WO2015081706A1 - 一种硅酸铝镓钽钙压电晶体及其制备方法 - Google Patents

一种硅酸铝镓钽钙压电晶体及其制备方法 Download PDF

Info

Publication number
WO2015081706A1
WO2015081706A1 PCT/CN2014/082997 CN2014082997W WO2015081706A1 WO 2015081706 A1 WO2015081706 A1 WO 2015081706A1 CN 2014082997 W CN2014082997 W CN 2014082997W WO 2015081706 A1 WO2015081706 A1 WO 2015081706A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
piezoelectric
silicate
growth
preparation
Prior art date
Application number
PCT/CN2014/082997
Other languages
English (en)
French (fr)
Inventor
熊开南
郑燕青
涂小牛
林全明
李亚乔
施尔畏
Original Assignee
中国科学院上海硅酸盐研究所
上海硅酸盐研究所中试基地
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海硅酸盐研究所, 上海硅酸盐研究所中试基地 filed Critical 中国科学院上海硅酸盐研究所
Publication of WO2015081706A1 publication Critical patent/WO2015081706A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot

Definitions

  • the invention relates to an aluminum silicate gallium silicate calcium piezoelectric crystal and a preparation method thereof, and belongs to the technical field of piezoelectric materials. Background technique
  • Piezoelectric materials are used in filters, resonators, sensors, etc. They are widely used in communications, medical, aerospace, electronic information industry, inspection and other fields.
  • Piezoelectric crystals are an important class of materials for the fabrication of piezoelectric devices.
  • ⁇ -quartz firmly occupies most of the piezoelectric crystals due to its excellent temperature stability, low production cost, and mature production technology. market share.
  • the piezoelectric activity of ⁇ -quartz is low (piezoelectric strain constant d u is 2.31 pC/N) and there is a phase transition at 573 °C, so the crystal cannot fully meet the development requirements of modern communication and aerospace technologies.
  • Commonly used filters, resonators, and static sensors and acoustic sensors used to monitor sound waves, vibration, and noise signals are generally used under normal temperature conditions. With the development of modern industrial technology, automotive, defense, aerospace and other technologies.
  • the field has an urgent need for piezoelectric devices operating in high temperature environments, such as piezoelectric devices used in high temperature environments for internal combustion chamber operating temperature monitoring and pressure measurement, and also for piezoelectric materials for piezoelectric devices. Higher requirements, such as greater piezoelectric activity, phase transition stability, higher resistivity values, temperature stability of electromechanical properties, and the like.
  • the commonly used piezoelectric crystals can not meet the above new requirements, and it is a very practical research topic to explore a new type of piezoelectric crystal which has both high piezoelectric performance and high temperature.
  • gallium silicate bismuth (A 3 BC 3 D 2 0 14 ) crystals have received extensive attention.
  • the gallium silicate bismuth crystal belongs to the trigonal system, 32-point group, P321 space group, and the crystal structure contains four different cationic lattice positions of B, C and D, wherein the A-site cation is located by 8 oxygen ions.
  • the B-site cation is located at the center of the octahedron composed of 6 oxygen ions
  • the C-site and D-position cations are respectively at the center of the tetrahedron composed of 4 oxygen ions
  • the D-position cation is located in the tetrahedron slightly smaller than C.
  • the cation is located in the tetrahedron.
  • the piezoelectric coefficient and electromechanical coupling coefficient of gallium silicate bismuth crystals are 2 to 3 times that of quartz crystals, there is a cut-off type with zero frequency temperature coefficient, and there is no phase change from room temperature to melting point (greater than 1300 ° C). Therefore, such crystals have bright application prospects in acoustic wave and surface acoustic wave devices. In recent years, such crystals have been reported to include La 3 Ga 5 Si0 14 (LGS), La 3 Nbo. 5 Ga 5 . 5 0 14 (LGN), La 3 Tao. 5 Ga 5 .
