialkoxyphenyl)-5,8-di(3,4-ethylenedioxythiophene).
  • the quinoxaline] was dissolved in chloroform to prepare a solution of 2 to 3 mg/ml, and the resulting solution was directly sprayed on the surface of the ITO glass using a paintbrush.
  • spray film formation is simple and easy, and is more suitable for the preparation of large-area film.
  • the present disclosure provides a novel green polythiophene electrochromic material, a preparation method thereof and an application thereof.
  • the material has good solubility in chloroform and can be directly sprayed on the surface of ITO glass to form a film.
  • the material is characterized by low driving voltage (within ⁇ 1V), fast response time, large difference in transmittance between the colored state and the decolorized state (up to 50%), and the color is pure. It can be used for electrochromic windows, rearview mirrors, color changing displays, and the like.
  • the number average molecular weight of the polymer obtained in this example was 58,000.
  • the Fourier transform infrared spectrum of the monomer obtained in this example is shown in Fig. 1.
  • the abscissa represents the wavelength and the ordinate represents the transmittance.
  • the peak of 3000 nm or more is a stretching vibration peak of the CH bond on the thiophene ring and the benzene ring;
  • the peak at 2700 to 3000 nm is a stretching vibration peak of a saturated CH bond;
  • the peak at 1400 to 1500 nm is a skeleton vibration peak of a thiophene ring and a benzene ring;
  • the peak at 1000 to 1300 nm is a stretching vibration peak of the CO bond;
  • the peak at 650 to 1000 nm is an out-of-plane deformation vibration peak of the CH bond.
  • Fig. 2 The Fourier transform infrared spectrum of the polymer obtained in this example is shown in Fig. 2.
  • Fig. 2 the C-H stretching vibration peak at the 2,5 position on the thiophene ring (small spike at 3105 nm in Fig. 1) disappeared, indicating that the monomer was polymerized at the 2, 5 position of the thiophene.
  • the nuclear magnetic resonance spectrum of the monomer obtained in this example is shown in Fig. 3.
  • the ordinate represents the peak intensity and the abscissa represents the chemical shift.
  • the nuclear magnetic carbon spectrum of the monomer obtained in this example is shown in Fig. 4.
  • the ordinate represents the peak intensity and the abscissa represents the chemical shift.
  • the final product yield (herein the product of the five-step reaction yield from catechol to compound 8) in the synthetic route of this example was about 28% and the purity was 95%.
  • Step 1 yield 80%, purity 95%.
  • the polymer film obtained by spraying has a transmittance of 72% in the visible light region and a transmittance difference of 52% and 49% at 650 nm and 462 nm, respectively.
  • the resulting polymer is slightly less soluble and takes a long time to completely dissolve in chloroform.
  • the number average molecular weight of the polymer obtained in this example was 56,000.
  • Step 1 yield 80%, purity 95%.
  • the polymer film obtained by spraying has a transmittance of 68% in the visible light region, and a transmittance difference of 47% and 46% at 650 nm and 462 nm, respectively.
  • the resulting polymer is slightly less soluble and takes a long time to completely dissolve in chloroform.
  • the number average molecular weight of the polymer obtained in this example was 58,000.
  • Step 1 yield 80%, purity 95%.
  • the polymer film obtained by spraying has a transmittance of 70% in the visible light region, and a transmittance difference of 51% and 47% at 650 nm and 462 nm, respectively.
  • the resulting polymer is slightly less soluble and takes a long time to completely dissolve in chloroform.
  • the number average molecular weight of the polymer obtained in this example was 60,000.
  • Step 1 yield 80%, purity 95%.
  • the polymer film obtained by spraying has a transmittance of 67% in the visible light region, and a transmittance difference of 47% and 46% at 650 nm and 462 nm, respectively.
  • the number average molecular weight of the polymer obtained in this example was 61,000.
  • Step 1 yield 80%, purity 95%.
  • the polymer film obtained by spraying has a transmittance of up to 65% in the visible light region and a transmittance difference of 45% and 43% at 650 nm and 462 nm, respectively.
  • the number average molecular weight of the polymer obtained in this example was 61,000.
  • Step 1 yield 80%, purity 95%.
  • the polymer film obtained by spraying has a transmittance of 63% in the visible light region, and a transmittance difference of 43% and 45% at 650 nm and 462 nm, respectively.
  • the number average molecular weight of the polymer obtained in this example was 62,000.
  • the number average molecular weight of the polymer obtained in this example was 45,000.
  • the number average molecular weight of the polymer obtained in this example was 40,000.
  • Example 1 Formulation of the poly[2,3-bis(3,4-bis(tridecyloxy)phenyl)-5,8-bis(3,4-ethylenedioxythienyl)quinoxaline obtained in Example 1]
  • the chloroform solution has a concentration of 3 mg/ml.
  • the solution was evenly sprayed onto the ITO glass using a paintbrush to obtain a uniform green film.
  • the green electrochromic material obtained in this example has excellent performance parameters. For example, coloring and fading require 2.0 s and 2.5 s, respectively.
  • the film has a high transparent state, and the transmittance in the visible light region is up to 71%, and the transmittance difference at 650 nm and 462 nm is 53% and 48%, respectively.
  • the electrochromic film can be prepared by a common technical means disclosed in the prior art, and the preparation method described in this embodiment is preferably used.
  • the cyclic voltammetry curve of the polymer film of this embodiment is shown in Fig. 5.
  • the ordinate represents the magnitude of the current
  • the abscissa represents the applied voltage.
  • This figure illustrates that the redox potential of the polymer is 0.6V and 0.25V, respectively.
  • the multipotential step curve of the polymer film of this embodiment is shown in Fig. 6.
  • the ordinate represents the magnitude of the current
  • the abscissa represents the time.
  • the response time was 95% of the time required for the current to flow from highest to zero.
  • the coloring and fading of the film required 2.0 s and 2.5 s, respectively.
  • the transmittance-wavelength curve of the colored state and the decolorized state of the polymer film of this embodiment is shown in Fig. 7.
  • the ordinate represents transmittance and the abscissa represents wavelength.
  • the transmission curve of the decolorized state of the polymer film it was observed that the transmittance reached 71% at 590 nm.
  • the polymer film selectively transmits light in a wavelength range of 500 to 600 nm in the visible light region, that is, green light. It can be seen visually that the contrast is greater than 5 over a large wavelength range.
  • the transmittance difference-wavelength curve of the colored state and the decolorized state of the polymer film of this embodiment is shown in Fig. 8.
  • the ordinate represents the transmittance and the abscissa represents the wavelength. This curve is subtracted from the achromatic state transmittance State transmittance is obtained.
  • the difference in transmittance at 650 nm and 462 nm reached 53% and 48%, respectively.

