WO2015080527A1 - 신규한 화합물 반도체 및 그 활용 - Google Patents

신규한 화합물 반도체 및 그 활용 Download PDF

Info

Publication number
WO2015080527A1
WO2015080527A1 PCT/KR2014/011587 KR2014011587W WO2015080527A1 WO 2015080527 A1 WO2015080527 A1 WO 2015080527A1 KR 2014011587 W KR2014011587 W KR 2014011587W WO 2015080527 A1 WO2015080527 A1 WO 2015080527A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
group
present
compound
elements
Prior art date
Application number
PCT/KR2014/011587
Other languages
English (en)
French (fr)
Inventor
권오정
김태훈
박철희
고경문
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/039,020 priority Critical patent/US10134970B2/en
Priority to EP14865588.9A priority patent/EP3073535B1/en
Priority to JP2016534149A priority patent/JP6238149B2/ja
Publication of WO2015080527A1 publication Critical patent/WO2015080527A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to novel compound semiconductor materials that can be used in various applications, such as thermoelectric materials, solar cells, and methods for their preparation, and uses thereof.
  • Compound A semiconductor is a compound which acts as a semiconductor by combining two or more elements rather than a single element such as silicon or germanium.
  • Various kinds of such compound semiconductors are currently developed and used in various fields.
  • a compound semiconductor may be used in a thermoelectric conversion element using a Peltier effect, a light emitting element such as a light emitting diode or a laser diode using the photoelectric conversion effect, and a solar cell.
  • the solar cell is a tandem solar cell in which two or more layers of a silicon solar cell mainly using a single element of silicon, a compound semiconductor solar cell using a compound semiconductor, and a solar cell having different bandgap energy are stacked. And the like.
  • compound semiconductor solar cells use compound semiconductors in the light absorption layer that absorbs sunlight to generate electron-hole pairs.
  • Group II-VI compound semiconductors such as ZnS, the group I-III-VI compound semiconductor represented by CuInSe 2 , etc. can be used.
  • the light absorbing layer of the solar cell is required to be excellent in long-term electrical and optical stability, high in photoelectric conversion efficiency, and to easily control band gap energy or conductivity by changing composition or doping.
  • requirements such as manufacturing cost and yield must also be satisfied.
  • many conventional compound semiconductors do not meet all of these requirements together.
  • thermoelectric conversion element may be applied to thermoelectric conversion power generation, thermoelectric conversion cooling, and the like.
  • the N type thermoelectric semiconductor and the P type thermoelectric semiconductor are electrically connected in series and thermally connected in parallel.
  • thermoelectric conversion power generation is a form of power generation that converts thermal energy into electrical energy by using thermoelectric power generated by providing a temperature difference to a thermoelectric conversion element.
  • thermoelectric conversion cooling is a form of cooling which converts electrical energy into thermal energy by taking advantage of the effect that a temperature difference occurs at both ends when a direct current flows through both ends of the thermoelectric conversion element.
  • thermoelectric conversion element The energy conversion efficiency of such a thermoelectric conversion element is largely dependent on ZT which is a figure of merit of a thermoelectric conversion material.
  • ZT may be determined according to Seebeck coefficient, electrical conductivity, thermal conductivity, and the like, and the higher the ZT value, the better the thermoelectric conversion material.
  • thermoelectric conversion materials Although many thermoelectric conversion materials have been proposed so far, there is no situation that sufficient thermoelectric conversion materials having high thermoelectric conversion performance are provided. In particular, in recent years, the field of application for thermoelectric conversion materials is gradually expanding, and the temperature conditions may vary depending on the application field. However, since thermoelectric conversion performance may vary depending on temperature, each thermoelectric conversion material needs to be optimized for thermoelectric conversion performance in a field in which the thermoelectric conversion material is applied. However, it is not yet known that thermoelectric conversion materials with optimized performance over various temperature ranges are properly provided.
  • the present invention has been devised to solve the above problems, a compound semiconductor material having excellent thermoelectric conversion performance, and a method of manufacturing the same, which can be utilized for various purposes such as thermoelectric conversion materials, solar cells, etc. of thermoelectric conversion devices, and It is an object to provide a thermoelectric conversion element, a solar cell, and the like using the same.
  • the present inventors have succeeded in synthesizing the compound semiconductor represented by the following formula (1) after repeated studies on the compound semiconductor, and the compound is a thermoelectric conversion material of a thermoelectric conversion element, a light absorbing layer of a solar cell, or the like. It was confirmed that it can be used to complete the present invention.
  • M is any one selected from the group consisting of Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As and Sb
  • Q1 is any one selected from the group consisting of S, Se, As and Sb, or two or more elements thereof
  • T is any one or two or more elements selected from transition metal elements
  • A is a transition Any one or two or more selected from the group consisting of a compound between a metal element and a transition metal element and a group 6 element, 0 ⁇ x ⁇ 1, 0.5 ⁇ u ⁇ 1.5, 0 ⁇ w ⁇ 1, 0.2 ⁇ a ⁇ 1.5 , 0 ⁇ y ⁇ 1.5, 0 ⁇ b ⁇ 1.5, 0 ⁇ z ⁇ 1.5 and 0 ⁇ c ⁇ 0.2.
  • c in Chemical Formula 1 is 0 ⁇ c ⁇ 0.05.
  • A is any one selected from the group consisting of Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 and CuAgSe or two of them. More than species.
  • Chemical Formula 1 is represented by [BiCuOTe] A c .
  • Chemical Formula 1 is represented by [Bi 1-x M x CuOSe] A c .
  • a particles are irregularly distributed on the compound represented by Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z
  • M is any one selected from the group consisting of Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As, and Sb
  • Q1 is any one selected from the group consisting of S, Se, As, and Sb or two or more elements thereof
  • T is any one or two or more elements selected from transition metal elements
  • A is Any one or two or more selected from the group consisting of a transition metal element and a compound between the transition metal element and a group 6 element, and 0 ⁇ x ⁇ 1, 0.5 ⁇ u ⁇ 1.5, 0 ⁇ w ⁇ 1, 0.2 ⁇ a ⁇ 1.5, 0 ⁇ y ⁇
  • the steps of: preparing a material compound semiconductor production method according to an aspect of the present invention for achieving the above object, is represented by Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z; Adding A to the prepared material to form a mixture; And sintering the mixture.
  • the preparing step of the material represented by Bi 1-x M x Cu uw T w O ay Q 1 y Te b Se z may include mixing each powder of Bi 2 O 3 , Bi, Cu, and T, and optionally To M, Q1, Te and Se, or any one selected from the group consisting of two or more of these powders are further mixed, followed by heat treatment.
  • A may be added in an amount of 20 mol% or less relative to Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z .
  • A may be added in an amount of 5 mol% or less based on Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z .
  • a having a particle size of 5 nm to 100 um is added.
  • the mixture sintering step may be performed by a discharge plasma sintering method or a hot press method.
  • the compound semiconductor manufacturing method for achieving the above object, by mixing each powder of Bi 2 O 3 , Bi, Cu, T and A, optionally M, Q1, Te and Se Further mixing at least one of the powders; And sintering the mixture.
  • thermoelectric conversion element according to the present invention for achieving the above object includes the compound semiconductor described above.
  • the solar cell according to the present invention for achieving the above object includes the compound semiconductor described above.
  • the bulk type thermoelectric material according to the present invention for achieving the above object includes the compound semiconductor described above.
  • thermoelectric conversion element a thermoelectric conversion element that can be used as a thermoelectric conversion element, a solar cell, or the like.
  • the compound semiconductor according to the present invention can be used as another material in place of or in addition to the conventional compound semiconductor.
  • thermoelectric conversion material of the thermoelectric conversion element can be used as the thermoelectric conversion material of the thermoelectric conversion element.
  • a high ZT value is secured, and a thermoelectric conversion element having excellent thermoelectric conversion performance can be manufactured.
  • thermoelectric conversion material having a high ZT value in the range of 100 ° C to 600 ° C can be provided, it can be more suitably applied to a thermoelectric conversion element for medium to high temperature.
  • the compound semiconductor according to the present invention can be used as a P-type thermoelectric conversion material.
  • a compound semiconductor may be used in a solar cell.
  • the compound semiconductor according to the present invention can be used as a light absorption layer of a solar cell.
