WO2015079995A1 - 固体酸化物燃料電池 - Google Patents

固体酸化物燃料電池 Download PDF

Info

Publication number
WO2015079995A1
WO2015079995A1 PCT/JP2014/080640 JP2014080640W WO2015079995A1 WO 2015079995 A1 WO2015079995 A1 WO 2015079995A1 JP 2014080640 W JP2014080640 W JP 2014080640W WO 2015079995 A1 WO2015079995 A1 WO 2015079995A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid oxide
support
electrode layer
side wall
fuel cell
Prior art date
Application number
PCT/JP2014/080640
Other languages
English (en)
French (fr)
Inventor
喜樹 植田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015550669A priority Critical patent/JP5999276B2/ja
Publication of WO2015079995A1 publication Critical patent/WO2015079995A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1266Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing bismuth oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell in which a solid oxide electrolyte layer is provided on a support.
  • SOFC solid oxide fuel cell
  • molten carbonate fuel cell a molten carbonate fuel cell
  • phosphoric acid fuel cell a solid polymer fuel cell
  • solid polymer fuel cell a solid oxide fuel cell
  • the SOFC does not need to use liquid components, and when a hydrocarbon fuel is used, internal reforming is possible. Therefore, solid oxide fuel cells have attracted more attention.
  • Patent Document 1 an anode layer mainly made of a mixture of Ni and ZrO 2 and an electrolyte layer made of scandia-stabilized zirconia or the like are laminated on a metal support mainly made of ferritic stainless steel. Later, SOFCs produced by co-sintering are disclosed.
  • An object of the present invention is to provide a solid oxide fuel cell excellent in power generation characteristics in which separation between a metal support and an electrode layer hardly occurs.
  • the solid oxide fuel cell according to the present invention has a base portion and a side wall portion which is located on the base portion and is provided so as to be continuous with the base portion, and is porous.
  • a support made of the metal, a first electrode layer provided on the base portion of the support, having first and second main surfaces and side surfaces, and on the first electrode layer A solid oxide electrolyte layer having first and second main surfaces and side surfaces, and a solid oxide electrolyte layer provided on the solid oxide electrolyte layer, wherein the first and second main surfaces and side surfaces are
  • the base portion of the support body is in contact with the first or second main surface of the first electrode layer, and the inner side surface of the side wall portion of the support body is the first electrode layer.
  • the side wall portion of the support is planarly viewed.
  • the first side wall portion provided on one side across an arbitrary center line and the second side wall portion provided on the other side, and the first side wall portion in plan view A component of the compressive force applied to the side surface of the first electrode layer by the portion toward the center line, and a component of the compressive force applied to the side surface of the first electrode layer by the second sidewall portion toward the center line. Is the opposite direction.
  • the inner side surface of the side wall portion of the support is in contact with at least a part of the side surface of the solid oxide electrolyte layer.
  • the side wall of the support when viewed in plan, has a closed ring shape.
  • the inner side surface of the side wall portion of the support is in contact with the entire circumferential length of the side surface of the first electrode layer. More preferably, the inner side surface of the side wall portion of the support is in contact with the entire circumferential length of the side surface of the solid oxide electrolyte layer.
  • the inner side surface of the side wall portion of the support is the side surface in the circumferential direction of the side surfaces of the first electrode layer and the solid oxide electrolyte layer. Is in contact with a part of
  • a thermal expansion coefficient of the support is larger than a thermal expansion coefficient of the first electrode layer.
  • the base portion of the support is disk-shaped, and the side wall of the support is cylindrical.
  • the first electrode layer is an anode layer
  • the second electrode layer is a cathode layer
  • FIG. 1 (a) is a perspective view of a solid oxide fuel cell according to a first embodiment of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along line AA in FIG. 1 (a).
  • FIG. 2 is a plan view of the side wall portion of the support of the solid oxide fuel cell according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of a first modification of the side wall portion of the support of the solid oxide fuel cell according to the first embodiment of the present invention.
  • FIG. 4 is a plan view of a second modification of the side wall of the support of the solid oxide fuel cell according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view of a solid oxide fuel cell according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of a solid oxide fuel cell module using the solid oxide fuel cell according to the present invention.
  • FIGS. 7A to 7C are perspective views for explaining the solid oxide fuel cell used in Example 1.
  • FIG. 8 is a perspective view for explaining the solid oxide fuel cell used in Example 2.
  • FIG. 9 is a perspective view for explaining the solid oxide fuel cell used in Example 3.
  • FIG. 10 is a plan view for explaining the solid oxide fuel cell used in Example 4.
  • FIG. FIG. 11 is a perspective view for explaining the solid oxide fuel cell used in the comparative example.
  • FIG. 1A is a perspective view of a solid oxide fuel cell according to a first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG.
  • the solid oxide fuel cell 1 As shown in FIG. 1A, the solid oxide fuel cell 1 according to this embodiment is cylindrical.
  • the solid oxide fuel cell 1 includes a support 2, a solid oxide electrolyte layer 3, and first and second electrode layers 5 and 4.
  • the support 2 has a disk-shaped base portion 2a and a cylindrical side wall portion 2b.
  • the base portion 2a may have a rectangular parallelepiped shape
  • the side wall portion 2b may have a rectangular tube shape.
  • the side wall part 2b is located on the base part 2a, and is provided so as to be integrated with the base part 2a.
  • a space 2c is provided inside the cylindrical side wall 2b of the support 2 as shown in a plan view in FIG. In this space 2c, a disc-shaped solid oxide electrolyte layer 3 and first and second electrode layers 5 and 4 are arranged.
  • the solid oxide electrolyte layer 3 and the first and second electrode layers 5 and 4 may have a rectangular parallelepiped shape.
  • the support 2 is made of a porous metal.
  • the porosity of the support 2 is desirably 20% or more and 70% or less. This is to introduce fuel gas and air.
  • the porous metal can be produced by firing a material containing metal particles and a resin binder.
  • the porous metal was selected from the group consisting of nickel, chromium, iron, iron chromium, iron nickel, nickel chromium, nickel chromium iron, iron chromium aluminum, nickel chromium tungsten molybdenum, nickel cobalt and platinum, platinum palladium. At least one metal is desirable, and ferritic stainless steel is particularly desirable. This is because peeling between the support 2 and the first electrode layer 5 can be further suppressed.
  • the first electrode layer 5 is laminated on the upper surface of the base portion 2a of the support 2.
  • the first electrode layer 5 has first and second main surfaces 5a and 5b and a side surface 5c.
  • the first main surface 5 a is in contact with the base portion 2 a of the support 2.