  • the present invention aims to provide an aluminum silicate gallium silicate calcium piezoelectric crystal which is excellent in piezoelectric performance, low in cost, and excellent in crystallinity, and a preparation method thereof.
  • An aluminum silicate gallium strontium calcium piezoelectric crystal having a chemical formula of Ca 3 TaAl( 3 . x )Ga x Si 2 0 14 , wherein 0.3 ⁇ x ⁇ 2.5 (preferably Kx 1.5 );
  • the crystal structure of the gallium lanthanum silicate (La 3 Ga 5 Si0 14 ) crystal belongs to the space group P321 and the point group 32.
  • the production cost of CTAGS piezoelectric crystals is significantly reduced when the piezoelectric properties are not greatly affected.
  • CTAGS piezoelectric crystals not only improve piezoelectric properties.
  • the production cost is further reduced; for the CTAS piezoelectric crystal with poor crystallinity, the CTAGS piezoelectric crystal exhibits the superiority of its crystallization property.
  • the piezoelectric constant d u of the aluminum gallium silicate calcium piezoelectric crystal is 4.4 pC/N
  • the high temperature resistivity P at 500 ° C, 600 ° C, and 700 ° C is 6.6 X 10 8 ⁇ ⁇ , 7.6 ⁇ 10 7 ⁇ ⁇ , 1.5 X 10 7 Q-cm, whose resistivity is higher than that of LGS, CTGS and CTAS crystals at the same temperature, and lgp is linear with 1/T.
  • the preparation method of the aluminum gallium silicate calcium piezoelectric crystal according to the present invention is a pulling growth method, which comprises the following steps: a) According to the stoichiometric ratio of Ca 3 TaAl( 3 . x )Ga x Si 2 0 14 The powders of CaC0 3 , Ta 2 0 5 , A1 2 0 3 , Ga 2 0 3 and Si0 2 are taken, mixed and pressed, and then sintered at 1200 to 1300 ° C to obtain. & ⁇ & 1( 3 .; 0& !
  • step b) The CTGS seed crystal and the polycrystalline material obtained in step a) are charged into the crucible at a heating rate of 150 to 250 ° C / hour Heat to 1300 ⁇ 1500 °C, after the polycrystalline material is melted, keep the melt state stable, then cool down to the next temperature and start crystal growth: control speed is 2 ⁇ 20 rev / min, pulling speed is 0.1 ⁇ 5 mm / hour;
  • the heating method in step b) is to use an intermediate frequency induction power supply for heating.
  • the hydrazine described in step b) is platinum ruthenium or osmium.
  • the pulling speed in step b) is 0.1 to 1 mm / hr.
  • the cooling rate in step c) is 20 to 100 ° C / hour.
  • the aluminum silicate strontium calcium silicate piezoelectric crystal provided by the invention has the advantages of excellent piezoelectric performance, good crystallization performance, low cost, easy growth of large-sized crystal, and the like, and is favorable to the crystal. Widely practical, it is expected to be used in large-scale industrial applications.
  • Figure 1 is a photograph of a CTAGS crystal obtained in Example 1;
  • Example 2 is an X-ray rocking curve of the CTAGS crystal obtained in Example 1 (X-cut type);
  • Fig. 3 is a graph showing the relationship between the resistivity and temperature of the CTAGS, CTGS and CTAS crystals obtained in Example 1. detailed description
  • the raw materials of CaC0 3 , Ta 2 0 5 , A1 2 0 3 , Ga 2 0 3 and SiO 2 having a purity of 99.99% were weighed according to the above chemical equation, and after thorough mixing, they were pressed into round pieces having a diameter of 70 mm, and then Sintered at 1300 °C for 24 hours. & 3 Ding & 1 1 . 5 0& 1 . 5 81 2 0 14 polycrystalline material.
