WO2015080436A1 - 폴리아마이드 수지 및 그 제조방법 - Google Patents

폴리아마이드 수지 및 그 제조방법 Download PDF

Info

Publication number
WO2015080436A1
WO2015080436A1 PCT/KR2014/011267 KR2014011267W WO2015080436A1 WO 2015080436 A1 WO2015080436 A1 WO 2015080436A1 KR 2014011267 W KR2014011267 W KR 2014011267W WO 2015080436 A1 WO2015080436 A1 WO 2015080436A1
Authority
WO
WIPO (PCT)
Prior art keywords
dicarboxylic acid
acid
polyamide resin
mol
diamine
Prior art date
Application number
PCT/KR2014/011267
Other languages
English (en)
French (fr)
Inventor
칸다토모미치
시모다토모아키
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013248226A external-priority patent/JP6364183B2/ja
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to EP14865737.2A priority Critical patent/EP3075759A4/en
Priority to CN201480064712.8A priority patent/CN105764956B/zh
Priority to US15/037,521 priority patent/US10287395B2/en
Publication of WO2015080436A1 publication Critical patent/WO2015080436A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation

Definitions

  • the present invention relates to a polyamide resin and a method for producing the same. More specifically, the present invention relates to a technique for improving the transparency of a polyamide resin.
  • Polyamide resins are widely used as textiles for garments, industrial materials, engineering plastics, and the like, due to their excellent properties and ease of melt molding.
  • the polyamide resin used in the field of transparent parts such as industrial industrial equipment, mechanical, electrical, electronic, and automobile members, and optical materials, such as glasses and a lens, is required to be more excellent in a physical property and a function. have.
  • development of polyamide resins with improved transparency, color, and mechanical strength is expected.
  • Polyamide resin is generally manufactured by polycondensation reaction of dicarboxylic acid and diamine.
  • dicarboxylic acid and diamine having a predetermined structure are continuously supplied to a polymerization reactor and polymerized to produce a lower order condensate (polyamide prepolymer).
  • polyamide prepolymer a lower order condensate
  • Disclosed is a continuous method for producing a polyamide resin, which is continuously fed to a twin screw extruder and subjected to high polymerization in a molten state.
  • the polyamide resin obtained by the manufacturing method of the said patent document 1 did not reach the desired high level of transparency, color, and mechanical strength, and the new improvement was calculated
  • the present inventors earnestly researched in order to solve the said subject.
  • the polyamide resin obtained by polycondensing dicarboxylic acid and diamine which have a specific structure in presence of a phosphorus compound to obtain a lower order condensate, and then high-polymerizing the said lower order condensate by solid-phase polymerization.
  • Physical properties, in particular, have been found to significantly improve transparency, leading to the completion of the present invention.
  • An object of the present invention is to provide a polyamide resin having excellent physical properties such as transparency, color, and mechanical strength, and particularly having high transparency.
  • Another object of the present invention is to provide a method for producing a polyamide resin having excellent physical properties and particularly high transparency.
  • One aspect of the present invention relates to a method for producing a polyamide resin.
  • the method for producing the polyamide resin is a polycondensation reaction of a dicarboxylic acid and a diamine in the presence of about 0.01 to about 0.5% by mass of a phosphorus compound with respect to the total amount of the dicarboxylic acid and the diamine, thereby lowering the condensate in a solid form.
  • the maximum temperature of the polycondensation reaction is in the range of about 200 to about 230 °C
  • the maximum reaction temperature of the solid phase polymerization is about 170 to about 230 It is characterized by the range of °C:
  • R 1 represents an alkylene group having 1 to 3 carbon atoms.
  • the maximum reaction temperature of the polycondensation reaction may range from about 200 to about 220 °C.
  • the maximum reaction temperature of the solid phase polymerization may range from about 170 to about 210 ° C.
  • the phosphorus compound may be at least one selected from the group consisting of phosphorous acid, hypophosphorous acid, and salts thereof.
  • the polyamide resin is a polyamide resin obtained by polycondensation reaction of dicarboxylic acid and diamine, and containing about 0.01 to about 0.5 mass% of phosphorus compound, wherein the dicarboxylic acid has 9 to 20 carbon atoms with respect to the total amount thereof. It contains about 70 mol% or more of 12 aliphatic dicarboxylic acids, The said diamine contains about 50 mol% or more of diamine represented by following General formula (1) with respect to the total amount, The total light transmittance of the molded article of thickness 4mm is At least about 85% and yellowness (YI) is about 5 or less:
  • R 1 represents an alkylene group having 1 to 3 carbon atoms.
  • the content of the diamine represented by Chemical Formula 1 in the diamine may be about 70 mol% or more.
  • the dicarboxylic acid comprises at least one of an alicyclic dicarboxylic acid and an aromatic dicarboxylic acid, wherein the content of the aliphatic dicarboxylic acid having 9 to 12 carbon atoms in the dicarboxylic acid is about 70 mol% or more and less than about 100 mol%
  • the content of at least one of the alicyclic dicarboxylic acid and the aromatic dicarboxylic acid in the dicarboxylic acid may be greater than about 0 mol% and about 30 mol% or less.
  • the logarithmic viscosity (IV) measured at a temperature of 25 ° C. may be about 0.6 to about 1.5 kdl / g.
  • the aliphatic dicarboxylic acid may be at least one of sebacic acid and dodecaneic acid.
  • At least one of the alicyclic dicarboxylic acid and aromatic dicarboxylic acid may be at least one selected from the group consisting of 1,4-cyclohexanedicarboxylic acid, terephthalic acid and isophthalic acid.
  • the phosphorus compound may be at least one selected from the group consisting of phosphorous acid, hypophosphorous acid, and salts thereof.
  • the method for producing a polyamide resin of the present invention comprises (1) polycondensation reaction of a dicarboxylic acid and a diamine in the presence of about 0.01 to about 0.5 mass% of a phosphorus compound based on the total amount of the dicarboxylic acid and the diamine, A two-step polymerization step of obtaining a low order condensate of a form (also referred to as “step (1)”) and (2) a step of solidifying the low order condensate (also referred to as "step (2)"). Characterized in that.
  • the maximum temperature of the polycondensation reaction is in the range of about 200 to about 230 ° C.
  • the maximum reaction temperature of the solid phase polymerization is in the range of about 170 to about 230 ° C.
  • the maximum reaction temperature of the polycondensation reaction and the solid phase polymerization is in the range of about 200 to about 230 ° C.
  • the polyamide resin obtained by the said manufacturing method has the outstanding physical properties (transparency, color, mechanical strength), especially high transparency compared with the conventional polyamide resin.
  • the crystal structure of the polycondensate (polyamide) is involved.
  • the polyamide resin is a polyamide having crystallinity from completely amorphous (amorphous) by the structure of the monomer or the manufacturing method, and in the case of crystallinity, the polyamide resin has a large degree of crystallinity, crystallization rate, and size of crystals produced. Various crystallinities can be shown.
  • the low-condensation product shows crystallinity, and the high-polymerized polyamide is melted and molded. It becomes microcrystal or amorphous. Therefore, by solid-phase polymerization of the crystallized low-order condensate, the polyamide high-polymerized in the solid state is obtained, and when the obtained polyamide is melt-molded, a high transparency product can be obtained. As for the improvement of transparency, absorption or scattering of light is unlikely to occur because the microcrystal or amorphous is smaller than the wavelength of light. In addition, the transparency of the polyamide resin obtained can be further improved by adding a predetermined amount of the phosphorus compound in the polycondensation reaction when producing the lower condensate.
  • the dicarboxylic acid and the diamine are polycondensed in the presence of a phosphorus compound to obtain a lower order condensate in the form of a solid.
  • the dicarboxylic acid essentially contains an aliphatic dicarboxylic acid having 9 to 12 carbon atoms.
  • the aliphatic dicarboxylic acid having 9 to 12 carbon atoms may be any of acyclic aliphatic dicarboxylic acid and cyclic aliphatic dicarboxylic acid (alicyclic dicarboxylic acid), and in the case of acyclic aliphatic dicarboxylic acid, linear aliphatic dicarboxylic acid and branched aliphatic die Any of the carboxylic acids may be used.
  • linear aliphatic dicarboxylic acid nonanoic acid (azelaic acid), decanic acid (sebacic acid), undecane diacid, dodecane diacid, etc. are mentioned. Especially, at least one of sebacic acid and dodecane diacid is preferable.
  • branched aliphatic dicarboxylic acid examples include trimethyladipic acid, 1,6-decanedicarboxylic acid, and the like.
  • cyclic aliphatic dicarboxylic acid examples include 2-methyl-1,4-cyclohexanedicarboxylic acid, 2,3-dimethyl-1,4-cyclohexanedicarboxylic acid, and 2,5-dimethyl-1. , 4-cyclohexanedicarboxylic acid, 2,6-dimethyl-1,4-cyclohexanedicarboxylic acid, and the like.
  • acyclic aliphatic dicarboxylic acid is preferable and it may be a linear aliphatic dicarboxylic acid.
  • aliphatic dicarboxylic acid having 9 to 12 carbon atoms the crystallinity of the polyamide lower condensate can be improved, and the properties (transparency, color, mechanical strength), especially transparency of the polyamide resin can be improved.
  • these carbon atom number 9-12 aliphatic dicarboxylic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the aliphatic dicarboxylic acid having 9 to 12 carbon atoms has about 70 mol% or more, or about 80 mol% or more, or about 90 mol% or more, or about 95 mol% or more, or about 98 mol% with respect to the total amount of the dicarboxylic acid. Or about 100 mol%.
  • the dicarboxylic acid may include other dicarboxylic acids other than the aliphatic dicarboxylic acid having 9 to 12 carbon atoms.
  • the other dicarboxylic acid is not particularly limited, and a cyclic (alicyclic) or acyclic aliphatic carboxylic acid or aromatic carboxylic acid can be used.
  • terephthalic acid malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethyl Succinic acid, suberic acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid , 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, diphenic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone -4,4'- dicarboxylic acid, 4,4'-biphenyl dicarboxy
  • dicarboxylic acids may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a dicarboxylic acid may contain at least one of alicyclic dicarboxylic acid and aromatic carboxylic acid from a viewpoint of the performance balance of high transparency, mechanical strength, and heat resistance, For example, terephthalic acid, 1, 4-cyclohexanedicarboxylic acid, isophthalic acid, or the like, or two or more kinds thereof.
  • content of at least one of alicyclic dicarboxylic acid and aromatic carboxylic acid is more than about 0 mol%, about 30 mol% or less, for example, about 5 to about 20 mol%.
  • the content of aliphatic carboxylic acid having 9 to 12 carbon atoms may be about 70 mol% or more and less than about 100 mol%, for example, about 80 to about 95 mol%.
  • the diamine essentially contains a diamine represented by the following general formula (1):
  • R 1 represents an alkylene group having 1 to 3 carbon atoms.
  • the alkylene group having 1 to 3 carbon atoms include a methylene group (-CH 3- ), an ethylene group (-CH 2 CH 2- ), a trimethylene group (-CH 2 CH 2 CH 2- ), and a propylene group (-CH (CH 3 ) CH 2- ), isopropylidene group (-C (CH 3 ) 2- ), and propylidene group (-CH (CH 2 CH 3 )-).
  • the C1-C3 alkylene group may be a linear alkylene group. Specifically, it is preferable that they are a methylene group, an ethylene group, and a trimethylene group.
  • the diamine represented by the formula (1) it is possible to improve the crystallinity of the polyamide low-order condensate, and to improve the properties (transparency, color, mechanical strength), especially transparency of the polyamide resin.
  • only 1 type may be used for the diamine represented by these general formula (1), and may be used for it in combination of 2 or more type.
  • the diamine represented by the formula (1) is about 50 mol% or more, or about 70 mol% or more, or about 90 mol% or more, or about 95 mol% or more, or about 98 mol% or more, based on the total amount of diamine, or About 100 mol% or more.
  • the diamine in this process may also contain other diamines other than the diamine represented by the said General formula (1).
  • the other diamine is not specifically limited, A cyclic or acyclic aliphatic diamine and aromatic diamine can be used.
  • the said lower order condensate is synthesize
  • the said aqueous solvent is a solvent which has water as a main component.
  • the solvent used in addition to water is not particularly limited as long as it does not affect polycondensation reactivity or solubility. Examples thereof include alcohols such as methanol, ethanol, propanol, butanol and ethylene glycol.
  • the amount of water in the reaction system at the start of the polycondensation reaction is not particularly limited as long as the amount of water in the reaction system at the end of the reaction is about 10 to about 35 mass%, but preferably about 20 to about 60 mass%.
  • By setting the amount of water to about 20% by mass or more it is possible to form a uniform solution when starting the polycondensation reaction.
  • time and energy which distills and removes water in a polycondensation process can be reduced, and reaction time is also shortened, and the influence of thermal deterioration can be made small.
  • a phosphorus compound is used. It does not specifically limit as a phosphorus compound.
  • phosphoric acid, phosphorous acid, hypophosphorous acid, phosphate, phosphite, hypophosphite, phosphate ester, polymethic acid, polyphosphate, phosphine oxide, or phosphonium halogen compound etc. are mentioned.
  • at least one selected from the group consisting of phosphoric acid, phosphorous acid, hypophosphorous acid, and salts thereof may be used.
  • phosphate salt examples include sodium phosphate, potassium phosphate, potassium dihydrogen phosphate, calcium phosphate, vanadium phosphate, magnesium phosphate, manganese phosphate, lead phosphate, nickel phosphate, cobalt phosphate, ammonium phosphate, and diammonium phosphate. have.
  • phosphite potassium phosphite, sodium phosphite, calcium phosphite, magnesium phosphite, manganese phosphite, nickel phosphite, cobalt phosphate, etc. are mentioned, for example.
  • hypophosphite examples include sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, aluminum hypophosphite, vanadium hypophosphite, manganese hypophosphite, zinc hypophosphite, lead hypophosphite, nickel hypophosphite, and tea Cobalt phosphite, ammonium hypophosphite, etc. are mentioned.
  • phosphate ester examples include monomethyl phosphate ester, dimethyl phosphate ester, trimethyl phosphate, monoethyl phosphate ester, diethyl phosphate ester, triethyl phosphate, propyl phosphate ester, dipropyl phosphate ester, tripropyl phosphate, Isopropyl phosphate ester, diisopropyl phosphate ester, triisopropyl phosphate, butyl phosphate ester, dibutyl phosphate ester, tributyl phosphate, isobutyl phosphate ester, diisobutyl phosphate ester, triisobutyl phosphate, hexyl phosphate ester, di Hexyl phosphate ester, trihexyl phosphate, octyl phosphate ester, dioctyl phosphate ester, trioctyl phosphate ester, 2-ethylhe
  • polymetaphosphate sodium trimethaphosphate, sodium pentamethaphosphate, sodium hexametaphosphate, a polymetaphosphate, etc. are mentioned, for example.
  • sodium tetrapolyphosphate etc. are mentioned, for example.
  • phosphine oxides hexamethyl phosphoamide etc. are mentioned, for example.
  • phosphorus compounds may be in the form of hydrates.
  • sodium hypophosphite or its hydrate sodium phosphite or its hydrate is preferred.
  • the said phosphorus compound can be used individually or in mixture of 2 or more types.
  • the addition amount of a phosphorus compound is about 0.01-0.5 mass% with respect to the total amount of the said dicarboxylic acid and the said diamine.
  • the addition amount of a phosphorus compound is less than about 0.01 mass%, the fall of solid-state polymerization temperature and the reaction time shortening effect are not acquired, and the effect of the color of polyamide and the improvement of transparency become difficult to obtain.
  • it exceeds about 0.5 mass% excess phosphorus compound precipitates in polyamide and impairs transparency, or produces decomposition gas, resulting in poor appearance such as silver.
  • the addition amount of a phosphorus compound is about 0.01 to about 0.2 mass%, or about 0.01 to about 0.15 mass%.
  • the said polycondensation reaction can be performed in presence of an end sealing agent.
  • the terminal sealant is not particularly limited as long as it is a monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group in the lower condensate, and examples thereof include acid anhydrides such as monocarboxylic acids, monoamines, and phthalic anhydrides, and monoisocyanates. Nate, monoacid halide, monoester, monoalcohol, etc. are mentioned.
  • monocarboxylic acid or monoamine is preferably used as the end sealant in view of reactivity, stability of the sealing terminal, and the like, and in addition to the above characteristics, monocarboxylic acid is more preferably used in view of ease of handling.
  • the monocarboxylic acid which is preferably used as the terminal sealant is not particularly limited as long as it is a monocarboxylic acid having reactivity with an amino group.
  • acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid and lauric acid Aliphatic monocarboxylic acids such as tridecyl acid, myristic acid, palmitic acid, stearic acid, pivalic acid and isobutyl acid; Alicyclic monocarboxylic acids such as cyclohexane carboxylic acid; Aromatic monocarboxylic acids, such as benzoic acid, toluic acid, (alpha)-naphthalene carboxylic acid, (beta)-naphthalene carboxylic acid, methylnaphthalene carboxylic acid, and phenylacetic acid, or arbitrary mixtures thereof are mentioned.
  • acetic acid propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, etc. Acid, benzoic acid.
  • the monoamine that is preferably used as a terminal sealant is not particularly limited as long as it is a monoamine having reactivity with a carboxyl group.
  • methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine Aliphatic monoamines such as stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine; Alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; Aromatic monoamines, such as aniline, toluidine, diphenylamine, and naphthylamine, or arbitrary mixtures thereof are mentioned.
  • butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are especially preferable from a viewpoint of reactivity, boiling point, stability of a sealing terminal, cost, etc.
  • the amount of the end sealant used in preparing the lower condensate may vary depending on the reactivity of the end sealant used, the boiling point, the reaction apparatus, the reaction conditions, and the like, but is usually about 0.1 to about the number of moles of dicarboxylic acid or diamine. It can be used within the range of about 15 mol%.
  • the synthesis of the lower order condensate in this step is usually performed by raising the temperature and increasing the pressure under stirring conditions.
  • the polymerization temperature is controlled after the injection of the raw material.
  • the polymerization pressure is controlled in accordance with the progress of the polymerization.
  • the maximum reaction temperature of the polycondensation reaction in this process is about 200 to about 230 ° C.
  • the maximum reaction temperature of the polycondensation reaction may be, for example, about 200 to about 220 ° C.
  • the maximum reaction temperature does not need to be present at the end of the polycondensation reaction, and may be reached at any point up to the end of the polycondensation reaction.
  • the reaction pressure in this process may be about 1.0 to about 3.5 MPa, for example about 1.0 to about 3.0 MPa.
  • the polycondensation reaction proceeds while distilling off a large amount of water, but by controlling the reaction pressure to be about 1.0 MPa or more, it is easy to control the temperature in the reaction system and the amount of water in the reaction system.
  • the lower condensate is prevented from becoming a low moisture content or is cooled by the latent heat of evaporation of water, the solidification can be prevented, so that the discharge can be prevented from becoming difficult.
  • it is set to about 3.5 Mpa or less since it is not necessary to use a high pressure-resistant reaction apparatus, it is not necessary to increase cost.
  • the moisture content in a reaction system does not become high too much, the polymerization degree of a lower order condensate can be raised.
  • the reaction time in this process may be about 0.5 to about 4 hours, for example about 1 to about 3 hours.
  • Reaction time here means the time required from reaching the said reaction temperature to starting discharge operation.
  • the reaction time is about 0.5 hours or more, a sufficient reaction rate is reached, and unreacted substances do not remain, so that a lower order condensate with a uniform property can be obtained.
  • by setting it as about 4 hours or less it is possible to prevent the application of excessive heat history, and furthermore, even if the reaction time is extended from this, no further effect of high polymerization can be obtained.
  • the amount of water in the reaction system at the end of the reaction of the lower order condensate in this step may be about 15 to about 35 mass%, for example, about 20 to about 35 mass%.
  • the end of the reaction here refers to the time when the lower condensate has reached a predetermined degree of polymerization, and the discharge operation is started, and the condensed water generated during the reaction is also the lower limit water content.
  • the said amount of water is made into the amount of injected water which added the amount of condensation water which generate
  • the amount of water in the reaction system at the end of the reaction By setting the amount of water in the reaction system at the end of the reaction to about 15% by mass or more, the lower condensate can be prevented from being precipitated or solidified in the reaction system and can be easily discharged. On the other hand, by making it about 35 mass% or less, the low order condensate of sufficient polymerization degree can be obtained. In addition, since the amount of water to be evaporated and separated at the time of discharge cannot increase the discharge rate, or it is difficult to cause a problem such as the need for drying treatment before the solid phase polymerization, it is possible to prevent a decrease in manufacturing efficiency.
  • the polycondensation reaction for obtaining a low order condensate may be performed batchwise, or may be performed continuously.
  • the polycondensation reaction for producing the low-order condensate can be carried out under agitation in view of preventing adhesion of the lower-order condensate to the reaction vessel, uniform progress of the polycondensation reaction, and the like.
  • the lower order condensate obtained by this process may be about 10 J / g or more, for example, about 15 J / g or more, for example about 20 J / g or more, in the DSC (differential heat scanning calorimeter) measurement.
  • the specific measuring method of the heat of fusion at the time of DSC (differential heat scanning type calorimeter) measurement is demonstrated in the Example mentioned later.
  • the amount of heat of fusion can be controlled by adjusting the kind of the monomer to be used and further crystallizing the lower-order condensate. For example, the ratio of the aliphatic dicarboxylic acid having 9 to 12 carbon atoms or the ratio of the diamine represented by the formula (1) to the total amount of the diamine is increased, and the polymerization solution of the lower condensate is taken out of the reactor. By adjusting the temperature, moisture content, and discharge rate at the time of discharge, the discharged lower order condensate becomes a crystallized solid state, and the heat of fusion can be increased. In addition, if necessary, the amount of heat of fusion can be adjusted by performing heat treatment on the extracted low-order condensation under conditions above the glass transition temperature and below the temperature at which the solid phase polymerization proceeds.
  • the low-order condensate obtained by the present process has a logarithmic viscosity (IV) measured at a temperature of 25 ° C. at a concentration of 0.5 g / dl in concentrated sulfuric acid, and is about 0.1 to about 0.4 kPa / g, for example, about 0.1 to about 0.3 kPa. / g, for example from about 0.15 to about 0.3 dl / g.
  • IV logarithmic viscosity
  • the logarithmic viscosity (IV) is about 0.1 or more, low melting point materials such as monomers and salts of monomers, especially low-dimensional condensates, can be prevented, so that the resin powders can be prevented from being fused or adhered to the apparatus during solid phase polymerization. have.
