WO2015079974A1 - グレーティング素子および外部共振器型発光装置 - Google Patents

グレーティング素子および外部共振器型発光装置 Download PDF

Info

Publication number
WO2015079974A1
WO2015079974A1 PCT/JP2014/080478 JP2014080478W WO2015079974A1 WO 2015079974 A1 WO2015079974 A1 WO 2015079974A1 JP 2014080478 W JP2014080478 W JP 2014080478W WO 2015079974 A1 WO2015079974 A1 WO 2015079974A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
wavelength
laser
mode
grating element
Prior art date
Application number
PCT/JP2014/080478
Other languages
English (en)
French (fr)
Inventor
近藤 順悟
山口 省一郎
哲也 江尻
浅井 圭一郎
直剛 岡田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201480063856.1A priority Critical patent/CN105765803B/zh
Priority to EP14865392.6A priority patent/EP3076501B1/en
Priority to JP2015528735A priority patent/JP5936777B2/ja
Publication of WO2015079974A1 publication Critical patent/WO2015079974A1/ja
Priority to US15/163,221 priority patent/US9859684B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/163Single longitudinal mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present invention relates to a grating element and an external resonator type light emitting device using the same.
  • a Fabry-Perot (FP) type is generally used in which an optical resonator is sandwiched between mirrors formed on both end faces of an active layer.
  • FP Fabry-Perot
  • DBR lasers and DFB lasers with monolithic gratings in semiconductor lasers, and external cavity lasers with fiber gratings (FBG) gratings attached to the outside of lasers are used. It can be illustrated. These are the principles of realizing wavelength stable operation by feeding back part of the laser light to the laser by a wavelength selective mirror using Bragg reflection.
  • FBG fiber gratings
  • the DBR laser realizes a resonator by forming irregularities on the waveguide surface on the extension of the waveguide of the active layer to form a mirror by Bragg reflection (Patent Document 1 (Japanese Patent Laid-Open No. 49-128689): Patent) Document 2 (Japanese Patent Laid-Open No. 56-148880). Since this laser is provided with diffraction gratings at both ends of the optical waveguide layer, the light emitted from the active layer propagates through the optical waveguide layer, a part of which is reflected by this diffraction grating, returns to the current injection part, and is amplified. Is done. Since only one wavelength of light reflects in the direction determined from the diffraction grating, the wavelength of the laser light is constant.
  • an external resonator type semiconductor laser has been developed in which a diffraction grating is a component different from a semiconductor and a resonator is formed externally.
  • This type of laser is a laser with good wavelength stability, temperature stability, and controllability.
  • the external resonator includes a fiber Bragg grating (FBG) (Non-patent Document 1) and a volume hologram grating (VHG) (Non-patent Document 2). Since the diffraction grating is composed of a separate member from the semiconductor laser, it has the feature that the reflectance and resonator length can be individually designed, and it is not affected by the temperature rise due to heat generation due to current injection. Can be better. Moreover, since the temperature change of the refractive index of the semiconductor is different, the temperature stability can be improved by designing it together with the resonator length.
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-134833 discloses an external resonator type laser using a grating formed in a quartz glass waveguide. This is to provide a frequency stabilized laser that can be used in an environment where the room temperature changes greatly (for example, 30 ° C. or more) without a temperature controller. Further, it is described that a temperature-independent laser in which mode hopping is suppressed and the oscillation frequency is not temperature-dependent is provided.
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2010-171252 discloses an optical waveguide having SiO 2 , SiO 1-x N x (x is 0.55 to 0.65), or Si and SiN as a core layer, and the optical waveguide. Discloses an external cavity laser in which a grating is formed. This is an external cavity laser that keeps the oscillation wavelength constant without precise temperature control, and is premised on reducing the temperature change rate of the reflection wavelength of the diffraction grating (temperature coefficient of the Bragg reflection wavelength). In addition, it is described that the power stability can be realized by setting the laser oscillation to the longitudinal mode: multi-mode.
  • Patent Document 9 discloses an external cavity laser using a grating formed on an optical waveguide made of quartz, InP, GaAs, LiNbO 3 , LiTaO 3 , or polyimide resin. This is because the reflectance at the light emission surface of the semiconductor laser as the light source is the effective reflectance R e (substantially 0.1 to 38.4%), and the laser oscillation is set to the longitudinal mode: multimode. It is described that power stability can be realized.