  • the medium-frequency induction heating pulling furnace is used for crystal growth.
  • the polycrystalline material and the CTGS seed crystal are first placed in a ruthenium ruthenium, and N 2 is used as a shielding gas.
  • the temperature is raised to 1460 ° C for 6 hours to melt the polycrystalline material, and the thermal insulation is 5 After the melt is stabilized, the temperature is lowered to the next temperature of 1410 ° C, and crystal growth is started.
  • the crystal is placed at a rotational speed of 10 rpm to the desired diameter, and the shoulder is rotated at a pulling speed of 0.5 mm/h.
  • Fig. 1 A photograph of the obtained CTAGS crystal is shown in Fig. 1. It can be seen from Fig. 1 that the crystal surface is relatively dense.
  • Fig. 2 is an X-ray rocking curve (X-cut type) of the obtained CTAGS crystal. It can be seen from Fig. 2 that the obtained CTAGS crystal has good crystal quality, and there is no small-angle grain boundary or twin defect.
  • Figure 3 is a graph comparing the resistivity versus temperature of the resulting CTAGS, CTGS, and CTAS crystals. It can be seen from Figure 3 that the resulting CTAGS crystal has excellent temperature stability.
  • the unit cell parameters, piezoelectric constants, and high temperature resistivity data of the CasTaAl Ga S Ow crystal obtained in this example are shown in Table 1.
  • the medium-frequency induction heating pulling furnace is used for crystal growth.
  • the polycrystalline material and the CTGS seed crystal are first placed in a ruthenium ruthenium, and N 2 is used as a shielding gas.
  • the temperature is raised to 1450 ° C for 6 hours to melt the polycrystalline material, and the thermal insulation is 5
  • the temperature is lowered to the next temperature of 1400 ° C, and crystal growth is started.
  • the crystal is placed at a speed of 8 rpm to the desired diameter, and the shoulder is rotated at a pulling speed of 0.8 mm/h.
  • the diameter was grown to 80 mm, the pulling was stopped, the crystal was pulled out of the melt, and then cooled to room temperature at a temperature decreasing rate of 50 ° C / h, and finally Ca 3 TaAlGa 2 Si 2 0 14 crystal was obtained.
  • the obtained crystal had the crystal structure and crystallinity and piezoelectric properties described in Example 1.
  • the raw materials of CaC0 3 , Ta 2 0 5 , A1 2 0 3 , Ga 2 0 3 and SiO 2 having a purity of 99.99% were weighed according to the above chemical equation, and after thorough mixing, they were pressed into round pieces having a diameter of 70 mm, and then sintering 1300 ° C for 30 hours to obtain Ca3TaAl 2 .6Gao.4Si20i4 ⁇ crystal material.
  • the medium-frequency induction heating pulling furnace is used for crystal growth.
  • the polycrystalline material and the CTGS seed crystal are first placed in a ruthenium ruthenium, and N 2 is used as a shielding gas.
  • the crystallization is heated to 1490 ° C for 6.5 hours to melt the polycrystalline material. After the melt is stabilized, the temperature is lowered to the next temperature of 1450 ° C, and crystal growth begins.
  • the crystal is placed at a speed of 6 rpm to the desired diameter, and the shoulder is rotated at a pulling speed of 0.4 mm/h.
  • the diameter was grown to 80 mm, the pulling was stopped, the crystal was pulled out of the melt, and then cooled to room temperature at a temperature decreasing rate of 30 ° C / h, and finally Ca 3 TaAl 2. 6 Ga was obtained. . 4 Si 2 0 14 crystal.
  • the obtained crystal had the crystal structure and crystallinity and piezoelectric properties described in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种硅酸铝镓钽钙压电晶体及其制备方法。所述晶体的化学通式为Ca3TaAl(3-x)GaxSi2O14,其中,0.3<x<2.5;所述晶体具有与硅酸镓镧晶体相同的晶体结构,属空间群P321、点群32。本发明采用提拉生长法制备所述晶体。本发明所提供的硅酸铝镓钽钙压电晶体兼具优异的压电性能、良好的结晶性能、成本较低廉、易于生长大尺寸晶体等优点,有利于晶体的广泛实用化,有望获得大规模工业化应用。