  • the logarithmic viscosity (IV) is about 0.4 or less, problems can be prevented that the discharge becomes difficult because it precipitates and solidifies in the reaction system during the production of the lower condensate.
  • the logarithmic viscosity (IV) can be controlled by adjusting the type and blending ratio of the monomers to be used and the reaction conditions (solvent amount (water content), reaction temperature, reaction time) of the polycondensation reaction. For example, even if monomers of the same type and blending ratio are used, the logarithmic viscosity (IV) can be increased by reducing the amount of solvent (water content), increasing the reaction temperature, or increasing the reaction time.
  • Salt control is a process which produces
  • concentration it can be concentrated to a concentration of about +2 to about + 90% by mass relative to the value of the raw material injection concentration, for example, to a concentration of about +5 to about + 80% by mass.
  • the concentration process may be about 90 to about 220 ° C, or about 100 to about 210 ° C, or about 130 to about 200 ° C.
  • the pressure in the concentration process is preferably from about 0.1 to about 2.0 MPa.
  • the pressure of concentration is controlled below the pressure of polymerization.
  • forced discharge may be performed by a nitrogen stream or the like.
  • the concentration step is effective for shortening the polymerization time.
  • this discharging method it is not necessary to use a pressure vessel for taking out adjusted to a predetermined pressure, and furthermore, it is not necessary to take the trouble of taking out the lower condensate from the reaction vessel while separately supplying steam into the reaction vessel, It is possible to obtain a low order condensate in a small, non-foamed granule form (powder form or granule form) which is small in size and sufficiently high in logarithmic viscosity and high in volume specific gravity.
  • the inert gas atmosphere may have an oxygen concentration of about 1% by volume or less from the viewpoint of preventing oxidative degradation of the lower condensate.
  • the discharge rate of the lower order condensate from the reaction vessel can be appropriately adjusted according to the size of the reaction vessel, the amount of contents in the reaction vessel, the temperature, the size of the ejection opening, the length of the ejection nozzle portion, and the like. In general, however, it can be taken out so that the discharge rate per outlet cross-sectional area is in the range of about 2000 to about 20000 kg / s / m 2. If it is this range, the bulk density of the obtained lower-order condensate becomes like this. Preferably it is the range of about 0.35 to about 0.8 g / cm ⁇ 3>, and it is difficult to disintegrate, agglomerate, fusion to a reactor wall, etc. in the process of solid state polymerization mentioned later, It is excellent in handleability, and can also be filled with many polymerization apparatuses etc., and can improve the volumetric efficiency of the apparatus used in a solid-state polymerization process.
  • the low-order condensate in the solid form thus obtained is crystallized, the logarithmic viscosity is sufficiently high as described above, and the residual amount of the unreacted material is also low, so that fusion between the low-order condensate particles during high polymerization by solid-phase polymerization or Solid phase polymerization can be performed at a high temperature without causing agglomeration, and there is little deterioration due to side reactions.
  • the low-order condensate in solid form obtained in the step (1) is subjected to solid phase polymerization to obtain a polyamide resin.
  • the low-density condensate taken out from the reaction vessel may be subjected to the above compaction treatment or granulation treatment.
  • high polymerization degree is carried out by solid state polymerization, polyamide resin with less thermal degradation can be obtained.
  • the polymerization method and conditions for solid-phase polymerization of the low-order condensate are not particularly limited, and any method and conditions capable of performing high polymerization while maintaining a solid state without causing fusion, agglomeration, or deterioration of the low-order condensate can be used. May be used.
  • solid phase polymerization can be performed in an inert gas atmosphere such as helium gas, argon gas, nitrogen gas, carbon dioxide gas or under reduced pressure.
  • the maximum reaction temperature of the solid phase polymerization is in the range of about 170 to about 230 ° C. If the maximum reaction temperature is less than about 170 ° C, it becomes difficult to obtain a sufficiently high molecular weight polyamide. On the other hand, when the maximum reaction temperature exceeds about 230 ° C, the properties of the polyamide obtained by fusion or coloring at the time of solid phase polymerization deteriorate.
  • the maximum reaction temperature of the solid phase polymerization is, for example, about 170 to about 210 ° C.
  • the maximum reaction temperature need not be at the end of the solid phase polymerization, and may be reached at any point up to the end of the solid phase polymerization.
  • any well-known apparatus can be used.
  • a solid-state polymerization apparatus For example, a uniaxial disk type, a kneading machine, a biaxial paddle type, a vertical tower type apparatus, a vertical tower type apparatus, a rotary drum type, or a double cone type solid state polymerization apparatus, a drying apparatus, etc. Can be mentioned.
  • reaction time of solid phase polymerization is not specifically limited, Usually, about 1 to about 20 hours are preferably employ
  • the lower order condensate may be mechanically stirred or may be stirred with a gas stream.
  • various fiber materials such as glass fibers and carbon fibers, inorganic powder fillers, as necessary, in a step of producing a lower order condensate, a step of solid phase polymerization, or an optional step after solid phase polymerization.
  • Additives such as organic powder fillers, colorants, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, flame retardants, crystallization accelerators, plasticizers, lubricants, and other polymers.
  • the polyamide resin obtained by the above-described manufacturing method has excellent physical properties (transparency, color, mechanical strength), and particularly high transparency. Therefore, novel polyamide resins having such excellent physical properties are also included in the present invention.
  • the polyamide resin according to another embodiment of the present invention may be obtained by polycondensation reaction of dicarboxylic acid and diamine, and is a polyamide resin containing about 0.01 to about 0.5 mass% of phosphorus compound.
  • Silver contains about 70 mol% or more of aliphatic dicarboxylic acids having 9 to 12 carbon atoms with respect to the total amount thereof, and diamine contains about 50 mol% or more of the diamine represented by the following Chemical Formula 1 based on the total amount thereof. :
  • R 1 represents an alkylene group having 1 to 3 carbon atoms.
  • the polyamide resin according to another embodiment of the present invention has a total light transmittance of about 85% or more and a yellowness (YI) of about 5 or less for a molded article having a thickness of 4 mm.
  • the polyamide resin may have a total light transmittance of a molded article having a thickness of 4 mm of about 85% or more, or about 86% or more, or about 87% or more.
  • the specific measuring method of this total light transmittance is demonstrated in the Example mentioned later.
  • the yellowness (YI) before molding the polyamide resin may be about 5 or less, for example, about 4 or less.
  • the polyamide resin may have a yellowness (YI) of a molded article having a thickness of 4 mm of about 5 or less, for example, about 4 or less, for example, about 3 or less.
  • YI yellowness
  • the specific measuring method of yellowness YI is demonstrated in the Example mentioned later.
  • the polyamide resin contains about 0.01 to about 0.5 mass% of the phosphorus compound, for example, about 0.01 to about 0.2 mass% of the phosphorus compound.
  • concentration of a phosphorus compound can be measured by the method of using an inductively coupled plasma emission spectroscopy apparatus (ICP-AES), and can be measured by the method as described in an Example more specifically.
  • the phosphorus compound may be at least one selected from the group consisting of phosphorous acid, hypophosphorous acid, and salts thereof.
  • the content of the diamine represented by the formula (1) in the diamine may be about 70 mol% or more.
  • the dicarboxylic acid contains at least one of an alicyclic dicarboxylic acid and an aromatic dicarboxylic acid
  • the content of aliphatic dicarboxylic acid having 9 to 12 carbon atoms in the dicarboxylic acid is about 70 mol% or more, about 100 mol It may be less than%
  • the content of at least one of the alicyclic dicarboxylic acid and the aromatic dicarboxylic acid in the dicarboxylic acid may be greater than about 0 mol% and about 30 mol% or less.
  • the aliphatic dicarboxylic acid may be at least one of sebacic acid and dodecane diacid.
  • At least one of the alicyclic dicarboxylic acid and aromatic dicarboxylic acid may be at least one selected from the group consisting of 1,4-cyclohexanedicarboxylic acid, terephthalic acid and isophthalic acid.
  • the polyamide resin has a logarithmic viscosity (IV) measured at a temperature of 25 ° C. at a concentration of 0.5 g / dL in concentrated sulfuric acid, and is about 0.6 to about 1.5 mW / g, for example, about 0.7 to about 1.3 mW / g. Can be.
  • IV logarithmic viscosity
  • the polyamide resin may have a glass transition temperature of about 120 ° C. or more, for example, about 125 ° C. or more.
  • the specific measuring method of glass transition temperature is demonstrated in the Example mentioned later.
  • the polyamide resin may have an impact strength (Izod impact strength) of about 8 kJ / m 2 or more, for example, about 9 kJ / m 2 or more after injection molding.
  • Izod impact strength an impact strength of about 8 kJ / m 2 or more, for example, about 9 kJ / m 2 or more after injection molding.
  • specific measuring method of the said Izod impact strength is demonstrated in the Example mentioned later.
  • the terminal amino group concentration ([NH 2 ]) of the polyamide resin may be about 20 to about 100 ⁇ mol / g, for example, about 30 to about 80 ⁇ mol / g.
  • the terminal amino group concentration is less than about 20 mol / g, the polycondensation reaction is carried out at high temperature for the purpose of improving the reaction rate of the polycondensation reaction, so that the heat-resistant color may decrease in the thermal history.
  • it exceeds about 100 mol / g since a terminal amino group is easy to color, there exists a possibility that heat-resistant color (discoloration resistance in a heating environment) may fall. Therefore, the polyamide resin having the terminal amino group concentration in the above range has the characteristic that the heat-resistant color is good.
  • terminal amino group concentration can be measured by a titration method, and can be measured by the method as described in an Example more specifically.
  • the terminal carboxyl group concentration ([COOH]) of the polyamide resin may be about 20 to about 250 ⁇ mol / g, for example, about 30 to about 200 ⁇ mol / g.
  • the terminal carboxyl group concentration is less than about 20 ⁇ mol / g, the polycondensation reaction is performed at high temperature for the purpose of improving the reaction rate of the polycondensation reaction. Therefore, there is a possibility that the heat-resistant color may decrease in the thermal history.
  • it exceeds about 250 micromoles / g there is a possibility that the degree of polymerization will be insufficient and it will be difficult to obtain the target molding material.
  • the polyamide resin having a terminal carboxyl group concentration in the above range has a characteristic that the heat-resistant color is good.
  • terminal carboxyl group concentration can be measured by a titration method, and can be measured by the method as described in an Example more specifically.
  • the polyamide resin has such excellent physical properties (transparency, color, mechanical strength), so that the polyamide resin can be used in the fields of transparent materials such as industrial industrial devices, mechanical, electrical, electronic, and automotive members, and optical materials such as glasses and lenses. Can be used as appropriate.
  • a sample solution was prepared by dissolving the sample in a concentration of 0.5 g / dl in 96% concentrated sulfuric acid.
  • 96% concentrated sulfuric acid (blank) and the sample solution were measured at the temperature of 25 degreeC using the Uberode viscous tube, and the fall second was measured and it calculated by the following formula (1).
  • 0.3 to 0.5 g of the sample was precisely weighed, 20 ml of orthocresol was added, and heated to about 170 ° C. under a nitrogen atmosphere while stirring to dissolve. After complete dissolution, the mixture was cooled and 15 ml of benzyl alcohol was added, followed by stirring for 5 minutes. The prepared solution was neutralized with 0.1 N KOH (methanol) solution, and the end point was determined by potentiometric measurement.
  • a vacuum dried product was provided for the measurement at 90 ° C. for 12 hours in the measurement of the low-order condensate.
  • DSC differential thermal scanning calorimeter
  • the sample in the amorphous state obtained by quenching was flowed under nitrogen flow at a flow rate of 10 ml / min, and the temperature increase rate was 10 ° C / min.
  • the temperature was raised from 30 ° C. to 300 ° C. and maintained for 5 minutes.
  • the temperature was measured from the temperature reduction rate of 10 ° C./min to 100 ° C., the glass transition temperature was measured, and the endothermic peak temperature due to melting at elevated temperature was taken as the melting point, and the exothermic peak temperature due to crystallization at lower temperature was crystallized. It measured as temperature.
  • the amount of heat of fusion was determined from the peak area of the endothermic peak.
  • the measurement was carried out using a small color white scale NW-11 manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • Illumination and reception conditions 45 ⁇ annular illumination, 0 ⁇ light reception
  • Measuring method diffraction grating, back spectroscopy
  • Measuring area 10 mm ⁇
  • Light source Puls Xenon lamp
  • Molding temperature 300 to 350 ° C
  • Injection molding 1A type (80 ⁇ 10 ⁇ 4mm A notch)
  • Test apparatus Digital impact tester model DG-UB (manufactured by Toyoseki Seisakusho Co., Ltd.).
  • the resulting lower condensate is maintained at atmospheric temperature (25 ° C.) under nitrogen flow from the bottom discharge valve while maintaining the temperature of the reaction tank and the water content (21 mass%) in the reaction system. It was discharged to a receiver to obtain a lower condensate in the form of a white, powder.
  • the obtained lower order condensate had an IV of 0.14, exhibiting a melting behavior of 240 DEG C with an endothermic peak in DSC measurement, and showing crystallinity of melting amount of 47 J / g.
  • the injection molded piece was produced at the barrel temperature of 305 degreeC, and mold temperature of 45 degreeC.
  • the total light transmittance of the injection molded piece was 89.1%, YI was 2.3, and the impact test strength was 10.5 kJ / m 2.
  • the injection molded piece exhibits high transparency and strength, has no appearance of pitting due to defective filling, no silver traces due to moisture, gas generation, etc., no intrusion or gel-like substances mixed, and no abnormality in color such as yellowing. And color.
  • the raw materials to be used are 182.34 g (0.902 mol) of sebacic acid and 189.66 g (0.902 mol) of [bis (4-aminocyclohexyl) methane] (PACM), and the amount of water distilled off during polymerization of the lower condensate is 190 g.
  • PAM [bis (4-aminocyclohexyl) methane]
  • the IV of the lower condensate was 0.15 and exhibited crystallinity of DSC endothermic peak of 258 ° C. and heat of fusion of 42 J / g.
  • the total light transmittance of the injection molded piece was 89.0%, YI was 2.1, and the impact test strength was 10.5 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • the IV of the lower condensate was 0.14, and exhibited crystallinity of DSC endothermic peak of 256 ° C. and heat of fusion of 18 J / g.
  • the polyamide resin had an IV of 0.88, a glass transition temperature of 144 ° C, a melting point of 245 ° C, a crystallization temperature of 193 ° C and YI of 2.3, and a phosphorus compound concentration of 0.101 mass%.
  • the obtained polyamide resin was color good and sufficiently high molecular weight.
  • the total light transmittance of the injection molded piece was 89.4%, YI was 2.5, and the impact test strength was 10.8 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • POM bis (4-aminocyclohexyl) methane
  • the IV of the lower condensate was 0.13, and exhibited crystallinity at a DSC endothermic peak of 252 ° C. and a heat of fusion of 22 J / g.
  • the polyamide resin had an IV of 0.84, and did not show a glass transition temperature of 150 ° C., a melting point, and a crystallization temperature. YI was 3.3 and the density
  • the total light transmittance of the injection molded piece was 86.2%, YI was 4.5, and the impact test strength was 9.5 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • the IV of the lower condensate was 0.15, and exhibited crystallinity of a DSC endothermic peak of 248 ° C. and a heat of fusion of 32 J / g.
  • the polyamide resin had an IV of 0.90, a glass transition temperature of 141 ° C, a melting point of 246 ° C, a crystallization temperature of 212 ° C and a YI of 2.0, and a concentration of the phosphorus compound was 0.104 mass%.
  • the obtained polyamide resin was color good and sufficiently high molecular weight.
  • the total light transmittance of the injection molded piece was 89.4%, YI was 2.5, and the impact test strength was 10.7 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • POM [bis (4-aminocyclohexyl) methane]
  • MACM 4,4'-diamino-3] , 3'-dimethyldicyclohexylmethane
  • the IV of the lower condensate was 0.15, and exhibited crystallinity of a DSC endothermic peak of 251 ° C. and a heat of fusion of 28 J / g.
  • the total light transmittance of the injection molded piece was 88.8%, YI was 2.6, and the impact test strength was 10.5 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • POM [bis (4-aminocyclohexyl) methane]
  • MACM 4,4'-diamino-3 , 3'-dimethyldicyclohexylmethane
  • the IV of the lower condensate was 0.14, and exhibited crystallinity of a DSC endothermic peak of 255 ° C. and a heat of fusion of 7 J / g.
  • the total light transmittance of the injection molded piece was 86.2%, YI was 4.6, and the impact test strength was 10.8 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • the polymerization of the polyamide resin and the preparation and evaluation of the injection molded piece were carried out in the same manner as in Example 1 except that the reaction temperature of the lower condensate was 230 ° C and the reaction pressure was 2.2 MPa.
  • the IV of the lower condensate was 0.22, and exhibited crystallinity of a DSC endothermic peak of 256 ° C. and a heat of fusion of 36 J / g.
  • the polyamide resin had an IV of 1.15, a glass transition temperature of 135 ° C, a melting point of 250 ° C, and a crystallization temperature of 190 ° C. YI was 3.9 and the concentration of phosphorus compound was 0.103 mass%. The obtained polyamide resin was color good and sufficiently high molecular weight.
  • the total light transmittance of the injection molded piece was 86.7%, YI was 4.8, and the impact test strength was 10.8 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • the IV of the lower order condensate was 0.15, indicating a crystallinity of a DSC endothermic peak of 242 ° C and a heat of fusion of 42 J / g.
  • the polyamide resin had an IV of 1.02, a glass transition temperature of 134 ° C, a melting point of 255 ° C, and a crystallization temperature of 198 ° C. YI was 4.2 and the density
  • the total light transmittance of the injection molded piece was 86.5%, YI was 4.8, and the impact test strength was 10.8 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • the polymerization of the polyamide resin and the preparation and evaluation of the injection molded piece were carried out in the same manner as in Example 1, except that the amount of sodium hypophosphite monohydrate added was 0.186 g (0.05 mass% relative to the injection raw material).
  • the IV of the lower condensate was 0.14, indicating DSC crystallinity of 241 ° C and a heat of fusion of 45 J / g.
  • the total light transmittance of the injection molded piece was 89.4%, YI was 1.9, and the impact test strength was 10.7 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • the polymerization of the polyamide resin and the preparation and evaluation of the injection molded piece were carried out in the same manner as in Example 1, except that the amount of sodium hypophosphite monohydrate added was 0.093 g (0.025 mass% relative to the injection raw material).
  • the IV of the lower order condensate was 0.14, which exhibited crystallinity of a DSC endothermic peak of 240 ° C. and a heat of fusion of 43 J / g.
  • the total light transmittance of the injection molded piece was 89.5%, YI was 2.3, and the impact test strength was 10.8 kJ / m 2.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • the total light transmittance of the injection molded piece was 89.2%, YI was 2.0, and the impact test strength was 10.0 kJ / m ⁇ 2>.
  • the injection molded piece exhibited a good appearance with excellent transparency and color, and a good mechanical strength.
  • the polymerization of the polyamide resin and the preparation and evaluation of the injection molded piece were carried out in the same manner as in Example 1, except that the amount of sodium hypophosphite monohydrate added was 0.018 g (0.005 mass% based on the injection raw material).
  • the IV of the lower condensate was 0.13, and exhibited crystallinity of a DSC endothermic peak of 240 ° C. and a heat of fusion of 45 J / g.
  • the polyamide resin had an IV of 0.86, a glass transition temperature of 135 ° C, a melting point of 248 ° C, and a crystallization temperature of 201 ° C. YI was 5.6 and the density
  • the obtained polyamide resin was sufficiently high molecular weight.
  • the total light transmittance of the injection molded piece was 84.8%, YI was 7.2, and the impact test strength was 10.1 kJ / m 2.
  • the injection molded pieces showed good mechanical strength, but were inferior in transparency and color.
  • the raw materials to be used were 152.49 g (1.043 mol) of adipic acid and 219.51 g (1.043 mol) of [bis (4-aminocyclohexyl) methane] (PACM), except that 196 g of water was distilled off, in the same manner as in Example 1 , Polyamide resin production, and injection molding pieces were produced and evaluated.
  • the IV of the lower condensate was 0.17, and DSC measurements showed unclear endothermic and exothermic behaviors above 300 ° C.
  • the polyamide resin had an IV of 0.82, a glass transition temperature of 165 ° C, a melting point of 352 ° C, a crystallization temperature of 310 ° C, and a YI of 2.6.
  • the color was good and sufficiently high molecular weight, but the melting point was too high. Generation of decomposition gas and viscosity decrease occurred during the injection molding process, and an injection molded piece could not be obtained.
  • POM bis (4-aminocyclohexyl) methane
  • the IV of the lower condensate was 0.12 and no DSC endothermic peak was seen.
  • the total light transmittance of the injection molded piece was 81.9%, YI was 7.6, and the impact test strength was 6.7 kJ / m 2. Injection molded pieces were inferior in transparency, color, and impact strength.
  • the IV of the lower condensate was 0.17, and the DSC measurement showed unclear endothermic and exothermic behavior at 300 ° C or higher.
  • the polyamide resin had an IV of 0.79, a glass transition temperature of 154 ° C, a melting point of 355 ° C, a crystallization temperature of 318 ° C, and a YI of 2.8.
  • the color was good and sufficiently high molecular weight, but the melting point was too high. Generation of decomposition gas and viscosity decrease occurred during the injection molding process, and an injection molded piece could not be obtained.
  • POM [bis (4-aminocyclohexyl) methane]
  • MACM 4,4'-diamino-3] , 3'-dimethyldicyclohexylmethane
  • the IV of the lower condensate was 0.12 and no DSC endothermic peak was seen.
  • IV of the polyamide resin was 0.73, and the glass transition temperature of 133 ° C, melting point, and crystallization temperature were not shown.
  • YI was 8.8 and the fusion phenomenon was seen at the time of solid state polymerization, and the tendency to color was confirmed.
  • the total light transmittance of the injection molded piece was 82.4%, YI was 8.1, and the impact test strength was 5.5 kJ / m 2.
  • the injection molded piece was inferior in transparency, color, and impact strength.
  • Example 2 In the same manner as in Example 1, after the polycondensation reaction of the lower condensate was carried out at the reaction temperature of 210 ° C, the liquid temperature was improved to 300 ° C while the reaction pressure was lowered to atmospheric pressure over 1 hour. After liquid temperature reached 300 degreeC, it hold
  • the total light transmittance of the injection molded piece was 84.5%, YI was 5.8, and the impact test strength was 9.9 kJ / m 2. Compared with the polyamide resin of the present invention, the injection molded piece was inferior in transparency and color.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