  • the compound semiconductor may be used in an IR window, an infrared sensor, a magnetic element, a memory, etc. for selectively passing infrared rays.
  • FIG. 1 is a flowchart schematically showing a compound semiconductor manufacturing method according to an aspect of the present invention.
  • FIG. 2 is a flowchart schematically showing a compound semiconductor manufacturing method according to another aspect of the present invention.
  • Example 3 is a graph showing electrical conductivity values according to temperature changes of the compound semiconductors of Example 1 and Comparative Example 1 prepared according to the present invention.
  • Example 4 is a graph showing Seebeck coefficient values according to temperature changes of the compound semiconductors of Example 1 and Comparative Example 1 prepared according to the present invention.
  • Example 5 is a graph showing power factor values according to temperature changes of the compound semiconductors of Example 1 and Comparative Example 1 prepared according to the present invention.
  • Example 6 is a graph illustrating thermal conductivity values according to temperature changes of the compound semiconductors of Example 1 and Comparative Example 1 prepared according to the present invention.
  • Example 7 is a graph showing ZT values according to temperature changes of compound semiconductors of Example 1 and Comparative Example 1 prepared according to the present invention.
  • Example 8 is a graph showing electrical conductivity values according to temperature changes of the compound semiconductors of Examples 2 to 4 and Comparative Example 2 prepared according to the present invention.
  • FIG. 10 is a graph showing power factor values according to temperature changes of the compound semiconductors of Examples 2 to 4 and Comparative Example 2 prepared according to the present invention.
  • FIG. 11 is a graph illustrating thermal conductivity values according to temperature changes of the compound semiconductors of Examples 2 to 4 and Comparative Example 2 prepared according to the present invention.
  • FIG. 12 is a graph illustrating ZT values according to temperature changes of the compound semiconductors of Examples 2 to 4 and Comparative Example 2 prepared according to the present invention.
  • the present invention provides a novel compound semiconductor represented by the following formula (1).
  • M is any one selected from the group consisting of Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As and Sb
  • Q1 is any one selected from the group consisting of S, Se, As and Sb, or two or more elements thereof
  • T is any one or two or more elements selected from transition metal elements
  • A is a transition Any one or two or more selected from the group consisting of a compound between a metal element and a transition metal element and a group 6 element, 0 ⁇ x ⁇ 1, 0.5 ⁇ u ⁇ 1.5, 0 ⁇ w ⁇ 1, 0.2 ⁇ a ⁇ 1.5 , 0 ⁇ y ⁇ 1.5, 0 ⁇ b ⁇ 1.5, 0 ⁇ z ⁇ 1.5 and 0 ⁇ c ⁇ 0.2.
  • a in Formula 1 is thermodynamically stable in phase and shape when positioned in the [Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z ] matrix, and the lattice thermal conductivity of the matrix Lower and may include a transition metal and / or transition metal group 6 compound having a higher electrical conductivity than the matrix.
  • a in Formula 1 may be selected from transition metals capable of inducing the formation of transition metal group 6 compounds having such characteristics in the [Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z ] matrix. It may include.
  • a in Formula 1 is any one selected from the group consisting of Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 and CuAgSe It contains two or more kinds of particles.
  • c in Formula 1 is 0 ⁇ c ⁇ 0.05.
  • the compound semiconductor according to the present invention in addition to the material represented by Bi 1-x M x Cu uw T w O ay Q 1 y Te b Se z , Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 At least one or more substances selected from the group consisting of transition metals and transition metal-group element compounds including Te, CuTe, Cu 2 Se, Bi 2 Te 3 , CuAgSe, and the like are further added. And, due to such a configuration, the compound semiconductor according to the present invention can be used as a thermoelectric conversion material excellent in thermoelectric conversion performance.
  • Formula 1 may be represented by the following formula.
  • Formula 1 may be represented by the following formula.
  • Formula 1 may be represented by the following formula.
  • Formula 1 may be represented by the following formula.
  • the compound semiconductor according to the present invention is a BiCuOTe-based material or a BiCuOSe-based material such as Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 , CuAgSe, or the like. It may be formed of a structure containing one or more particles of a transition metal or transition metal group 6 compound.
  • the compound semiconductor according to the present invention has a low thermal conductivity value compared to a compound semiconductor consisting of only BiCuOTe or Bi 1-x M x CuOSe because the interface between the particles and the matrix causing phonon scattering exists. Can be.
  • a transition metal or the transition metal compound -6 particles may have a high electrical conductivity, by introducing the charge in the Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z matrix.
  • a carrier filtering effect resulting from the energy band gap and the Fermi energy difference may be generated, thereby improving the Seebeck coefficient characteristics of the compound semiconductor.
  • the compound semiconductor according to the present invention can have a high ZT value due to the complex effect of the above-mentioned effects, and the thermoelectric conversion performance can be effectively improved.
  • the compound semiconductor according to the present invention is a doped Bi 2 Te 3 other than Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 and CuAgSe as A; Cu 2 Se may be further included.
  • the compound semiconductor according to the present invention is a compound semiconductor in which A particles are irregularly distributed in a compound represented by Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z .
  • M is any one selected from the group consisting of Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As and Sb or two or more thereof Is an element
  • Q1 is any one selected from the group consisting of S, Se, As, and Sb or two or more elements thereof
  • T is any one or two or more elements selected from transition metal elements
  • A is a transition metal element and Compounds between transition metal elements and group 6 elements, such as Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 and CuAgSe or any one thereof 2 or more of them, and 0 ⁇ x ⁇ 1, 0.5 ⁇ u ⁇ 1.5, 0 ⁇ w ⁇ 1, 0.2 ⁇ a ⁇ 1.5, 0 ⁇ y ⁇ 1.5, 0 ⁇ b ⁇ 1.5 and 0 ⁇ z ⁇ 1.5.
  • the A particles may have a particle size of 5 nm (nanometer) to 100 um (micrometer).
  • FIG. 1 is a flowchart schematically showing a compound semiconductor manufacturing method according to an aspect of the present invention.
  • the method of manufacturing a compound semiconductor includes preparing a material represented by Chemical Formula Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z (S110). ), Forming a mixture by adding A to the material represented by Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z (S120); And it may include the step of sintering the mixture (S130).
  • the step S110, Bi 2 O 3 , Bi, Cu and T (any one or two or more selected elements of the transition metal element) is mixed with each powder, optionally M (Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As and Sb selected from the group consisting of two or more elements or oxides thereof, Q1 (S, At least one of Se, As and Sb), Te and Se, and then further mix the powder and then heat-treat the powder.
  • M Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As and Sb selected from the group consisting of two or more elements or oxides thereof, Q1 (S, At least one of Se, As and Sb), Te and Se
  • a added in the step S120 may be thermodynamically stable in phase and form when positioned in the [Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z ] matrix, and It may include a transition metal and / or a transition metal group 6 compound that lowers lattice thermal conductivity and has a higher electrical conductivity than the matrix.
  • a added in the step S120 is a transition capable of inducing the generation of a transition metal group 6 compound having such a feature in the [Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z ] matrix. Metals.
  • step S120 Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 And CuAgSe, at least one Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z It may be added in less than 20 mol%.
  • Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 and CuAgSe are Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z When added in this range, the thermoelectric conversion performance of the compound semiconductor according to the present invention can be further improved.
  • step S120 Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 And CuAgSe, at least one Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z It may be added in less than 5 mol%.
  • the initial particle size of Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 and CuAgSe added is 5 nm. To 100 um.
  • the particle size of the particles added as A approaches 5 nm in size, the electric conductivity lowering effect is lower than the thermal conductivity lowering, which may be advantageous for improving the thermoelectric performance of the compound semiconductor according to the present invention.