Description

一种硅酸铝镓钽钙压电晶体及其制备方法
技术领域
本发明涉及一种硅酸铝镓钽钙压电晶体及其制备方法, 属于压电材料技术领域。 背景技术
自压电效应被发现以来, 压电材料的研究和生产取得了巨大发展。 压电材料有用于滤 波器、 谐振器、 传感器等器件, 它们被广泛应用于通讯、 医疗、 航空航天、 电子信息产业、 检测等领域。
压电晶体是用于制作压电器件的一类重要材料, 目前 α-石英凭借其优良的温度稳定性、 低廉的生产成本、 成熟的生产技术而牢牢的占据着压电晶体的绝大部分市场份额。 但是 α- 石英的压电活性较低 (压电应变常数 du为 2.31pC/N) 且在 573 °C存在相变, 所以该晶体并 不能完全满足现代通讯和航天等技术的发展要求。常用的滤波器、谐振器及用来监测声波、 振动、 噪音信号的静态传感器和声学传感器等压电器件一般应用于常温条件下, 随着现代 工业技术的发展, 汽车、 国防、 航空航天等技术领域对工作于高温环境下的压电器件产生 迫切的需求, 如对发动机内部燃烧室工作温度监控和压力测量的应用于高温环境中的压电 器件, 对制作压电器件的压电材料也提出了更高的要求, 诸如较大的压电活性、 相变稳定 性、 较高的电阻率值、 机电性能的温度稳定性等。 目前常用的压电晶体尚不能满足上述新 的需求, 从而探索出一种既具有较高压电性能又能在较高温度下使用的新型压电晶体是非 常具有实际意义的研究课题。
目前, 硅酸镓镧类 (A3BC3D2014) 晶体受到了广泛的关注。 硅酸镓镧类晶体属三方晶 系, 32点群, P321空间群, 晶体结构中包含 、 B、 C、 D四种不同的阳离子晶格位, 其中 A位阳离子位于由 8个氧离子构成的十面体中心位置, B位阳离子位于由 6个氧离子构成的 八面体中心位置, C位和 D位阳离子分别处于由 4个氧离子构成的四面体中心位置, D位阳 离子所在四面体略小于 C位阳离子所在四面体。 硅酸镓镧类晶体的压电系数和机电耦合系 数是石英晶体的 2~3倍、 存在零频率温度系数的切型, 且室温至熔点 (大于 1300°C )无相 变等优点。从而使得此类晶体在声体波和声表面波器件方面有着光明的应用前景。近年来, 已报道的此类晶体包括 La3Ga5Si014 (LGS ) 、 La3Nbo.5Ga5.5014 (LGN) 、 La3Tao.5Ga5.5014 (LGT)、 Sr3NbGa3Si2014 ( SNGS) 、 Sr3TaGa3Si2014 ( STGS) 、 Ca3NbGa3Si2014 (CNGS) 、 Ca3TaGa3Si2014 (CTGS) 等。
但是, 昂贵的原料价格严重限制了硅酸镓镧类晶体的应用。 为探索性能更好成本低廉 的压电晶体, 人们对硅酸镓镧类晶体开展了广泛的研究。 中国专利 CN101275279A公开了 Ca3TaAl3Si20i4 ( CTAS ) 晶体, 此晶体在 C格位上采用 Al3+替代了 Ga3+, 由于 A1203的价格 远低于 Ga203, 使晶体成本大幅度下降, 同时兼具优异的压电性能, 使其在制作压电器件 方面具有很强的优势。 但在晶体生长中发现, CTAS晶体结晶性较差, 难以获得无宏观缺 陷、 大尺寸的单晶体, 从而影响晶体的推广使用。 发明内容
针对现有技术存在的上述问题和需求, 本发明旨在提供一种不仅压电性能优良、 成本 较低廉、 且结晶性能优异的硅酸铝镓钽钙压电晶体及其制备方法。
为实现上述发明目的, 本发明采用的技术方案如下:
一种硅酸铝镓钽钙压电晶体, 其化学通式为 Ca3TaAl(3.x)GaxSi2014, 其中, 0.3 <x<2.5 (优选 Kx 1.5 ) ; 所述晶体具有与硅酸镓镧 (La3Ga5Si014 ) 晶体相同的晶体结构, 属 空间群 P321、 点群 32。