  • the inner side surface of the side wall 2b of the support 2 is in contact with the entire length in the circumferential direction of the side surface 5c so as to apply a compressive force to the side surface 5c of the first electrode layer 5.
  • at least a part of the inner side surface of the side wall 2b of the support 2 may be in contact with the side surface 5c of the first electrode layer 5 so as to apply a compressive force.
  • the side wall 2b of the support 2 has a first side wall provided on one side and a second side wall provided on the other side across an arbitrary center line in plan view. .
  • the first side wall portion has a component of the compressive force applied to the side surface 5c of the first electrode layer 5 toward the center line
  • the second side wall portion is the first side wall portion.
  • the component of the compressive force applied to the side surface 5c of the electrode layer 5 toward the center line is in the opposite direction. Accordingly, a compressive force can be applied to the first electrode layer 5. Thereby, peeling between the upper surface of the base part 2a of the support body 2 and the 1st main surface 5a of the 1st electrode layer 5 can be suppressed.
  • the solid oxide electrolyte layer 3 is laminated on the second main surface 5 b of the first electrode layer 5.
  • the solid oxide electrolyte layer 3 has first and second main surfaces 3a and 3b and a side surface 3c.
  • the first main surface 3 a of the solid oxide electrolyte layer 3 is in contact with the second main surface 5 b of the first electrode layer 5.
  • the inner side surface of the side wall 2b of the support 2 is in contact with the entire length in the circumferential direction so as to apply a compressive force to the side surface 3c of the solid oxide electrolyte layer 3.
  • separation between the second main surface 5b of the first electrode layer 5 and the first main surface 3a of the solid oxide electrolyte layer 3 can be suppressed.
  • the inner side surface of the side wall part 2b of the support body 2 may be contacting so that a compressive force may be applied to at least one part of the side surface 3c of the solid oxide electrolyte layer 3.
  • FIG. Further, the inner side surface of the side wall 2 b of the support 2 may not be in contact with the side surface 3 c of the solid oxide electrolyte layer 3.
  • the solid oxide electrolyte layer 3 is not particularly limited, but preferably has high ionic conductivity.
  • stabilized zirconia ceria (CeO 2 ) -based solid solution, bismuth oxide solid solution, LaGaO 3 element substitution, and the like can be used.
  • Specific examples of the stabilized zirconia include 10 mol% yttria stabilized zirconia (10YSZ) and 11 mol% scandia stabilized zirconia (11ScSZ).
  • Specific examples of the partially stabilized zirconia include 3 mol% yttria partially stabilized zirconia (3YSZ).
  • the second electrode layer 4 On the second main surface 3b of the solid oxide electrolyte layer 3, the second electrode layer 4 is laminated.
  • the second electrode layer 4 has first and second main surfaces 4a and 4b and a side surface 4c.
  • the first main surface 4 a of the second electrode layer 4 is in contact with the second main surface 3 b of the solid oxide electrolyte layer 3.
  • a gap is provided between the side surface 4 c of the second electrode layer 4 and the inner side surface of the side wall 2 b of the support 2.
  • the first and second electrode layers 5 and 4 are anode layers or cathode layers.
  • the first electrode layer 5 is an anode layer
  • the second electrode layer 4 is a cathode layer.
  • the first electrode layer 5 may be a cathode layer
  • the second electrode layer 4 may be an anode layer.
  • the material is porous, has high electron conductivity, and does not easily react with the solid oxide electrolyte layer 3 or the like at a high temperature.
  • it can be composed of yttria stabilized zirconia containing Ni, scandia stabilized zirconia containing Ni, scandiaceria stabilized zirconia containing Ni, or Pt.
  • the material is porous, has high electron conductivity, and does not easily react with the solid oxide electrolyte layer 3 or the like at a high temperature.
  • it can be composed of a LaMnO 3 oxide or a LaCoO 3 oxide.
  • Examples of the LaCoO 3 oxide include La 0.8 Sr 0.2 Co 0.2 Fe 0.8 O 3 and the like.
  • the entire length in the circumferential direction of the side surface 5 c is such that the inner side surface of the side wall 2 b of the support 2 applies a compressive force to the side surface 5 c of the first electrode layer 5.
  • the support 2 is made of a porous metal and has a firing shrinkage rate and a thermal expansion coefficient larger than those of the first electrode layer 5 and the solid oxide electrolyte layer 3 containing ceramic as described above.
  • the firing shrinkage rate and the thermal expansion coefficient of the support 2 are larger than those of the first electrode layer 5 and the solid oxide electrolyte layer 3.
  • the support 2, the first and second electrode layers 5, 4 and the solid oxide electrolyte layer 3 are co-sintered.
  • the first electrode layer 5 existing on the inner side is compressed radially inward by the side wall portion 2b of the support 2 having a higher firing shrinkage rate.
  • the thermal expansion coefficient of the support 2 is larger, the first electrode layer 5 existing on the inner side is directed radially inward by the side wall portion 2b of the support 2 due to the compressive stress generated during the temperature drop. Compressed.
  • the first electrode layer 5 is compressed radially inward by the side wall 2b of the support 2 existing around the first electrode layer 5.
  • the Accordingly, the support 2 and the first electrode layer 5 are in close contact with each other. Thereby, peeling between the upper surface of the base portion 2 a of the support 2 and the first main surface 5 a of the first electrode layer 5 can be suppressed.
  • the operating temperature is as high as 550 ° C. or higher and 900 ° C. or lower, peeling hardly occurs even at such a high temperature.
  • the side wall 2b of the support 2 is preferably in contact with at least a part of the side surface 3c of the solid oxide electrolyte layer 3 so as to apply a compressive force.
  • peeling between the second main surface 5b of the first electrode layer 5 and the first main surface 3a of the solid oxide electrolyte layer 3 can also be suppressed.
  • the upper surface of the side wall 2b of the support 2 and the second main surface 4b of the second electrode layer 4 have the same height as in this embodiment. But the upper surface of the side wall part 2b of the said support body 2 and the 2nd main surface 4b of the said 2nd electrode layer 4 do not need to be the same height.
  • the side wall 2 is preferably closed.
  • the first electrode layer 5 and the solid oxide electrolyte layer 3 can be further compressed. Therefore, it is possible to further suppress the peeling that occurs between the support 2 and the first electrode layer 5 and the peeling that occurs between the first electrode layer 5 and the solid oxide electrolyte layer 3.
  • the side wall portion 2b of the support 2 has one side surface 3c in the circumferential direction of the side surface 3c of the first electrode layer 5 and the solid oxide electrolyte layer 3 on the inner side surface of the side wall portion 2b. It may be provided so as to contact the part.
  • a structure having a notch 2d in a part of the side wall 2b of the support 2 can be cited as in the first modification shown in a plan view in FIG.
  • a structure in which the first side wall portion 2e of the support 2 and the second side wall portion 2f are opposed to each other may be employed.