  • Non-Patent Document 1 mentions a mode hop mechanism that impairs the wavelength stability associated with a temperature rise, and an improvement measure thereof.
  • the wavelength variation ⁇ s of the external cavity laser due to the temperature is the change in refractive index ⁇ na of the active layer region of the semiconductor, the length La of the active layer, the refractive index variation ⁇ nf of the FBG region, the length Lf, and the temperature variation ⁇ Ta.
  • ⁇ Tf is expressed by the following equation from the standing wave condition.
  • ⁇ 0 represents the grating reflection wavelength in the initial state.
  • ⁇ G the change ⁇ G in the grating reflection wavelength is expressed by the following equation.
  • the longitudinal mode interval ⁇ is approximately expressed by the following equation.
  • Mathematical formula 5 is established from mathematical formulas 3 and 4.
  • Mode hop is a phenomenon in which the oscillation mode (longitudinal mode) in the resonator changes from one mode to another.
  • the gain and resonator conditions change, the laser oscillation wavelength changes, and the problem arises that optical power fluctuates, which is called kink. Therefore, in the case of an FP type GaAs semiconductor laser, the wavelength usually changes with a temperature coefficient of 0.3 nm / ° C., but when a mode hop occurs, a larger fluctuation occurs. At the same time, the output fluctuates by 5% or more.
  • Patent Document 6 in order to make the temperature independent, the conventional resonator structure is left as it is, and stress is applied to the optical waveguide layer to compensate for the temperature coefficient due to thermal expansion, thereby realizing temperature independence. is doing. For this reason, a metal plate is attached to the element, and a layer for adjusting the temperature coefficient is added to the waveguide. For this reason, there exists a problem that a resonator structure becomes still larger.
  • the present inventor has disclosed an external resonator type laser structure using an optical waveguide grating element in Patent Document 7.
  • Patent Document 7 when the full width at half maximum ⁇ G of the reflection characteristic of the grating element satisfies a specific equation, laser oscillation with high wavelength stability and no power fluctuation is possible without temperature control.
  • An object of the present invention is to suppress mode hopping, increase wavelength stability, and suppress fluctuations in optical power without using a Peltier element.
  • the grating element according to the present invention is Support substrate, An optical material layer provided on the support substrate and having a thickness of 0.5 ⁇ m or more and 3.0 ⁇ m or less; A ridge-type optical waveguide formed by a pair of ridge grooves in the optical material layer, the ridge-type optical waveguide having an incident surface on which a semiconductor laser beam is incident and an emission surface that emits an emitted light of a desired wavelength; A Bragg grating made of irregularities formed in the ridge-type optical waveguide, and a propagation part provided between the incident surface and the Bragg grating.
  • the following formulas (1) to (4) The relationship is satisfied.
  • ⁇ G is the full width at half maximum at the peak of the Bragg reflectivity.
  • L b is the length of the Bragg grating.
  • td is the depth of the unevenness constituting the Bragg grating.
  • n b is the refractive index of the material constituting the Bragg grating.
  • the present invention also relates to an external resonator type light emitting device including a light source that oscillates a semiconductor laser beam and a grating element that constitutes the light source and an external resonator,
  • the light source includes an active layer that oscillates the semiconductor laser light, and the grating element is the above-described one.
  • quartz has a small temperature coefficient of refractive index, so d ⁇ G / dT is small and
  • DELTA temperature range
  • a material having a refractive index of 1.8 or more of the waveguide substrate on which the grating is formed is used.
  • the temperature coefficient of the refractive index can be increased and d ⁇ G / dT can be increased. Therefore,
  • the full width at half maximum ⁇ G at the peak of the Bragg reflectivity is set larger, contrary to the common sense of those skilled in the art.
  • the wavelength interval (longitudinal mode interval) that satisfies the phase condition. For this reason, since it is necessary to shorten the resonator length, the length Lb of the grating element is shortened to 300 ⁇ m or less.
  • the number of longitudinal modes can be adjusted to 2-5. That is, the wavelengths satisfying the phase condition are discrete, and when the number of longitudinal modes in ⁇ G is 2 or more and 5 or less, mode hops are repeated in ⁇ G , and It will not come off. For this reason, since a large mode hop does not occur, it has been found that the wavelength stability can be increased and the optical power fluctuation can be suppressed, and the present invention has been achieved.