其中 Ca2+、 Ta5+、 Si4+分别占据 、 B、 D位, Al3+和 Ga3+共同随机占据 C位。 通过调整 x 值在 0.1〜2.50范围内, 可以获得不同 Al/Ga组分的 CTAGS晶体; 可以针对相关应用对晶体 性能的要求来确定具体的 X取值。
在本发明中, 当 X取值为 1.5时, 所述硅酸铝镓钽钙压电晶体的晶胞参数为 a=8.110A, c=4.974A。 相比较于 LGS压电晶体, 在压电性能不受太大影响的情况下, CTAGS压电晶体 的生产成本显著降低; 与 CTGS压电晶体相比较, CTAGS压电晶体不仅压电性能有所提高, 而且生产成本进一步降低; 对于结晶性能较差的 CTAS压电晶体, CTAGS压电晶体体现了 其结晶性能更为优异的优势。当 X取值为 1.5时,所述硅酸铝镓钽钙压电晶体的压电常数 du 为 4.4 pC/N,在 500°C、 600°C、 700°C的高温电阻率 P分别为 6.6 X 108Ω· η、 7.6 Χ 107Ω· η、 1.5 X 107Q-cm, 其电阻率高于相同温度下的 LGS、 CTGS和 CTAS晶体, 且 lgp与 1/T呈线性 关系, 符合阿伦尼乌斯经验公式。
本发明所述的硅酸铝镓钽钙压电晶体的制备方法为提拉生长法, 包括如下操作步骤: a) 按 Ca3TaAl(3.x)GaxSi2014的化学计量比称取 CaC03、 Ta205、 A1203、 Ga203和 Si02各 粉体, 混匀后压块, 然后在 1200~1300°C下烧结, 得到。&^& 1(3.; 0&!^2014多晶料; b) 将 CTGS籽晶和步骤 a)中获得的多晶料装入坩埚中,以 150~250°C/小时的升温速率 加热至 1300~1500°C, 待多晶料熔化后, 保温使熔体状态稳定, 然后降温至下种温度, 开 始进行晶体生长: 控制转速为 2~20转 /分钟, 提拉速度为 0.1~5毫米 /小时;
c) 生长结束后将晶体脱离熔体, 将晶体降温至室温。
作为一种优选方案, 步骤 b)中的加温方式是采用中频感应电源加热。
作为一种优选方案, 步骤 b)中所述的坩埚为铂坩埚或铱坩埚。
作为一种优选方案, 步骤 b)中的提拉速度为 0.1~1毫米 /小时。
作为一种优选方案, 步骤 c)中的降温速率为 20~100°C/小时。
与现有技术相比, 本发明所提供的硅酸铝镓钽钙压电晶体兼具优异的压电性能、 良好 的结晶性能、 成本较低廉、 易于生长大尺寸晶体等优点, 有利于晶体的广泛实用化, 有望 获得大规模工业化应用。 附图说明
图 1是实施例 1所得 CTAGS晶体照片;
图 2是实施例 1所得 CTAGS晶体的 X射线摇摆曲线图谱(X片切型);
图 3是实施例 1所得 CTAGS、CTGS和 CTAS晶体的电阻率与温度的关系曲线对比图。 具体实施方式
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本发明而 不用于限制本发明的范围。
实施例 1
当 x=1.5时, 采用提拉法生长晶体 CasTaAl Ga S Ow,
6CaC03+Ta205+1.5Al203+1.5Ga203+4Si02= 2Ca3TaAli.5Gai.5Si2Oi4;
按上述化学方程式称取纯度均为 99.99%的 CaC03、 Ta205、 A1203、 Ga203和 Si02各原料, 经充分混合后压成直径为 70mm的圆块, 然后在 1300 °C烧结 24 小时, 获得 。&3丁& 11.50&1.5812014多晶料。