  • the fuel gas described later can be further supplied to the first electrode layer 5.
  • the first side wall portion 2e and the second side wall portion 2f of the support 2 do not have to face each other.
  • the support 2 further includes a third side wall portion 2g, and the three side wall portions are circumferentially spaced at a central angle of 120 °. May be provided.
  • the outer shape of the support 2 is cylindrical. However, as in the second embodiment shown in FIG. 5, the support 2 may be rectangular.
  • FIG. 6 shows a cross-sectional view of an example of a solid oxide fuel cell module using the solid oxide fuel cell 1 according to the present invention.
  • the solid oxide fuel cell 1 is accommodated in an electric furnace 15.
  • the first current collecting terminal 13 is connected to the upper side of the solid oxide fuel cell 1 of the present invention, and the second current collecting terminal 14 is connected to the lower side.
  • the first and second current collecting terminals 13 and 14 are provided so as to protrude from an upper part and a lower part of the electric furnace 15.
  • a gas flow path forming portion 7 is provided on the side surface of the solid oxide fuel cell 1 of the present invention.
  • the gas flow path forming unit 7 is provided to ensure a flow path for supplying fuel gas to the first electrode layer 5.
  • the gas flow path forming unit 7 also has a function of separating the air supplied to the second electrode layer 4 and the fuel gas supplied to the first electrode layer 5. Therefore, the gas flow path forming portion 7 is made of a dense metal. Preferred is dense stainless steel.
  • a sealing material 6 is provided on the upper surface of the side wall 2b of the support 2.
  • the sealing material 6 is provided to prevent fuel gas from leaking from the upper surface of the side wall 2b of the support 2.
  • glass can be used as the sealing material 6.
  • a glass paste is applied, and the temperature is increased to 830 ° C. before the measurement, and bonding is performed.
  • the glass can partially penetrate the support 2 portion and fill the pores of the support 2.
  • the gas flow path forming portion 7 may be welded as a welding material instead of the sealing material 6. Even in the case of welding, the pores of the support 2 can be filled with the support 2 itself or, if necessary, a filler material used for welding.
  • an inlet 9 for supplying air is provided in the upper part of the electric furnace 15.
  • an air outlet 10 is provided at a lower portion of the electric furnace 15.
  • An inlet 11 for supplying fuel gas is provided on one side of the electric furnace 15.
  • a fuel gas outlet 12 is provided on the other side of the electric furnace 15.
  • the inner side surface of the side wall portion of the support is in contact with at least a part of the side surface of the first electrode layer so as to apply a compressive force. Therefore, since peeling between the base portion of the support and the first electrode layer hardly occurs, the solid oxide fuel cell excellent in power generation characteristics and the solid oxide fuel cell module as shown in the above example are provided. It becomes possible to provide.
  • Example 1 First, the following materials were prepared.
  • Porous metal support Ferritic stainless steel containing 22% Cr by weight.
  • Anode layer 60% by weight of nickel oxide (NiO), 10 mol% of scandia (Sc 2 O 3 ) and 1 mol% of ceria (CeO 2 ) stabilized zirconia (scandia ceria stabilized zirconia) : ScCeSZ) with 40% by weight.
  • NiO nickel oxide
  • Sc 2 O 3 scandia
  • CeO 2 ceria stabilized zirconia
  • ScCeSZ ScCeSZ
  • Solid oxide electrolyte layer zirconia stabilized with 10 mol% scandia (Sc 2 O 3 ) and 1 mol% ceria (CeO 2 ) added (scandia ceria stabilized zirconia: ScCeSZ).
  • Cathode layer (La 0.6 Sr 0.4 ) 0.99 Co 0.2 Fe 0.8 O 3
  • the porous metal support, the anode layer and the solid oxide electrolyte layer powder, the polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (mixing ratio is 1: 4 by weight).
  • each green sheet was produced by the doctor blade method. The thickness of the green sheet was adjusted to 50 ⁇ m for the anode layer and the electrolyte layer, and 25 ⁇ m and 50 ⁇ m for the porous metal support.
  • FIGS. 7A to 7C 20 layers of 50 ⁇ m disk-shaped porous metal support green sheet 2A and 2 layers of 50 ⁇ m donut-shaped porous metal support green sheet 2B are provided.
  • One layer of an anode layer green sheet as a first electrode layer 5 having a thickness of 50 ⁇ m and one green sheet of a solid oxide electrolyte layer 3 having a thickness of 50 ⁇ m were sequentially stacked to prepare a stacked body.
  • the obtained laminate was pressure bonded by cold isostatic pressing at a pressure of 1000 kgf / cm 2 and a temperature of 80 ° C. for 2 minutes.
  • the bonded laminate is subjected to degreasing treatment in the air at a temperature in the range of 300 ° C. or higher and 500 ° C. or lower, and then in a reducing atmosphere of Ar / H 2 at a temperature of 1100 ° C. or higher and 1200 ° C. or lower.
  • the sintered compact was produced by hold
  • the cathode layer as the second electrode layer 4 was printed on the solid oxide electrolyte surface of the sintered body using screen printing to prepare a sample.
  • Example 2 As shown in FIG. 8, one of the two layers of the 50 ⁇ m donut-like porous metal support green sheet 2B in FIG. 7A is changed to a 25 ⁇ m donut-like porous metal support green sheet 2B.
  • a sample was prepared in the same manner as in Example 1 except for the above.
  • Example 3 As shown in FIG. 9, the example except that the 50- ⁇ m donut-shaped porous metal support green sheet 2 ⁇ / b> B was not used among the two-layer donut-shaped porous metal support green sheet 2 ⁇ / b> B in FIG. A sample was prepared in the same manner as in Example 2.
  • Example 4 In order to produce the first and second side wall portions 2e and 2f as shown in FIG. 10, instead of the two layers of the 50 ⁇ m donut-shaped porous metal support green sheet 2B in FIG. Samples were prepared in the same manner as in Example 1 except that two layers of 25 ⁇ m porous metal support green sheets were used.
  • Example 11 As shown in FIG. 11, a sample was prepared in the same manner as in Example 1 except that two layers of a 50 ⁇ m donut-shaped porous metal support green sheet 2B were not used.
  • Power generation characteristics Glass is used for gas sealing, Pt paste and Pt wire are used for current collection, the temperature is raised while flowing air on the cathode layer side and argon on the anode layer side, and the cathode layer is formed at 850 ° C. for 1 hour. After sintering, the power generation characteristics were evaluated by flowing humidified hydrogen at 40 ° C. to the anode layer and air to the cathode layer side at 750 ° C. The results are shown in Table 1.
  • Example 1 In the samples of Examples 1 to 4, there was no peeling and almost the same power generation characteristics were obtained. A slightly high result was obtained in Example 1, but this was due to the fact that the electrical resistance between the anode layer and the porous metal support was lowered because the side wall of the anode layer was completely covered. it is conceivable that.
  • the power generation characteristics could not be evaluated because of peeling between the anode layer / porous metal support.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 金属支持体と電極層との間における剥離が生じ難く、発電特性に優れた固体酸化物燃料電池を提供する。 ベース部2aと、前記ベース部2aの上に位置しており、前記ベース部2aと一体的に連なるように設けられている側壁部2bとを有し、かつ多孔質の金属からなる支持体2と、前記支持体2の前記ベース部2aの上に設けられており、第1,第2の主面5a,5b及び側面5cを有する第1の電極層5と、前記第1の電極層5の上に設けられている固体酸化物電解質層3と、前記固体酸化物電解質層3の上に設けられている第2の電極層4とを備え、前記支持体2の前記ベース部2aが、前記第1の電極層5の第1又は第2の主面5a,5bと接し、前記支持体2の側壁部2bの内側側面が、前記第1の電極層5の側面5cの少なくとも一部に圧縮力を加えるように接している、固体酸化物燃料電池1。