본 발명의 폴리아마이드 수지의 제조방법은, 다이카복실산과 다이아민을, 상기 다이카복실산 및 상기 다이아민의 합계량에 대하여 약 0.01 내지 약 0.5질량%의 인 화합물의 존재 하에 중축합반응시켜서, 고체 형태의 저차 축합물을 얻는 공정과, 저차 축합물을 고상 중합시키는 공정을 포함하고, 상기 다이카복실산은, 그 총량에 대하여, 탄소원자수 9 내지 12의 지방족 다이카복실산을 약 70㏖% 이상 포함하고, 상기 다이아민은, 그 총량에 대하여, 전술한 화학식 1로 표시되는 다이아민을 약 50㏖% 이상 포함하며, 상기 중축합반응의 최고온도는 약 200 내지 약 230℃의 범위이고, 상기 고상 중합의 최고반응온도는 약 170 내지 약 230℃의 범위인 것을 특징으로 한다.

Description

폴리아마이드 수지 및 그 제조방법
본 발명은, 폴리아마이드 수지 및 그 제조방법에 관한 것이다. 보다 상세하게는, 본 발명은 폴리아마이드 수지의 투명성을 향상시키는 기술에 관한 것이다.
폴리아마이드 수지는, 그 우수한 특성과 용융 성형의 용이성으로부터, 의류용, 산업자재용 섬유, 엔지니어링 플라스틱 등으로서 널리 이용되고 있다. 최근에 있어서, 공업 산업장치, 기계, 전기, 전자 및 자동차 부재 등의 투명 부품, 안경이나 렌즈 등의 광학용 재료 등의 분야에서 이용되는 폴리아마이드 수지에 대하여, 물성 및 기능이 한층 우수한 것이 요구되고 있다. 특히, 투명성, 색상, 기계적 강도가 보다 향상된 폴리아마이드 수지의 개발이 기대되고 있다.
폴리아마이드 수지는, 일반적으로, 다이카복실산과 다이아민을 중축합반응 시킴으로써 제조된다. 예를 들어, 특허문헌 1(JP2009-203422A)에서는, 소정의 구조를 가진 다이카복실산과 다이아민을 중합 반응기에 연속적으로 공급, 중합해서 저차 축합물(폴리아마이드프레폴리머)을 제조하고, 이어서, 이것을 2축 압출기에 연속적으로 공급해서 용융 상태에서 고중합도화시키는, 폴리아마이드 수지의 연속 제조방법이 개시되어 있다.
그러나, 상기 특허문헌 1에 기재된 제조방법에 의해 얻어지는 폴리아마이드 수지는, 소망의 높은 수준의 투명성, 색상, 기계적 강도를 지니는 것에 이르지 않아, 새로운 개량이 요구되고 있었다.
본 발명자들은, 상기 과제를 해결하기 위하여, 예의 연구를 행하였다. 그 과정에서, 특정 구조를 가진 다이카복실산 및 다이아민을, 인 화합물의 존재 하에 중축합반응시켜서 저차 축합물을 얻은 후, 해당 저차 축합물을 고상 중합에 의해 고중합도화시킴으로써, 얻어지는 폴리아마이드 수지의 물성, 특히, 투명성이 유의하게 향상되는 것을 발견하여, 본 발명을 완성시키기에 이르렀다.
본 발명의 목적은 투명성, 색상, 기계 강도 등 물성이 우수하고, 특히, 높은 투명성을 지니는 폴리아마이드 수지를 제공하기 위한 것이다.
본 발명의 다른 목적은 물성이 우수하고, 특히, 높은 투명성을 지니는 폴리아마이드 수지의 제조방법을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 하나의 관점은 폴리아마이드 수지의 제조방법에 관한 것이다. 상기 폴리아마이드 수지의 제조방법은, 다이카복실산과 다이아민을, 상기 다이카복실산 및 상기 다이아민의 합계량에 대하여 약 0.01 내지 약 0.5질량%의 인 화합물의 존재 하에 중축합반응시켜서, 고체 형태의 저차 축합물을 얻는 공정; 및 상기 저차 축합물을 고상 중합시키는 공정을 포함하되, 상기 다이카복실산은, 그 총량에 대하여, 탄소원자수 9 내지 12의 지방족 다이카복실산을 약 70㏖% 이상 포함하고, 상기 다이아민은, 그 총량에 대하여, 하기 화학식 1로 표시되는 다이아민을 약 50㏖% 이상 포함하며, 상기 중축합반응의 최고온도는 약 200 내지 약 230℃의 범위이고, 상기 고상 중합의 최고반응온도는 약 170 내지 약 230℃의 범위인 것을 특징으로 한다 :
[화학식 1]
Figure PCTKR2014011267-appb-I000001
식 중, R1은 탄소원자수 1 내지 3의 알킬렌기를 나타낸다.
구체예에서, 상기 중축합반응의 최고반응온도가 약 200 내지 약 220℃의 범위일 수 있다.
구체예에서, 상기 고상 중합의 최고반응온도가 약 170 내지 약 210℃의 범위일 수 있다.
구체예에서, 상기 인 화합물이 아인산, 차아인산, 및 그들의 염으로 이루어진 군으로부터 선택된 적어도 1종일 수 있다.
본 발명의 다른 하나의 관점은 폴리아마이드 수지에 관한 것이다. 상기 폴리아마이드 수지는 다이카복실산 및 다이아민의 중축합반응에 의해 얻어지고, 또한 인 화합물을 약 0.01 내지 약 0.5질량% 포함하는 폴리아마이드 수지로서, 상기 다이카복실산은, 그 총량에 대하여, 탄소원자수 9 내지 12의 지방족 다이카복실산을 약 70㏖% 이상 포함하고, 상기 다이아민은, 그 총량에 대하여, 하기 화학식 1로 표시되는 다이아민을 약 50㏖% 이상 포함하며, 두께 4㎜의 성형물의 전광선투과율이 약 85% 이상이고, 또한 황색도(YI)가 약 5 이하인 것을 특징으로 한다 :
[화학식 1]
Figure PCTKR2014011267-appb-I000002
식 중, R1은 탄소원자수 1 내지 3의 알킬렌기를 나타낸다.
구체예에서, 상기 다이아민 중의 상기 화학식 1로 표시되는 다이아민의 함유량이 약 70㏖% 이상일 수 있다.
구체예에서, 상기 다이카복실산이 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽을 포함하고, 상기 다이카복실산 중의 상기 탄소수 9 내지 12의 지방족 다이카복실산의 함유량이 약 70㏖% 이상 약 100㏖% 미만이며, 상기 다이카복실산 중의 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽의 함유량이 약 0㏖% 초과 약 30㏖% 이하일 수 있다.
구체예에서, 농황산 중 0.5g/㎗의 농도에서, 온도 25℃에서 측정한 대수점도(IV)가 약 0.6 내지 약 1.5㎗/g 일 수 있다.
구체예에서, 상기 지방족 다이카복실산이 세바스산 및 도데칸이산 중 적어도 한쪽일 수 있다.
구체예에서, 상기 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽이 1,4-사이클로헥산다이카복실산, 테레프탈산 및 아이소프탈산으로 이루어진 군으로부터 선택된 적어도 1종일 수 있다.
구체예에서, 상기 인 화합물이 아인산, 차아인산, 및 그들의 염으로 이루어진 군으로부터 선택된 적어도 1종일 수 있다.
본 발명에 따르면, 우수한 물성, 특히, 투명성을 지니는 폴리아마이드 수지를 제공할 수 있다.
이하, 본 발명을 상세히 설명하면 다음과 같다.
<폴리아마이드 수지의 제조방법>
본 발명의 폴리아마이드 수지의 제조방법은, (1) 다이카복실산과 다이아민을, 상기 다이카복실산 및 상기 다이아민의 합계량에 대하여 약 0.01 내지 약 0.5질량%의 인 화합물의 존재 하에 중축합반응시켜서, 고체 형태의 저차 축합물을 얻는 공정(「공정(1)」이라고도 칭함)과, (2) 상기 저차 축합물을 고상 중합시키는 공정(「공정(2)」라고도 칭함)의 2단계의 중합 공정을 포함하는 것을 특징으로 한다. 그리고, 상기 중축합반응의 최고온도는 약 200 내지 약 230℃의 범위이며, 상기 고상 중합의 최고반응온도는 약 170 내지 약 230℃의 범위이다. 상기 중축합반응 및 상기 고상 중합의 최고반응온도는 약 200 내지 약 230℃의 범위이다.
상기 제조방법에 의해 얻어지는 폴리아마이드 수지는, 종래의 폴리아마이드 수지와 비교해서, 우수한 물성(투명성, 색상, 기계적 강도), 특히, 높은 투명성을 지닌다. 또한, 폴리아마이드 수지의 물성의 요인의 하나로서, 중축합물(폴리아마이드)의 결정 구조가 관여하고 있다. 상기 폴리아마이드 수지는, 단량체의 구조나 제조방법에 의해, 완전 비정질(아몰퍼스)로부터 결정성을 지니는 폴리아마이드, 또 결정성을 지닐 경우에는, 결정화도, 결정화의 속도, 생성되는 결정의 크기의 대소로 다양한 결정성을 나타낼 수 있다.
일 실시예에서는, 하기에 상세히 설명하는 바와 같이, 단량체로서 소정의 구조를 가진 다이카복실산 및 다이아민을 이용함으로써, 저차 축합물에서는 결정성을 나타내고, 고중합도화된 폴리아마이드를 용융시켜 성형한 것은, 미세결정 또는 비정질로 된다. 그 때문에, 결정화한 저차 축합물을 고상 중합함으로써, 고체상태에서 고중합도화된 폴리아마이드가 얻어지고, 얻어진 폴리아마이드를 용융 성형하면 투명성이 높은 제품을 얻는 것이 가능해진다. 투명성의 향상에 대해서는, 미세결정 또는 비정질이 광의 파장보다도 작은 것에 의해, 광의 흡수나 산란이 일어나기 어렵다. 또한, 저차 축합물을 제조할 때의 중축합반응 시에 소정량의 인 화합물을 첨가함으로써, 얻어지는 폴리아마이드 수지의 투명성이 더욱 향상될 수 있다.
이하, 상기 폴리아마이드의 제조방법을 공정마다 설명한다.
공정(1)
본 공정에서는, 다이카복실산과 다이아민을 인 화합물의 존재 하에 중축합반응시켜서, 고체 형태의 저차 축합물을 얻는다.
상기 다이카복실산은, 탄소원자수 9 내지 12의 지방족 다이카복실산을 필수로 함유한다. 탄소원자수 9 내지 12의 지방족 다이카복실산은, 비환식 지방족 다이카복실산, 환식 지방족 다이카복실산(지환식 다이카복실산)의 어느 것이어도 되고, 비환식 지방족 다이카복실산의 경우에는, 직쇄 지방족 다이카복실산, 분기 지방족 다이카복실산의 어느 것이어도 된다.
상기 직쇄 지방족 다이카복실산으로서는, 노난이산(아젤라산), 데칸이산(세바스산), 운데칸이산, 도데칸이산 등을 들 수 있다. 그 중에서도, 세바스산 및 도데칸이산 중 적어도 한쪽이 바람직하다.
상기 분기 지방족 다이카복실산으로서는, 트라이메틸아디프산, 1,6-데칸다이카복실산 등을 들 수 있다.
상기 환식 지방족 다이카복실산(지환식 다이카복실산)으로서는, 2-메틸-1,4-사이클로헥산다이카복실산, 2,3-다이메틸-1,4-사이클로헥산다이카복실산, 2,5-다이메틸-1,4-사이클로헥산다이카복실산, 2,6-다이메틸-1,4-사이클로헥산다이카복실산 등을 들 수 있다.
그 중에서도, 비환식 지방족 다이카복실산이 바람직하고, 직쇄 지방족 다이카복실산일 수 있다. 이러한 탄소원자수 9 내지 12의 지방족 다이카복실산을 이용함으로써, 폴리아마이드 저차 축합물의 결정성을 향상시키고, 폴리아마이드 수지의 특성(투명성, 색상, 기계적 강도), 특히 투명성을 향상시킬 수 있다. 또한, 이들 탄소원자수 9 내지 12의 지방족 다이카복실산은, 1종 만을 단독으로 사용해도 되고, 2종 이상을 조합시켜서 사용해도 된다.
탄소원자수 9 내지 12의 지방족 다이카복실산은, 다이카복실산의 총량에 대하여, 약 70㏖% 이상, 또는 약 80㏖% 이상, 또는 약 90㏖% 이상, 또는 약 95㏖% 이상, 또는 약 98㏖% 이상, 또는 약 100㏖% 일 수 있다. 탄소원자수 9 내지 12의 지방족 다이카복실산의 비율을 상기 범위로 함으로써, 폴리아마이드 저차 축합물의 결정성을 향상시키고, 폴리아마이드 수지의 특성(투명성, 색상, 기계적 강도), 특히 투명성을 향상시킬 수 있다.
상기 다이카복실산은, 상기 탄소원자수 9 내지 12의 지방족 다이카복실산 이외의 다른 다이카복실산을 포함해도 된다. 다른 다이카복실산은, 특별히 한정되지 않고, 환식(지환식) 또는 비환식의 지방족 카복실산, 방향족 카복실산이 사용될 수 있다. 예를 들어, 테레프탈산, 말론산, 다이메틸말론산, 숙신산, 글루타르산, 아디프산, 2-메틸아디프산, 피멜산, 2,2-다이메틸글루타르산, 3,3-다이에틸숙신산, 수베르산, 1,3-사이클로펜탄다이카복실산, 1,4-사이클로헥산다이카복실산, 아이소프탈산, 2,6-나프탈렌다이카복실산, 2,7-나프탈렌다이카복실산, 1,4-나프탈렌다이카복실산, 1,4-페닐렌다이옥시다이아세트산, 1,3-페닐렌다이옥시다이아세트산, 다이펜산, 4,4'-옥시다이벤조산, 다이페닐메탄-4,4'-다이카복실산, 다이페닐설폰-4,4'-다이카복실산, 4,4'-바이페닐다이카복실산 등을 들 수 있다. 또한, 이들 다른 다이카복실산은, 1종 만을 단독으로 사용해도 되고, 2종 이상을 조합시켜서 사용해도 무방하다. 또한, 필요에 따라서, 트라이멜리트산, 트라이메신산, 피로멜리트산 등의 다가 카복실산 성분을 소량 병용해도 된다.
이들 중에서도, 성형편으로서, 높은 투명성, 기계강도, 및 내열성의 성능 밸런스의 관점에서, 다이카복실산은, 지환식 다이카복실산 및 방향족 카복실산 중 적어도 한쪽을 포함할 수 있고, 예를들면, 테레프탈산, 1,4-사이클로헥산다이카복실산 및 아이소프탈산 등에서 단독 또는 2종 이상 포함할 수 있다. 상기 다이카복실산이, 지환식 다이카복실산 및 방향족 카복실산 중 적어도 한쪽을 포함할 경우, 지환식 다이카복실산 및 방향족 카복실산 중 적어도 한쪽의 함유량은, 약 0㏖% 초과 약 30㏖% 이하, 예를들면, 약 5 내지 약 20㏖%일 수 있다. 이 경우, 탄소수 9 내지 12의 지방족 카복실산의 함유량은, 약 70㏖% 이상 약 100㏖% 미만, 예를들면, 약 80 내지 약 95㏖%일 수 있다.
상기 다이아민은, 하기 화학식 1로 표시되는 다이아민을 필수로 함유한다:
[화학식 1]
Figure PCTKR2014011267-appb-I000003
식 중, R1은 탄소원자수 1 내지 3의 알킬렌기를 나타낸다.
탄소원자수 1 내지 3의 알킬렌기로서는, 구체적으로는, 메틸렌기(-CH3-), 에틸렌기(-CH2CH2-), 트라이메틸렌기(-CH2CH2CH2-), 프로필렌기(-CH(CH3)CH2-), 아이소프로필리덴기(-C(CH3)2-), 프로필리덴기(-CH(CH2CH3)-)를 들 수 있다. 그 중에서도, 탄소원자수 1 내지 3의 알킬렌기가, 직쇄 알킬렌기일 수 있다. 구체적으로는, 메틸렌기, 에틸렌기, 트라이메틸렌기인 것이 바람직하다. 화학식 1로 표시되는 다이아민을 이용함으로써, 폴리아마이드 저차 축합물의 결정성을 향상시키고, 폴리아마이드 수지의 특성(투명성, 색상, 기계적 강도), 특히 투명성을 향상시킬 수 있다. 또한, 이들 화학식 1로 표시되는 다이아민은, 1종만을 단독으로 사용해도 되고, 2종 이상을 조합시켜서 사용해도 무방하다.
화학식 1로 표시되는 다이아민은, 다이아민의 총량에 대하여, 약 50㏖% 이상, 또는 약 70㏖% 이상, 또는 약 90㏖% 이상, 또는 약 95㏖% 이상, 또는 약 98㏖% 이상, 또는 약 100㏖% 이상일 수 있다. 화학식 1로 표시되는 다이아민의 비율을 상기 범위로 함으로써, 폴리아마이드 저차 축합물의 결정성을 향상시키고, 폴리아마이드 수지의 특성(투명성, 색상, 기계적 강도), 특히 투명성을 향상시킬 수 있다.
본 공정에 있어서의 다이아민은, 상기 화학식 1로 표시되는 다이아민 이외의 다른 다이아민을 포함해도 된다. 다른 다이아민은, 특별히 한정되지 않고, 환식 또는 비환식의 지방족 다이아민, 방향족 다이아민이 사용될 수 있다. 예를 들어, 에틸렌다이아민, 프로판다이아민, 1,4-뷰탄다이아민, 1,6-헥산다이아민(헥사메틸렌다이아민), 1,7-헵탄다이아민, 1,8-옥탄다이아민, 1,9-노난다이아민, 1,10-데칸다이아민, 1,11-운데칸다이아민, 1,12-도데칸다이아민, 2-메틸-1,5-펜탄다이아민, 3-메틸-1,5-펜탄다이아민, 2,2,4-트라이메틸-1,6-헥산다이아민, 2,4,4-트라이메틸-1,6-헥산다이아민, 2-메틸-1,8-옥탄다이아민, 5-메틸-1,9-노난다이아민, 사이클로헥산다이아민, 메틸사이클로헥산다이아민, 아이소포론다이아민, 1,3-비스아미노메틸사이클로헥산, 1,4-비스아미노메틸사이클로헥산, 4,4'-다이아미노-3,3'-다이메틸다이사이클로헥실메탄, 노보난다이메탄아민, 트라이사이클로데칸다이메탄아민, p-페닐렌다이아민, m-페닐렌다이아민, 4,4'-다이아미노다이페닐설폰, 4,4'-다이아미노다이페닐에터, 메타자일릴렌다이아민, 파라자일릴렌다이아민 등을 들 수 있다. 이들 다른 다이아민은, 1종만을 단독으로 사용해도 되고, 2종 이상을 조합시켜서 사용해도 무방하다.
상기 저차 축합물은, 상기 단량체 또는 염의 수용액 등을, 예를들어, 통상 이용되는 가압 중합조에 주입하고, 수성 용매 중에서, 교반 조건 하에 중축합반응을 행함으로써 합성된다.
상기 수성 용매는 물을 주성분으로 하는 용매이다. 물 이외에 이용되는 용매로서는, 중축합 반응성이나 용해도에 영향을 주지않는 것이면, 특별히 제한되는 것은 아니지만, 예를들어, 메탄올, 에탄올, 프로판올, 뷰탄올, 에틸렌 글라이콜 등의 알코올류를 들 수 있다.