Abstract

一种新型的如式(I)所示的可溶性绿色聚噻吩类电致变色材料,为聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉],其中,n为40-200之间的整数,R=CmH2m+1,其中m为8~14之间的整数。

Description

绿色聚噻吩类电致变色材料及其制备方法与含有该材料的组件 技术领域
本发明实施例涉及一种可溶性绿色聚噻吩类电致变色材料及其制备方法与含有该材料的组件。
背景技术
电致变色材料是近年来材料科学研究的热点之一。与无机、有机小分子电致变色材料相比,聚合物电致变色材料优势在于较好的着色效率;快速的电致变色响应;良好的化学稳定性;易于制备;较高的循环寿命;色彩记忆功能;颜色深浅可以调节等。
导电聚合物主链的刚性常使聚噻吩具有不溶及不熔的特性,传统方法采用电化学聚合于电极表面形成聚合物薄膜。但是电化学聚合难以进行大面积电致变色器件制备。近年来研究工作者们通过化学修饰方法为聚噻吩类衍生物引入不同形式的侧链基团,以减弱聚合物分子链间的相互作用,使聚合物获得在有机溶剂中的溶解性,从而实现了聚噻吩类电致变色材料的可喷涂操作。
三基色中,各国科学家对蓝色和红色聚噻吩类电致变色材料的研发成功较早,而第一种绿色聚噻吩类电致变色材料直到2004年才由Wudl等合成成功。但是具有可溶于有机溶剂且可喷涂成膜能力的绿色聚噻吩类电致变色材料的种类较少,已有的绿色聚噻吩类电致变色材料普遍透过率差值较低,循环寿命短。
国内关于绿色聚噻吩类化合物电致变色材料及其相关制备方法和应用的研究鲜有报道。有鉴于此,特提出本发明。
发明内容
本发明实施方式提供一种如式(Ⅰ)所示的绿色聚噻吩类电致变色材料,为聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉],
Figure PCTCN2014086066-appb-000001
其中,n为40-200之间的整数,R=CmH2m+1,其中m为8~14之间的整数。
本发明实施方式还提供一种上述聚合物的制备方法,包括:
步骤1:使邻苯二酚与烷基链长在8~14碳原子之间的烷基溴在氢氧化钾作用下发生反应,得到1,2-二烷氧基苯,为化合物1;
步骤2:使化合物1和草酰氯在无水氯化铝的作用下发生亲电取代反应,得到1,2-二(3,4-二烷氧基苯基)-1,2-二酮,为化合物2;
步骤3:使2,1,3-苯并噻二唑与溴素发生卤代反应,得到4,7-二溴-2,1,3苯并噻二唑,为化合物3;
步骤4:使化合物3与硼氢化钠发生还原反应,得到3,6-二溴邻苯二胺,为化合物4;
步骤5:使化合物2和化合物4在对甲苯磺酸催化下反应,得到2,3-二(3,4-二烷氧基苯基)-5,8-二溴代喹喔啉,为化合物5;
步骤6:使3,4-乙撑二氧噻吩与正丁基锂和三丁基氯化锡反应,得到2-三丁基锡-3,4-乙撑二氧噻吩,为化合物6;
步骤7:使化合物5和化合物6在双三苯基膦二氯化钯或醋酸钯催化下发生stille偶联反应,得到2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉,为化合物7;
步骤8:使化合物7在三氯化铁催化氧化的条件下发生聚合反应,得到聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉],为化合物8。
本发明实施方式提供了所述绿色聚噻吩类电致变色材料在制造电致变色 装置中的应用。
本发明实施方式还提供含有上述绿色聚噻吩类电致变色材料聚[2,3-二(3,4-二烷氧基苯基)]-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]的组件。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为按照本发明实施例1制备的单体的傅里叶变换红外谱图,图中纵坐标代表红外光的透过率,横坐标代表波长;
图2为按照本发明实施例1制备的聚合物的傅里叶变换红外谱图;
图3为按照本发明实施例1制备的单体的核磁氢谱图,图中纵坐标代表峰强度,横坐标代表化学位移;
图4为按照本发明实施例1制备的单体的核磁碳谱图,图中纵坐标代表峰强度,横坐标代表化学位移;
图5为按照本发明实施例10制备的聚合物薄膜的循环伏安曲线图,图中纵坐标代表电流大小,横坐标代表所加电压;
图6为按照本发明实施例10制备的聚合物薄膜的多电位阶跃曲线图,图中纵坐标代表电流大小,横坐标代表时间;
图7为按照本发明实施例10制备的聚合物薄膜的着色态和消色态的透过率示意图,图中纵坐标代表透过率,横坐标代表波长;
图8为按照本发明实施10制备的聚合物薄膜的着色态和消色态的透过率差示意图,图中纵坐标代表透过率,横坐标代表波长,此曲线纵坐标的数值由消色态透过率减去着色态透过率得到。
具体实施方式
本公开涉及一种新型的可溶性绿色聚噻吩类电致变色材料,其色彩可以在绿色和透明之间转化。该聚合物材料能够溶于极性有机溶剂,因此可通过溶液旋涂或者喷涂于ITO玻璃表面而形成薄膜。所述薄膜具有驱动电压低, 响应时间快,氧化态透明且透过率高等特点,其可用于电致变色窗、后视镜、变色显示器等装置。
本发明实施方式提供一种如式(Ⅰ)所示的绿色聚噻吩类电致变色材料,聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉],
Figure PCTCN2014086066-appb-000002
其中,n为40-200之间的整数,R=CmH2m+1,其中m为8~14之间的整数。
优选地,m为10-12之间的整数。
以m=8为例,所得聚合物称为聚[2,3-二(3,4-二辛氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]。
本发明实施方式所述的聚合物数均分子量范围为20000至100000左右,优选的数均分子量范围为50000~70000。
例如,当m=12时,所述材料为如式(Ⅱ)所示的聚[2,3-二(3,4-二(十二烷氧基)苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]
Figure PCTCN2014086066-appb-000003
其中,n为40-200之间的整数。
上述聚合物具有理想的理化性能,其颜色可以在绿色和透明之间转化,循环寿命大于一万次。其可以喷涂在ITO玻璃表面成膜。其特点为驱动电压低(±1V以内),响应时间较快(3s以内),着色态和消色态的透过率差较大(达50%),因此,该聚合物可用于电致变色窗、后视镜、变色显示器等器件。