  • FIG. 1 is a schematic diagram of an external resonator type light emitting device. It is a cross-sectional view of a grating element. It is a perspective view which shows a grating element typically. It is a cross-sectional view of another grating element. It is a schematic diagram of the external resonator type light-emitting device which concerns on other embodiment. It is a figure explaining the form of the mode hop by a prior art example. It is a figure explaining the form of the mode hop by a prior art example. The reflection characteristic result in Example 1 is shown. The results of the reflectance and the half width of reflection in the first embodiment with a grating length of 10 ⁇ m to 1000 ⁇ m are shown.
  • Example 2 The results of the reflectance and the full width at half maximum when the grating groove depth is 200 nm and 350 nm and the grating length is 100 ⁇ m or more in Example 1 are shown.
  • the results of the reflectance and the half width at a grating length of 50 to 1000 ⁇ m when the grating groove depth is 20, 40, and 60 nm in Example 1 are shown.
  • the reflection characteristic in Example 3 is shown.
  • the example of discrete phase conditions in this invention is shown.
  • Example 4 the spectrum of the light quantity of a light source and the spectrum of the apparatus obtained by adding a grating element to this light source are shown. It is a figure explaining laser oscillation conditions.
  • An external resonator type light emitting device 1 schematically shown in FIG. 1 includes a light source 2 that oscillates a semiconductor laser beam and a grating element 9.
  • the light source 2 and the grating element 9 are mounted on the common substrate 3.
  • the light source 2 includes an active layer 5 that oscillates semiconductor laser light.
  • the active layer 5 is provided on the substrate 4.
  • a reflective film 6 is provided on the outer end face of the substrate 4, and a non-reflective layer 7 A is formed on the end face of the active layer 5 on the grating element side.
  • the light source 2 may oscillate alone.
  • laser oscillation alone means that laser oscillation can be performed without configuring a grating element and an external resonator.
  • the light source 2 has a single mode oscillation in the longitudinal mode.
  • the reflection characteristics can have wavelength dependency. Therefore, by controlling the wavelength-dependent shape of the reflection characteristics, the light source 2 can oscillate in a single mode from an external resonator even when the longitudinal mode oscillates in multimode.
  • a highly reflective film 6 is provided on the outer end face of the base 4, and a film having a reflectance smaller than the reflectance of the grating is formed on the end face 7 A on the grating element side.
  • the grating element 7 is provided with an optical material layer 11 having an incident surface 11 a on which the semiconductor laser light A is incident and an emission surface 11 b that emits the emitted light B having a desired wavelength. . C is reflected light.
  • a Bragg grating 12 is formed in the optical material layer 11.
  • a propagation part 13 without a diffraction grating is provided between the incident surface 11 a of the optical material layer 11 and the Bragg grating 12, and the propagation part 13 faces the active layer 5 with a gap 14 therebetween.
  • Reference numeral 7B denotes an antireflective film provided on the incident surface side of the optical material layer 11
  • reference numeral 7C denotes an antireflective film provided on the output surface side of the optical material layer 11.
  • the optical material layer 18 is a ridge type optical waveguide and is provided on the optical material layer 11.
  • the optical material layer 11 may be formed on the same surface as the Bragg grating 12 or may be formed on an opposite surface.
  • the reflectance of the non-reflective layers 7A, 7B, and 7C may be a value smaller than the grating reflectance, and is preferably 0.1% or less. However, as long as the reflectance at the end face is smaller than the grating reflectance, the non-reflective layer may be omitted and a reflective film may be used.
  • the optical material layer 11 is formed on the substrate 10 via the adhesive layer 15 and the lower buffer layer 16, and the upper buffer layer 17 is formed on the optical material layer 11. ing.
  • a pair of ridge grooves 19 are formed in the optical material layer 11, and a ridge-type optical waveguide 18 is formed between the ridge grooves.
  • the ridge groove 19 has a structure that does not completely cut the optical material layer 11. That is, a thin portion 11e is formed under each ridge groove 19, and an extending portion 11f is formed outside each thin portion 11e. In the present invention, the ridge groove 19 does not completely cut the optical material layer 11, and the thin portion 11e remains between the bottom surface of the ridge groove 19 and the buffer layer.