중축합반응을 개시할 때의 반응계 내의 수분량은, 반응 종료시의 반응계 내의 수분량이 약 10 내지 약 35질량%가 되도록 하면 특별히 제한은 없지만, 바람직하게는 약 20 내지 약 60질량%가 되도록 한다. 수분량을 약 20질량% 이상으로 함으로써, 중축합반응을 개시할 때에 균일한 용액 형태로 할 수 있다. 한편, 약 60질량% 이하로 함으로써, 중축합공정에서의 수분을 증류 제거하는 시간이나 에너지를 저감시킬 수 있고, 또한, 반응 시간도 단축되므로 열열화의 영향을 작게 할 수 있다.
본 공정의 중축합반응에서는, 인 화합물을 이용한다. 인 화합물로서는 특별히 제한되지 않는다. 예를 들어, 인산, 아인산, 차아인산, 인산염, 아인산염, 차아인산염, 인산 에스터, 폴리메타인산류, 폴리인산류, 포스핀 옥사이드류, 또는 포스포늄 할로겐 화합물 등을 들 수 있다. 또한, 고상 중합 온도의 저하, 반응 시간 단축이 가능해지는 것, 그리고 폴리아마이드의 색상, 투명성 향상의 관점에서, 인산, 아인산, 차아인산, 및 그들의 염으로 이루어진 군으로부터 선택된 적어도 1종일 수 있고, 예를들면, 아인산, 차아인산, 및 그들의 염으로 이루어진 군으로부터 선택된 적어도 1종일 수 있다.
상기 인산염으로서는, 예를 들어, 인산나트륨, 인산칼륨, 인산이수소칼륨, 인산칼슘, 인산바나듐, 인산마그네슘, 인산망간, 인산납, 인산니켈, 인산코발트, 인산암모늄, 인산수소이암모늄 등을 들 수 있다.
상기 아인산염으로서는, 예를 들어, 아인산칼륨, 아인산나트륨, 아인산칼슘, 아인산마그네슘, 아인산망간, 아인산니켈, 아인산코발트 등을 들 수 있다.
상기 차아인산염으로서는, 예를 들어, 차아인산나트륨, 차아인산칼륨, 차아인산칼슘, 차아인산마그네슘, 차아인산알루미늄, 차아인산바나듐, 차아인산망간, 차아인산아연, 차아인산납, 차아인산니켈, 차아인산코발트, 차아인산암모늄 등을 들 수 있다.
상기 인산 에스터로서는, 예를 들어, 모노메틸인산 에스터, 다이메틸인산 에스터, 트라이메틸인산, 모노에틸인산 에스터, 다이에틸인산 에스터, 트라이에틸인산, 프로필인산 에스터, 다이프로필인산 에스터, 트라이프로필인산, 아이소프로필인산 에스터, 다이이소프로필인산 에스터, 트라이아이소프로필 인산, 뷰틸인산 에스터, 다이뷰틸인산 에스터, 트라이뷰틸인산, 아이소뷰틸인산 에스터, 다이이소뷰틸인산 에스터, 트라이이소뷰틸인산, 헥실인산 에스터, 다이헥실인산 에스터, 트라이헥실인산, 옥틸인산 에스터, 다이옥틸인산 에스터, 트라이옥틸인산, 2-에틸헥실인산 에스터, 다이(2-에틸헥실)인산 에스터, 트라이(2-에틸헥실)인산 데실인산 에스터, 다이데실인산 에스터, 트라이데실인산, 아이소데실인산 에스터, 다이이소데실인산 에스터, 트라이이소데실인산, 스테아릴인산 에스터, 다이스테아릴인산 에스터, 트라이스테아릴인산, 모노페닐인산 에스터, 다이페닐인산 에스터, 트라이페닐인산, 인산 에틸옥타데실 등을 들 수 있다.
상기 폴리메타인산류로서는, 예를 들어, 트라이메타인산나트륨, 펜타메타인산나트륨, 헥사메타인산나트륨, 폴리메타인산 등을 들 수 있다.
상기 폴리인산류로서는, 예를 들어, 테트라폴리인산나트륨 등을 들 수 있다.
상기 포스핀 옥사이드류로서는, 예를 들어, 헥사메틸포스포아마이드 등을 들 수 있다. 이들 인 화합물은 수화물의 형태이더라도 된다.
또한 이들 인 화합물 중에서도, 차아인산나트륨 또는 그 수화물, 아인산나트륨 또는 그 수화물이 바람직하다.
또한 상기 인 화합물은 단독으로도 또는 2종 이상 혼합해도 이용할 수 있다.
인 화합물의 첨가량은, 상기 다이카복실산과 상기 다이아민의 합계량에 대하여 약 0.01 내지 약 0.5질량%이다. 인 화합물의 첨가량이 약 0.01질량% 미만인 경우, 고상 중합 온도의 저하, 반응 시간 단축 효과가 얻어지지 않고, 폴리아마이드의 색상, 투명성 향상의 효과도 얻기 어려워진다. 한편, 약 0.5질량%를 초과할 경우, 과잉의 인 화합물은, 폴리아마이드 중에 석출되어 투명성을 손상시키거나, 분해 가스를 발생시켜 은 등의 외관 불량을 야기하거나 한다. 인 화합물의 첨가량은, 약 0.01 내지 약 0.2질량%, 또는 약 0.01 내지 약 0.15질량%이다.
또한, 본 공정에 있어서는, 상기 중축합반응을 말단밀봉제의 존재 하에 행할 수 있다. 말단밀봉제를 사용하면, 분자량조절이 보다 용이해져, 용융 안정성이 향상된다. 말단밀봉제로서는, 저차 축합물에 있어서의 말단 아미노기 또는 말단 카복실기와 반응성을 지니는 단일 작용성의 화합물이면 특별히 제한은 없고, 예를 들면 모노카복실산, 모노아민, 무수프탈산 등의 산무수물, 모노아이소사이아네이트, 모노산할로겐화물, 모노에스터류, 모노알코올류 등을 들 수 있다. 그 중에서도, 반응성 및 밀봉 말단의 안정성 등의 점에서, 모노카복실산 또는 모노아민이 말단밀봉제로서 바람직하게 이용되며, 상기 특성에 부가해서, 취급이 용이한 점에서 모노카복실산이 보다 바람직하게 이용된다.
말단밀봉제로서 바람직하게 사용되는 모노카복실산으로서는, 아미노기와의 반응성을 지니는 모노카복실산이면 특별히 제한은 없고, 예를 들어, 아세트산, 프로피온산, 뷰티르산, 발레르산, 카프로산, 카프릴산, 라우르산, 트라이데실산, 미리스트산, 팔미트산, 스테아르산, 피발산, 아이소뷰틸산 등의 지방족 모노카복실산; 사이클로헥산 카복실산 등의 지환식 모노카복실산; 벤조산, 톨루인산, α-나프탈렌카복실산, β-나프탈렌카복실산, 메틸나프탈렌카복실산, 페닐아세트산 등의 방향족 모노카복실산, 또는 이들의 임의의 혼합물을 들 수 있다. 그 중에서도, 반응성, 밀봉 말단의 안정성, 비용 등의 점에서, 아세트산, 프로피온산, 뷰티르산, 발레르산, 카프로산, 카프릴산, 라우르산, 트라이데실산, 미리스트산, 팔미트산, 스테아르산, 벤조산일 수 있다.
말단밀봉제로서 바람직하게 사용되는 모노아민으로서는, 카복실기와의 반응성을 지니는 모노아민이면 특별히 제한은 없고, 예를 들어, 메틸아민, 에틸아민, 프로필아민, 뷰틸아민, 헥실아민, 옥틸아민, 데실아민, 스테아릴아민, 다이메틸아민, 다이에틸아민, 다이프로필아민, 다이뷰틸아민 등의 지방족 모노아민; 사이클로헥실아민, 다이사이클로헥실아민 등의 지환식 모노아민; 아닐린, 톨루이딘, 다이페닐아민, 나프틸아민 등의 방향족 모노아민 또는 이들의 임의의 혼합물을 들 수 있다. 그 중에서도, 반응성, 비점, 밀봉 말단의 안정성 및 비용 등의 점에서, 뷰틸아민, 헥실아민, 옥틸아민, 데실아민, 스테아릴아민, 사이클로헥실아민, 아닐린이 특히 바람직하다.
저차 축합물을 제조할 때의 말단밀봉제의 사용량은, 이용되는 말단밀봉제의 반응성, 비점, 반응 장치, 반응 조건 등에 따라서 다를 수 있지만, 통상, 다이카복실산 또는 다이아민의 ㏖수에 대하여 약 0.1 내지 약 15㏖%의 범위 내에서 사용할 수 있다.
본 공정에 있어서의 저차 축합물의 합성은, 통상은 교반 조건 하에, 승온 및 승압함으로써 행해진다. 중합 온도는, 원료의 주입 후, 제어된다. 또한, 중합 압력은, 중합의 진행에 맞춰서 제어된다.
본 공정의 중축합반응의 최고반응온도는 약 200 내지 약 230℃이다. 최고반응온도가 약 200℃ 미만인 경우, 얻어지는 저차 축합물의 중합도가 과도에 낮아지므로, 고상 중합시 융착, 착색 등의 장해를 일으킬 수 있다. 한편, 최고반응온도가, 약 230℃를 초과할 경우, 반응 공정의 열이력에 의해 폴리아마이드의 색상, 투명성이 악화될 가능성이 있다. 해당 중축합반응의 최고반응온도는, 예를들면 약 200 내지 약 220℃일 수 있다.
한편, 해당 최고반응온도는 중축합반응 종료시에 있을 필요는 없고, 중축합반응 종료까지의 어느 때의 시점에 도달해도 된다. 이와 같이 종래의 용융 중합과 비교해서 온화한 조건으로 중축합반응을 행함으로써, 미다결정의 결정 구조를 유지하면서, 이 다음의 고상 중합에서 고중합도화가 될 수 있다. 그 결과, 얻어지는 폴리아마이드 수지의 물성(투명성, 색상, 기계적 강도), 특히, 높은 투명성을 향상시킬 수 있다.
본 공정에 있어서의 반응 압력은, 약 1.0 내지 약 3.5㎫, 예를들면, 약 1.0 내지 약 3.0㎫일 수 있다. 중축합반응은 다량인 물을 증류 제거하면서 반응을 진행시키게 되지만, 반응 압력을 약 1.0㎫ 이상으로 함으로써, 반응계 내의 온도나 반응계 내의 수분량을 제어하기 쉬워진다. 또한, 저차 축합물이 저수분함량으로 되는 것을 방지하거나, 물의 증발 잠열에 의해 냉각되어서 고형화되거나 하는 것을 방지할 있으므로, 배출이 곤란해지는 것을 방지할 수 있다. 한편, 약 3.5㎫ 이하로 함으로써, 내압성의 높은 반응 장치를 이용할 필요가 없기 때문에, 비용을 증대시키지 않아도 된다. 또한, 반응계 내의 수분량이 지나치게 높아지지 않으므로, 저차 축합물의 중합도를 높일 수 있다.
본 공정에 있어서의 반응 시간은, 약 0.5 내지 약 4시간, 예를들면, 약 1 내지 약 3시간일 수 있다. 여기에 말하는 반응 시간이란, 상기 반응 온도에 도달하고 나서 배출 조작 시작까지의 소요시간을 의미한다. 반응 시간이 약 0.5시간 이상이면, 충분한 반응률에 도달하여, 미반응물이 잔존하지 않아, 균일한 성상의 저차 축합물을 얻을 수 있다. 한편, 약 4시간 이하로 함으로써, 과도한 열이력을 부여하는 것을 방지할 수 있고, 또한, 이것보다도 반응 시간을 연장해도 더 한층의 고중합화의 효과는 얻어지지 않는다.
본 공정에 있어서의 저차 축합물의 반응 종료시의 반응계 내의 수분량은, 약 15 내지 약 35질량%, 예를들면, 약 20 내지 약 35질량%일 수 있다. 여기서 말하는 반응 종료시란, 소정의 중합도에 도달한 저차 축합물이 되어 배출 조작을 개시하는 시점을 나타내고, 반응 중에 발생하는 축합수도 하한 수분량이 된다. 상기 수분량은, 발생 축합수량을 가미한 주입 수분량으로 하는 것이나, 컨덴서, 압력조정밸브를 구비한 장치에서 반응 압력조정시에 소정량의 물을 증류 제거해서 조정할 수 있다. 반응 종료시의 반응계 내의 수분량을 약 15질량% 이상으로 함으로써, 저차 축합물이 반응계 내에서 석출되거나, 고형화되거나 하는 것을 방지하여, 배출하기 쉽게 할 수 있다. 한편, 약 35질량% 이하로 함으로써, 충분한 중합도의 저차 축합물을 얻을 수 있다. 또한, 배출시에 증발 분리시키는 수분량이 많기 때문에 배출 속도를 높일 수 없거나, 고상 중합 전의 건조 처리가 필요하게 되거나 하는 등의 문제가 일어나기 어렵기 때문에, 제조 효율의 저하를 방지할 수 있다.
본 공정에서는, 저차 축합물을 얻기 위한 중축합반응을, 배취식으로 행해도 되고 연속식으로 행해도 된다. 또한, 반응 용기에의 저차 축합물의 부착 방지나 중축합반응의 균일한 진행 등의 점에서, 저차 축합물을 생성시키기 위한 중축합반응을 교반 하에 행할 수 있다.
본 공정에 의해 얻어진 저차 축합물은, DSC(시차열주사형 열량계) 측정시의 융해 열량이 약 10J/g 이상, 예를들면, 약 15J/g 이상, 예를들면 약 20J/g 이상일 수 있다. 한편, DSC(시차열주사형 열량계) 측정시의 융해 열량의 구체적인 측정 방법에 대해서는, 후술하는 실시예에서 설명한다. 해당 융해 열량을 약 10J/g 이상으로 함으로써, 저차 축합물을 고상 중합 조건 하에 융착에 의한 가열의 불균일화를 방지하면서, 유효하게 고분자량화시키므로 폴리아마이드 수지의 특성(투명성, 색상, 기계적 강도), 특히 투명성을 향상시킬 수 있다. 해당 융해 열량은, 사용하는 단량체의 종류를 조정하고, 또한 저차 축합물의 결정화 처리 등에 의해 제어할 수 있다. 예를 들어, 다이카복실산의 총량에 대한 탄소원자수 9 내지 12의 지방족 다이카복실산의 비율, 또는, 다이아민의 총량에 대한 화학식 1로 표시되는 다이아민의 비율을 많게 하고, 저차 축합물의 중합 용액을 반응기로부터 취출할 때의 온도, 수분량, 배출 속도를 조정함으로써, 배출된 저차 축합물은 결정화된 고체 상태로 되어, 해당 융해 열량을 상승시킬 수 있다. 또한 필요에 따라서, 취출한 저차축합을 유리전이온도 이상, 고상 중합이 진행하는 온도 이하의 조건에서 가열 처리를 행함으로써, 해당 융해 열량을 조정하는 것도 가능하다.
본 공정에 의해 얻어진 저차 축합물은, 농황산 중 0.5g/㎗의 농도에서 온도 25℃에서 측정한 대수점도(IV)가 약 0.1 내지 약 0.4㎗/g, 예를들면, 약 0.1 내지 약 0.3㎗/g, 예를들면 약 0.15 내지 약 0.3㎗/g일 수 있다. 또한, 해당 대수점도(IV)의 구체적인 측정 방법에 대해서는, 후술하는 실시예에서 설명한다. 해당 대수점도(IV)가 약 0.1 이상이면, 단량체나 단량체의 염, 특히 저차원인 축합물 등의 저융점물이 적기 때문에 고상 중합시에 수지 분체가 융착되거나, 장치 내에 부착되거나 하는 것을 방지할 수 있다. 한편, 해당 대수점도(IV)가 약 0.4 이하이면, 저차 축합물의 제조시에 반응계 내에서 석출, 고형화되므로 배출이 곤란해지는 문제를 방지할 수 있다. 해당 대수점도(IV)는, 사용하는 단량체의 종류나 배합 비율, 중축합반응의 반응 조건(용매량 (수분량), 반응 온도, 반응 시간)을 조정함으로써 제어할 수 있다. 예를 들어, 같은 종류 및 배합 비율의 단량체를 이용한 경우더라도, 용매량(수분량)을 적게 하거나, 반응 온도를 상승시키거나, 반응 시간을 길게 함으로써, 해당 대수점도(IV)를 상승시킬 수 있다.
또한, 저차 축합물의 중합 전에, 필요에 따라서 염조절 공정(鹽調工程) 및/또는 농축 공정을 부가할 수도 있다. 염조절이란, 다이카복실산 성분과 다이아민 성분으로부터 염을 생성하는 공정이며, 염의 중화점의 pH±0.5의 범위로, 또한, 염의 중화점의 pH±0.3의 범위로 조절할 수 있다. 농축에서는, 원료 주입 농도의 값에 대하여, 약 +2 내지 약 +90질량%의 농도까지 농축시킬 수 있고, 예를들면 약 +5 내지 약 +80질량%의 농도까지 농축시킬 수 있다. 농축 공정은, 약 90 내지 약 220℃, 또는 약 100 내지 약 210℃, 또는 약 130 내지 약 200℃일 수 있다. 농축 공정의 압력은 바람직하게는 약 0.1 내지 약 2.0㎫이다. 통상, 농축의 압력은 중합의 압력 이하로 제어된다. 또한, 농축 촉진을 위하여, 예를 들어, 질소기류 등에 의해 강제 배출의 조작을 행할 수도 있다. 농축 공정은 중합 시간의 단축에 유효하다.
또한, 중축합반응 후에, 필요에 따라서 저차 축합물을 배출 및 냉각시키는 공정을 준비해도 된다. 저차 축합물의 반응 용기로부터의 취출은, 저차 축합물을 반응 용기로부터 불활성 가스 분위기 하, 대기압 이하의 압력으로 취출함으로써 행한다. 이러한 배출 방법에 따르면, 소정 압력으로 조절한 취출용의 압력용기를 사용할 필요가 없고, 게다가 반응 용기 내에 수증기를 별도로 공급하면서 저차 축합물을 반응 용기로부터 취출한다고 하는 수고도 필요로 하지 않고, 열열화가 적으며, 대수점도가 충분히 높고, 게다가 부피비중이 높은, 비발포의 분립체 형태(분말 형태 또는 과립 형태)인 저차 축합물을, 간단히 또한 효율적으로 얻을 수 있다.
상기 불활성 가스 분위기는, 저차 축합물의 산화 열화를 방지한다는 관점에서, 산소 농도가 약 1체적% 이하일 수 있다.
반응 용기로부터의 저차 축합물의 배출 속도는, 반응 용기의 규모, 반응 용기 내의 내용물의 양, 온도, 취출구의 크기, 취출 노즐부의 길이 등에 따라서 적당히 조절할 수 있다. 그러나, 일반적으로는, 배출구 단면적당의 배출 속도가 약 2000 내지 약 20000kg/s/㎡의 범위 내로 되도록 해서 취출할 수 있다. 이 범위이면, 얻어지는 저차 축합물의 부피밀도가, 바람직하게는 약 0.35 내지 약 0.8g/㎤의 범위로 되어, 후술하는 고상 중합의 공정에서, 붕괴, 응집, 반응기벽에의 융착 등이 일어나기 어려워, 취급성이 우수하고, 게다가 중합 장치 등에 많이 충전하는 것이 가능하여 고상 중합 공정에서 이용되는 장치의 용적 효율을 향상시킬 수 있다.
그리고, 반응 용기로부터 취출된 저차 축합물은, 취출시의 물의 증발 잠열에 의해 그 온도가 순식간에 바람직하게는 약 100℃ 이하로 저하되므로, 열열화 및 산소에 의한 열화는 거의 일어나지 않는다.
또한, 배출되는 저차 축합물은, 저차 축합물이 지니는 잠열에 의해, 동반하는 수분의 대부분을 증발시키기 때문에, 냉각과 건조 처리가 동시에 행해진 것으로 된다. 질소 등의 불활성 가스의 유통 하 또는 대기압보다 감압 하에 배출 처리를 행하는 것은, 건조 및 냉각의 효율을 높일 수 있다. 또한, 배출 용기로서 사이클론형의 고체-기체 분리장치를 설치함으로써, 배출시의 분말의 계 외 비산을 억제할 수 있을 뿐만 아니라, 높은 가스 선속 하에 배출 처리를 행할 수 있으므로 건조, 냉각 효율을 높일 수 있다.