  • the larger the particle size of the added particles the more stable the crystal phase and the shape of the particles may be advantageous for the performance improvement and control of the compound semiconductor.
  • the particle size of the added particles is preferably selected within the above range.
  • Bi 1-x M x Cu uw T w O ay Q 1 y Te b Se z and A (Ag, Co, Ni, Zn, Au, Pd, Pt, Ag 2 Te, CuTe, Cu 2
  • the mixing of Se, Bi 2 Te 3 and CuAgSe) may be performed by hand milling, ball milling, planetary ball mill, etc., using mortar. The invention is not limited by this specific mixing mode.
  • the step S130 may be performed by a spark plasma sintering (SPS) method or a hot press (HP) method.
  • SPS spark plasma sintering
  • HP hot press
  • the pressure sintering step (S130) is preferably performed under a pressure condition of 30 MPa to 200 MPa.
  • the pressure sintering step (S130) is preferably performed under a temperature condition of 400 °C to 700 °C.
  • the pressure sintering step S130 may be performed for 1 minute to 12 hours under the pressure and temperature conditions.
  • thermoelectric performance there may be a difference in thermoelectric performance depending on the manufacturing method.
  • the compound semiconductor according to the present invention may be manufactured by the compound semiconductor manufacturing method described above. In this case, it is possible to ensure a high ZT value for the compound semiconductor, in particular it can be advantageous to secure a high ZT value in the temperature range of 100 °C to 600 °C.
  • the present invention is not necessarily limited to such a manufacturing method, and the compound semiconductor of Chemical Formula 1 may be manufactured by another manufacturing method.
  • FIG. 2 is a flowchart schematically showing a compound semiconductor manufacturing method according to another aspect of the present invention.
  • Bi 2 O 3 , Bi, Cu, T any one or two or more elements selected from transition metal elements
  • A transition metal Mixing each powder of any one selected from the group consisting of an element and a compound between transition metal elements and Group 6 elements or two or more of them
  • S210 transition metal Mixing each powder of any one selected from the group consisting of an element and a compound between transition metal elements and Group 6 elements or two or more of them
  • S220 sintering the mixture
  • step S210 M (Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As and Sb selected from the group consisting of or At least two of these elements or oxides thereof, Q1 (any one selected from the group consisting of S, Se, As, and Sb or at least two of these elements), Te, and powders of at least one of Se to further mix to form a mixture can do.
  • the manufacturing method after preparing a sintered body represented by Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z , A (Ag, Co, Ni, Zn, Au , Pd, Pt, Ag 2 Te, CuTe, Cu 2 Se, Bi 2 Te 3 and CuAgSe, etc.) is not manufactured in the form of mixing and sintering Bi 1-x M x Cu uw T w O ay
  • the raw material itself constituting Q1 y Te b Se z and A are mixed and then sintered.
  • a sintered body represented by the manufacturing process Bi 1-x M x Cu uw T w O ay Q1 y Te b Se z do not include a step which is separately.
  • thermoelectric conversion element according to the present invention may include the compound semiconductor described above. That is, the compound semiconductor according to the present invention can be used as a thermoelectric conversion material of the thermoelectric conversion element.
  • the thermoelectric conversion element according to the present invention may include the compound semiconductor described above as a P-type thermoelectric material.
  • the compound semiconductor according to the present invention has a large ZT which is a figure of merit of a thermoelectric conversion material.
  • the Seebeck coefficient and electrical conductivity are high, and the thermal conductivity is low, so the thermoelectric conversion performance is excellent. Therefore, the compound semiconductor according to the present invention can be usefully used in a thermoelectric conversion element in place of or in addition to a conventional thermoelectric conversion material.
  • the compound semiconductor according to the present invention can be applied to bulk thermoelectric conversion materials. That is, the bulk thermoelectric material according to the present invention includes the compound semiconductor described above.
  • the solar cell according to the present invention may include the compound semiconductor described above. That is, the compound semiconductor according to the present invention can be used as a light absorbing layer of solar cells, in particular solar cells.
  • the solar cell can be manufactured in a structure in which a front transparent electrode, a buffer layer, a light absorbing layer, a back electrode, a substrate, and the like are sequentially stacked from the side where sunlight is incident.
  • the bottommost substrate may be made of glass, and the back electrode formed on the entire surface may be formed by depositing a metal such as Mo.
  • the light absorbing layer may be formed by stacking the compound semiconductor according to the present invention on the back electrode by an electron beam deposition method, a sol-gel method, or a pulsed laser deposition (PLD) method.
  • PLD pulsed laser deposition
  • the buffer layer may be formed of a material such as CdS (Chemical Bath Deposition). It can be formed by depositing in the manner of.
  • a front transparent electrode may be formed on the buffer layer by a layered film of ZnO or ZnO and ITO by sputtering or the like.
  • the solar cell according to the present invention may be variously modified.
  • stacked the solar cell using the compound semiconductor which concerns on this invention as a light absorption layer can be manufactured.
  • stacked in this way can use the solar cell using silicon or another known compound semiconductor.
  • the band gap of the compound semiconductor of the present invention by changing the band gap of the compound semiconductor of the present invention, a plurality of solar cells using compound semiconductors having different band gaps as light absorbing layers can be laminated.
  • the band gap of the compound semiconductor according to the present invention can be controlled by changing the composition ratio of the constituent elements constituting the compound, such as Te.
  • the compound semiconductor according to the present invention may be applied to an infrared window (IR window) or an infrared sensor for selectively passing infrared rays.
  • IR window infrared window
  • infrared sensor for selectively passing infrared rays.
  • BiCuOTe For the synthesis of BiCuOTe, Bi 2 O 3 (Aldrich, 99.9%, 10um) 21.7g, Bi (5N +, 99.999%, shot) 9.7g, Cu (Aldrich, 99.7%, 3um) 8.9g, Te (5N +, 99.999 %, shot) 17.8 g was mixed well using agate mortar. The mixed material was placed in a silica tube and vacuum sealed and heated at 500 ° C. for 12 hours to obtain BiCuOTe powder. As a result of analyzing the x-ray diffraction pattern of the heat-treated sample, it was identified that the material obtained by this comparative example was BiCuOTe.
  • Bi 0.95 Pb 0.05 CuOSe Bi 2 O 3 (Aldrich, 99.9%, 10um) 2.589g, Bi (5N +, 99.999%, shot) 0.987g, Pb (Alfa Aesar, 99.9%, 200mesh) 0.173g, 1.059 g of Cu (Aldrich, 99.7%, 3um) and 1.316 g of Se (5N +, 99.999%, shot) were mixed well using agate mortar. The mixed material was placed in a silica tube and vacuum sealed, and heated at 600 ° C. for 12 hours to obtain Bi 0.95 Pb 0.05 CuOSe powder.
  • BiCuOTe In the same manner as in Comparative Example 1 BiCuOTe was synthesized. Thereafter, each powder was weighed according to the composition of [BiCuOTe] [Ag 0.01 ] and subjected to wet ZrO 2 ball milling for 12 hours to prepare a mixture.
  • the particle size of the Ag particles used is 100 nm.
  • Comparative Examples and Examples synthesized by the method described above were each loaded into a graphite mold having a diameter of 12 mm, and then pressed at a pressure of 50 MPa using SPS.
  • Comparative Example 1 and Example 1 500 ° C.
  • Comparative Example 2 and Examples 2 to 4 were sintered at 600 ° C. for 5 minutes.
  • Example 1 [BiCuOTe] [Ag 0.01 ]
  • Comparative Example 1 BiCuOTe
  • Examples 2 to 4 [Bi 0.95 Pb 0.05 CuOSe] [Ag 0.02 ], [Bi 0.95 Pb 0.05 CuOSe] [Co] compared to Comparative Example 2 (Bi 0.95 Pb 0.05 CuOSe). 0.03 ]
  • the electrical conductivity of the compound semiconductors is significantly improved, while the Seebeck coefficient is significantly reduced.
  • the compound semiconductors of Examples 2 and 3 significantly improved the PF at a temperature of 200 ° C. or higher, and the compound semiconductors of Example 4 were found to have improved PF in all measurement temperature ranges.
  • thermal conductivity of the compound semiconductors of Examples 2 to 4 was significantly lower than that of the compound semiconductor of Comparative Example 2 in all measurement temperature ranges.
  • ZT values of the compound semiconductors according to Examples 2 to 4 of the present invention are significantly improved than the ZT values of the compound semiconductors of Comparative Example 2.
  • thermoelectric conversion performance of the compound semiconductor according to the present invention is superior in many aspects to the conventional compound semiconductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명에 따른 화합물 반도체는, 다음의 화학식 1과 같이 표시될 수 있다. <화학식 1> [Bi1-xMxCuu-wTwOa-yQ1yTebSez]Ac 상기 화학식 1에서, M은 Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이고, Q1은 S, Se, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이며, T는 전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소이고, A는 전이금속원소 및 전이금속원소와 6족원소 간의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상이고, 0≤x<1, 0.5≤u≤1.5, 0<w≤1, 0.2<a<1.5, 0≤y<1.5, 0≤b<1.5, 0≤z<1.5 및 0<c<0.2이다.