  • the Bragg grating may be formed on the flat surface 11c or may be formed on the 11d surface. From the viewpoint of reducing the shape variation of the Bragg grating and the ridge groove, it is preferable to provide the Bragg grating and the ridge groove 19 on the opposite side of the substrate by forming the Bragg grating on the 11c surface.
  • Such a ridge-type optical waveguide has less light confinement than a structure in which the ridge groove is completely cut (a structure in which the thin portion 11e is not provided and the extension portion 11d is formed). can do. For this reason, even if the spot shape of light becomes large, the fundamental mode can be excited without exciting the transverse mode: multi-mode.
  • Conventional grating elements use a core layer in which an optical material layer is completely cut as an optical waveguide.
  • the optical waveguide disclosed in Patent Document 8 forms this cut core layer.
  • the core layer is SiO x N 1-x and the cladding layer is SiO 2
  • the core has a width of 1.2 ⁇ m and a thickness of 0.4 ⁇ m.
  • Si / SiN having a higher refractive index is used as the core layer and SiO 2 is used for the cladding layer
  • the core width is 0.28 ⁇ m and the thickness is 0.255 ⁇ m, and the size is reduced. .
  • the optical confinement of the optical waveguide is strong, it is considered that the size is reduced in order to excite only the light whose fundamental mode is the fundamental mode.
  • Patent Document 9 discloses a diffusion waveguide and a proton exchange waveguide.
  • the spot shape depends on the diffusion distribution of doped Ti and protons, the refractive index difference between the core and the clad cannot be increased, and the light confinement is higher than that of the ridge optical waveguide. Becomes even smaller. For this reason, the horizontal / vertical aspect ratio of the spot shape cannot be increased, and the shape control is difficult.
  • the optical waveguide of the grating element is preferably a fundamental mode waveguide so that the multimode is not excited by laser light.
  • FIG. 16 shows that when the optical material layer is Ta 2 O 5 and the refractive index is 2.08, the thickness T s is 1.2 ⁇ m, and the ridge width Wm is 3 ⁇ m, the groove depth Tr is changed from 0.1 ⁇ m to 1.2 ⁇ m.
  • Tr when Tr is 0.1 to 0.4 ⁇ m, light leaks to the substrate and propagates in the substrate mode.
  • Tr is from 0.5 to 1.1 ⁇ m, the effective refractive index does not change and propagates in the ridge waveguide mode.
  • Tr when the completely cut Tr is 1.2 ⁇ m, the effective refractive index increases and the confinement becomes stronger.
  • FIG. 17 shows the calculation results of the spot sizes in the horizontal and vertical directions of the fundamental mode of the optical waveguide calculated in FIG. From this result, it can be seen that when Tr is increased, the spot size in the horizontal direction is reduced and confinement is enhanced. Thereafter, the spot shape in the horizontal direction hardly changes from Tr of 0.5 ⁇ m to 1.2 ⁇ m which is completely cut. In addition, it can be seen that the vertical direction does not depend on Tr and becomes a substantially constant value.
  • the light spot shape of the grating element is preferably larger than the spot shape of the laser light, and the thickness Ts of the optical material layer is 0.5 ⁇ m or more is preferable. Further, if the thickness Ts is large, it is difficult to suppress the influence of the multimode. From this viewpoint, the thickness Ts of the optical material layer is preferably 3 ⁇ m or less, and more preferably 2.5 ⁇ m or less.
  • T r / T s is preferably 0.4 or more, and preferably 0.9 or less.
  • the transverse mode: fundamental mode is preferable as described above.
  • the thickness of the optical material layer is preferably 0.5 ⁇ m or more, and the waveguide easily becomes multimode.
  • the transverse mode of light emitted from the optical waveguide is multimode
  • the difference in effective refractive index between the fundamental mode and the higher order mode is increased and the reflection wavelength of the higher order mode can be shifted out of the gain range of the laser, fundamental mode light can be obtained without causing laser oscillation in the higher order mode.
  • the difference in reflection wavelength between the fundamental mode and the higher order mode is preferably 2.5 nm or more, and more preferably 3 nm or more.
  • the fundamental mode light can be obtained more easily because the laser gain range is small and the oscillation wavelength range is narrow.