本发明实施方式还提供了上述绿色聚噻吩类电致变色材料的制备方法,所述制备方法包括如下步骤:
步骤1:使邻苯二酚与烷基链长在8~14碳原子之间的烷基溴在氢氧化钾作用下发生反应,得到1,2-二烷氧基苯,为化合物1;
步骤2:使1,2-二烷氧基苯和草酰氯在无水氯化铝的作用下发生亲电取代反应,得到1,2-二(3,4-二烷氧基苯基)-1,2-二酮,为化合物2;
步骤3:使2,1,3-苯并噻二唑与溴素发生卤代反应,得到4,7-二溴-2,1,3苯并噻二唑,为化合物3;
步骤4:使化合物3与硼氢化钠发生还原反应,得到3,6-二溴邻苯二胺,为化合物4;
步骤5:使化合物2和化合物4在对甲苯磺酸催化下反应,得到2,3-二(3,4-二烷氧基苯基)-5,8-二溴代喹喔啉,为化合物5;
步骤6:使3,4-乙撑二氧噻吩与正丁基锂和三丁基氯化锡反应,得到2-三丁基锡-3,4-乙撑二氧噻吩,为化合物6;
步骤7:使化合物5和化合物6在双三苯基膦二氯化钯或者醋酸钯催化下发生stille偶联反应,得到2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉,为化合物7;
步骤8:使化合物7在三氯化铁催化氧化的条件下发生聚合反应,得到聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉],为化合物8。
其中,所述步骤1中邻苯二酚与烷基溴的用量比以摩尔计为1:2~1:4、优选1:3,反应溶剂为乙醇,反应温度为60~80℃,优选60℃,反应时间为4~10小时,优选10小时。在该条件下该反应具有节省原料,提高反应收率的优点。
步骤2中化合物1和无水氯化铝的用量比以摩尔计为1:1~1:1.2、优选 1:1.1;化合物1和草酰氯的用量比以摩尔计为1:0.5~1:0.6、优选1:0.6,反应溶剂为二硫化碳,反应温度为0℃,反应时间为18~24小时,优选24小时。在该条件下进行反应可以提高反应收率。
步骤3中2,1,3-苯并噻二唑和溴素的用量比以摩尔计为1:2~1:4、优选1:3,反应溶剂为氢溴酸的水溶液(质量浓度14%),反应温度为80~100℃,优选80℃,反应时间为8~12小时,优选12小时。在该条件下进行反应可以提高反应收率。
步骤4中化合物3和硼氢化钠的用量比以摩尔计为1:5~1:10、优选1:10;反应溶剂为乙醇,反应温度为室温。在该条件下进行反应可以提高反应收率。
步骤5中化合物2和化合物4的用量比以摩尔计为1:1~1:1.2、优选1:1;催化剂为对甲苯磺酸,催化剂的物质的量为化合物4的5%~10%,优选10%。反应溶剂为三氯甲烷或者乙醇,优选三氯甲烷。反应温度为60~80℃,优选80℃。反应时间为10~12小时,优选12小时。在该条件下进行反应可以节省原料,提高反应收率。
步骤6中3,4-乙撑二氧噻吩和正丁基锂的用量比以摩尔计为1:1~1:1.2,优选1:1.2。反应条件为-78℃搅拌0.5~1小时,优选1小时。3,4-乙撑二氧噻吩和三丁基氯化锡的用量比以摩尔计为1:1~1:1.2,优选1:1.2。反应条件为室温反应16~24小时,优选24小时。在该条件下进行反应可以提高反应收率。
步骤7中化合物5和化合物6的用量比以摩尔计为1:2~1:2.5,优选1:2.5。反应溶剂为无水四氢呋喃,催化剂为双三苯基膦二氯化钯或醋酸钯,优选双三苯基膦二氯化钯,催化剂的物质的量为化合物5的5%~10%,优选8%。反应温度为70~100℃,优选80℃,反应时间为24~48小时,优选48小时。在该条件下进行反应可以提高反应收率。
步骤8中化合物7和三氯化铁的用量比以摩尔计为1:3~1:5,优选1:5。反应条件为室温搅拌,反应时间为24~48小时,优选48小时。在该条件下进行反应可以提高反应收率,增加聚合度。
上述制备方法设计合理,其中每一步的收率都达到理想水平,且终产物纯度高达99%以上。作为本发明的一种示例性实施方式,所述制备方法如下:
Figure PCTCN2014086066-appb-000004
(1)将邻苯二酚(55g,0.5mol)、氢氧化钾(84.2g,1.5mol)、200ml乙醇和十二烷基溴(375g,1.5mol)加入圆底烧瓶中,装上冷凝管,于60℃下反应10h。加水溶解反应物再用乙醚萃取,经无水硫酸钠干燥后,过层析柱得白色絮状固体,为化合物1,收率80%。
(2)取化合物1(8.92g,20mmol)、氯化铝(2.93g,22mmol)和50ml二硫化碳加入圆底烧瓶中。将草酰氯(1.52g,12mmol)溶于10ml二硫化碳中,于0℃逐滴加入烧瓶中,剧烈搅拌24h。减压旋蒸浓缩反应物。加入去离子水,再用二氯甲烷萃取溶液。有机相经无水硫酸镁干燥后减压旋蒸浓缩,过层析柱得白色固体,为化合物2,收率70%。
(3)将2,1,3-苯并噻二唑(10g,73.4mmol)和150ml氢溴酸(14%水溶液)加入圆底烧瓶中。再逐滴加入Br2(35.2g,220.3mmol)和氢溴酸(100ml)的混合溶液,加热至80℃回流12h,冷却至室温。向反应物中加入过量的硫代硫酸钠以去除过量的溴素。所得粗制物再水洗若干次,得到的固体用乙醚洗涤一次。蒸干溶剂,得到化合物3,收率85%。
(4)将化合物3(5g,17mmol)和170ml乙醇加入圆底烧瓶中。于0℃向其中逐份加入硼氢化钠(6.4g,170mmol)。加完后,于室温搅拌20h。然后加入适量去离子水,用乙醚萃取。有机相经无水硫酸镁干燥后过层析柱得灰白色片状固体,为化合物4,收率90%。
(5)将化合物2(7.2g,7.6mmol)、化合物4(2.0g,7.6mmol)、对甲苯磺酸(0.15g,0.76mmol)和80ml乙醇加入圆底烧瓶中于80℃回流12小时。过滤反应,保留沉淀,并用乙醇清洗数次。粗制物过层析柱得淡黄色固体,为化合物5,收率83%。
(6)将3,4-乙撑二氧噻吩(0.77g,5.4mmol)溶解于30ml无水四氢呋喃中,降温至-78℃。将2.7ml浓度为2.4M的正丁基锂的正己烷溶液在2h中匀速加入反应体系,之后搅拌1h,再注入三丁基氯化锡(2.1g,6.5mmol)搅拌0.5h。将体系置于室温,搅拌24h。旋干溶剂得黄色油状液体,为化合物6,收率80%。
(7)取化合物5(1.77g,1mmol)、化合物6(1.1g,2.5mmol)加入圆底烧瓶中,加入20ml无水THF和0.056g双三苯基膦二氯化钯催化剂。将反应混合物加热到80℃,反应48h。旋干溶剂,过层析柱得到橙红色固体,为电致变色材料单体,即化合物7,收率70%。