Description

신규한 화합물 반도체 및 그 활용
본 발명은 열전 재료, 태양 전지 등 다양한 용도로 사용될 수 있는 신규한 화합물 반도체 물질 및 그 제조 방법과, 이를 이용한 용도에 관한 것이다.
본 출원은 2013년 11월 29일자로 출원된 한국 특허출원 번호 제10-2013-0147674호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
화합물 반도체는 실리콘이나 게르마늄과 같은 단일 원소가 아닌 2종 이상의 원소가 결합되어 반도체로서 동작하는 화합물이다. 이러한 화합물 반도체는 현재 다양한 종류가 개발되어 다양한 분야에서 사용되고 있다. 대표적으로, 펠티어 효과(Peltier Effect)를 이용한 열전 변환 소자, 광전 변환 효과를 이용한 발광 다이오드나 레이저 다이오드 등의 발광 소자와 태양 전지 등에 화합물 반도체가 이용될 수 있다.
우선, 태양 전지는 자연에 존재하는 태양광 이외에 별도의 에너지원을 필요로 하지 않는다는 점에서 친환경적이므로, 미래의 대체 에너지원으로 활발히 연구되고 있다. 태양 전지는, 주로 실리콘의 단일 원소를 이용하는 실리콘 태양 전지와, 화합물 반도체를 이용하는 화합물 반도체 태양 전지, 그리고 서로 다른 밴드갭 에너지(bandgap energy)를 갖는 태양 전지를 둘 이상 적층한 적층형(tandem) 태양 전지 등으로 구별될 수 있다.
이 중 화합물 반도체 태양 전지는, 태양광을 흡수하여 전자-정공 쌍을 생성하는 광흡수층에 화합물 반도체를 사용하는데, 특히 GaAs, InP, GaAlAs, GaInAs 등의 Ⅲ-Ⅴ족 화합물 반도체, CdS, CdTe, ZnS 등의 Ⅱ-Ⅵ족 화합물 반도체, CuInSe2로 대표되는 Ⅰ-Ⅲ-Ⅵ족 화합물 반도체 등을 사용할 수 있다.
태양 전지의 광흡수층은, 장기적인 전기, 광학적 안정성이 우수하고, 광전 변환 효율이 높으며, 조성의 변화나 도핑에 의해 밴드갭 에너지나 도전형을 조절하기가 용이할 것 등이 요구된다. 또한, 실용화를 위해서는 제조 비용이나 수율 등의 요건도 만족해야 한다. 그러나, 종래의 여러 화합물 반도체들은 이러한 요건들을 모두 함께 만족시키지는 못하고 있다.
또한, 열전 변환 소자는 열전 변환 발전이나 열전 변환 냉각 등에 적용될 수 있는데, 일반적으로는 N 타입 열전 반도체와 P 타입 열전 반도체가 전기적으로는 직렬로, 열적으로는 병렬로 연결되는 방식으로 구성된다. 이 중 열전 변환 발전은, 열전 변환 소자에 온도차를 둠으로써 발생하는 열기전력을 이용하여, 열 에너지를 전기 에너지로 변환시키는 발전 형태이다. 그리고, 열전 변환 냉각은, 열전 변환 소자의 양단에 직류 전류를 흘렸을 때, 양단에서 온도 차가 발생하는 효과를 이용하여, 전기 에너지를 열 에너지로 변환시키는 냉각 형태이다.
이러한 열전 변환 소자의 에너지 변환 효율은 대체로 열전 변환 재료의 성능 지수 값인 ZT에 의존한다고 할 수 있다. 여기서, ZT는 제벡(Seebeck) 계수, 전기 전도도 및 열 전도도 등에 따라 결정될 수 있는데, ZT값이 높을수록 성능이 우수한 열전 변환 재료라고 할 수 있다.
지금까지 많은 열전 변환 재료가 제안되고 있지만, 열전 변환 성능이 높은 열전 변환 재료가 충분히 마련되어 있다고는 볼 수 없는 실정이다. 특히, 최근에는 열전 변환 재료에 대한 적용 분야는 점차 확장되어 가고 있으며, 적용 분야마다 온도 조건이 달라질 수 있다. 그런데, 열전 변환 재료는 온도에 따라 열전 변환 성능이 달라질 수 있으므로, 각각의 열전 변환 재료는 해당 열전 변환 재료가 적용된 분야에서 열전 변환 성능이 최적화될 필요가 있다. 하지만, 아직까지, 다양한 온도 범위에서 최적화된 성능을 갖는 열전 변환 재료가 제대로 마련되어 있다고는 볼 수 없다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 열전 변환 소자의 열전 변환 재료, 태양 전지 등과 같이 다양한 용도로 활용될 수 있고 열전 변환 성능이 우수한 화합물 반도체 물질과 그 제조 방법, 그리고 이를 이용한 열전 변환 소자나 태양 전지 등을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명자는 화합물 반도체에 관한 거듭된 연구 끝에 하기 화학식 1로 표시되는 화합물 반도체를 합성하는데 성공하고, 이 화합물이 열전 변환 소자의 열전 변환 재료나 태양 전지의 광 흡수층 등에 사용될 수 있음을 확인하여 본 발명을 완성하였다.
<화학식 1>
[Bi1-xMxCuu-wTwOa-yQ1yTebSez]Ac
상기 화학식 1에서, M은 Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이고, Q1은 S, Se, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이며, T는 전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소이고, A는 전이금속원소 및 전이금속원소와 6족원소 간의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상이고, 0≤x<1, 0.5≤u≤1.5, 0<w≤1, 0.2<a<1.5, 0≤y<1.5, 0≤b<1.5, 0≤z<1.5 및 0<c<0.2이다.
바람직하게는, 상기 화학식 1의 c는, 0<c<0.05이다.
또한 바람직하게는, 상기 A는, Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상이다.
또한 바람직하게는, 상기 화학식 1의 x, y 및 z는, 각각 x=0, y=0 및 z=0이다.
또한 바람직하게는, 상기 화학식 1은, [BiCuOTe]Ac로 표시된다.
또한 바람직하게는, 상기 화학식 1의 w, y, b 및 z는, 각각 w=0, y=0, b=0 및 z=1이다.
또한 바람직하게는, 상기 화학식 1은, [Bi1-xMxCuOSe]Ac로 표시된다.
또한 상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 화합물 반도체는, Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 화합물에 A 입자가 불규칙적으로 분포된 화합물 반도체이며, 여기서, M은 Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이고, Q1은 S, Se, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이며, T는 전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소이고, A는 전이금속원소 및 전이금속원소와 6족원소 간의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상이고, 0≤x<1, 0.5≤u≤1.5, 0<w≤1, 0.2<a<1.5, 0≤y<1.5, 0≤b<1.5 및 0≤z<1.5이다.
또한 상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 화합물 반도체 제조 방법은, Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 재료를 준비하는 단계; 상기 준비된 재료에, A를 첨가하여 혼합물을 형성하는 단계; 및 상기 혼합물을 소결하는 단계를 포함한다.
바람직하게는, 상기 Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 재료의 준비 단계는, Bi2O3, Bi, Cu 및 T의 각 분말을 혼합하고, 선택적으로 M, Q1, Te 및 Se로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 분말을 더 혼합한 후, 열처리함으로써 수행된다.
또한 바람직하게는, 상기 혼합물 형성 단계는, A를 Bi1-xMxCuu-wTwOa-yQ1yTebSez 대비 20 mol% 이하로 첨가한다.
또한 바람직하게는, 상기 혼합물 형성 단계는, A를 Bi1-xMxCuu-wTwOa-yQ1yTebSez 대비 5 mol% 이하로 첨가한다.
또한 바람직하게는, 상기 혼합물 형성 단계는, 입도가 5 nm 내지 100 um인 A를 첨가한다.
또한 바람직하게는, 상기 혼합물 소결 단계는, 방전 플라즈마 소결 방식 또는 핫 프레스 방식에 의해 수행된다.
또한 상기와 같은 목적을 달성하기 위한 본 발명의 다른 측면에 따른 화합물 반도체 제조 방법은, Bi2O3, Bi, Cu, T 및 A의 각 분말을 혼합하고, 선택적으로 M, Q1, Te 및 Se 중 하나 이상의 분말을 더 혼합하는 단계; 및 상기 혼합물을 소결하는 단계를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 벌크형 열전 재료는, 상술한 화합물 반도체를 포함한다.
본 발명에 의하면, 열전 변환 소자나 태양 전지 등으로 이용될 수 있는 화합물 반도체 물질이 제공된다.
특히, 본 발명에 따른 화합물 반도체는, 종래의 화합물 반도체를 대체하거나 종래의 화합물 반도체에 더하여 또 다른 하나의 소재로서 사용될 수 있다.
또한, 본 발명의 일 측면에 의하면, 화합물 반도체가 열전 변환 소자의 열전 변환 재료로서 이용될 수 있다. 이 경우, 높은 ZT값이 확보되어, 우수한 열전 변환 성능을 갖는 열전 변환 소자가 제조될 수 있다. 더욱이, 본 발명에 의하면, 100℃ 내지 600℃의 범위에서 높은 ZT값을 갖는 열전 변환 재료가 제공될 수 있으므로, 중고온용 열전 변환 소자에 보다 적합하게 적용될 수 있다.
특히, 본 발명에 따른 화합물 반도체는, P 타입 열전 변환 재료로 이용될 수 있다.
또한, 본 발명의 다른 측면에 의하면, 화합물 반도체가 태양 전지에 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 태양 전지의 광흡수층으로 이용될 수 있다.
뿐만 아니라, 본 발명의 또 다른 측면에 의하면, 화합물 반도체가 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서, 마그네틱 소자, 메모리 등에도 이용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 측면에 따른 화합물 반도체 제조 방법을 개략적으로 나타내는 흐름도이다.
도 2는, 본 발명의 다른 측면에 따른 화합물 반도체 제조 방법을 개략적으로 나타내는 흐름도이다.
도 3은, 본 발명에 따라 제조한 실시예 1 및 비교예 1의 화합물 반도체의 온도 변화에 따른 전기 전도도 값을 도시한 그래프이다.
도 4는, 본 발명에 따라 제조한 실시예 1 및 비교예 1의 화합물 반도체의 온도 변화에 따른 제벡 계수 값을 도시한 그래프이다.
도 5는, 본 발명에 따라 제조한 실시예 1 및 비교예 1의 화합물 반도체의 온도 변화에 따른 파워팩터 값을 도시한 그래프이다.
도 6은, 본 발명에 따라 제조한 실시예 1 및 비교예 1의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
도 7은, 본 발명에 따라 제조한 실시예 1 및 비교예 1의 화합물 반도체의 온도 변화에 따른 ZT 값을 도시한 그래프이다.
도 8은, 본 발명에 따라 제조한 실시예 2 내지 4 및 비교예 2의 화합물 반도체의 온도 변화에 따른 전기 전도도 값을 도시한 그래프이다.