또한, 필요에 따라서, 상기에서 얻어지는 저차 축합물의 부피비중을 한층 높이거나, 입경을 일치시키거나 하기 위한 압분 처리나, 조립(造粒) 처리를 행해도 된다.
이와 같이 해서 얻어지는 고체 형태의 저차 축합물은, 결정화된 것이며, 대수점도가 상기와 같이 충분히 높고, 미반응물의 잔존량도 낮기 때문에, 고상 중합에 의한 고중합도화시, 저차 축합물 입자 간의 융착이나 응집을 일으키는 일 없이 높은 온도에서 고상 중합을 행할 수 있고, 또한 부반응에 의한 열화가 적다.
공정(2)
본 공정에서는, 상기 공정(1)에서 얻은 고체 형태의 저차 축합물을 고상 중합시켜, 폴리아마이드 수지를 얻는다.
상기 고상 중합은, 저차 축합물의 반응 용기로부터 취출한 그대로 계속해서 행해도, 반응 용기로부터 취출한 저차 축합물을 건조시킨 후에 행해도, 반응 용기로부터 취출한 저차 축합물을 일단 저장한 후에 행해도, 또는 반응 용기로부터 취출한 저차 축합물에 상기 압분 처리나 조립 처리를 실시한 후에 행해도 된다. 고상 중합에 의해 고중합도화하면, 열열화가 보다 적은 폴리아마이드 수지를 얻을 수 있다.
상기 저차 축합물을 고상 중합할 때의 중합 방법 및 조건은 특별히 제한되지 않고, 저차 축합물의 융착, 응집, 열화 등을 일으키는 일 없이 고체 상태를 유지하면서 고중합도화를 행할 수 있는 방법 및 조건이면 어느 것이어도 된다.
그러나, 상기 저차 축합물 및 생성하는 폴리아마이드의 산화 열화를 방지하기 위하여, 헬륨 가스, 아르곤 가스, 질소 가스, 탄산 가스 등의 불활성 가스 분위기 중, 또는 감압 하에 고상 중합을 행할 수 있다.
고상 중합의 최고반응온도는 약 170 내지 약 230℃의 범위이다. 최고반응온도가 약 170℃ 미만인 경우, 충분히 고분자량화된 폴리아마이드를 얻는 것이 곤란해진다. 한편, 최고반응온도가 약 230℃를 초과할 경우, 고상 중합시의 융착이나 착색에 의해 얻어지는 폴리아마이드의 성상이 악화된다. 해당 고상 중합의 최고반응온도는 예를들면, 약 170 내지 약 210℃이다.
또한, 해당 최고반응온도는 고상 중합 종료시에 있을 필요는 없고, 고상 중합 종료까지의 어느 때의 시점에서 도달해도 된다. 이와 같이 종래의 용융 중합과 비교해서 온화한 조건에서 고상 중합을 행함으로써, 결정 구조를 유지하면서, 고중합도화가 이루어질 수 있다. 그 결과, 얻어지는 폴리아마이드 수지의 물성(투명성, 색상, 기계적 강도), 특히, 높은 투명성을 향상시킬 수 있다.
본 공정에서 이용되는 고상 중합의 장치에 대해서는 특별히 제한이 없고, 공지의 어느 장치라도 사용할 수 있다. 고상 중합 장치의 구체예로서는, 예를 들어, 1축 디스크식, 혼련기, 2축 패들식, 세로형의 탑식 장치, 세로형의 탑식 기기, 회전 드럼식, 또는 더블콘형의 고상 중합 장치, 건조 기기 등을 들 수 있다.
고상 중합의 반응 시간은, 특별히 제한되지 않지만, 통상, 약 1 내지 약 20시간이 바람직하게 채용된다. 고상 중합 반응 중에, 저차 축합물을 기계적으로 교반하거나, 또는 기체류에 의해 교반해도 된다.
상기 폴리아마이드 수지의 제조방법에서는, 저차 축합물을 제조하는 공정, 고상 중합시키는 공정, 또는 고상 중합 후의 임의의 단계에서, 필요에 따라서, 유리 섬유, 탄소 섬유 등의 각종 섬유재료, 무기 분말 형태 필러, 유기 분말 형태 필러, 착색제, 자외선 흡수제, 광안정제, 산화 방지제, 대전 방지제, 난연제, 결정화 촉진제, 가소제, 윤활제 등의 첨가제, 다른 폴리머 등을 첨가해도 된다.
<폴리아마이드 수지>
이상에서 설명한 제조방법에 의해 얻어지는 폴리아마이드 수지는, 우수한 물성(투명성, 색상, 기계적 강도), 특히, 높은 투명성을 지닌다. 따라서, 이러한 우수한 물성을 지니는 신규한 폴리아마이드 수지도 또한, 본 발명에 포함된다.
즉, 본 발명의 다른 일 실시예에 따른 폴리아마이드 수지는, 다이카복실산 및 다이아민의 중축합반응에 의해 얻을 수 있고, 또한 인 화합물을 약 0.01 내지 약 0.5질량% 포함하는 폴리아마이드 수지로서, 다이카복실산은, 그 총량에 대하여, 탄소원자수 9 내지 12의 지방족 다이카복실산을 약 70㏖% 이상 포함하고, 다이아민은, 그 총량에 대하여, 하기 화학식 1로 표시되는 다이아민을 약 50㏖% 이상 포함한다:
[화학식 1]
Figure PCTKR2014011267-appb-I000004
식 중, R1은 탄소원자수 1 내지 3의 알킬렌기를 나타낸다.
또한, 본 발명의 다른 일 실시예에 따른 폴리아마이드 수지는, 두께 4㎜의 성형물의 전광선투과율이 약 85% 이상이며, 또한 황색도(YI)가 약 5 이하이다.
상기 폴리아마이드 수지는, 두께 4㎜의 성형물의 전광선투과율이 약 85% 이상, 또는 약 86% 이상, 또는 약 87% 이상일 수 있다. 또한, 해당 전광선투과율의 구체적인 측정 방법에 대해서는, 후술하는 실시예에서 설명한다.
상기 폴리아마이드 수지의 성형 전의 황색도(YI)는 약 5 이하, 예를들면, 약 4 이하일 수 있다.
상기 폴리아마이드 수지는, 두께 4㎜의 성형물의 황색도(YI)가 약 5 이하이며, 예를들면, 약 4 이하, 예를들면, 약 3 이하일 수 있다. 또한, 황색도(YI)의 구체적인 측정 방법에 대해서는, 후술하는 실시예에서 설명한다.
상기 폴리아마이드 수지는, 인 화합물을 약 0.01 내지 약 0.5질량% 포함하고, 예를들면 인 화합물을 약 0.01 내지 약 0.2질량% 포함한다. 또한, 인 화합물의 농도는, 유도 결합 플라즈마 발광 분광 분석장치(ICP-AES)를 이용하는 방법으로 의해 측정할 수 있고, 보다 구체적으로는, 실시예에 기재된 방법에 의해 측정할 수 있다.
상기 폴리아마이드 수지에 있어서, 상기 인 화합물은 아인산, 차아인산, 및 그들의 염으로 이루어진 군으로부터 선택된 적어도 1종일 수 있다.
상기 폴리아마이드 수지에 있어서, 상기 다이아민 중의 상기 화학식 1로 표시되는 다이아민의 함유량은 약 70㏖% 이상일 수 있다.
상기 폴리아마이드 수지에 있어서, 상기 다이카복실산이 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽을 포함하고, 상기 다이카복실산 중의 탄소수 9 내지 12의 지방족 다이카복실산의 함유량이 약 70㏖% 이상, 약 100㏖% 미만이며, 상기 다이카복실산 중의 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽의 함유량이 약 0㏖% 초과, 약 30㏖% 이하일 수 있다.
상기 폴리아마이드 수지에 있어서, 상기 지방족 다이카복실산이 세바스산 및 도데칸이산 중 적어도 한쪽일 수 있다.
상기 폴리아마이드 수지에 있어서, 상기 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽이 1,4-사이클로헥산다이카복실산, 테레프탈산 및 아이소프탈산으로 이루어진 군으로부터 선택된 적어도 1종일 수 있다.
상기 폴리아마이드 수지는, 농황산 중 0.5g/㎗의 농도에서, 온도 25℃에서 측정한 대수점도(IV)가 약 0.6 내지 약 1.5㎗/g, 예를들면, 약 0.7 내지 약 1.3㎗/g일 수 있다. 상기 범위에서, 충분한 기계물성을 나타내고, 양호한 유동성을 나타내므로 과도하게 온도를 향상시켜서 성형할 필요도 없고, 색상, 투명성이 양호한 성형물을 얻을 수 있다.
상기 폴리아마이드 수지는, 유리전이온도가 약 120℃ 이상, 예를들면, 약 125℃ 이상일 수 있다. 또한, 유리전이온도의 구체적인 측정 방법에 대해서는, 후술하는 실시예에서 설명한다.
상기 폴리아마이드 수지는, 사출 성형 후의 충격강도(아이조드 충격강도)가 약 8kJ/㎡ 이상, 예를들면, 약 9kJ/㎡이상일 수 있다. 또한, 해당 아이조드 충격강도의 구체적인 측정 방법에 대해서는, 후술하는 실시예에서 설명한다.
상기 폴리아마이드 수지의 말단 아미노기 농도([NH2])는, 약 20 내지 약 100 μ㏖/g, 예를들면, 약 30 내지 약 80μ㏖/g 일 수 있다. 말단 아미노기 농도가 약 20μ㏖/g 미만일 경우, 중축합반응의 반응률을 향상시킬 목적으로, 고온에서 중축합반응을 행하는 것이기 때문에, 그 열이력에서 내열색상이 저하될 우려가 있다. 한편, 약 100 μ㏖/g 을 초과하면, 말단 아미노기가 착색되기 쉬우므로 내열색상(가열 환경 하에서의 내변색성)이 저하될 우려가 있다. 따라서, 상기 범위의 말단 아미노기 농도를 지니는 폴리아마이드 수지는, 내열색상이 양호하다는 특성을 지닌다. 또한, 말단 아미노기 농도는, 적정법에 의해 측정할 수 있고, 보다 구체적으로는, 실시예에 기재된 방법에 의해 측정할 수 있다.
상기 폴리아마이드 수지의 말단 카복실기 농도([COOH])는, 약 20 내지 약 250μ㏖/g, 예를들면, 약 30 내지 약 200μ㏖/g 일 수 있다. 말단 카복실기 농도가 약 20μ㏖/g 미만일 경우, 중축합반응의 반응률을 향상시킬 목적으로, 고온에서 중축합반응을 행하는 것이기 때문에, 그 열이력에서 내열색상이 저하될 우려가 있다. 한편, 약 250μ㏖/g 을 초과하면, 중합도가 불충분하여 목적으로 하는 성형 재료를 얻는 것이 곤란해질 우려가 있다. 따라서, 상기 범위의 말단 카복실기 농도를 지니는 폴리아마이드 수지는, 내열색상이 양호하다는 특성을 지닌다. 또한, 말단 카복실기 농도는, 적정법에 의해 측정할 수 있고, 보다 구체적으로는, 실시예에 기재된 방법에 의해 측정할 수 있다.
상기 폴리아마이드 수지는, 이러한 우수한 물성(투명성, 색상, 기계적 강도)을 지님으로써, 공업 산업장치, 기계, 전기, 전자, 자동차 부재 등의 투명 부품, 안경이나 렌즈 등의 광학용 재료 등의 분야에서 적절하게 사용될 수 있다.
실시예
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다. 또한, 대수점도(IV), 말단 아미노기 농도, 말단 카복실기 농도, 융점, 유리전이온도, 결정화 온도, 융해 열량 및 색상의 평가, 그리고 사출 성형편의 제작 및 물성 평가는 하기의 방법에 의해 수행하였다.
(1) 대수점도
96% 농황산 중에 시료를 0.5g/㎗의 농도에서 용해시켜서 시료 용액을 조제하였다. 96% 농황산(블랭크) 및 시료 용액을 25℃의 온도에서, 우베로데 점도관을 이용해서 낙하 초수를 측정하고, 하기 식 1에 의해 산출하였다.
[식 1]
Figure PCTKR2014011267-appb-I000005
(2) 말단 아미노기 농도([NH2])
시료 0.5g과 헥사플루오로아이소프로판올 8㎖를, 실온(25℃)에서 교반하면서 용해시켰다. 완전히 용해되면, 페놀/에탄올(80체적%/20체적%) 30㎖를 가하고, 5분간 교반하였다. 그 후, 0.1N HCl 수용액으로 중화 적정하여, 전위차 측정으로 종점 판정을 하였다.
(3) 말단 카복실기 농도([COOH])
시료 0.3 내지 0.5g을 정밀하게 칭량하여, 오쏘크레졸 20㎖를 가해서 질소 분위기 하, 교반하면서 약 170℃로 가열시켜 용해시켰다. 완전히 용해된 후에 냉각시키고, 벤질 알코올 15㎖를 가한 후에 5분간 교반하였다. 상기 조제한 용액을, 0.1N KOH(메탄올성) 용액으로 중화 적정을 행하여, 전위차 측정으로 종점 판정을 하였다.
(4) 수지 중의 인 화합물 농도 측정
측정 장치: ICP-AES 아질런트 테크놀로지 제품 720-ES
시료 전처리는, 도가니에 칭량한 시료에 황산을 첨가하여 가열시키고, 회화 처리하였다. 회분을 황산수소칼륨으로 용해 후, 희질산에 용해시키고, 순수에서 정용화시켰다. 정량 분석을 위하여, 사전에 기지의 농도의 인 화합물 용액으로 검량선을 작성하였다.
(5) 융점, 유리전이온도, 결정화 온도, 융해 열량
세이코 인스트루멘츠 주식회사 제품인 시차열주사형 열량계(DSC)를 이용하고, 저차 축합물의 측정에서는, 90℃, 12시간 진공 건조품을 측정에 제공하였다. 폴리아마이드 수지의 측정에서는, 질소 유통 하에 300℃ 혹은 융점보다 10℃ 높은 온도까지 승온시킨 후에, 급랭시켜 얻어진 비결정화 상태의 샘플을 10㎖/분의 유속에서 질소 유통 하, 승온 속도 10℃/분에서 30℃로부터 300℃까지 승온시킨 후 5분간 유지하였다. 그 후, 강온속도 10℃/분에서 100℃까지 측정을 행하여, 유리전이온도를 측정하고, 또한 승온시의 융해에 의한 흡열 피크 온도를 융점으로 하고, 강온시의 결정화에 의한 발열 피크 온도를 결정화 온도로 해서, 각각 계측하였다. 또한, 흡열 피크의 피크 면적으로부터 융해 열량을 구하였다.
(6) 색상(성형 전의 폴리아마이드 수지)
닛뽄덴쇼쿠코교 주식회사(日本電色工業株式會社) 제품인 소형 색채 백도계 NW-11을 이용해서 측정하였다.
조명·수광 조건: 45˚ 환상 조명, 0˚ 수광
측정 방법: 회절 격자, 후분광 방식
측정 면적: 10㎜Φ, 광원: Puls Xenon lamp
측정 광원, 관찰 조건: D65/10˚
측정 항목: 황색도(YI).
(7) 사출 성형편의 제작
스미토모쥬키카이코교주식회사(住友重機械工業株式會社) 제품의 사출 성형기인 SE18DUZ를 이용해서, 하기 조건에서 탄자쿠(短冊) 형태의 사출 성형편(크기 80㎜×10㎜×4.0㎜)를 제작하였다.
[성형 조건]
성형 온도: 300 내지 350℃
금형 온도: 40 내지 50℃
사출 압력: 120 내지 140㎫
사출 속도: 30㎜/초
스크류 회전수: 150rpm
냉각 시간: 40초.
(8)사출 성형편의 물성 평가
(8-1) 전광선투과율
주식회사 토요세이키세이사쿠쇼(東洋精機製作所) 제품인 HAZE-GARD II를 이용해서, ASTM D1003에 준해서 측정하였다.
(8-2) 충격강도(아이조드 충격 시험)
JIS K7110: 1999에 준거해서, 이하의 조건에서 아이조드 충격시험에 의한 충격강도를 측정하였다.
사출 성형편: 1A형(80×10×4㎜ A노치)
시험 조건: 타격방향 에지와이즈
공칭 진자 에너지 0.5J
시험 온도 23℃
측정수 n=5(평균치 채용)
시험 장치: 디지털 충격 시험기 DG-UB형(주식회사 토요세이키세이사쿠쇼 제품).
(8-3) 색상
(6)의 색상 측정과 마찬가지로, 닛뽄덴쇼쿠코교 주식회사 제품인 소형 색채백도계 NW-11을 이용해서 측정하였다. 사출 성형편(두께4㎜)의 뒤쪽에 표준 백판(白板)(X:Y:Z=92.3:97.4:104.5)을 설치해서 측정하였다.
실시예 1
원료로서, 도데칸이산 194.42g(0.844㏖), [비스(4-아미노사이클로헥실)메탄](PACM) 177.58g(0.844㏖), 차아인산나트륨·1수화물 0.372g(주입 원료에 대하여 0.1질량%) 및 증류수 248g(주입 원료에 대하여 40질량%)을, 분축기, 압력조정밸브 및 바닥부 배출밸브를 구비한 내용적 1ℓ의 오토클레이브 반응조에 주입하고, 질소 치환을 행하였다. 교반하면서 0.5시간에 걸쳐서 130℃까지 승온시켜서 0.5시간 유지하였다. 그 후, 1시간에 걸쳐서 내부 온도를 210℃까지 승온시켜 유지하였다. 반응조의 내압이 1.5㎫에 도달한 후에는, 동일 압력에 유지하도록 물을 185g증류 제거한 후, 압력조정밸브를 완전 폐쇄로 해서 1.0시간 반응을 계속하였다.
소정 반응시간 경과 후, 반응조의 온도, 및 반응계 내의 수분량(21질량%)을 유지한 채, 생성된 저차 축합물을 바닥부 배출밸브로부터, 질소 유통하, 상온(25℃)에서, 대기압 조건의 수용기에 배출하여, 백색, 분말 형태의 저차 축합물을 얻었다.
얻어진 저차 축합물의 IV는 0.14이며, DSC 측정에 있어서 흡열 피크가 240℃인 융해 거동을 보이고, 융해 열량 47J/g의 결정성을 나타었다.
다음에, 얻어진 저차 축합물 300g을 1000㎖ 둥근 바닥 플라스크에 주입하고, 오일욕 부착 회전식 증발기에 설치하여, 질소 치환한 후에, 1l/분의 질소 유통 하에, 플라스크를 회전시키면서 오일욕에 침지시켰다. 오일욕 온도는, 0.5시간에 걸쳐서 130℃까지 승온시켜서 0.5시간 보유한 후, 205℃까지 1시간에 걸쳐서 승온시키고, 동일 온도에서 4시간 고상 중합 반응을 계속하였다. 소정 반응 시간 경과 후에 실온(25℃)까지 냉각시켜, 고중합도화된 폴리아마이드 수지를 얻었다.
얻어진 폴리아마이드 수지의 IV는 0.87이며, DSC 측정에 의한 유리전이온도 137℃, 융점 249℃, 결정화 온도는 검출되지 않고, YI는 2.1이며, 인 화합물의 농도는 0.105질량%였다. 얻어진 폴리아마이드 수지는 충분히 고중합도화된 색상 양호한 것이었다.