(8)取化合物7(0.94g,0.723mmol)加入100ml三氯甲烷中,并逐滴加入三氯化铁(0.58g,3.615mmol)的硝基甲烷溶液,于室温搅拌48h。将反应得到的混合溶液加入800ml甲醇中,过滤保留沉淀。将沉淀溶解于三氯甲烷中再加入过量的水合肼搅拌8h。分液取有机相再次加入800ml甲醇,过滤。将滤得沉淀用甲醇清洗若干次,得到聚合物电致变色材料,即化合物8,收率86%。
此外,上述反应历程图中,所涉及的特定化合物下方1-8的标记仅代表其为本发明制备方法中所述化合物1-8中的一种优选实施方式,二者并非唯 一对应关系,此处仅为方便理解做出类型标记,并不影响本发明对保护范围的主张及具体技术方案的限定。
本发明实施方式还提供所述绿色聚噻吩类电致变色材料在制造电致变色装置中的应用。其中,所述的电致变色装置包括但不限于电致变色窗、后视镜、变色显示器等。
此外,本发明实施方式还提供含有上述绿色聚噻吩类电致变色材料(即聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉])的组件。
本发明实施方式中所述的组件例如为电致变色薄膜,该电致变色薄膜具有驱动电压低(氧化还原电位分别为0.6V和0.25V),响应时间快(以电流从最高到零所需时间的95%为响应时间,着色和褪色分别需要2.0s和2.5s。),色彩纯正(在可见光区选择性透过500~600nm波长范围内的绿光),氧化态透明且透过率高(在590nm处,透过率达到71%,在650nm和462nm处透过率差分别达到了53%和48%)等特点。
本发明实施方式所述的电致变色薄膜可以采用现有技术公开的任一种成膜方法制备得到。例如,均匀的电致变色薄膜如下形成:将化合物8(聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉])溶解于三氯甲烷中配制成2~3mg/ml的溶液,使用美工喷笔将所得溶液直接喷涂于ITO玻璃的表面。与传统的电镀成膜相比,喷涂成膜简便易行,更适合大面积薄膜的制备。
采用上述技术方案,本公开提供了一种新型绿色聚噻吩类电致变色材料、其制备方法及其应用。所述材料在三氯甲烷中具有良好的溶解性,可以直接喷涂在ITO玻璃表面成膜。所述材料特点为驱动电压低(±1V以内),响应时间较快,着色态和消色态的透过率差较大(达50%),色彩纯正。其可用于电致变色窗、后视镜、变色显示器等。
以下通过具体实施例对本发明的公开内容作进一步详细介绍。所述实施例仅仅是描述性的,并非限定本发明的范围。
实施例1
本实施例所述制备方法的具体合成路线如下:
Figure PCTCN2014086066-appb-000005
(1)将邻苯二酚(55g,0.5mol)、氢氧化钾(84.2g,1.5mol)、200ml乙醇和十二烷基溴(375g,1.5mol)加入圆底烧瓶中,装上冷凝管,于60℃下反应10h。加水溶解反应物再用乙醚萃取,经无水硫酸钠干燥后,过层析柱得白色絮状固体,为化合物1,收率80%,纯度95%。
(2)取化合物1(8.92g,20mmol)、氯化铝(2.93g,22mmol)和50ml二硫化碳加入圆底烧瓶中。将草酰氯(1.52g,12mmol)溶于10ml二硫化碳中,于0℃逐滴加入烧瓶中,剧烈搅拌24h。减压旋蒸浓缩反应物。加入去离子水,再用二氯甲烷萃取溶液。有机相经无水硫酸镁干燥后减压旋蒸浓缩, 过层析柱得白色固体,为化合物2,收率70%,纯度95%。
(3)将2,1,3-苯并噻二唑(10g,73.4mmol)和150ml氢溴酸(14%)加入圆底烧瓶中。再逐滴加入Br2(35.2g,220.3mmol)和氢溴酸(100ml)的混合溶液,加热至80℃回流12h,冷却至室温。向反应物中加入过量的硫代硫酸钠以去除过量的溴素。所得粗制物再水洗若干次,得到的固体用乙醚洗涤一次。蒸干溶剂,得到化合物3,收率85%,纯度95%。
(4)将化合物3(5g,17mmol)和170ml乙醇加入圆底烧瓶中,于0℃向其中逐份加入硼氢化钠(6.4g,170mmol)。加完后,于室温搅拌20h。然后加入适量去离子水,用乙醚萃取。有机相经无水硫酸镁干燥后过层析柱得灰白色片状固体,为化合物4,收率90%,纯度95%。
(5)将化合物2(7.2g,7.6mmol)、化合物4(2.0g,7.6mmol)、对甲苯磺酸(0.15g,0.76mmol)和80ml乙醇加入圆底烧瓶中于80℃回流12小时。过滤反应,保留沉淀,并用乙醇清洗数次。粗制物过层析柱得淡黄色固体,为化合物5,收率83%,纯度95%。
(6)将3,4-乙撑二氧噻吩(0.77g,5.4mmol)溶解于30ml无水四氢呋喃中,降温至-78℃。将2.7ml浓度为2.4M的正丁基锂的正己烷溶液在2h中匀速加入反应体系,之后搅拌1h,再注入三丁基氯化锡(2.1g,6.5mmol)搅拌0.5h。将体系置于室温,搅拌24h。旋干溶剂得黄色油状液体,为化合物6,收率80%,纯度95%。
(7)取化合物5(1.77g,1mmol)、化合物6(1.1g,2.5mmol)加入圆底烧瓶中,加入20ml无水THF和0.056g双三苯基膦二氯化钯催化剂。将反应混合物加热到80℃,反应48h。旋干溶剂,过层析柱得到橙红色固体,为电致变色材料单体,即化合物7,收率70%,纯度95%。
(8)取化合物7(0.94g,0.723mmol)加入100ml三氯甲烷中,并逐滴加入三氯化铁(0.58g,3.615mmol)的硝基甲烷溶液,于室温搅拌48h。将反应得到的混合溶液加入800ml甲醇中,过滤保留沉淀。将沉淀溶解于三氯甲烷中再加入过量的水合肼搅拌8h。分液取有机相再次加入800ml甲醇,过滤。将滤得沉淀用甲醇清洗若干次,得到聚合物电致变色材料,即化合物8,收率86%,纯度99%。
本实施例所得聚合物的数均分子量为58000。
本实施例所得单体的傅里叶变换红外谱图见图1。图中横坐标代表波长,纵坐标代表透过率。3000nm以上的峰是噻吩环和苯环上C-H键的伸缩振动峰;2700~3000nm处的峰是饱和C-H键的伸缩振动峰;1400~1500nm处的峰是噻吩环和苯环的骨架振动峰;1000~1300nm处的峰是C-O键的伸缩振动峰;650~1000nm处的峰是C-H键的面外变形振动峰。
本实施例所得聚合物的傅里叶变换红外谱图见图2。在图2中,噻吩环上2,5位的C-H伸缩振动峰(图1中3105nm处的小尖峰)消失,说明单体在噻吩的2,5位发生了聚合。