도 9는, 본 발명에 따라 제조한 실시예 2 내지 4 및 비교예 2의 화합물 반도체의 온도 변화에 따른 제벡 계수 값을 도시한 그래프이다.
도 10은, 본 발명에 따라 제조한 실시예 2 내지 4 및 비교예 2의 화합물 반도체의 온도 변화에 따른 파워팩터 값을 도시한 그래프이다.
도 11은, 본 발명에 따라 제조한 실시예 2 내지 4 및 비교예 2의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
도 12는, 본 발명에 따라 제조한 실시예 2 내지 4 및 비교예 2의 화합물 반도체의 온도 변화에 따른 ZT 값을 도시한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은, 다음과 같은 화학식 1로 표시되는 신규한 화합물 반도체를 제공한다.
<화학식 1>
[Bi1-xMxCuu-wTwOa-yQ1yTebSez]Ac
상기 화학식 1에서, M은 Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이고, Q1은 S, Se, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이며, T는 전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소이고, A는 전이금속원소 및 전이금속원소와 6족원소 간의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상이고, 0≤x<1, 0.5≤u≤1.5, 0<w≤1, 0.2<a<1.5, 0≤y<1.5, 0≤b<1.5, 0≤z<1.5 및 0<c<0.2이다.
바람직하게는, 상기 화학식 1의 A는, [Bi1-xMxCuu-wTwOa-yQ1yTebSez] 매트릭스 내에 위치할 때 상과 형태가 열역학적으로 안정하고, 매트릭스의 격자 열전도도를 낮추며, 매트릭스 보다 높은 전기전도도를 가지는 전이금속 및/또는 전이금속-6족 화합물을 포함할 수 있다. 또는, 상기 화학식 1의 A는 [Bi1-xMxCuu-wTwOa-yQ1yTebSez] 매트릭스 내에 이와 같은 특징을 가지는 전이금속-6족 화합물 생성을 유도할 수 있는 전이금속들을 포함할 수 있다. 예를 들면, 상기 화학식 1의 A는 Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 입자를 포함한다.
바람직하게는, 상기 화학식 1의 c는 0<c<0.05이다.
특히, 본 발명에 따른 화합물 반도체는, Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 물질 이외에, Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe 등을 포함하는 전이금속 및 전이금속-6족원소 화합물로 이루어진 군으로부터 선택된 적어도 어느 하나 이상의 물질이 더 첨가되어 있다. 그리고, 이러한 구성으로 인해, 본 발명에 따른 화합물 반도체는, 열전 변환 성능이 우수한 열전 변환 재료로서 이용될 수 있다.
바람직하게는, 상기 화학식 1에서, x=0, y=0, z=0일 수 있다. 이 경우, 화학식 1은 다음과 같은 화학식으로 표시될 수 있다.
[BiCuu-wTwOaTeb]Ac
더욱 바람직하게는, 상기 화학식에서, u=1, w=0, a=1, b=1일 수 있다. 이 경우, 상기 화학식 1은 다음과 같은 화학식으로 표시될 수 있다.
[BiCuOTe]Ac
또한 바람직하게는, 상기 화학식 1에서, w, y, b 및 z는, 각각 w=0, y=0, b=0 및 z=1일 수 있다. 이 경우, 화학식 1은 다음과 같은 화학식으로 표시될 수 있다.
[Bi1-xMxCuuOaSe]Ac
더욱 바람직하게는, 상기 화학식에서, u=1, a=1일 수 있다. 이 경우, 상기 화학식 1은 다음과 같은 화학식으로 표시될 수 있다.
[Bi1-xMxCuOSe]Ac
또한 바람직하게는, 상기 화학식 1에서 0.5≤u-w≤1.5일 수 있다.
이처럼 본 발명에 따른 화합물 반도체는, BiCuOTe계 재료 또는 BiCuOSe계 재료에, Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe등의 전이금속 혹은 전이금속-6족 화합물 중 하나 이상의 입자가 포함된 구조로 형성될 수 있다. 그리고, 이러한 구성적 특징으로 인해, 본 발명에 따른 화합물 반도체는 포논 산란을 일으키는 매트릭스와 입자 간의 계면이 존재하기 때문에 BiCuOTe 또는 Bi1-xMxCuOSe만으로 이루어진 화합물 반도체에 비해 낮은 열 전도도값을 가질 수 있다. 그리고 동시에 전이금속 혹은 전이금속-6족 화합물 입자들은 Bi1-xMxCuu-wTwOa-yQ1yTebSez 매트릭스 내에 전하를 소개하여 높은 전기 전도도를 가질 수 있다. 또한, 매트릭스와 입자 간의 계면에서는 에너지 밴드갭과 페르미에너지 차이에서 기인하는 캐리어 필터링 효과 (carrier filtering effect)가 생성되어 화합물 반도체의 제벡 계수 특성이 향상될 수 있다. 본 발명에 따른 화합물 반도체는 상기에서 언급한 효과들의 복합적인 영향으로 인해 높은 ZT값을 가질 수 있으며, 열전 변환 성능이 효과적으로 개선될 수 있다.
한편, 본 발명에 따른 화합물 반도체는, A로서 Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe 이외에 도핑된 Bi2Te3와 Cu2Se를 더 포함할 수도 있다.
또한, 본 발명에 따른 화합물 반도체는, Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 화합물에 A 입자가 불규칙적으로 분포된 화합물 반도체이다.
여기서, M은 Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이고, Q1은 S, Se, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이며, T는 전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소이고, A는 전이금속원소 및 전이금속원소와 6족원소 간의 화합물, 이를테면 Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상이고, 0≤x<1, 0.5≤u≤1.5, 0<w≤1, 0.2<a<1.5, 0≤y<1.5, 0≤b<1.5 및 0≤z<1.5이다.
한편, A 입자가 불규칙적으로 분포되어 있다는 것은, Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 물질에 포함된 A 입자 사이의 거리가 일정하지 않다는 것을 의미한다.
바람직하게는, 상기 A 입자는, 5 nm(나노미터) 내지 100 um(마이크로미터)의 입도 사이즈를 가질 수 있다.
도 1은, 본 발명의 일 측면에 따른 화합물 반도체 제조 방법을 개략적으로 나타내는 흐름도이다.
도 1을 참조하면, 본 발명의 일 측면에 따른 화합물 반도체를 제조하는 방법은, 화학식 Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 재료를 준비하는 단계(S110), 상기 준비된 Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 재료에, A를 첨가하여 혼합물을 형성하는 단계(S120); 및 상기 혼합물을 소결하는 단계(S130)를 포함할 수 있다.
바람직하게는, 상기 S110 단계는, Bi2O3, Bi, Cu 및 T(전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소)의 각 분말을 혼합하고, 선택적으로 M(Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물), Q1(S, Se, As 및 Sb 중 하나 이상), Te 및 Se 중 하나 이상으로 된 분말을 더 혼합한 후, 열처리하는 방식으로 수행될 수 있다.
또한 바람직하게는, 상기 S120 단계에서 첨가되는 A는, [Bi1-xMxCuu-wTwOa-yQ1yTebSez] 매트릭스 내에 위치할 때 상과 형태가 열역학적으로 안정하고, 매트릭스의 격자 열전도도를 낮추며, 매트릭스 보다 높은 전기전도도를 가지는 전이금속 및/또는 전이금속-6족 화합물을 포함할 수 있다. 또는, 상기 S120 단계에서 첨가되는 A는 [Bi1-xMxCuu-wTwOa-yQ1yTebSez] 매트릭스 내에 이와 같은 특징을 가지는 전이금속-6족 화합물 생성을 유도할 수 있는 전이금속들을 포함할 수 있다.
더욱 바람직하게는, 상기 S120 단계는, Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe 중 하나 이상을, Bi1-xMxCuu-wTwOa-yQ1yTebSez 대비 20 mol% 이하로 첨가할 수 있다. Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe는 Bi1-xMxCuu-wTwOa-yQ1yTebSez에 이러한 범위로 첨가될 때, 본 발명에 따른 화합물 반도체의 열전 변환 성능은 더욱 향상될 수 있다.
더욱 바람직하게는, 상기 S120 단계는, Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe 중 하나 이상을, Bi1-xMxCuu-wTwOa-yQ1yTebSez 대비 5 mol% 이하로 첨가할 수 있다.
또한 바람직하게는, 상기 S120 단계는, 첨가되는 Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe 등의 초기 입도 사이즈가 5 nm 내지 100 um인 것이 좋다. A로 첨가되는 입자의 입도 사이즈가 5nm 크기에 가까워질수록 열전도도 저하 대비 전기전도도 저하 효과가 작기 때문에 본 발명에 따른 화합물 반도체의 열전 성능 향상에 유리할 수 있다. 반면, 첨가 입자의 입도 사이즈가 클수록 입자의 결정상과 그 형태가 안정적이기 때문에 화합물 반도체의 성능 향상 및 제어에 유리할 수 있다. 이러한 점을 종합하여 볼 때, 최적의 성능을 가지는 화합물 반도체를 제조하기 위해서는 [Bi1-xMxCuu-wTwOa-yQ1yTebSez]Ac 조성에 따라 첨가 입자의 입도 사이즈가 상기의 범위 내에서 선택되는 것이 좋다.
한편, 상기 S120 단계에서, Bi1-xMxCuu-wTwOa-yQ1yTebSez와 A(Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe)의 혼합은, 몰타르(mortar)를 이용한 핸드 밀링(hand milling), 볼 밀링(ball milling), 유성 볼밀(planetary ball mill) 등의 방식으로 수행될 수 있으나, 본 발명이 이러한 구체적인 혼합 방식에 의해 제한되는 것은 아니다.
또한 바람직하게는, 상기 S130 단계는, 방전 플라즈마 소결(Spark Plasma Sintering; SPS) 방식이나 핫 프레스(Hot Press; HP) 방식에 의해 수행될 수 있다. 동일한 조성의 열전 재료라 할지라도, 소결 방식에 따라 열전 성능에 차이가 있을 수 있는데, 본 발명에 따른 화합물 반도체의 경우, 이러한 가압 소결 방식에 의해 소결될 때, 열전 성능이 보다 향상될 수 있다.