Description

固体酸化物燃料電池
 本発明は、固体酸化物燃料電池に関し、より詳細には、支持体上に固体酸化物電解質層が設けられている、固体酸化物燃料電池に関する。
 近年、新たなエネルギー源として燃料電池が注目を集めている。燃料電池としては、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、溶融炭酸塩形燃料電池、リン酸形燃料電池、固体高分子形燃料電池等が知られている。なかでも、SOFCは、液体の構成要素を使用しなくてもよく、炭化水素燃料を用いる場合において、内部の改質も可能である。従って、固体酸化物形燃料電池がより注目を集めている。
 例えば、下記特許文献1では、主にフェライト系ステンレスからなる金属製支持体の上に、主にNiとZrOの混合物からなるアノード層と、スカンジア安定化ジルコニア等からなる電解質層とを積層した後、共焼結することにより作製されたSOFCが開示されている。
特開2009-110934
 しかしながら、特許文献1のようなSOFCでは、金属支持体と、該金属支持体に積層されるセラミックスからなるアノード層とで熱膨張係数が異なる。従って、共焼結の際、金属支持体とアノード層との間で、剥がれが生じることがあった。また、動作温度が700℃程度と高いので、動作時にも剥がれが生じることがあった。
 本発明の目的は、金属支持体と電極層との間における剥離が生じ難く、発電特性に優れた固体酸化物燃料電池を提供することにある。
 本発明に係る固体酸化物燃料電池は、ベース部と、前記ベース部の上に位置しており、前記ベース部と一体的に連なるように設けられている側壁部とを有し、かつ多孔質の金属からなる支持体と、前記支持体の前記ベース部の上に設けられており、第1,第2の主面及び側面を有する第1の電極層と、前記第1の電極層の上に設けられており、第1,第2の主面及び側面を有する固体酸化物電解質層と、前記固体酸化物電解質層の上に設けられており、第1,第2の主面及び側面を有する第2の電極層とを備え、前記支持体の前記ベース部が、前記第1の電極層の第1又は第2の主面と接し、前記支持体の側壁部の内側側面が、前記第1の電極層の側面の少なくとも一部に圧縮力を加えるように接しており、前記支持体の側壁部が、平面視において、任意の中心線を挟んで一方側に設けられている第1の側壁部分と、他方側に設けられている第2の側壁部分とを有し、平面視において、前記第1の側壁部分が前記第1の電極層の側面に加える圧縮力の前記中心線に向かう成分と、前記第2の側壁部分が前記第1の電極層の側面に加える圧縮力の前記中心線に向かう成分とが逆方向である。
 本発明に係る固体酸化物燃料電池のある特定の局面では、前記支持体の側壁部の内側側面が、前記固体酸化物電解質層の側面の少なくとも一部に圧縮力を加えるように接している。
 本発明に係る固体酸化物燃料電池の別の特定の局面では、平面視した場合、前記支持体の側壁部が閉環状である。好ましくは、前記支持体の側壁部の内側側面が、前記第1の電極層の側面の周方向全長に渡り接している。より好ましくは、前記支持体の側壁部の内側側面が、前記固体酸化物電解質層の側面の周方向全長に渡り接している。
 本発明に係る固体酸化物燃料電池の他の特定の局面では、前記支持体の側壁部の内側側面が、前記第1の電極層及び前記固体酸化物電解質層の側面の周方向において、該側面の一部と接している。
 本発明に係る固体酸化物燃料電池のさらに別の特定の局面では、前記支持体の熱膨張係数が、前記第1の電極層の熱膨張係数よりも大きい。
 本発明に係る固体酸化物燃料電池のさらに他の特定の局面では、前記支持体のベース部が円盤状であり、前記支持体の側壁部が円筒状である。
 本発明に係る固体酸化物燃料電池のさらに他の特定の局面では、前記第1の電極層がアノード層であり、前記第2の電極層がカソード層である。
 本発明によれば、支持体と第1の電極層との間における剥離が生じ難く、発電特性に優れた固体酸化物燃料電池構成ユニット、並びに固体酸化物燃料電池スタックを提供することが可能となる。
図1(a)は、本発明の第1の実施形態に係る固体酸化物燃料電池の斜視図であり、図1(b)は、図1(a)中のA-A線に沿う断面図である。 図2は、本発明の第1の実施形態に係る固体酸化物燃料電池の支持体の側壁部の平面図である。 図3は、本発明の第1の実施形態に係る固体酸化物燃料電池の支持体の側壁部の第1の変形例の平面図である。 図4は、本発明の第1の実施形態に係る固体酸化物燃料電池の支持体の側壁部の第2の変形例の平面図である。 図5は、本発明の第2の実施形態に係る固体酸化物燃料電池の斜視図である。 図6は、本発明に係る固体酸化物燃料電池を用いた固体酸化物燃料電池モジュールの一例を示す断面図である。 図7(a)~図7(c)は、実施例1で用いた固体酸化物燃料電池を説明するための斜視図である。 図8は、実施例2で用いた固体酸化物燃料電池を説明するための斜視図である。 図9は、実施例3で用いた固体酸化物燃料電池を説明するための斜視図である。 図10は、実施例4で用いた固体酸化物燃料電池を説明するための平面図である。 図11は、比較例で用いた固体酸化物燃料電池を説明するための斜視図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 (固体酸化物燃料電池)
 図1(a)は、本発明の第1の実施形態に係る固体酸化物燃料電池の斜視図である。図1(b)は、図1(a)中のA-A線に沿う断面図である。