本实施例所得单体的核磁氢谱见图3。图中纵坐标代表峰强度,横坐标代表化学位移。在该谱图中,δ=8.58处的峰对应喹喔啉6,7位上的氢原子;δ=6.50处的峰对应噻吩环5位的氢原子;δ=7.47处的峰对应苯环2位上的氢原子;δ=7.26处的峰对应苯环6位上的氢原子;δ=6.82处的峰对应苯环5位上的氢原子;δ=4.39处的峰对应与噻吩环相连的六元环上靠近喹喔啉一侧亚甲基上的氢原子;δ=4.9处的峰对应与噻吩环相连的六元环上远离喹喔啉一侧亚甲基上的氢原子;δ=4.9处的峰对应与苯环4位相连的烷氧基上最靠近氧原子的亚甲基上的氢原子;δ=3.93处的峰对应与苯环3位相连的烷氧基上最靠近氧原子的亚甲基上的氢原子;δ=3.93处的峰对应烷基链末端甲基上的氢原子;δ=1.0~2.0处的峰对应烷基链上中间部分的亚甲基上的氢原子。
本实施例所得单体的核磁碳谱见图4。图中纵坐标代表峰强度,横坐标代表化学位移。在该谱图中,δ=127.6处的峰对应喹喔啉6,7位的碳原子;δ=140.2处的峰对应喹喔啉5,8位的碳原子;δ=149.9处的峰对应喹喔啉上5,8位碳原子和氮原子之间的碳原子(此处碳原子在系统命名法中无编号);δ=150.3处的峰对应喹喔啉上2,3位的碳原子;δ=123.6处的峰对应苯环1位的碳原子;δ=113.5处的峰对应苯环2位的碳原子;δ=141.3处的峰对应苯环3位的碳原子;δ=148.8处的峰对应苯环4位的碳原子;δ=112.9处的峰对应苯环5位的碳原子;δ=102.6处的峰对应苯环6位的碳原子;δ=128.4处的峰对应噻吩环2位的碳原子;δ=116.1处的峰对应噻吩环5位的碳原子;δ=127.6处的峰对应噻吩环3位的碳原子;δ=136.7处的峰对应噻吩环4位的碳原子;δ=64.3处的峰对应与噻吩环相连的六元环上靠近喹喔啉一侧的碳原子;δ=64.9处的峰对应与噻吩环相连的六元环上远离喹喔啉一侧的碳原子; δ=69.2处的峰对应与苯环4位相连的烷氧基上最靠近氧原子碳原子;δ=69.1处的峰对应与苯环3位相连的烷氧基上最靠近氧原子碳原子;δ=13.9~31.9处的峰对应烷基上的其他碳原子。
在本实施例合成路线中终产物收率(这里指从邻苯二酚到化合物8的五步反应产率的乘积)约为28%,纯度为95%。
实施例2
该实施例与实施例1制备步骤相同,只是在步骤(1)中使用溴代辛烷代替十二烷基溴。所得终产物为聚[2,3-二(3,4-二辛氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]。步骤1收率80%,纯度95%。喷涂所得的聚合物薄膜在可见光区透过率可达72%,在650nm和462nm处透过率差分别达到了52%和49%。所得聚合物溶解性稍差,需要较长的时间才能完全溶解于三氯甲烷中。
本实施例所得聚合物的数均分子量为56000。
实施例3
该实施例与实施例1制备步骤相同,只是在步骤(1)使用溴代壬烷代替十二烷基溴。所得终产物为聚[2,3-二(3,4-二壬氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]。步骤1收率80%,纯度95%。喷涂所得的聚合物薄膜在可见光区透过率可达68%,在650nm和462nm处透过率差分别达到了47%和46%。所得聚合物溶解性稍差,需要较长的时间才能完全溶解于三氯甲烷中。
本实施例所得聚合物的数均分子量为58000。
实施例4
该实施例与实施例1制备步骤相同,只是在步骤(1)使用溴代癸烷代替十二烷基溴。所得终产物为聚[2,3-二(3,4-二癸氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]。步骤1收率80%,纯度95%。喷涂所得的聚合物薄膜在可见光区透过率可达70%,在650nm和462nm处透过率差分别达到了51%和47%。所得聚合物溶解性稍差,需要较长的时间才能完全溶解于三氯甲烷中。
本实施例所得聚合物的数均分子量为60000。
实施例5
该实施例与实施例1制备步骤相同,只是在步骤(1)使用溴代十一烷代替十二烷基溴。所得终产物为聚[2,3-二(3,4-二(十一烷氧基)苯基)-5,8-二(3,4- 乙撑二氧噻吩基)喹喔啉]。步骤1收率80%,纯度95%。喷涂所得的聚合物薄膜在可见光区透过率可达67%,在650nm和462nm处透过率差分别达到了47%和46%。
本实施例所得聚合物的数均分子量为61000。
实施例6
该实施例与实施例1制备步骤相同,只是在步骤(1)使用溴代十三烷代替十二烷基溴。所得终产物为聚[2,3-二(3,4-二(十三烷氧基)苯基)-5,8-二93,4-乙撑二氧噻吩基]喹喔啉]。步骤1收率80%,纯度95%。喷涂所得的聚合物薄膜在可见光区透过率可达65%,在650nm和462nm处透过率差分别达到了45%和43%。
本实施例所得聚合物的数均分子量为61000。
实施例7
该实施例与实施例1制备步骤相同,只是在步骤(1)使用溴代十四烷代替十二烷基溴。所得终产物为聚[2,3-二(3,4-二(十四烷氧基)苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]。步骤1收率80%,纯度95%。喷涂所得的聚合物薄膜在可见光区透过率可达63%,在650nm和462nm处透过率差分别达到了43%和45%。
本实施例所得聚合物的数均分子量为62000。
实施例8
本实施例所述制备方法的具体合成步骤如下:
(1)将邻苯二酚(55g,0.5mol)、氢氧化钾(84.2g,1.5mol)、200ml乙醇和十二烷基溴(375g,1.5mol)加入圆底烧瓶中,装上冷凝管,于80℃下反应10h。加水溶解反应物再用乙醚萃取,经无水硫酸钠干燥后,过层析柱得白色絮状固体,为化合物1,收67%,纯度95%。
(2)取化合物1(8.92g,20mmol)、氯化铝(2.93g,22mmol)和50ml二硫化碳加入圆底烧瓶中。将草酰氯(1.52g,12mmol)溶于10ml二硫化碳中,于0℃逐滴加入烧瓶中,剧烈搅拌18h。减压旋蒸浓缩反应物。加入去离子水,再用二氯甲烷萃取溶液。有机相经无水硫酸镁干燥后减压旋蒸浓缩,过层析柱得白色固体,为化合物2,收率62%,纯度95%。
(3)将2,1,3-苯并噻二唑(10g,73.4mmol)和150ml氢溴酸(14%)
加入圆底烧瓶中。再逐滴加入Br2(35.2g,220.3mmol)和氢溴酸(100ml)的混合溶液,加热至100℃回流12h,冷却至室温。向反应物中加入过量的硫代硫酸钠以去除过量的溴素。所得粗制物再水洗若干次,得到的固体用乙醚洗涤一次。蒸干溶剂,得到化合物3,收率72%,纯度95%。
(4)将化合物3(5g,17mmol)和170ml乙醇加入圆底烧瓶中,于0℃向其中逐份加入硼氢化钠(6.4g,170mmol)。加完后,于室温搅拌20h。然后加入适量去离子水,用乙醚萃取。有机相经无水硫酸镁干燥后过层析柱得灰白色片状固体,为化合物4,收率90%,纯度95%。