상기 가압 소결 단계(S130)는, 30 MPa 내지 200 MPa의 압력 조건 하에서 수행되는 것이 좋다. 또한, 상기 가압 소결 단계(S130)는, 400 ℃ 내지 700 ℃의 온도 조건 하에서 수행되는 것이 좋다. 그리고, 상기 가압 소결 단계(S130)는, 상기 압력 및 온도 조건 하에서 1 분 내지 12 시간 동안 수행될 수 있다.
화합물 반도체의 경우, 제조 방법에 따라 열전 성능에 차이가 있을 수 있는데, 본 발명에 따른 화합물 반도체는, 상술한 화합물 반도체 제조 방법에 의해 제조되는 것이 좋다. 이 경우, 화합물 반도체에 대하여 높은 ZT값을 확보할 수 있으며, 특히 100℃ 내지 600℃의 온도 범위에서 높은 ZT값을 확보하는데 유리해질 수 있다.
다만, 본 발명이 반드시 이러한 제조 방법으로 한정되는 것은 아니며, 다른 제조 방법에 의해 상기 화학식 1의 화합물 반도체가 제조될 수 있다.
도 2는, 본 발명의 다른 측면에 따른 화합물 반도체 제조 방법을 개략적으로 나타내는 흐름도이다.
도 2를 참조하면, 본 발명의 다른 측면에 따른 화합물 반도체를 제조하는 방법은, Bi2O3, Bi, Cu, T(전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소) 및 A(전이금속원소 및 전이금속원소와 6족원소 간의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상)의 각 분말을 혼합하는 단계(S210) 및 상기 혼합물을 소결하는 단계(S220)를 포함할 수 있다.
이때, 상기 S210 단계에서는, M(Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물), Q1(S, Se, As 및 Sb 로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소), Te 및 Se 중 하나 이상의 분말을 더 혼합하여 혼합물을 형성할 수 있다.
본 발명의 이러한 측면에 따른 제조 방법은, Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 소결체를 제조한 후 여기에 A(Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe 등)를 첨가하여 혼합하고 이를 소결하는 형태로 제조되는 것이 아니라, Bi1-xMxCuu-wTwOa-yQ1yTebSez를 구성하는 원료 자체와 A를 혼합한 후 이러한 혼합물을 소결하는 형태로 제조된다. 즉, 본 발명의 이러한 측면에 의하면, 제조 공정 중 Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 소결체가 별도로 준비되는 단계가 포함되지 않을 수 있다.
본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 열전 변환 소자의 열전 변환 재료로 이용될 수 있다. 특히, 본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 P 타입 열전 재료로서 포함할 수 있다.
본 발명에 따른 화합물 반도체는 열전 변환 재료의 성능 지수값인 ZT가 크다. 또한, 제벡 계수 및 전기 전도도가 크고, 열 전도도가 낮아 열전 변환 성능이 우수하다. 따라서, 본 발명에 따른 화합물 반도체는, 종래의 열전 변환 재료를 대체하거나 종래의 화합물 반도체에 더하여 열전 변환 소자에 유용하게 이용될 수 있다.
또한, 본 발명에 따른 화합물 반도체는, 벌크형 열전 변환 재료에 적용될 수 있다. 즉, 본 발명에 따른 벌크 열전 재료는 상술한 화합물 반도체를 포함한다.
또한, 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 태양 전지, 특히 태양 전지의 광 흡수층으로 이용될 수 있다.
태양 전지는, 태양광이 입사되는 쪽에서부터 순차적으로, 전면 투명 전극, 버퍼층, 광 흡수층, 배면 전극 및 기판 등이 적층된 구조로 제조할 수 있다. 가장 아래에 위치하는 기판은 유리로 이루어질 수 있으며, 그 위에 전면적으로 형성되는 배면 전극은 Mo 등의 금속을 증착함으로써 형성될 수 있다.
이어서, 배면 전극 상부에 본 발명에 따른 화합물 반도체를 전자빔 증착법, 졸-겔(sol-gel)법, PLD(Pulsed Laser Deposition) 등의 방법으로 적층함으로써 상기 광 흡수층을 형성할 수 있다. 이러한 광 흡수층의 상부에는, 전면 투명 전극으로 사용되는 ZnO층과 광 흡수층 간의 격자 상수 차이 및 밴드갭 차이를 완충하는 버퍼층이 존재할 수 있는데, 이러한 버퍼층은 CdS 등의 재료를 CBD(Chemical Bath Deposition) 등의 방법으로 증착함으로써 형성될 수 있다. 다음으로, 버퍼층 위에 ZnO나 ZnO 및 ITO의 적층막으로 전면 투명 전극이 스퍼터링 등의 방법으로 형성될 수 있다.
본 발명에 따른 태양 전지는 다양한 변형이 가능할 수 있다. 예를 들어, 본 발명에 따른 화합물 반도체를 광 흡수층으로 사용한 태양 전지를 적층한 적층형 태양 전지를 제조할 수 있다. 그리고, 이와 같이 적층된 다른 태양 전지는 실리콘이나 다른 알려진 화합물 반도체를 이용한 태양 전지를 사용할 수 있다.
또한, 본 발명의 화합물 반도체의 밴드 갭을 변화시킴으로써 서로 다른 밴드갭을 가지는 화합물 반도체를 광 흡수층으로 사용하는 복수의 태양 전지를 적층할 수도 있다. 본 발명에 따른 화합물 반도체의 밴드 갭은 이 화합물을 이루는 구성 원소, 이를테면 Te의 조성비를 변화시킴으로써 조절이 가능할 수 있다.
또한, 본 발명에 따른 화합물 반도체는 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서 등에도 적용될 수 있다.
이하, 본 발명을 보다 구체적으로 설명하기 위해 실시예 및 비교예를 들어 상세하게 설명하기로 한다. 다만, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
비교예 1
BiCuOTe의 합성을 위해, Bi2O3(Aldrich, 99.9%, 10um) 21.7g, Bi(5N+, 99.999%, shot) 9.7g, Cu(Aldrich, 99.7%, 3um) 8.9g, Te(5N+, 99.999%, shot) 17.8g을 아게이트 몰타르(agate mortar)를 이용하여 잘 혼합하였다. 혼합된 재료는 실리카 튜브(silica tube)에 넣고 진공 밀봉하여, 500℃에서 12시간 동안 가열함으로써 BiCuOTe 분말을 얻었다. 열처리된 시료의 x-선 회절 패턴을 분석한 결과, 본 비교예에 의해 얻어진 물질이 BiCuOTe임이 동정되었다.
비교예 2
Bi0.95Pb0.05CuOSe의 합성을 위해, Bi2O3(Aldrich, 99.9%, 10um) 2.589g, Bi(5N+, 99.999%, shot) 0.987g, Pb(Alfa Aesar, 99.9%, 200mesh) 0.173g, Cu(Aldrich, 99.7 %, 3um) 1.059g, Se(5N+, 99.999%, shot) 1.316g을 아게이트 몰타르(agate mortar)를 이용하여 잘 혼합하였다. 혼합된 재료는 실리카 튜브(silica tube)에 넣고 진공 밀봉하여, 600℃에서 12시간 동안 가열함으로써 Bi0.95Pb0.05CuOSe 분말을 얻었다.
실시예 1
상기 비교예 1과 동일한 방법으로 BiCuOTe를 합성하였다. 그리고 나서, [BiCuOTe][Ag0.01]의 조성에 맞게 각각의 분말을 칭량하여 12시간 동안 습식 ZrO2 볼 밀링을 실시하여 혼합물을 제조하였다. 사용된 Ag 입자의 입도 사이즈는 100nm이다.
실시예 2 및 3
상기 비교예 2와 동일한 방법으로 Bi0.95Pb0.05CuOSe를 합성하였다. 그리고 나서, [Bi0.95Pb0.05CuOSe][Ag0.02]의 조성에 맞게 각각의 분말을 칭량하여 12시간 동안 습식 ZrO2 볼 밀링을 실시하여 혼합물을 제조하였다. 실시예 2와 실시예 3은 조성은 동일하지만, 각각 20 nm와 45 um의 상이한 입도사이즈를 갖는 Ag를 사용하였다.
실시예 4
상기 비교예 2와 동일한 방법으로 Bi0.95Pb0.05CuOSe를 합성하였다. 그리고 나서, [Bi0.95Pb0.05CuOSe][Co0.03]의 조성에 맞게 각각의 분말을 칭량하여 12시간 동안 습식 ZrO2 볼 밀링을 실시하여 혼합물을 제조하였다. 이때, 사용된 Co 입자의 입도사이즈는 30 um이다.
전술한 방법으로 합성한 비교예와 실시예의 각 시료들 중 일부를 각각 직경 12mm의 흑연 몰드에 장약한 후, SPS를 사용하여 50MPa의 압력으로 가압하였다. 그리고, 비교예 1과 실시예 1은 500℃, 비교예 2와 실시예 2 내지 4는 600℃에서 5분 동안 소결을 실시하였다.
다음으로, 이와 같이 소결한 각 시료들에 대하여, ZEM-3(Ulvac-Rico, Inc)를 사용하여 소정 온도 간격으로 전기 전도도(Electrical Conductivity)와 제벡 계수(Seebeck coefficient)를 측정하여 파워 팩터(Power Factor; PF)를 계산하고 그 결과를 도 3 내지 5 및 도 8 내지 10에 나타내었다. 또한, LFA457(Netch)을 사용하여 각 시료의 열전도도(Thermal Conductivity)를 측정하고 그 결과를 도 6 및 도 11에 나타내었다. 그리고 나서, 얻어진 측정값들을 통해 각 시료의 열전성능지수 ZT값을 확인하여 그 결과를 도 7 및 도 12에 나타내었다. 즉, 도 3 내지 7에는 비교예 1과 실시예 1에 대한 측정 및 확인 결과를 나타내고, 도 8 내지 12에는 비교예 2와 실시예 2 내지 4에 대한 측정 및 확인 결과를 나타내었다.
먼저, 도 3 내지 7을 참조하면, 비교예 1(BiCuOTe)에 비해 실시예 1([BiCuOTe][Ag0.01])의 전기전도도와 제벡 계수가 온도 범위에 따라 비슷하거나 향상되었으며, 열전도도는 모든 측정 온도 영역에서 저하되었을 알 수 있다. 그리고, 이를 통해 본 발명에 따른 실시예 1의 화합물 반도체의 ZT값이 현저히 향상됨을 알 수 있다.
다음으로, 도 8 내지 12를 참조하면, 비교예 2(Bi0.95Pb0.05CuOSe)에 비해 실시예 2 내지 4([Bi0.95Pb0.05CuOSe][Ag0.02], [Bi0.95Pb0.05CuOSe][Co0.03])의 화합물 반도체들의 전기전도도가 현저하게 향상되었으며, 반면에 제벡 계수는 크게 저하되었음을 알 수 있다. 특히, 실시예 2와 3의 화합물 반도체들은 200℃ 이상의 온도에서 PF가 현저하게 향상되었으며, 실시예 4의 화합물 반도체는 모든 측정 온도 영역에서 PF 향상이 확인되었다. 또한, 실시예 2 내지 4의 화합물 반도체들의 열전도도는 모든 측정 온도 영역에서 비교예 2의 화합물 반도체에 비해 크게 저하되었음을 알 수 있다. 그리고, 이를 통해 본 발명의 실시예 2 내지 4에 따른 화합물 반도체들의 ZT값은 비교예 2의 화합물 반도체의 ZT값보다 현저하게 향상됨을 알 수 있다.
그러므로, 이러한 결과를 종합하여 볼 때, 본 발명에 따른 화합물 반도체의 열전 변환 성능이 종래의 화합물 반도체에 비해 여러 측면에서 우수함을 알 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (18)