 図1(a)に示すように、本実施形態に係る固体酸化物燃料電池1は円筒状である。固体酸化物燃料電池1は、支持体2、固体酸化物電解質層3及び第1,第2の電極層5,4を備える。
 支持体2は、円盤状のベース部2aと円筒状の側壁部2bを有する。なお、ベース部2aが直方体状であり、側壁部2bが角筒状であってもよい。側壁部2bは、前記ベース部2aの上に位置しており、前記ベース部2aと一体化するように設けられている。支持体2の円筒状の側壁部2bの内側には、図2に平面図で示すように、スペース2cが設けられている。このスペース2c内に、円盤状の固体酸化物電解質層3及び第1,第2の電極層5,4が配置されている。なお、固体酸化物電解質層3及び第1,第2の電極層5,4は、直方体状であってもよい。
 支持体2は、多孔質の金属からなる。支持体2の気孔率は、20%以上、70%以下であることが望ましい。燃料ガスや空気を導入するためである。多孔質の金属は、金属粒子と樹脂バインダとを含む材料を焼成することにより作製することができる。上記多孔質の金属としては、ニッケル、クロム、鉄、鉄クロム、鉄ニッケル、ニッケルクロム、ニッケルクロム鉄、鉄クロムアルミ、ニッケルクロムタングステンモリブデン、ニッケルコバルト及び白金、白金パラジウムからなる群より選ばれた少なくとも1種の金属が望ましく、フェライト系ステンレスが特に望ましい。支持体2と第1の電極層5との間の剥離をより一層抑制できるからである。
 支持体2のベース部2aの上面に、第1の電極層5が積層されている。第1の電極層5は、第1,第2の主面5a,5b及び側面5cを有する。第1の主面5aは、支持体2のベース部2aと接している。
 支持体2の側壁部2bの内側側面は、上記第1の電極層5の側面5cに圧縮力を加えるように、該側面5cの周方向全長に渡り接している。本発明においては、支持体2の側壁部2bの内側側面の少なくとも一部が、上記第1の電極層5の側面5cに圧縮力を加えるように接していればよい。
 上記支持体2の側壁部2bは、平面視において、任意の中心線を挟んで一方側に設けられている第1の側壁部分と、他方側に設けられている第2の側壁部分とを有する。
 本発明においては、平面視において、上記第1の側壁部分が上記第1の電極層5の側面5cに加える圧縮力の上記中心線に向かう成分と、上記第2の側壁部が上記第1の電極層5の側面5cに加える圧縮力の上記中心線に向かう成分とが逆方向である。従って、第1の電極層5に圧縮力を加えることができる。これにより、支持体2のベース部2aの上面と第1の電極層5の第1の主面5aとの間における剥離を抑制することができる。
 第1の電極層5の第2の主面5b上には、固体酸化物電解質層3が積層されている。固体酸化物電解質層3は、第1,第2の主面3a,3b及び側面3cを有する。固体酸化物電解質層3の第1の主面3aは、第1の電極層5の第2の主面5bと接している。
 支持体2の側壁部2bの内側側面は、固体酸化物電解質層3の側面3cに圧縮力を加えるように周方向全長に渡り接している。この場合、第1の電極層5の第2の主面5bと固体酸化物電解質層3の第1の主面3a間における剥離を抑制することができる。もっとも、本発明において、支持体2の側壁部2bの内側側面は、固体酸化物電解質層3の側面3cの少なくとも一部に圧縮力を加えるように接していてもよい。また、支持体2の側壁部2bの内側側面は、固体酸化物電解質層3の側面3cに接していなくともよい。
 固体酸化物電解質層3としては、特に限定されないが、イオン導電性が高いものであることが好ましい。例えば、安定化ジルコニアや、セリア(CeO)系固溶体、酸化ビスマス固溶体及びLaGaOの元素置換体などを使用できる。安定化ジルコニアの具体例としては、10mol%イットリア安定化ジルコニア(10YSZ)や、11mol%スカンジア安定化ジルコニア(11ScSZ)等が挙げられる。部分安定化ジルコニアの具体例としては、3mol%イットリア部分安定化ジルコニア(3YSZ)等が挙げられる。
 固体酸化物電解質層3の第2の主面3b上には、第2の電極層4が積層されている。第2の電極層4は、第1,第2の主面4a,4b及び側面4cを有する。第2の電極層4の第1の主面4aは、固体酸化物電解質層3の第2の主面3bと接している。第2の電極層4の側面4cと、支持体2の側壁部2bの内側側面の間にはギャップが設けられている。
 第1,第2の電極層5,4は、アノード層又はカソード層であり、本実施形態のように、第1の電極層5がアノード層であり、第2の電極層4がカソード層であることが好ましい。もっとも、第1の電極層5がカソード層であり、第2の電極層4がアノード層であってもよい。
 アノード層においては、酸素イオンと燃料ガスとが反応して電子を放出する。従って、多孔質で、電子伝導性が高く、かつ、高温において固体酸化物電解質層3等と固体間反応を起こしにくいものであることが好ましい。例えば、Niを含むイットリア安定化ジルコニア、Niを含むスカンジア安定化ジルコニア、Niを含むスカンジアセリア安定化ジルコニア又はPtにより構成することができる。
 カソード層においては、酸素が電子を取り込んで、酸素イオンが形成される。従って、多孔質で、電子伝導性が高く、かつ、高温において固体酸化物電解質層3等と固体間反応を起こしにくいものであることが好ましい。例えば、LaMnO系酸化物や、LaCoO系酸化物により構成することができる。LaMnO系酸化物としては、La0.8Sr0.2MnOが挙げられる。LaCoO系酸化物としては、La0.8Sr0.2Co0.2Fe0.8等が挙げられる。