采用中频感应加热提拉炉进行晶体生长, 先将多晶料和 CTGS籽晶置于铱金坩埚中, 以 N2作为保护气体, 经 6小时升温至 1460°C使多晶料熔化, 保温 5小时使熔体稳定后降温 至 1410°C的下种温度, 开始进行晶体生长, 生长过程中, 以 lOrpm的转速引晶放肩到所需 直径, 转肩后以 0.5mm/h的提拉速度等径生长至 80mm, 停提拉, 将晶体提拉至脱离熔体, 再按 40°C/h的降温速率降至室温, 最终得到 CagTaAl Ga S Ow晶体。 所得 CTAGS晶体的照片如图 1所示, 由图 1可见: 晶体表面较为致密。 图 2是所得 CTAGS晶体的 X射线摇摆曲线图谱 (X片切型),由图 2可见:所得 CTAGS 晶体结晶质量较好, 不存在小角晶界或双晶缺陷。
图 3是所得 CTAGS、 CTGS和 CTAS晶体的电阻率与温度的关系曲线对比图, 由图 3 可见: 所得 CTAGS晶体具有优异的温度稳定性。
其中, CTGS晶体和 CTAS晶体的制备方法参照文献: Solid State Commun. 150 (2010) 435-438.
本实施例所得 CasTaAl Ga S Ow晶体的晶胞参数、 压电常数和高温电阻率数据参见 表 1所示。
表 1 各晶体的部分性能参数
Figure imgf000006_0001
由表 1可见: 所得晶体具有与硅酸镓镧晶体相同的晶体结构。
实施例 2
当 x=2时, 采用提拉法生长 Ca3TaAlGa2Si2014晶体;
6CaC03+Ta205+Al203+2Ga203+4Si02= 2Ca3TaAlGa2Si2014;
按上述化学方程式称取纯度均为 99.99%的 CaC03、 Ta205、 A1203、 Ga203和 Si02各原料, 经充分混合后压成直径为 70mm的圆块,然后在 1300°C烧结 20小时,获得 Ca3TaAlGa2Si2014 多晶料 °
采用中频感应加热提拉炉进行晶体生长, 先将多晶料和 CTGS籽晶置于铱金坩埚中, 以 N2作为保护气体, 经 6小时升温至 1450°C使多晶料熔化, 保温 5小时使熔体稳定后降温 至 1400°C的下种温度, 开始进行晶体生长, 生长过程中, 以 8rpm的转速引晶放肩到所需 直径, 转肩后以 0.8mm/h的提拉速度等径生长至 80mm, 停提拉, 将晶体提拉至脱离熔体, 再按 50°C/h的降温速率降至室温, 最终得到 Ca3TaAlGa2Si2014晶体。
所得晶体具有实施例 1所述的晶体结构和结晶性能及压电性能。
实施例 3 当 x=0.4时, 采用提拉法生长 Ca3TaAl2.6Ga。.4Si2014晶体;
6CaCO3+Ta2O5+2.6Al2O3+0.4Ga2O3+4SiO2= 2Ca3TaAl2 6Ga0 4Si2O14;
按上述化学方程式称取纯度均为 99.99%的 CaC03、 Ta205、 A1203、 Ga203和 Si02各原料, 经充分混合后压成直径为 70mm的圆块, 然后在 1300 °C烧结 30 小时, 获得 Ca3TaAl2.6Gao.4Si20i4^晶料。
采用中频感应加热提拉炉进行晶体生长, 先将多晶料和 CTGS籽晶置于铱金坩埚中, 以 N2作为保护气体, 经 6.5小时升温至 1490°C使多晶料熔化, 保温 5小时使熔体稳定后降 温至 1450°C的下种温度, 开始进行晶体生长, 生长过程中, 以 6rpm的转速引晶放肩到所 需直径, 转肩后以 0.4mm/h的提拉速度等径生长至 80mm, 停提拉, 将晶体提拉至脱离熔 体, 再按 30°C/h的降温速率降至室温, 最终得到 Ca3TaAl2.6Ga。.4Si2014晶体。
所得晶体具有实施例 1所述的晶体结构和结晶性能及压电性能。
最后有必要在此说明的是: 以上实施例只用于对本发明的技术方案作进一步详细地说 明, 不能理解为对本发明保护范围的限制, 本领域的技术人员根据本发明的上述内容作出 的一些非本质的改进和调整均属于本发明的保护范围。