얻어진 폴리아마이드 수지를 이용하여, 배럴 온도 305℃, 금형 온도 45℃로 해서 사출 성형편을 제작하였다. 사출 성형편의 전광선투과율은 89.1%, YI는 2.3이며, 충격 시험 강도는 10.5kJ/㎡였다. 사출 성형편은, 높은 투명성, 강도를 나타내고, 충전 불량에 의한 패임이나, 수분, 가스의 발생 등에 의한 은 형상 흔적, 눌음이나 겔 형상물의 혼입이 없고, 황변 등의 색상의 이상도 없는, 양호한 외관 및 색상을 지니는 것이었다.
실시예 2
사용하는 원료를 세바스산 182.34g(0.902㏖), [비스(4-아미노사이클로헥실)메탄](PACM) 189.66g(0.902㏖)으로 하고, 저차 축합물의 중합시에 증류 제거하는 물의 양을 190g으로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.15이며, DSC 흡열 피크 258℃, 융해 열량 42J/g의 결정성을 나타내었다.
상기 폴리아마이드 수지의 IV는 0.91이며, 유리전이온도 143℃, 융점 283℃, 결정화 온도는 200℃, YI는 2.0이며, 인 화합물의 농도는 0.102질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 89.0%, YI는 2.1이며, 충격 시험 강도는 10.5kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 3
사용하는 원료를 도데칸이산 177.56g(0.771㏖ = 90㏖%), 테레프탈산 14.23g(0.086㏖ = 10㏖%), [비스(4-아미노사이클로헥실)메탄](PACM) 180.21g(0.857㏖)으로 하고, 고상 중합의 반응 시간을 5시간으로 한 것 이외에는, 실시예 2와 마찬가지로 해서, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.14이며, DSC 흡열 피크 256℃, 융해 열량 18J/g의 결정성을 나타내었다.
상기 폴리아마이드 수지의 IV는 0.88이며, 유리전이온도 144℃, 융점 245℃, 결정화 온도는 193℃, YI는 2.3이며, 인 화합물의 농도는 0.101질량% 였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 89.4%, YI는 2.5이며, 충격시험강도는 10.8kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 4
사용하는 원료를 도데칸이산 142.31g(0.618㏖ = 70㏖%), 테레프탈산 44.00g(0.265㏖ = 30㏖%), [비스(4-아미노사이클로헥실)메탄](PACM) 185.69g(0.883㏖)으로 한 것 이외에는, 실시예 3과 마찬가지로, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.13이며, DSC 흡열 피크 252℃, 융해 열량 22J/g의 결정성을 나타내었다.
상기 폴리아마이드 수지의 IV는 0.84이며, 유리전이온도 150℃, 융점 및 결정화 온도는 나타내지 않았다. YI는 3.3이며, 인 화합물의 농도는 0.102질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 86.2%, YI는 4.5이며, 충격 시험 강도는 9.5kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 5
사용하는 원료를 도데칸이산 177.31g(0.770㏖ = 90㏖%), 1,4-사이클로헥산다이카복실산(1,4-CHDA) 14.73g(0.086㏖ = 10㏖%), [비스(4-아미노사이클로헥실)메탄](PACM) 179.96g(0.855㏖)으로 하고, 고상 중합의 반응 시간을 5시간으로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.15이며, DSC 흡열 피크 248℃, 융해 열량 32J/g의 결정성을 나타내었다.
상기 폴리아마이드 수지의 IV는 0.90이며, 유리전이온도 141℃, 융점 246℃, 결정화 온도는 212℃, YI는 2.0이며, 인 화합물의 농도는 0.104질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 89.4%, YI는 2.5이며, 충격 시험 강도는 10.7kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 6
사용하는 원료를 도데칸이산 190.77g(0.828㏖), [비스(4-아미노사이클로헥실)메탄](PACM) 121.98g(0.580㏖ = 70㏖%), MACM[4,4'-다이아미노-3,3'-다이메틸다이사이클로헥실메탄] 59.25g(0.249㏖ = 30㏖%)으로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.15이며, DSC 흡열 피크 251℃, 융해 열량 28J/g의 결정성을 나타내었다.
상기 폴리아마이드 수지의 IV는 0.87이며, 유리전이온도 133℃, 융점 242℃, 결정화 온도는 나타내지 않았다. YI는 2.4이며, 인 화합물의 농도는 0.105질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 88.8%, YI는 2.6이며, 충격 시험 강도는 10.5kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 7
사용하는 원료를 도데칸이산 188.42g(0.818㏖), [비스(4-아미노사이클로헥실)메탄](PACM) 86.05g(0.409㏖ = 50㏖%), MACM[4,4'-다이아미노-3,3'-다이메틸다이사이클로헥실메탄] 97.53g(0.409㏖ = 50㏖%)으로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.14이며, DSC 흡열 피크 255℃, 융해 열량 7J/g의 결정성을 나타내었다.
상기 폴리아마이드 수지의 IV는 0.80이며, 유리전이온도 135℃, 융점, 결정화 온도는 나타내지 않았다. YI는 3.5이며, 인 화합물의 농도는 0.107질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 86.2%, YI는 4.6이며, 충격 시험 강도는 10.8kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 8
저차 축합물의 반응 온도를 230℃로 하고, 반응 압력을 2.2㎫로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 중합, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.22이며, DSC 흡열 피크 256℃, 융해 열량 36J/g의 결정성을 나타내었다.
상기 폴리아마이드 수지의 IV는 1.15이며, 유리전이온도 135℃, 융점 250℃, 결정화 온도는 190℃였다. YI는 3.9이며, 인 화합물의 농도는 0.103질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 86.7%, YI는 4.8이며, 충격 시험 강도는 10.8kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 9
고상 중합의 반응 온도를 215℃로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 중합, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.15이며, DSC 흡열 피크 242℃, 융해 열량 42J/g의 결정성을 나타내는 것이었다.
상기 폴리아마이드 수지의 IV는 1.02이며, 유리전이온도 134℃, 융점 255℃, 결정화 온도는 198℃였다. YI는 4.2이며, 인 화합물의 농도는 0.106질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 86.5%, YI는 4.8이며, 충격 시험 강도는 10.8kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 10
차아인산나트륨·1수화물의 첨가량을 0.186g(주입 원료에 대하여 0.05질량%)로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 중합, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.14이며, DSC 흡열 피크 241℃, 융해 열량 45J/g의 결정성을 나타내는 것이었다.
상기 폴리아마이드 수지의 IV는 0.88이며, 유리전이온도 136℃, 융점 250℃, 결정화 온도는 검출되지 않고, YI는 2.1이며, 인 화합물의 농도는 0.049질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 89.4%, YI는 1.9이며, 충격 시험 강도는 10.7kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 11
차아인산나트륨·1수화물의 첨가량을 0.093g(주입 원료에 대하여 0.025질량%)으로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 중합, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.14이며, DSC 흡열 피크 240℃, 융해 열량 43J/g의 결정성을 나타내는 것이었다.
상기 폴리아마이드 수지의 IV는 0.90이며, 유리전이온도 135℃, 융점 249℃, 결정화 온도는 검출되지 않고, YI는 2.3이며, 인 화합물의 농도는 0.025질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 89.5%, YI는 2.3이며, 충격 시험 강도는 10.8kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
실시예 12
고상 중합의 반응 온도를 180℃, 6시간으로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 중합, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
상기 폴리아마이드 수지의 IV는 0.85이며, 유리전이온도 135℃, 융점 250℃, 결정화 온도는 검출되지 않고, YI는 2.0이며, 인 화합물의 농도는 0.102질량%였다. 얻어진 폴리아마이드 수지는 색상 양호하고 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 89.2%, YI는 2.0이며, 충격 시험 강도는 10.0kJ/㎡였다. 사출 성형편은 우수한 투명성 및 색상을 지니는 양호한 외관을 나타내고, 기계적 강도도 양호하였다.
비교예 1
차아인산나트륨·1수화물의 첨가량을 0.018g(주입 원료에 대하여 0.005질량%)으로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 중합, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.13이며, DSC 흡열 피크 240℃, 융해 열량 45J/g의 결정성을 나타내었다.
상기 폴리아마이드 수지의 IV는 0.86이며, 유리전이온도 135℃, 융점 248℃, 결정화 온도는 201℃였다. YI는 5.6이며, 인 화합물의 농도는 0.004질량%였다. 얻어진 폴리아마이드 수지는 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 84.8%, YI는 7.2이며, 충격 시험 강도는 10.1kJ/㎡였다. 본 발명의 폴리아마이드 수지와 비교해서, 사출 성형편은 양호한 기계적 강도를 나타냈지만, 투명성 및 색상이 뒤떨어지는 것이었다.
비교예 2
사용하는 원료를 아디프산 152.49g(1.043㏖), [비스(4-아미노사이클로헥실)메탄](PACM) 219.51g(1.043㏖)으로 하고 물을 196g 증류 제거한 것 이외에는, 실시예 1과 마찬가지로 해서, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.17이며, DSC 측정에서는 300℃ 이상에서 불명료한 흡열, 발열 거동을 나타내었다.
상기 폴리아마이드 수지의 IV는 0.82이며, 유리전이온도 165℃, 융점 352℃, 결정화 온도는 310℃, YI는 2.6이며, 색상 양호하고 충분히 고분자량화된 것이었지만, 융점이 지나치게 높으므로, 용융시켜 사출 성형 가공시에 분해 가스의 발생, 점도 저하가 일어나, 사출 성형편을 얻을 수 없었다.
비교예 3
사용하는 원료를 도데칸이산 123.86g(0.538㏖ = 60㏖%), 테레프탈산 59.57g(0.359㏖ = 40㏖%), [비스(4-아미노사이클로헥실)메탄](PACM) 188.57g(0.896㏖)으로 한 것 이외에는, 실시예 3과 마찬가지로, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.12이며, DSC 흡열 피크는 보이지 않았다.
상기 폴리아마이드 수지의 IV는 0.72이며, 유리전이온도 155℃, 융점, 결정화 온도는 나타내지 않았다. YI는 6.5였다. 고상 중합시에 융착 현상을 보여, 착색되는 경향이 확인되었다.
사출 성형편의 전광선투과율은 81.9%, YI는 7.6이며, 충격 시험 강도는 6.7kJ/㎡였다. 사출 성형편은 투명성, 색상, 충격강도가 뒤떨어지는 것이었다.
비교예 4
사용하는 원료를 도데칸이산 123.15g(0.535㏖ = 60㏖%), 1,4-사이클로헥산다이카복실산(1,4-CHDA) 61.38g(0.356㏖ = 40㏖%), [비스(4-아미노사이클로헥실)메탄](PACM) 188.47g(0.891㏖)으로 한 것 이외에는, 실시예 3과 마찬가지로, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.17이며, DSC 측정에서는 300℃ 이상에서 불명료한 흡열, 발열 거동을 나타내는 것이었다.
상기 폴리아마이드 수지의 IV는 0.79이며, 유리전이온도 154℃, 융점 355℃, 결정화 온도는 318℃, YI는 2.8이며, 색상 양호하고 충분히 고분자량화된 것이었지만, 융점이 지나치게 높으므로, 용융 후의 사출 성형 가공시에 분해 가스의 발생, 점도 저하가 일어나, 사출 성형편을 얻을 수 없었다.
비교예 5
사용하는 원료를 도데칸이산 187.26g(0.813㏖), [비스(4-아미노사이클로헥실)메탄](PACM) 68.42g(0.325㏖ = 40㏖%), MACM[4,4'-다이아미노-3,3'-다이메틸다이사이클로헥실메탄] 116.32g(0.488㏖ = 60㏖%)으로 한 것 이외에는, 실시예 1과 마찬가지로, 폴리아마이드 수지의 제조, 그리고 사출 성형편의 제작 및 평가를 수행하였다.
저차 축합물의 IV는 0.12이며, DSC 흡열 피크는 보이지 않았다. 상기 폴리아마이드 수지의 IV는 0.73이며, 유리전이온도 133℃, 융점, 결정화 온도는 나타내지 않았다. YI는 8.8이며, 고상 중합시에 융착 현상이 보여, 착색되는 경향이 확인되었다.
사출 성형편의 전광선투과율은 82.4%, YI는 8.1이며, 충격 시험 강도는 5.5kJ/㎡였다. 사출 성형편은 투명성, 색상, 충격 강도가 뒤떨어지는 것이었다.
비교예 6
실시예 1과 마찬가지로, 반응 온도 210℃에서 저차 축합물의 중축합반응을 행한 후, 반응 압력을 대기압까지 1시간에 걸쳐서 강하시키면서, 액체 온도를 300℃까지 향상시켰다. 액체 온도가 300℃에 도달하고 나서 30분간 유지하여 용융 중합을 행한 후, 반응조로부터 수조에 취출하여 냉각, 분쇄, 건조를 수행하였다.
얻어진 폴리아마이드 수지의 IV는 1.06이며, 유리전이온도 134℃, 융점 257℃이며, 결정화 온도는 나타내지 않았다. YI는 5.2이며, 충분히 고분자량화된 것이었다.
사출 성형편의 전광선투과율은 84.5%, YI는 5.8이며, 충격 시험 강도는 9.9kJ/㎡였다. 본 발명의 폴리아마이드 수지와 비교해서, 사출 성형편은 투명성 및 색상이 뒤떨어지는 것이었다.
이들 실시예 및 비교예의 결과를 하기 표 1 및 표 2에 나타낸다.
[표 1]
Figure PCTKR2014011267-appb-I000006
[표 2]
Figure PCTKR2014011267-appb-I000007
상기 표 1 및 표 2에 나타낸 바와 같이, 본 발명에 의하면, 투명성, 색상, 기계적 강도에 우수한 폴리아마이드 수지를 제공하는 것이 가능하다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (11)