(5)将化合物2(7.2g,7.6mmol)、化合物4(2.0g,7.6mmol)、对甲苯磺酸(0.07g,0.38mmol)和80ml乙醇加入圆底烧瓶中于80℃回流12小时。过滤反应,保留沉淀,并用乙醇清洗数次。粗制物过层析柱得淡黄色固体,为化合物5,收率69%,纯度95%。
(6)将3,4-乙撑二氧噻吩(0.77g,5.4mmol)溶解于30ml无水四氢呋喃中,降温至-78℃。将2.7ml浓度为2.4M的正丁基锂的正己烷溶液在2h中匀速加入反应体系,之后搅拌0.5h,再注入三丁基氯化锡(2.1g,6.5mmol)搅拌0.5h。将体系置于室温,搅拌16h。旋干溶剂得黄色油状液体,为化合物6,收率53%,纯度95%。
(7)取化合物5(1.77g,1mmol)、化合物6(1.1g,2.5mmol)加入圆底烧瓶中,加入20ml无水THF和0.056g醋酸钯催化剂。将反应混合物加热到80℃反应48h。旋干溶剂,过层析柱得到橙红色固体,为电致变色材料单体,即化合物7,收率63%,纯度95%。
(8)取化合物7(0.94g,0.723mmol)加入100ml三氯甲烷中,并逐滴加入三氯化铁(0.35g,2.169mmol)的硝基甲烷溶液,于室温搅拌48h。将反应得到的混合溶液加入800ml甲醇中,过滤保留沉淀。将沉淀溶解于三氯甲烷中再加入过量的水合肼搅拌8h,分液取有机相再次加入800ml甲醇,过滤。将滤得沉淀用甲醇清洗若干次,得到聚合物电致变色材料,即化合物8,收率56%,纯度99%。
本实施例所得聚合物的数均分子量为45000。
实施例9
本实施例所述制备方法的具体合成步骤如下:
(1)将邻苯二酚(55g,0.5mol)、氢氧化钾(84.2g,1.5mol)、200ml乙醇和十二烷基溴(375g,1.5mol)加入圆底烧瓶中,装上冷凝管,于60℃下反应4h。加水溶解反应物再用乙醚萃取,经无水硫酸钠干燥后,过层析柱得白色絮状固体,为化合物1,收48%,纯度95%。
(2)取化合物1(8.92g,20mmol)、氯化铝(2.93g,22mmol)和50ml二硫化碳加入圆底烧瓶中。将草酰氯(1.52g,12mmol)溶于10ml二硫化碳中,于0℃逐滴加入烧瓶中,剧烈搅拌24h。减压旋蒸浓缩反应物。加入去离子水,再用二氯甲烷萃取溶液。有机相经无水硫酸镁干燥后减压旋蒸浓缩,过层析柱得白色固体,为化合物2,收率70%,纯度95%。
(3)将2,1,3-苯并噻二唑(10g,73.4mmol)和150ml氢溴酸(14%)
加入圆底烧瓶中。再逐滴加入Br2(35.2g,220.3mmol)和氢溴酸(100ml)的混合溶液,加热至100℃回流8h,冷却至室温。向反应物中加入过量的硫代硫酸钠以去除过量的溴素。所得粗制物水洗若干次,得到的固体用乙醚洗涤一次。蒸干溶剂,得到化合物3,收率79%,纯度95%。
(4)将化合物3(5g,17mmol)和170ml乙醇加入圆底烧瓶中,于0℃向其中逐份加入硼氢化钠(6.4g,170mmol)。加完后,于室温搅拌20h。然后加入适量去离子水,用乙醚萃取。有机相经无水硫酸镁干燥后过层析柱得灰白色片状固体,为化合物4,收率90%,纯度95%。
(5)将化合物2(7.2g,7.6mmol)、化合物4(2.0g,7.6mmol)、对甲苯磺酸(0.15g,0.76mmol)和80ml乙醇加入圆底烧瓶中于60℃回流12小时。过滤反应,保留沉淀,并用乙醇清洗数次。粗制物过层析柱得淡黄色固体,为化合物5,收率70%,纯度95%。
(6)将3,4-乙撑二氧噻吩(0.77g,5.4mmol)溶解于30ml无水四氢呋喃中,降温至-78℃。将2.7ml浓度为2.4M的正丁基锂的正己烷溶液在2h中匀速加入反应体系,之后搅拌1h,再注入三丁基氯化锡(2.1g,6.5mmol)搅拌0.5h。将体系置于室温,搅拌16h。旋干溶剂得黄色油状液体,为化合物6,收率63%,纯度95%。
(7)取化合物5(1.77g,1mmol)、化合物6(1.1g,2.5mmol)加入圆底烧瓶中,加入20ml无水THF和0.056g双三苯基膦二氯化钯催化剂。将反应混合物加热到80℃,反应24h。旋干溶剂,过层析柱得到橙红色固体,为 电致变色材料单体,即化合物7,收率62%,纯度95%。
(8)取化合物7(0.94g,0.723mmol)加入100ml三氯甲烷中,并逐滴加入三氯化铁(0.58g,3.615mmol)的硝基甲烷溶液,于室温搅拌24h。将反应得到的混合溶液加入800ml甲醇中,过滤保留沉淀。将沉淀溶解于三氯甲烷中再加入过量的水合肼搅拌8h。分液取有机相再次加入800ml甲醇,过滤。将滤得沉淀用甲醇清洗若干次,得到聚合物电致变色材料,即化合物8,收率56%,纯度99%。
本实施例所得聚合物的数均分子量为40000。
实施例10绿色电致变色组件及(电致变色薄膜)其制备
配制实施例1所得聚[2,3-二(3,4-二(十三烷氧基)苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]的三氯甲烷溶液,浓度为3mg/ml。使用美工喷笔将溶液均匀地喷涂在ITO玻璃上得到均匀的绿色薄膜。
本实施例所得绿色电致变色材料具有优良才性能参数。例如,其着色和褪色分别需要2.0s和2.5s。该薄膜具有高透明态,在可见光区透过率可达71%,在650nm和462nm处透过率差分别达到了53%和48%。
所述的电致变色薄膜可采用现有技术公开的常用技术手段制备而成,优选采用本实施例记载的制备方法。
本实施例所述聚合物薄膜的循环伏安曲线见图5,图中纵坐标代表电流大小,横坐标代表所加电压。此图说明聚合物的氧化还原电位分别为0.6V和0.25V。
本实施例所述聚合物薄膜的多电位阶跃曲线见图6,图中纵坐标代表电流大小,横坐标代表时间。以电流从最高到零所需时间的95%为响应时间,该薄膜的着色和褪色分别需要2.0s和2.5s。
本实施例所述聚合物薄膜着色态和消色态的透过率-波长曲线见图7,图中纵坐标代表透过率,横坐标代表波长。根据聚合物薄膜的消色态的透过率曲线,可以观察到,在590nm处,透过率达到71%。所述聚合物薄膜在可见光区选择性透过500~600nm波长范围内的光,即绿光。在图中可直观看出在很大一段波长范围内对比度大于5。
本实施例所述聚合物薄膜着色态和消色态的透过率差-波长曲线见图8,图中纵坐标代表透过率,横坐标代表波长。此曲线由消色态透过率减去着色 态透过率得到。由该图可以看到,在650nm和462nm处透过率差分别达到了53%和48%。
实施例11绿色电致变色组件(电致变色薄膜)及其制备