Claims

权 利 要 求 书
1、 一种硅酸铝镓钽钙压电晶体, 其特征在于:
Figure imgf000008_0001
其中, 0.3 <x<2.5; 所述晶体具有与硅酸镓镧晶体相同的晶体结构, 属空间群 P321、 点群 32。
2、 如权利要求 1所述的硅酸铝镓钽钙压电晶体, 其特征在于: 1 χ 1.5。
3、 一种如权利要求 1或 2所述的硅酸铝镓钽钙压电晶体的制备方法, 其特征在于: 为提拉生长法。
4、 如权利要求 3所述的制备方法, 其特征在于, 包括如下操作步骤:
a) 按 Ca3TaAl(3-; GaxSi2O14的化学计量比称取 CaC03、 Ta205、 A1203、 Ga203和 Si02各 粉体, 混匀后压块, 然后在 1200~1300°C下烧结, 得到 &31&八1(3.; 0&;^2014多晶料; b) 将 CTGS籽晶和步骤 a)中获得的多晶料装入坩埚中,以 150~250°C/小时的升温速率 加热至 1300~1500°C, 待多晶料熔化后, 保温使熔体状态稳定, 然后降温至下种温度, 开 始进行晶体生长: 控制转速为 2~20转 /分钟, 提拉速度为 0.1~5毫米 /小时;
c) 生长结束后将晶体脱离熔体, 将晶体降温至室温。
5、 如权利要求 4所述的制备方法, 其特征在于: 步骤 b)中的加温方式是采用中频感 应电源加热。
6、 如权利要求 4所述的制备方法, 其特征在于: 步骤 b)中所述的坩埚为铂坩埚或铱 坩埚。
7、 如权利要求 4所述的制备方法, 其特征在于: 步骤 c)中的降温速率为 20~100°C/小 时。
PCT/CN2014/082997 2013-12-05 2014-07-25 一种硅酸铝镓钽钙压电晶体及其制备方法 WO2015081706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310655381.2A CN104695018A (zh) 2013-12-05 2013-12-05 一种硅酸铝镓钽钙压电晶体及其制备方法
CN201310655381.2 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015081706A1 true WO2015081706A1 (zh) 2015-06-11

Family

ID=53272829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082997 WO2015081706A1 (zh) 2013-12-05 2014-07-25 一种硅酸铝镓钽钙压电晶体及其制备方法

Country Status (2)

Country Link
CN (1) CN104695018A (zh)
WO (1) WO2015081706A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234809A (zh) * 2018-11-08 2019-01-18 山东大学 镓掺杂钙铝黄长石晶体及制备方法与应用
EP3421647A4 (en) * 2016-02-25 2019-09-04 Piezo Studio Inc. CRYSTALLINE MATERIAL AND METHOD FOR ITS PRODUCTION