  • T r / T s is preferably 0.4 or more as a lower limit, and more preferably 0.55.
  • the upper limit is preferably 0.9 or less, and more preferably 0.75 or less.
  • the optical material layer 11 is formed on the substrate 10 via the adhesive layer 15 and the lower buffer layer 16, and the upper buffer layer 17 is formed on the optical material layer 11. Yes.
  • a pair of ridge grooves 19 are formed on the substrate 10 side of the optical material layer 11, and a ridge-type optical waveguide 18 is formed between the ridge grooves 19.
  • the Bragg grating may be formed on the flat surface 11c side, or may be formed on the 11d surface having the ridge groove.
  • the Bragg grating and the ridge groove 19 are provided on the opposite side of the substrate by forming the Bragg grating on the flat surface 11c surface side.
  • the upper buffer layer 17 may be omitted, and in this case, the air layer can directly contact the grating.
  • the difference in refractive index can be increased without the presence of a grating groove, and the reflectance can be increased with a short grating length.
  • FIG. 5 shows an apparatus 1A according to another embodiment. Most of the apparatus 1A is the same as the apparatus 1 of FIG.
  • the light source 2 includes an active layer 5 that oscillates laser light.
  • the antireflection layer 7A is not provided on the end surface of the active layer 5 on the grating element 9 side, and a reflective film 20 is formed instead.
  • the oscillation wavelength of the laser light is determined by the wavelength reflected by the grating. If the reflected light from the grating and the reflected light from the end face of the active layer 5 on the grating element side exceed the laser gain threshold, the oscillation condition is satisfied. Thereby, a laser beam with high wavelength stability can be obtained.
  • the feedback amount from the grating may be increased.
  • the reflectance of the grating is preferably larger than the reflectance at the end face of the active layer 5.
  • a laser with a highly reliable GaAs-based or InP-based material is suitable.
  • a GaAs laser that oscillates near a wavelength of 1064 nm is used. Since GaAs-based and InP-based lasers have high reliability, a light source such as a one-dimensionally arranged laser array can be realized. It may be a super luminescence diode or a semiconductor optical amplifier (SOA).
  • the center wavelength of the light source 2 is particularly preferably 990 nm or less in order to improve wavelength stability.
  • the center wavelength of the light source 2 is particularly preferably 780 nm or more in order to improve the wavelength stability.
  • the material and wavelength of the active layer can be selected as appropriate.
  • Non-Patent Document 3 Furukawa Electric Times, January 2000, No. 105, p24-29
  • a ridge-type optical waveguide is obtained by, for example, physical processing and molding by cutting with an outer peripheral blade or laser ablation processing.
  • the Bragg grating can be formed by physical or chemical etching as follows.
  • a metal film such as Ni or Ti is formed on a high refractive index substrate, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
  • At least one selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc) and indium (In) is used to further improve the optical damage resistance of the optical waveguide.
  • Metal elements may be included, in which case magnesium is particularly preferred.
  • the crystal can contain a rare earth element as a doping component. As the rare earth element, Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.
  • the material of the adhesive layer may be an inorganic adhesive, an organic adhesive, or a combination of an inorganic adhesive and an organic adhesive.
  • the optical material layer 11 may be formed by forming a film on a support base by a thin film forming method.
  • a thin film forming method include sputtering, vapor deposition, and CVD.
  • the optical material layer 11 is directly formed on the support substrate, and the above-described adhesive layer does not exist.
  • the specific material of the support substrate is not particularly limited, and examples thereof include glass such as lithium niobate, lithium tantalate, and quartz glass, quartz, Si, sapphire, aluminum nitride, and SiC.
  • the reflectance of the non-reflective layer must be less than or equal to the grating reflectivity.
  • a film laminated with an oxide such as silicon dioxide or tantalum pentoxide, or metal is also used. Is possible.
  • each end face of the light source element and the grating element may be cut obliquely in order to suppress the end face reflection.
  • the grating element and the support substrate are bonded and fixed in the example of FIG. 2, they may be directly bonded.
  • the oscillation condition of the semiconductor laser is determined by gain condition ⁇ phase condition as shown in the following equation.