  1. 다이카복실산과 다이아민을, 상기 다이카복실산 및 상기 다이아민의 합계량에 대하여 약 0.01 내지 약 0.5질량%의 인 화합물의 존재 하에 중축합반응시켜서, 고체 형태의 저차 축합물을 얻는 공정; 및
    상기 저차 축합물을 고상 중합시키는 공정을 포함하되,
    상기 다이카복실산은, 그 총량에 대하여, 탄소원자수 9 내지 12의 지방족 다이카복실산을 약 70㏖% 이상 포함하고,
    상기 다이아민은, 그 총량에 대하여, 하기 화학식 1로 표시되는 다이아민을 약 50㏖% 이상 포함하며,
    상기 중축합반응의 최고온도는 약 200 내지 약 230℃의 범위이고, 상기 고상 중합의 최고반응온도는 약 170 내지 약 230℃의 범위인, 폴리아마이드 수지의 제조방법:
    [화학식 1]
    Figure PCTKR2014011267-appb-I000008
    식 중, R1은 탄소원자수 1 내지 3의 알킬렌기를 나타낸다.
  2. 제1항에 있어서,
    상기 중축합반응의 최고반응온도가 약 200 내지 약 220℃의 범위인 것인, 폴리아마이드 수지의 제조방법.
  3. 제1항 또는 제2항에 있어서,
    상기 고상 중합의 최고반응온도가 약 170 내지 약 210℃의 범위인 것인, 폴리아마이드 수지의 제조방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 인 화합물이 아인산, 차아인산, 및 그들의 염으로 이루어진 군으로부터 선택된 적어도 1종인 것인, 폴리아마이드 수지의 제조방법.
  5. 다이카복실산 및 다이아민의 중축합반응에 의해 얻어지고, 또한 인 화합물을 약 0.01 내지 약 0.5질량% 포함하는 폴리아마이드 수지로서,
    상기 다이카복실산은, 그 총량에 대하여, 탄소원자수 9 내지 12의 지방족 다이카복실산을 약 70㏖% 이상 포함하고,
    상기 다이아민은, 그 총량에 대하여, 하기 화학식 1로 표시되는 다이아민을 약 50㏖% 이상 포함하며,
    두께 4㎜의 성형물의 전광선투과율이 약 85% 이상이고, 또한 황색도(YI)가 약 5 이하인 것인, 폴리아마이드 수지:
    [화학식 1]
    Figure PCTKR2014011267-appb-I000009
    식 중, R1은 탄소원자수 1 내지 3의 알킬렌기를 나타낸다.
  6. 제5항에 있어서,
    상기 다이아민 중의 상기 화학식 1로 표시되는 다이아민의 함유량이 약 70㏖% 이상인 것인 폴리아마이드 수지.
  7. 제5항 또는 제6항에 있어서,
    상기 다이카복실산이 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽을 포함하고,
    상기 다이카복실산 중의 상기 탄소수 9 내지 12의 지방족 다이카복실산의 함유량이 약 70㏖% 이상 약 100㏖% 미만이며,
    상기 다이카복실산 중의 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽의 함유량이 약 0㏖% 초과 약 30㏖% 이하인 것인 폴리아마이드 수지.
  8. 제5항 내지 제7항 중 어느 한 항에 있어서,
    농황산 중 0.5g/㎗의 농도에서, 온도 25℃에서 측정한 대수점도(IV)가 약 0.6 내지 약 1.5㎗/g인 것인 폴리아마이드 수지.
  9. 제5항 내지 제8항 중 어느 한 항에 있어서,
    상기 지방족 다이카복실산이 세바스산 및 도데칸이산 중 적어도 한쪽인 것인 폴리아마이드 수지.
  10. 제5항 내지 제9항 중 어느 한 항에 있어서,
    상기 지환식 다이카복실산 및 방향족 다이카복실산 중 적어도 한쪽이 1,4-사이클로헥산다이카복실산, 테레프탈산 및 아이소프탈산으로 이루어진 군으로부터 선택된 적어도 1종인 것인 폴리아마이드 수지.
  11. 제5항 내지 제10항 중 어느 한 항에 있어서,
    상기 인 화합물이 아인산, 차아인산, 및 그들의 염으로 이루어진 군으로부터 선택된 적어도 1종인 것인 폴리아마이드 수지.
PCT/KR2014/011267 2013-11-29 2014-11-21 폴리아마이드 수지 및 그 제조방법 WO2015080436A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14865737.2A EP3075759A4 (en) 2013-11-29 2014-11-21 Polyamide resin and method for manufacturing same
CN201480064712.8A CN105764956B (zh) 2013-11-29 2014-11-21 聚酰胺树脂以及其制造方法
US15/037,521 US10287395B2 (en) 2013-11-29 2014-11-21 Polyamide resin and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-248226 2013-11-29
JP2013248226A JP6364183B2 (ja) 2013-11-29 2013-11-29 ポリアミド樹脂およびその製造方法
KR1020140158298A KR20150062943A (ko) 2013-11-29 2014-11-13 폴리아마이드 수지 및 그 제조방법
KR10-2014-0158298 2014-11-13