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480501A (zh) * 2015-08-27 2017-03-08 中国科学院上海硅酸盐研究所 一种硅酸镓铌钙压电晶体及其制备方法
CN109428257B (zh) * 2017-09-01 2020-05-05 中国科学院福建物质结构研究所 一类铒离子掺杂的硅酸盐晶体及其1.5微米波段激光器件
CN114815222B (zh) * 2022-02-25 2023-09-26 上海科技大学 一种基于压电薄膜的双轴微反射镜
CN115185137A (zh) * 2022-08-17 2022-10-14 山东大学 硅酸镓镧族固溶体晶体的有效非线性光学系数优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348197A (ja) * 2001-05-24 2002-12-04 Tdk Corp 圧電単結晶材料及び該圧電単結晶材料を用いた圧電デバイス
CN1389599A (zh) * 2002-04-29 2003-01-08 中国科学院上海硅酸盐研究所 硅酸镓镧晶体的坩埚下降法生长技术
CN101275279A (zh) * 2007-12-28 2008-10-01 中国科学院上海硅酸盐研究所 四晶格位结构压电晶体
CN101775657A (zh) * 2010-01-07 2010-07-14 山东大学 硅酸镓镧系列晶体高温零温度补偿切型及应用
CN103014865A (zh) * 2012-12-31 2013-04-03 中国科学院上海硅酸盐研究所 一种硅酸铝镓锶钽压电晶体及其制备方法
CN103180492A (zh) * 2010-10-13 2013-06-26 Tdk株式会社 硅酸镓镧型氧化物材料、其制造方法及该制造方法中使用的原材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162828A (ja) * 2006-12-27 2008-07-17 Japan Science & Technology Agency 電子・光学用チタン酸バリウム−カルシウム単結晶体材料及び多結晶体材料とその製造方法
CN101275277A (zh) * 2007-12-28 2008-10-01 中国科学院上海硅酸盐研究所 一种硅酸镓钡铌晶体及其制备方法和用途
US7972527B2 (en) * 2008-01-31 2011-07-05 Trs Technologies, Inc. Method of making ternary piezoelectric crystals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348197A (ja) * 2001-05-24 2002-12-04 Tdk Corp 圧電単結晶材料及び該圧電単結晶材料を用いた圧電デバイス
CN1389599A (zh) * 2002-04-29 2003-01-08 中国科学院上海硅酸盐研究所 硅酸镓镧晶体的坩埚下降法生长技术
CN101275279A (zh) * 2007-12-28 2008-10-01 中国科学院上海硅酸盐研究所 四晶格位结构压电晶体
CN101775657A (zh) * 2010-01-07 2010-07-14 山东大学 硅酸镓镧系列晶体高温零温度补偿切型及应用
CN103180492A (zh) * 2010-10-13 2013-06-26 Tdk株式会社 硅酸镓镧型氧化物材料、其制造方法及该制造方法中使用的原材料
CN103014865A (zh) * 2012-12-31 2013-04-03 中国科学院上海硅酸盐研究所 一种硅酸铝镓锶钽压电晶体及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421647A4 (en) * 2016-02-25 2019-09-04 Piezo Studio Inc. CRYSTALLINE MATERIAL AND METHOD FOR ITS PRODUCTION
US11158784B2 (en) 2016-02-25 2021-10-26 Piezo Studio Inc. Crystal material and method of manufacturing the same
CN109234809A (zh) * 2018-11-08 2019-01-18 山东大学 镓掺杂钙铝黄长石晶体及制备方法与应用

Also Published As

Publication number Publication date
CN104695018A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2015081706A1 (zh) 一种硅酸铝镓钽钙压电晶体及其制备方法
JP2011510898A (ja) 三元系の圧電性結晶の作成方法
JP2002293693A (ja) テルビウム・アルミニウム・ガーネット単結晶及びその製造方法
CN116575121B (zh) 一种具有高度取向性的单晶Cr2AlC材料及其制备方法
CN103173861B (zh) 用于高温压电器件的掺杂型钽酸镓镧晶体及其制备方法
CN101275279B (zh) 四晶格位结构压电晶体
CN103014865A (zh) 一种硅酸铝镓锶钽压电晶体及其制备方法
CN110790576A (zh) 一种微波陶瓷粉体材料及其制备方法
JP2010024071A (ja) 圧電単結晶、及び、その製造方法
CN104419984A (zh) 钙钛矿结构弛豫铁电单晶铌铟酸铅-铌镁酸铅-钛酸铅的制备方法
CN101307484B (zh) 多晶-单晶固相转化方法
CN114031297B (zh) 一种堇青石基多孔玻璃陶瓷及其制备方法
CN107313109A (zh) 一种压电晶体的制造方法
CN101275277A (zh) 一种硅酸镓钡铌晶体及其制备方法和用途
CN111206282A (zh) 一种8英寸铌酸锂晶体的生产方法
CN116854472B (zh) 一种微波介质材料及其制备方法
JPS6311591A (ja) 単結晶セラミクスの製造方法
CN106480502A (zh) 一种黄长石结构高温压电晶体及其制备方法
CN110318097A (zh) 一种铌酸镓镧单晶的制备方法
CN1256470C (zh) 掺铥铝酸钇激光晶体的生长方法
CN104695017A (zh) 一种硅酸铝镓铌钙压电晶体及其制备方法
CN1196816C (zh) 硅酸镓镧晶体的坩埚下降法生长技术
CN101275278A (zh) 一种硅酸镓锑基压电单晶
CN109234809A (zh) 镓掺杂钙铝黄长石晶体及制备方法与应用
JP4132846B2 (ja) 単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866925

Country of ref document: EP

Kind code of ref document: A1