  1. 하기 화학식 1로 표시되는 화합물 반도체.
    <화학식 1>
    [Bi1-xMxCuu-wTwOa-yQ1yTebSez]Ac
    상기 화학식 1에서, M은 Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이고, Q1은 S, Se, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이며, T는 전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소이고, A는 전이금속원소 및 전이금속원소와 6족원소 간의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상이고, 0≤x<1, 0.5≤u≤1.5, 0<w≤1, 0.2<a<1.5, 0≤y<1.5, 0≤b<1.5, 0≤z<1.5 및 0<c<0.2이다.
  2. 제1항에 있어서,
    상기 화학식 1의 c는, 0<c<0.05인 것을 특징으로 하는 화합물 반도체.
  3. 제1항에 있어서,
    상기 A는, Ag, Co, Ni, Zn, Au, Pd, Pt, Ag2Te, CuTe, Cu2Se, Bi2Te3 및 CuAgSe로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상인 것을 특징으로 하는 화합물 반도체.
  4. 제1항에 있어서,
    상기 화학식 1의 x, y 및 z는, 각각 x=0, y=0 및 z=0인 것을 특징으로 하는 화합물 반도체.
  5. 제1항에 있어서,
    상기 화학식 1의 w, y, b 및 z는, 각각 w=0, y=0, b=0 및 z=1인 것을 특징으로 하는 화합물 반도체.
  6. 제1항에 있어서,
    상기 화학식 1은, [Bi1-xMxCuOSe]Ac로 표시되는 것을 특징으로 하는 화합물 반도체.
  7. Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 화합물에 A 입자가 불규칙적으로 분포된 화합물 반도체.
    여기서, M은 Ba, Sr, Ca, Mg, Cs, K, Na, Cd, Hg, Sn, Pb, Mn, Ga, In, Tl, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이고, Q1은 S, Se, As 및 Sb로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소이며, T는 전이금속원소 중 선택된 어느 하나 또는 2종 이상의 원소이고, A는 전이금속원소 및 전이금속원소와 6족원소 간의 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상이고, 0≤x<1, 0.5≤u≤1.5, 0<w≤1, 0.2<a<1.5, 0≤y<1.5, 0≤b<1.5 및 0≤z<1.5이다.
  8. Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 재료를 준비하는 단계;
    상기 준비된 재료에, A를 첨가하여 혼합물을 형성하는 단계; 및
    상기 혼합물을 소결하는 단계
    를 포함하는 제1항의 화합물 반도체의 제조 방법.
  9. 제8항에 있어서,
    상기 Bi1-xMxCuu-wTwOa-yQ1yTebSez로 표시되는 재료 준비 단계는, Bi2O3, Bi, Cu 및 T의 각 분말을 혼합하고, 선택적으로 M, Q1, Te 및 Se 중 하나 이상의 분말을 더 혼합한 후, 열처리함으로써 수행되는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  10. 제8항에 있어서,
    상기 혼합물 형성 단계는, A를 Bi1-xMxCuu-wTwOa-yQ1yTebSez 대비 20 mol% 이하로 첨가하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  11. 제8항에 있어서,
    상기 혼합물 형성 단계는, A를 Bi1-xMxCuu-wTwOa-yQ1yTebSez 대비 5 mol% 이하로 첨가하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  12. 제8항에 있어서,
    상기 혼합물 형성 단계는, 입도가 5nm 내지 100um인 A를 첨가하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  13. 제8항에 있어서,
    상기 혼합물 소결 단계는, 가압 소결 방식에 의해 수행되는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  14. Bi2O3, Bi, Cu, T 및 A의 각 분말을 혼합하고, 선택적으로 M, Q1, Te 및 Se 중 하나 이상의 분말을 더 혼합하는 단계; 및
    상기 혼합물을 소결하는 단계
    를 포함하는 제1항의 화합물 반도체의 제조 방법.
  15. 제1항 내지 제7항 중 어느 한 항에 따른 화합물 반도체를 포함하는 열전 변환 소자.
  16. 제15항에 있어서,
    제1항 내지 제7항 중 어느 한 항에 따른 화합물 반도체를 p타입 열전 변환 재료로 포함하는 것을 특징으로 하는 열전 변환 소자.
  17. 제1항 내지 제7항 중 어느 한 항에 따른 화합물 반도체를 포함하는 태양 전지.
  18. 제1항 내지 제7항 중 어느 한 항에 따른 화합물 반도체를 포함하는 벌크 열전 재료.
PCT/KR2014/011587 2013-11-29 2014-11-28 신규한 화합물 반도체 및 그 활용 WO2015080527A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/039,020 US10134970B2 (en) 2013-11-29 2014-11-28 Compound semiconductor and application thereof
EP14865588.9A EP3073535B1 (en) 2013-11-29 2014-11-28 Novel compound semiconductor and application thereof
JP2016534149A JP6238149B2 (ja) 2013-11-29 2014-11-28 新規な化合物半導体及びその活用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130147674A KR101626933B1 (ko) 2013-11-29 2013-11-29 신규한 화합물 반도체 및 그 활용
KR10-2013-0147674 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080527A1 true WO2015080527A1 (ko) 2015-06-04