 本実施形態に係る固体酸化物燃料電池1では、支持体2の側壁部2bの内側側面が、上記第1の電極層5の側面5cに圧縮力を加えるように、該側面5cの周方向全長に渡り接している。上記支持体2は、多孔質の金属からなり、上記のようにセラミックスを含む第1の電極層5及び固体酸化物電解質層3よりも、焼成収縮率及び熱膨張係数が大きい。このように、支持体2の焼成収縮率及び熱膨張係数は、第1の電極層5及び固体酸化物電解質層3よりも熱膨張係数が大きいことが好ましい。
 ここで、支持体2、第1,第2の電極層5,4及び固体酸化物電解質層3は、共焼結される。共焼結の際、焼成収縮率がより大きい支持体2の側壁部2bにより、内側に存在する第1の電極層5が径方向内側に向かって圧縮される。加えて、支持体2の熱膨張係数がより大きいことから、降温中に発生する圧縮応力によっても、内側に存在する第1の電極層5が支持体2の側壁部2bにより径方向内側に向かって圧縮される。
 このように、本発明においては、共焼結の際、第1の電極層5の周りに存在する支持体2の側壁部2bにより径方向内側に向かって、第1の電極層5が圧縮される。従って、支持体2と第1の電極層5とが密着する。これにより、支持体2のベース部2aの上面と第1の電極層5の第1の主面5aとの間における剥離を抑制することが可能となる。また、動作温度は、550℃以上、900℃以下と高いが、このような高温下においても剥離が生じ難い。
 なお、上述したように、本発明においては、支持体2の側壁部2bは、固体酸化物電解質層3の側面3cの少なくとも一部に圧縮力を加えるように接していることが好ましい。この場合、第1の電極層5の第2の主面5bと固体酸化物電解質層3の第1の主面3a間における剥離をも抑制することができる。さらには、本実施形態のように、上記支持体2の側壁部2bの上面と上記第2の電極層4の第2の主面4bとが同じ高さであることが好ましい。もっとも、上記支持体2の側壁部2bの上面と上記第2の電極層4の第2の主面4bとは、同じ高さでなくともよい。
 また、図2の支持体2の側壁部2bの平面図に示すように、側壁部2は閉環状であることが好ましい。この場合、第1の電極層5及び固体酸化物電解質層3をより一層圧縮できる。そのため、より一層、支持体2と第1の電極層5との間で生じる剥離及び第1の電極層5と固体酸化物電解質層3との間で生じる剥離を抑制できるからである。
 上述したように支持体2の側壁部2bは、該側壁部2bの内側側面が、上記第1の電極層5及び上記固体酸化物電解質層3の側面3cの周方向において、該側面3cの一部と接するように設けられていてもよい。
 具体的には、図3に平面図で示す第1の変形例のように、支持体2の側壁部2bの一部に切欠き部2dを有する構造が挙げられる。また、図10に示す平面図のように、支持体2の第1の側壁部分2eと、第2の側壁部分2fとが対向している構造をとってもよい。この場合、第1の電極層5に、後述する燃料ガスをより一層供給することができる。なお、支持体2の第1の側壁部分2eと、第2の側壁部分2fとは対向してなくともよい。例えば、図4に平面図で示す第2の変形例のように、支持体2がさらに第3の側壁部分2gを備え、3つの側壁部が周方向において、中心角が120°間隔となるように設けられていてもよい。
 なお、第1の実施形態において、支持体2の外形は円筒状であったが、図5に示す第2の実施形態のように、支持体2は角筒状であってもよい。
 図6には、本発明に係る固体酸化物燃料電池1を用いた固体酸化物燃料電池モジュールの一例の断面図を示す。上記固体酸化物燃料電池1は、電気炉15内に収納されている。
 本発明の固体酸化物燃料電池1の上側には第1の集電端子13が、下側には、第2の集電端子14がそれぞれ接続されている。上記第1,第2の集電端子13,14は、電気炉15の上方部及び下方部から突き出されるように設けられている。
 また、本発明の固体酸化物燃料電池1の側面には、ガス流路形成部7が設けられている。ガス流路形成部7は、燃料ガスを第1の電極層5に供給する流路を確保するために設けられている。また、ガス流路形成部7は、第2の電極層4に供給するための空気と、第1の電極層5に供給するための燃料ガスとを分離する機能をも有する。従って、上記ガス流路形成部7は緻密な金属により構成される。好ましくは、緻密なステンレスである。
 支持体2の側壁部2bの上面には、シール材6が設けられている。シール材6は、上記支持体2の側壁部2bの上面から燃料ガスが漏れることを防止するために設けられている。
 シール材6としては、ガラスを用いることができる。この場合、ガラスをペースト化したものを塗布し、測定前に830℃まで昇温させて接合する。ガラスは、一部を支持体2部分に浸透し、支持体2の気孔を埋めることができる。また、シール材6のかわりにガス流路形成部7を溶接材として溶接してもよい。溶接する場合においても、支持体2の気孔は、支持体2自身あるいは必要に応じて溶接に用いる溶加材等で気孔を埋めることができる。
 電気炉15の上方部には、空気を供給するための入口9が設けられている。他方、電気炉15の下方部には、空気の出口10が設けられている。
 電気炉15の一方側には、燃料ガスを供給するための入口11が設けられている。他方、電気炉15の他方側には、燃料ガスの出口12が設けられている。
 電気炉15内においては、上述したガス流路形成部7によって、第1の電極層5に空気を供給するための流路と、第2の電極層4に空気を供給するための流路が区画形成されている。