  • ⁇ a, ⁇ g, ⁇ wg, ⁇ gr are the active layer, the gap between the semiconductor laser and the waveguide, the unprocessed waveguide portion on the input side, and the loss coefficient of the grating portion, respectively
  • La, Lg, Lwg, Lgr Are the length of the active layer, the gap between the semiconductor laser and the waveguide, the unprocessed waveguide section on the input side, and the grating section, respectively
  • r1 and r2 are the mirror reflectivities (r2 is the reflectivity of the grating)
  • Cout is a coupling loss between the grating element and the light source
  • ⁇ t g t is a gain threshold of the laser medium
  • ⁇ 1 is a phase change amount by the laser side reflection mirror
  • ⁇ 2 is a grating portion The phase change amount at.
  • the gain condition when the gain ⁇ t g th (gain threshold value) of the laser medium exceeds the loss, it indicates that laser oscillation occurs.
  • the gain curve (wavelength dependence) of the laser medium has a full width at half maximum of 50 nm or more and has broad characteristics. Further, since the loss part (right side) has almost no wavelength dependence other than the reflectance of the grating, the gain condition is determined by the grating. For this reason, in the comparison table, the gain condition can be considered only by the grating.
  • phase condition is expressed by the following equation from the equation (2-1).
  • ⁇ 1 is zero.
  • the external resonator type laser a product using a quartz glass waveguide or FBG as an external resonator has been commercialized.
  • the length of the grating portion is 1 mm.
  • the phase condition, the wavelength which satisfies become discrete, in ⁇ lambda G, are designed to be (2-3) equation points 2-3. For this reason, the thing with a long active layer length of a laser medium is needed, and the thing of 1 mm or more is used.
  • the external cavity laser has a feature of high wavelength stability.
  • the equivalent refractive index of the light source is 3.6
  • the temperature change of the refractive index is 3 ⁇ 10-4 / ° C
  • the spectral waveform of the laser light thus laser-oscillated has a line width of 0.2 nm or less.
  • the laser oscillation wavelength by an external resonator at room temperature of 25 ° C. should be shorter than the center wavelength of the grating reflectivity. preferable. In this case, as the temperature rises, the laser oscillation wavelength shifts to the longer wavelength side and laser oscillation occurs on the longer wavelength side than the center wavelength of the grating reflectivity.
  • the laser oscillation wavelength by the external resonator at room temperature of 25 ° C. is longer than the oscillation wavelength of the light source 2 at the same temperature. It is preferable to oscillate at. In this case, as the temperature rises, the laser oscillation wavelength by the external resonator oscillates on the shorter wavelength side than the oscillation wavelength of the light source 2.
  • the difference between the laser oscillation wavelength by the external resonator at room temperature and the oscillation wavelength of the light source 2 is preferably 0.5 nm or more, and may be 2 nm or more, from the viewpoint of widening the temperature tolerance of laser oscillation. However, if the wavelength difference is increased too much, the temperature fluctuation of the power increases, so from this viewpoint, it is preferably 10 nm or less, and more preferably 6 nm or less.
  • ⁇ G TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
  • Previously used ⁇ lambda equals ⁇ G TM, ⁇ s is equal to lambda TM.
  • T mh is about 5 ° C. For this reason, mode hops are likely to occur. Therefore, when a mode hop occurs, the power fluctuates based on the reflection characteristics of the grating and fluctuates by 5% or more.
  • the conventional external cavity laser using the glass waveguide or FBG performs temperature control using the Peltier element.
  • the present invention uses a grating element having a small denominator of the equation (2-4) as a precondition.
  • the denominator of the formula (2-4) is preferably 0.03 nm / ° C. or less.
  • Specific optical material layers include gallium arsenide (GaAs), lithium niobate (LN), and tantalum oxide (Ta 2 O 5 ), Zinc oxide (ZnO), and alumina oxide (Al 2 O 3 ) are preferable.
  • a grating length Lb for example 100 ⁇ m in order to increase the ⁇ lambda G is La in order to increase the ⁇ G TM is set to 250 ⁇ m, for example.
  • the refractive index n b of the material of the Bragg grating is 1.8 or more.
  • a material having a lower refractive index such as quartz, has been generally used.
  • the refractive index of the material constituting the Bragg grating is increased. This is because a material with a large refractive index has a large temperature change in the refractive index, so that T mh in equation (2-4) can be increased, and the temperature coefficient d ⁇ G / dT of the grating as described above. It is because it can enlarge. From this viewpoint, nb is more preferably 1.9 or more.