Family

ID=53199403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011587 WO2015080527A1 (ko) 2013-11-29 2014-11-28 신규한 화합물 반도체 및 그 활용

Country Status (5)

Country Link
US (1) US10134970B2 (ko)
EP (1) EP3073535B1 (ko)
JP (1) JP6238149B2 (ko)
KR (1) KR101626933B1 (ko)
WO (1) WO2015080527A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102049009B1 (ko) * 2015-09-25 2019-11-26 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
CN108511587B (zh) * 2018-01-24 2021-05-18 宁波工程学院 一种铜过量的P-型Cu3.9Ga4.2Te8基中温热电材料及其制备工艺
US11611030B2 (en) * 2018-03-08 2023-03-21 Sumitomo Electric Industries, Ltd. Thermoelectric material element, power generation device, optical sensor, and method for manufacturing thermoelectric material
CN109273584B (zh) * 2018-07-16 2022-06-28 永康市天峰工具有限公司 一种汽车尾气温差发电装置用热电材料及发电装置
CN110265540B (zh) * 2019-05-31 2022-07-08 上海大学 钡铜碲基p型热电材料及其制备方法
CN112723874B (zh) * 2021-01-18 2022-07-08 武汉理工大学 一种优化BiCuSeO基热电材料性能的方法及其织构助剂
CN115818583B (zh) * 2021-09-18 2024-05-07 中国科学院理化技术研究所 钨碲酸镉化合物和钨碲酸镉非线性光学晶体及其制备方法和应用
CN115636668B (zh) * 2022-11-21 2023-07-28 安徽大学 一种位错增强型BiCuSeO基热电材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030110892A1 (en) * 2001-09-06 2003-06-19 Nicoloau Michael C. Method for producing a device for direct thermoelectric energy conversion
US20090184295A1 (en) * 2002-07-29 2009-07-23 Shigeo Yamaguchi Thermoelectric transportation material containing nitrogen
KR101128304B1 (ko) * 2008-08-29 2012-03-23 주식회사 엘지화학 신규한 열전 변환 재료 및 그 제조 방법과, 이를 이용한 열전 변환 소자
US20130140507A1 (en) * 2011-12-01 2013-06-06 Toyota Motor Engin. & Manufact. N.A. (TEMA) Ternary thermoelectric material containing nanoparticles and process for producing the same
US20130298954A1 (en) * 2012-05-10 2013-11-14 Samsung Electronics Co., Ltd. Thermoelectric material, and thermoelectric module and thermoelectric apparatus including the thermoelectric material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179243A (ja) 2001-08-31 2003-06-27 Basf Ag 光電池活性材料およびこれを含む電池
JP4900061B2 (ja) * 2007-06-06 2012-03-21 トヨタ自動車株式会社 熱電変換素子及びその製造方法
CN101942577A (zh) * 2009-07-10 2011-01-12 中国科学院上海硅酸盐研究所 热电复合材料及其制备方法
US8512463B2 (en) 2011-04-05 2013-08-20 E I Du Pont De Nemours And Company Thick film paste containing bismuth-tellurium-oxide and its use in the manufacture of semiconductor devices
US9547665B2 (en) * 2011-10-27 2017-01-17 Microsoft Technology Licensing, Llc Techniques to determine network storage for sharing media files
TWI500170B (zh) 2011-11-22 2015-09-11 Lu Chung Hsin 製造摻雜Bi之IB-IIIA-VIA化合物之光吸收層的方法與包含其之太陽能電池
CN105308766B (zh) * 2013-10-04 2017-12-05 株式会社Lg化学 新化合物半导体及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030110892A1 (en) * 2001-09-06 2003-06-19 Nicoloau Michael C. Method for producing a device for direct thermoelectric energy conversion
US20090184295A1 (en) * 2002-07-29 2009-07-23 Shigeo Yamaguchi Thermoelectric transportation material containing nitrogen
KR101128304B1 (ko) * 2008-08-29 2012-03-23 주식회사 엘지화학 신규한 열전 변환 재료 및 그 제조 방법과, 이를 이용한 열전 변환 소자
US20130140507A1 (en) * 2011-12-01 2013-06-06 Toyota Motor Engin. & Manufact. N.A. (TEMA) Ternary thermoelectric material containing nanoparticles and process for producing the same
US20130298954A1 (en) * 2012-05-10 2013-11-14 Samsung Electronics Co., Ltd. Thermoelectric material, and thermoelectric module and thermoelectric apparatus including the thermoelectric material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3073535A4 *

Also Published As

Publication number Publication date
EP3073535A4 (en) 2017-06-21
KR101626933B1 (ko) 2016-06-02
EP3073535B1 (en) 2019-03-27
JP2017507872A (ja) 2017-03-23
US20170170379A1 (en) 2017-06-15
JP6238149B2 (ja) 2017-11-29
US10134970B2 (en) 2018-11-20
EP3073535A1 (en) 2016-09-28
KR20150062723A (ko) 2015-06-08

Similar Documents

Publication Publication Date Title
WO2015080527A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2015050420A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157904A1 (ko) 신규한 화합물 반도체 및 그 활용
JP2011516370A (ja) 新規な熱電変換材料及びその製造方法、並びにそれを用いた熱電変換素子
WO2012157913A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2015046810A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157917A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012148197A2 (ko) 신규한 화합물 반도체 및 그 활용
WO2015057019A1 (ko) 열전 재료 및 그 제조 방법
WO2012157910A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157914A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157907A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157909A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157911A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157905A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157915A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2016052948A1 (ko) 화합물 반도체 및 그 제조방법
WO2012148198A2 (ko) 신규한 화합물 반도체 및 그 활용
KR102113260B1 (ko) 고성능 화합물 반도체 및 그의 제조 방법
JP6775841B2 (ja) 新規な化合物半導体およびその活用
WO2015057018A1 (ko) 열전 재료 및 그 제조 방법
KR101614063B1 (ko) 신규한 화합물 반도체 및 그 활용
EP3454387B1 (en) Novel compound semiconductor and use thereof
KR20140145817A (ko) 신규한 화합물 반도체 및 그 활용
KR20190023338A (ko) 신규한 화합물 반도체 및 그 활용

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039020

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016534149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865588

Country of ref document: EP