 以上のように、本発明に係る固体酸化物燃料電池では、支持体の側壁部の内側側面が、第1の電極層の側面の少なくとも一部に圧縮力を加えるように接している。従って、支持体のベース部と第1の電極層との間における剥離が発生し難いため、発電特性に優れた固体酸化物燃料電池、並びに上記一例に示したような固体酸化物燃料電池モジュールを提供することが可能となる。
 次に、具体的な実施例につき説明する。なお、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 まず、材料として、以下のものを準備した。
 多孔質金属支持体:重量でCrを22%含むフェライト系ステンレス。
 アノード層:酸化ニッケル(NiO)60重量%と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(スカンジアセリア安定化ジルコニア:ScCeSZ)40重量%との混合物。
 固体酸化物電解質層:添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(スカンジアセリア安定化ジルコニア:ScCeSZ)。
 カソード層:(La0.6Sr0.40.99Co0.2Fe0.8
 次に、上記多孔質金属支持体、アノード層及び固体酸化物電解質層粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法によりそれぞれのグリーンシートを作製した。グリーンシートの厚みは、アノード層と電解質層は50μmに調整し、多孔質金属支持体は25μmと50μmに調整した。
 次に、図7(a)~図7(c)に示すように、50μmの円板状多孔質金属支持体グリーンシート2Aを20層、50μmのドーナツ状多孔質金属支持体グリーンシート2Bを2層、50μmの第1の電極層5であるアノード層グリーンシートを1層、50μmの固体酸化物電解質層3のグリーンシートを1層、順に積層し、積層体を作製した。
 次に、得られた積層体を1000kgf/cmの圧力、80℃の温度にて2分間、冷間静水圧成形することにより圧着した。
 次に、圧着した積層体を温度300℃以上、500℃以下の範囲内で大気中で脱脂処理を施した後、Ar/Hの還元雰囲気で、温度1100℃以上、1200℃以下の範囲内で、1時間保持することにより、焼結体を作製した。
 最後に、焼結体の固体酸化物電解質面に、スクリーン印刷を用いて、第2の電極層4であるカソード層を印刷し、サンプルを作製した。
 (実施例2)
 図8に示すように、図7(a)における50μmのドーナツ状多孔質金属支持体グリーンシート2Bの2層のうち1層を、25μmのドーナツ状多孔質金属支持体グリーンシート2Bに変更したこと以外は実施例1と同様にしてサンプルを作製した。
 (実施例3)
 図9に示すように、図7(a)における2層のドーナツ状多孔質金属支持体グリーンシート2Bのうち、50μmのドーナツ状多孔質金属支持体グリーンシート2Bを用いなかったこと以外は実施例2と同様にしてサンプルを作製した。
 (実施例4)
 図7(a)における50μmのドーナツ状多孔質金属支持体グリーンシート2Bの2層の代わりに、図10に平面形状を示すように、第1,第2の側壁部分2e,2fを作製するための25μmの多孔質金属支持体グリーンシート2層を用いたこと以外は実施例1と同様にしてサンプルを作製した。
 (比較例)
 図11に示すように、50μmのドーナツ状多孔質金属支持体グリーンシート2Bの2層を用いなかったこと以外は実施例1と同様にしてサンプルを作製した。
 (実施例及び比較例の評価)
 実施例1~4及び比較例において作製したサンプルを下記評価に供した。
 発電特性:ガスシールにはガラス、集電にはPtペーストとPt線を用い、カソード層側には空気、アノード層側にはアルゴンを流しながら昇温し、850℃、1時間でカソード層を焼結させた後、750℃でアノード層に40℃の加湿水素、カソード層側に空気を流して発電特性を評価した。結果を表1に示す。
 剥離の有無:実施例1~4及び比較例のサンプルについて剥離の有無を観察した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4のサンプルでは、剥離が無く、ほぼ同等の発電特性が得られた。実施例1において若干特性が高い結果が得られているが、これはアノード層の側壁を完全に覆っているために、アノード層と多孔質金属支持体の間の電気抵抗が低下したことによる効果と考えられる。
 比較例のサンプルでは、アノード層/多孔質金属支持体間で剥離したため、発電特性は評価できなかった。
1・・・固体酸化物燃料電池
2・・・支持体
2a・・・ベース部
2b・・・側壁部
2c・・・スペース
2d・・・切り欠き部
2e・・・第1の側壁部分
2f・・・第2の側壁部分
2g・・・第3の側壁部分
2A・・・円板状多孔質金属支持体グリーンシート
2B・・・ドーナツ状多孔質金属支持体グリーンシート
3・・・固体酸化物電解質層
3a,4a,5a・・・第1の主面
3b,4b,5b・・・第2の主面
3c,4c,5c・・・第1の側面
4・・・第2の電極層
5・・・第1の電極層
6・・・シール材
7・・・ガス流路形成部
9・・・空気を供給するための入口
10・・・空気の出口
11・・・燃料ガスを供給するための入口
12・・・燃料ガスの出口
13・・・第1の集電端子
14・・・第2の集電端子
15・・・電気炉