配制实施例1所得聚[2,3-二(3,4-二(十二烷氧基)苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]的二氯甲烷溶液,浓度为2mg/ml。聚合物很难溶解,溶液颜色过淡。
实施例12绿色电致变色组件及(电致变色薄膜)其制备
配制实施例1所得聚[2,3-二(3,4-二(十二烷氧基)苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]的三氯甲烷溶液,浓度为5mg/ml。溶液浓度过大,喷涂过程中难以得到厚度均匀的薄膜。
上述实施例中的实施方案可以进一步组合或者替换,且实施例仅仅是对本发明的优选实施例进行描述,并非对本发明的构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中专业技术人员对本发明的技术方案做出的各种变化和改进,均属于本发明的保护范围。
本申请要求于2013年12月6日递交的中国专利申请第201310658615.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种如式(Ⅰ)所示的绿色聚噻吩类电致变色材料,为聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉],
    Figure PCTCN2014086066-appb-100001
    其中n为40-200之间的整数,R=CmH2m+1,其中m为8~14之间的整数。
  2. 如权利要求1所述的绿色聚噻吩类电致变色材料,其中,所述材料为如式(Ⅱ)所示的聚[2,3-二(3,4-二(十二烷氧基)苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]
    Figure PCTCN2014086066-appb-100002
    其中n为40-200之间的整数。
  3. 如权利要求1或2所述的绿色聚噻吩类电致变色材料的制备方法,包括:
    步骤1:使邻苯二酚与烷基链长在8~14个碳原子之间的烷基溴在氢氧化 钾作用下发生反应,得到1,2-二烷氧基苯,为化合物1;
    步骤2:将化合物1和草酰氯在无水氯化铝的作用下发生亲电取代反应,得到1,2-二(3,4-二烷氧基苯基)-1,2-二酮,为化合物2;
    步骤3:将2,1,3-苯并噻二唑与溴素发生卤代反应,得到4,7-二溴-2,1,3苯并噻二唑,为化合物3;
    步骤4:使化合物3与硼氢化钠发生还原反应,得到3,6-二溴邻苯二胺,为化合物4;
    步骤5:将化合物2和化合物4在对甲苯磺酸催化下反应,得到2,3-二(3,4-二烷氧基苯基)-5,8-二溴代喹喔啉,为化合物5;
    步骤6:将3,4-乙撑二氧噻吩与正丁基锂和三丁基氯化锡反应,得到2-三丁基锡-3,4-乙撑二氧噻吩,为化合物6;
    步骤7:将化合物5和化合物6在双三苯基膦二氯化钯或者醋酸钯的催化下发生stille偶联反应,得到2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉,为化合物7;和
    步骤8:将化合物7在三氯化铁催化氧化的条件下发生聚合反应,得到通式Ⅰ所示化合物聚[2,3-二(3,4-二烷氧基苯基)-5,8-二(3,4-乙撑二氧噻吩基)喹喔啉]。
  4. 如权利要求3所述的制备方法,其中,所述步骤1中邻苯二酚与烷基溴的用量比以摩尔计为1:2~1:4,反应溶剂为乙醇,反应温度为60~80℃,反应时间为4~10小时。
  5. 如权利要求3所述的制备方法,其中,所述步骤2中化合物1和无水氯化铝的用量比以摩尔计为1:1~1:1.2、化合物1和草酰氯的用量比以摩尔计为1:0.5~1:0.6,反应溶剂为二硫化碳,反应温度为0℃,反应时间为18~24小时。
  6. 如权利要求3所述的制备方法,其中,所述步骤3中2,1,3-苯并噻二唑和溴素的用量比以摩尔计为1:2~1:4,反应溶剂为质量浓度为14%的氢溴酸的水溶液,反应温度为80~100℃,反应时间为8~12小时。
  7. 如权利要求3所述的制备方法,其中,所述步骤4中化合物3和硼氢化钠的用量比以摩尔计为1:5~1:10,反应溶剂为乙醇,反应温度为室温。
  8. 如权利要求3所述的制备方法,其中,所述步骤5中化合物2和化合 物4的用量比以摩尔计为1:1~1:1.2,催化剂为对甲苯磺酸,反应溶剂为三氯甲烷或者乙醇,催化剂的物质的量为化合物4的5%~10%,反应温度为60~80℃,反应时间为10~12小时。
  9. 如权利要求3所述的制备方法,其中,所述步骤6中3,4-乙撑二氧噻吩和正丁基锂的用量比以摩尔计为1:1~1:1.2,反应条件为-78℃搅拌0.5~1小时;3,4-乙撑二氧噻吩和三丁基氯化锡的用量比以摩尔计为1:1~1:1.2,反应条件为室温反应16~24小时。
  10. 如权利要求3所述的制备方法,其中,所述步骤7中化合物5和化合物6的用量比以摩尔计为1:2~1:2.5,反应溶剂为无水四氢呋喃,催化剂为双三苯基膦二氯化钯或醋酸钯,催化剂的物质的量为化合物5的5%~10%,反应温度为70~100℃,反应时间为24~48小时。
  11. 如权利要求3所述的制备方法,其中,所述步骤8中化合物7和三氯化铁的用量比以摩尔计为1:3~1:5,反应条件为室温搅拌,反应时间为24~48小时。
  12. 如权利要求1所述的绿色聚噻吩类电致变色材料在制造电致变色装置中的应用。
  13. 含有权利要求1或2所述的绿色聚噻吩类电致变色材料的组件。
  14. 如权利要求13所述的组件,其中,所述组件为电致变色薄膜。
PCT/CN2014/086066 2013-12-06 2014-09-05 绿色聚噻吩类电致变色材料及其制备方法与含有该材料的组件 WO2015081737A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,701 US9926406B2 (en) 2013-12-06 2014-09-05 Green polythiophene electrochromic materials, method for preparation thereof, and assembly comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310658615.9 2013-12-06
CN201310658615.9A CN103772664A (zh) 2013-12-06 2013-12-06 一种绿色聚噻吩类电致变色材料及其制备方法与组件