  • n b is not particularly, although the grating pitch is 4 or less from the formation becomes too small it is difficult, it is preferably more than 3.6 or less. From the same viewpoint, the equivalent refractive index of the optical waveguide is preferably 3.3 or less.
  • the full width at half maximum ⁇ G at the peak of the Bragg reflectivity is set to 0.8 nm or more (Formula 1).
  • ⁇ G is the Bragg wavelength. That is, as shown in FIG. 6 and FIG. 7, when the reflection wavelength by the Bragg grating is taken on the horizontal axis and the reflectance is taken on the vertical axis, the wavelength at which the reflectance becomes maximum is the Bragg wavelength. In the peak centered on the Bragg wavelength, the difference between the two wavelengths at which the reflectance is half of the peak is defined as the full width at half maximum ⁇ G.
  • the full width at half maximum ⁇ G at the peak of the Bragg reflectance is set to 0.8 nm or more (formula (1)). This is to make the reflectance peak broad. From this viewpoint, the full width at half maximum ⁇ G is preferably set to 1.2 nm or more, and more preferably set to 1.5 nm or more. The full width at half maximum ⁇ G is 5 nm or less, more preferably 3 nm or less, and preferably 2 nm or less.
  • the length L b of the Bragg grating to 300 ⁇ m or less (equation 2).
  • the length L b of the Bragg grating is a grating length in the direction of the optical axis of the light propagating through the optical waveguide. Be shorter than the Bragg grating length L b below the conventional 300 ⁇ m is a premise of the design concept of the present invention. That is, it is necessary to increase the wavelength interval (longitudinal mode interval) that satisfies the phase condition in order to make mode hopping difficult. For this purpose, it is necessary to shorten the resonator length, and to shorten the length of the grating element. From this viewpoint, it is more preferable that the Bragg grating length L b and 200 ⁇ m or less.
  • Reducing the length of the grating element reduces the loss and can reduce the laser oscillation threshold. As a result, driving with low current, low heat generation, and low energy is possible.
  • the length L b of the grating, in order to obtain a reflectance of 3% or more is preferably at least 5 [mu] m, in order to obtain a reflectance of 5% or more, more preferably more than 10 [mu] m.
  • td is the depth of the unevenness constituting the Bragg grating.
  • ⁇ G can be set to 0.8 nm or more and 250 nm or less, and the number of longitudinal modes can be adjusted to 2 or more and 5 or less in ⁇ G.
  • td is more preferably 30 nm or more, and further preferably 200 nm or less.
  • 150 nm or less is preferable.
  • the reflectance of the grating element is preferably set to 3% or more and 40% or less in order to promote laser oscillation. This reflectivity is more preferably 5% or more in order to further stabilize the output power, and more preferably 25% or less in order to increase the output power.
  • the laser oscillation condition is established from a gain condition and a phase condition. Wavelengths satisfying the phase condition are discrete and are shown in FIG. 13, for example. That is, in the structure of the present application, the oscillation wavelength can be fixed within ⁇ G by bringing the temperature coefficient of the gain curve (0.3 nm / ° C. in the case of GaAs) close to the temperature coefficient d ⁇ G / dT of the grating.
  • ⁇ lambda G number of longitudinal modes are two or more in, when present 5 or less, the oscillation wavelength repeats mode hopping in the ⁇ lambda G, large because it can reduce the probability of laser oscillation outside the ⁇ lambda G There is no mode hop, the wavelength is stable, and the output power can operate stably.
  • length L a of the active layer also to 500 ⁇ m or less length L a of the active layer. From this viewpoint, it is more preferable to set the length L a of the active layer and 300 ⁇ m or less.
  • the length L a of the active layer with a view to increasing the output of the laser it is preferable that the 150 ⁇ m or more.
  • d ⁇ G / dT is the temperature coefficient of the Bragg wavelength.
  • D ⁇ TM / dT is a temperature coefficient of the wavelength that satisfies the phase condition of the external cavity laser.
  • ⁇ TM is a wavelength that satisfies the phase condition of the external cavity laser, that is, a wavelength that satisfies the above-described phase condition of (Equation 2.3). This is called “vertical mode” in this specification.