Claims (9)

  1.  ベース部と、前記ベース部の上に位置しており、前記ベース部と一体的に連なるように設けられている側壁部とを有し、かつ多孔質の金属からなる支持体と、
     前記支持体の前記ベース部の上に設けられており、第1,第2の主面及び側面を有する第1の電極層と、
     前記第1の電極層の上に設けられており、第1,第2の主面及び側面を有する固体酸化物電解質層と、
     前記固体酸化物電解質層の上に設けられており、第1,第2の主面及び側面を有する第2の電極層とを備え、
     前記支持体の前記ベース部が、前記第1の電極層の第1又は第2の主面と接し、
     前記支持体の側壁部の内側側面が、前記第1の電極層の側面の少なくとも一部に圧縮力を加えるように接しており、
     前記支持体の側壁部が、平面視において、任意の中心線を挟んで一方側に設けられている第1の側壁部分と、他方側に設けられている第2の側壁部分とを有し、
     平面視において、前記第1の側壁部分が前記第1の電極層の側面に加える圧縮力の前記中心線に向かう成分と、前記第2の側壁部分が前記第1の電極層の側面に加える圧縮力の前記中心線に向かう成分とが逆方向である、固体酸化物燃料電池。
  2.  前記支持体の側壁部の内側側面が、前記固体酸化物電解質層の側面の少なくとも一部に圧縮力を加えるように接している、請求項1に記載の固体酸化物燃料電池。
  3.  平面視した場合、前記支持体の側壁部が閉環状である、請求項1又は2に記載の固体酸化物燃料電池。
  4.  前記支持体の側壁部の内側側面が、前記第1の電極層の側面の周方向全長に渡り接している、請求項3に記載の固体酸化物燃料電池。
  5.  前記支持体の側壁部の内側側面が、前記固体酸化物電解質層の側面の周方向全長に渡り接している、請求項3に記載の固体酸化物燃料電池。
  6.  前記支持体の側壁部の内側側面が、前記第1の電極層及び前記固体酸化物電解質層の側面の周方向において、該側面の一部と接している、請求項1又は2に記載の固体酸化物燃料電池。
  7.  前記支持体の熱膨張係数が、前記第1の電極層の熱膨張係数よりも大きい、請求項1~6のいずれか一項に記載の固体酸化物燃料電池。
  8.  前記支持体のベース部が円盤状であり、前記支持体の側壁部が円筒状である、請求項1~7のいずれか一項に記載の固体酸化物燃料電池。
  9.  前記第1の電極層がアノード層であり、前記第2の電極層がカソード層である、請求項1~8のいずれか一項に記載の固体酸化物燃料電池。
PCT/JP2014/080640 2013-11-26 2014-11-19 固体酸化物燃料電池 WO2015079995A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015550669A JP5999276B2 (ja) 2013-11-26 2014-11-19 固体酸化物燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013243789 2013-11-26
JP2013-243789 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015079995A1 true WO2015079995A1 (ja) 2015-06-04

Family

ID=53198939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080640 WO2015079995A1 (ja) 2013-11-26 2014-11-19 固体酸化物燃料電池

Country Status (2)

Country Link
JP (1) JP5999276B2 (ja)
WO (1) WO2015079995A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115301A (ja) * 2001-10-03 2003-04-18 Nissan Motor Co Ltd 燃料電池用単セル及び固体電解質型燃料電池
JP2009087666A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd 固体酸化物形燃料電池用インターコネクター、及びこれを用いたスタック構造
JP2010205534A (ja) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd 燃料電池発電ユニット及び燃料電池スタック
JP2011165379A (ja) * 2010-02-05 2011-08-25 Ngk Insulators Ltd 固体酸化物形燃料電池セル
JP2012216472A (ja) * 2011-04-01 2012-11-08 Konica Minolta Holdings Inc 燃料電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115301A (ja) * 2001-10-03 2003-04-18 Nissan Motor Co Ltd 燃料電池用単セル及び固体電解質型燃料電池
JP2009087666A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd 固体酸化物形燃料電池用インターコネクター、及びこれを用いたスタック構造
JP2010205534A (ja) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd 燃料電池発電ユニット及び燃料電池スタック
JP2011165379A (ja) * 2010-02-05 2011-08-25 Ngk Insulators Ltd 固体酸化物形燃料電池セル
JP2012216472A (ja) * 2011-04-01 2012-11-08 Konica Minolta Holdings Inc 燃料電池

Also Published As

Publication number Publication date
JPWO2015079995A1 (ja) 2017-03-16
JP5999276B2 (ja) 2016-09-28

Similar Documents

Publication Publication Date Title
TWI761479B (zh) 電化學元件、電化學模組、電化學裝置、能源系統、固態氧化物型燃料電池、及電化學元件之製造方法
CA2987226C (en) Solid oxide fuel cell
JP6678042B2 (ja) 固体酸化物形燃料電池単セル及び固体酸化物形燃料電池スタック
KR20130077808A (ko) 금속지지체형 고체산화물 연료전지용 셀의 제조방법 및 금속지지체형 고체산화물 연료전지용 셀
JP5079991B2 (ja) 燃料電池セル及び燃料電池
JP5686190B2 (ja) 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池の製造方法、固体酸化物形燃料電池モジュールの製造方法、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール
JP5117610B1 (ja) 燃料電池の構造体
JP2016038984A (ja) 固体酸化物形電気化学装置
TWI763804B (zh) 金屬支撐型電化學元件用之附電極層基板、電化學元件、電化學模組、固態氧化物型燃料電池及製造方法
JP5107509B2 (ja) 固体酸化物形燃料電池の製造方法
JP5177847B2 (ja) 電気化学装置
JP2004355814A (ja) 固体酸化物形燃料電池用セル及びその製造方法
JP5999276B2 (ja) 固体酸化物燃料電池
JP6088949B2 (ja) 燃料電池単セルおよびその製造方法
JP5211533B2 (ja) 燃料極用集電材、及びそれを用いた固体酸化物形燃料電池
JP5176362B2 (ja) 固体酸化物形燃料電池用構造体及びこれを用いた固体酸化物形燃料電池
JP5522882B2 (ja) 固体酸化物形燃料電池
JP2016085921A (ja) セル支持体および固体酸化物形燃料電池
JP5981001B1 (ja) 燃料電池
JP2020113503A (ja) 電気化学反応セルスタック
JP2019075197A (ja) 電気化学反応単セル、および、電気化学反応セルスタック
JP5981000B1 (ja) 燃料電池
JP5732180B1 (ja) 燃料電池
JP5703355B2 (ja) 燃料電池
JP2015032427A (ja) 固体酸化物形燃料電池、及び固体酸化物形燃料電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866114

Country of ref document: EP

Kind code of ref document: A1