Publications (1)

Publication Number Publication Date
WO2015080436A1 true WO2015080436A1 (ko) 2015-06-04

Family

ID=53199335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011267 WO2015080436A1 (ko) 2013-11-29 2014-11-21 폴리아마이드 수지 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2015080436A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287395B2 (en) 2013-11-29 2019-05-14 Lotte Advanced Materials Co., Ltd. Polyamide resin and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352833A (ja) * 2003-05-28 2004-12-16 Mitsubishi Gas Chem Co Inc ポリアミド樹脂組成物
JP2009203422A (ja) 2008-02-29 2009-09-10 Toray Ind Inc ポリアミドの連続製造方法
KR20120040736A (ko) * 2009-09-11 2012-04-27 아사히 가세이 케미칼즈 가부시키가이샤 폴리아미드 및 폴리아미드 조성물
KR20130069388A (ko) * 2011-12-14 2013-06-26 제일모직주식회사 중축합 수지의 제조 방법
KR20130073773A (ko) * 2011-12-23 2013-07-03 제일모직주식회사 폴리아미드 수지, 이의 제조 방법 및 이를 포함하는 제품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352833A (ja) * 2003-05-28 2004-12-16 Mitsubishi Gas Chem Co Inc ポリアミド樹脂組成物
JP2009203422A (ja) 2008-02-29 2009-09-10 Toray Ind Inc ポリアミドの連続製造方法
KR20120040736A (ko) * 2009-09-11 2012-04-27 아사히 가세이 케미칼즈 가부시키가이샤 폴리아미드 및 폴리아미드 조성물
KR20130069388A (ko) * 2011-12-14 2013-06-26 제일모직주식회사 중축합 수지의 제조 방법
KR20130073773A (ko) * 2011-12-23 2013-07-03 제일모직주식회사 폴리아미드 수지, 이의 제조 방법 및 이를 포함하는 제품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3075759A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287395B2 (en) 2013-11-29 2019-05-14 Lotte Advanced Materials Co., Ltd. Polyamide resin and method for manufacturing same

Similar Documents

Publication Publication Date Title
WO2015080438A1 (ko) 폴리아마이드 수지 및 그 제조방법
WO2013104098A1 (zh) 一种无卤阻燃聚酰胺组合物及其制备方法与应用
JP3167719B2 (ja) 半結晶質半芳香族コポリアミド
KR101903321B1 (ko) 폴리아마이드 수지 및 그 제조방법
KR101845405B1 (ko) 공중합 폴리아미드 수지, 그 제조방법, 수지 조성물 및 이들로 이루어진 성형품
JPH0912868A (ja) ポリアミド組成物
US9090739B2 (en) Polyamide and polyamide composition
KR20160065835A (ko) 폴리아릴렌설피드 수지 조성물 및 그 성형품, 그리고 표면 실장 전자 부품
WO2015080436A1 (ko) 폴리아마이드 수지 및 그 제조방법
KR101771781B1 (ko) 폴리아미드에스테르 수지, 이의 제조방법 및 이를 포함하는 성형품
EP1871818B1 (en) Liquid crystalline polymer composition
KR20160039773A (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
CN112088188B (zh) 聚酰亚胺树脂组合物
WO2015080426A1 (ko) 폴리아마이드 성형체 및 그 제조 방법
JP2009275215A (ja) ポリアミド組成物
JP4446731B2 (ja) ポリアミド66樹脂ペレットの製造方法
WO2014084504A1 (ko) 폴리아미드 수지 및 그 제조방법
WO2016175475A1 (ko) 폴리아미드 수지, 이를 포함하는 폴리아미드 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
JP2019011478A (ja) ハロゲンフリーの難燃性ポリアミド組成物およびその調製方法、並びにその応用
JP2005187553A (ja) ポリアミド66樹脂ペレット及びその製造方法
WO2015080425A1 (ko) 폴리아마이드 수지 및 이것을 이용한 폴리아마이드 성형체
WO2014065594A1 (ko) 폴리아미드의 제조방법
JP6408637B2 (ja) ハロゲンフリーの難燃性ポリアミド組成物の調製方法
WO2014077545A1 (ko) 중축합 수지의 제조방법
JP2007031676A (ja) 難燃性ポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865737

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865737

Country of ref document: EP