Publications (1)

Publication Number Publication Date
WO2015081737A1 true WO2015081737A1 (zh) 2015-06-11

Family

ID=50565468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086066 WO2015081737A1 (zh) 2013-12-06 2014-09-05 绿色聚噻吩类电致变色材料及其制备方法与含有该材料的组件

Country Status (3)

Country Link
US (1) US9926406B2 (zh)
CN (1) CN103772664A (zh)
WO (1) WO2015081737A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772664A (zh) * 2013-12-06 2014-05-07 京东方科技集团股份有限公司 一种绿色聚噻吩类电致变色材料及其制备方法与组件
CN107674185B (zh) * 2017-10-27 2019-09-20 深圳市光羿科技有限公司 一种绿色电致变色高分子材料及其制备方法和应用
CN110066287A (zh) * 2019-03-05 2019-07-30 浙江工业大学 一种edot-喹喔啉-edot衍生物及其制备方法与应用
CN110845709B (zh) * 2019-11-27 2023-07-21 电子科技大学中山学院 三臂和六臂三聚茚聚合物及其在电致变色领域中的应用
CN110982070B (zh) * 2019-12-23 2022-03-18 黑龙江大学 含有三芳胺的双功能聚酰亚胺聚合物及其制备方法和应用
CN113045506A (zh) * 2021-03-26 2021-06-29 阜阳师范大学 三苯胺基喹喔啉丙二腈及其合成方法以及检测cn-的方法
CN114316216B (zh) * 2021-11-17 2023-07-07 厦门华厦学院 基于含二噻吩并喹喔啉母体为中心的对称型聚合物及柔性电致变色器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126118A1 (en) * 2008-04-10 2009-10-15 Levent Kamil Toppare Unique processable green polymer with a transmissive oxidized state for realization of commerical rgb based electrochromic device applications
CN103450226A (zh) * 2013-08-19 2013-12-18 南京友斯贝特光电材料有限公司 一种有机电致变色隐身材料及其应用
CN103772664A (zh) * 2013-12-06 2014-05-07 京东方科技集团股份有限公司 一种绿色聚噻吩类电致变色材料及其制备方法与组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591425A (zh) * 2009-06-25 2009-12-02 浙江工业大学 新型电致变色共聚物及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126118A1 (en) * 2008-04-10 2009-10-15 Levent Kamil Toppare Unique processable green polymer with a transmissive oxidized state for realization of commerical rgb based electrochromic device applications
CN103450226A (zh) * 2013-08-19 2013-12-18 南京友斯贝特光电材料有限公司 一种有机电致变色隐身材料及其应用
CN103772664A (zh) * 2013-12-06 2014-05-07 京东方科技集团股份有限公司 一种绿色聚噻吩类电致变色材料及其制备方法与组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BARAN, D. ET AL.: "A Green Neutral State Donor-Acceptor Copolymer for Organic Solar Cells", POLYM. CHEM., vol. 1, no. 8, 2 July 2010 (2010-07-02), pages 1245 - 1251 *

Also Published As

Publication number Publication date
US9926406B2 (en) 2018-03-27
US20160024245A1 (en) 2016-01-28
CN103772664A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2015081737A1 (zh) 绿色聚噻吩类电致变色材料及其制备方法与含有该材料的组件
EP2308882B1 (en) Fused thiophenes and uses thereof
WO2015090124A1 (zh) 蓝色电致变色化合物及其制备方法与含有其的组件
EP2129678B1 (en) Fused thiophenes, methods for making fused thiophenes, and uses thereof
US8349998B2 (en) Fused thiophenes, methods for making fused thiophenes, and uses thereof
CN104230953A (zh) 含2-(1,3-二硫/硒-2-亚基)乙氰共轭结构单元的萘二酰亚胺及其衍生物
CN110655637A (zh) 一类含吡啶杂环单元的规整型聚合物其及制备方法与应用
CN101200634B (zh) 可溶性树枝取代的蒽分子蓝光材料及其制备方法与应用
CN107245049B (zh) 一种四氟取代异靛蓝衍生物及其制备方法
CN109912621B (zh) 一种不对称的萘核小分子受体材料及其制备方法和应用
CN106632438B (zh) 一种基于乙炔基桥联的A-π-D-π-A型BODIPY衍生物及其制备方法
CN109575046A (zh) 一种二噻吩并噻吩的四芳基取代和双菲稠合化合物及制备
US9481825B2 (en) Electrochromic material, method for preparing the same and component comprising the same
CN115109054B (zh) 一种具有多重刺激响应变色材料的制备方法及应用
CN108409755A (zh) 一种有机光电转换材料,其制备方法及应用
CN105566199B (zh) 一类共轭芳炔基咔唑化合物
CN106905354A (zh) 一种基于乙炔基桥联的D‑π‑A‑π‑D型BODIPY类衍生物及其制备方法
CN107759775B (zh) 含砜基稠环结构的具有强双光子效应的给受体型交替聚合物、制法与应用
CN102850237B (zh) 一类源于不同芴环上官能团转变的不对称型螺二芴化合物的制备方法
KR0131435B1 (ko) 가공성이 있는 에스터기가 치환된 폴리 3-알킬티오펜 유도체 및 그의 제조방법
CN106117215B (zh) 一类含有二吡咯酮并苯的电致变色材料及其制备方法和应用
CN112430312A (zh) 含咔唑结构的电致变色聚合物及制备方法、聚合物薄膜与应用
CN104479113A (zh) 以二苯并噻吩或二苯并呋喃为中心结构的电致变色聚合物
CN108727569B (zh) 一种含咔唑基团的dpp嵌段聚合物、其制备方法及应用
CN108727570B (zh) 一种含三苯胺基团的dpp嵌段聚合物、其制备方法及应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436701

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14867347

Country of ref document: EP

Kind code of ref document: A1