  • 2 ⁇ neff / ⁇ , where neff is the effective refractive index of the portion, and ⁇ satisfying this is ⁇ TM .
  • ⁇ 2 is the phase change of the Bragg grating, lambda TM is shown in Figure 13.
  • ⁇ G TM is a wavelength interval (longitudinal mode interval) that satisfies the phase condition of the external cavity laser.
  • the numerical value of the formula (6) is more preferably 0.025 or less.
  • the length L WG grating element also to 600 ⁇ m or less.
  • LWG is preferably 400 ⁇ m or less, and more preferably 300 ⁇ m or less. Further, LWG is preferably 50 ⁇ m or more.
  • the distance L g between the light exit surface of the light source and the light guide entrance surface is 1 ⁇ m or more and 10 ⁇ m or less. As a result, stable oscillation is possible.
  • the length L m of the propagation unit is a 100 ⁇ m or less. Furthermore, 40 ⁇ m or less is preferable from the viewpoint of shortening the length of the external resonator. This promotes stable oscillation.
  • the lower limit is not particularly length L m of the propagating portion is preferably not less than 10 [mu] m, more preferably more than 20 [mu] m.
  • Example 1 An element 9 as shown in FIGS. 1 and 2 was produced. Specifically, a waveguide layer was formed by depositing 1.2 ⁇ m of Ta 2 O 5 on a quartz substrate using a sputtering apparatus. Next, Ti was deposited on Ta2O5, and a grating pattern was produced in the y-axis direction by photolithography. Thereafter, grating grooves having a pitch interval of ⁇ 232 nm and lengths of Lb of 5 to 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, and 1000 ⁇ m were formed by fluorine-based reactive ion etching using the Ti pattern as a mask. The groove depth td of the grating was 20, 40, 60, 100, 160, 200, 350 nm. Further, in order to form an optical waveguide for y-axis propagation, grooves with a width of Wm 3 ⁇ m and a Tr of 0.5 ⁇ m were formed by reactive ion etching in the same manner as described above.
  • both ends were optically polished, both ends were formed with a 0.1% AR coat, and finally the chip was cut to produce a grating element.
  • the element size was 1 mm wide and L wg 500 ⁇ m long.
  • Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated from the characteristics. All of the measured reflection center wavelengths of the elements were 945 ⁇ 1 nm.
  • SLD super luminescence diode
  • the reflection characteristic results from the grating length of 30 ⁇ m to 70 ⁇ m are shown in FIG. From this result, it was found that the reflectance decreases as the grating length decreases.
  • the results of the reflectance and the half width of the reflection when the grating length is 10 ⁇ m to 1000 ⁇ m are shown in FIG. From this result, when the grating length is 9 ⁇ m, the reflectance is 2% and the half-value width is 7 nm. However, when the grating length is 10 ⁇ m (17 ⁇ m) or more, the reflectance is 3% (20%) or more, and the half-value width is 6 nm (5 nm) or less.
  • FIG. 10 shows the results of the reflectance and the half-value width when the grating groove depth is 200 nm and 350 nm and the grating length is 100 ⁇ m or more. From this result, at this depth and length, the reflectance and half-value width do not change and cannot be controlled.
  • FIG. 11 shows the results of the reflectivity and the half-value width of the grating length of 50 to 1000 ⁇ m when the grating groove depth is 20, 40 and 60 nm. It can be seen that in this groove depth region, the reflectance can be largely controlled by the grating length. The full width at half maximum tends to increase monotonously when the grating length is 400 ⁇ m or less. At a depth of 20 nm, the half width becomes smaller than 0.8 nm when the grating length is 200 ⁇ m or more.
  • Example 2 Ti was deposited on a z-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the y-axis direction by photolithography. Thereafter, a grating groove having a pitch interval of ⁇ 214 nm and a length of Lb of 100 ⁇ m was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. The groove depth of the grating was set to 20, 40, and 60 nm. In order to form an optical waveguide for y-axis propagation, an excimer laser was used to form a groove with a width of Wm 3 ⁇ m and a Tr of 0.5 ⁇ m in the grating portion.
  • a buffer layer 17 made of SiO 2 was formed on the groove forming surface by a sputtering apparatus to a thickness of 0.5 ⁇ m, and the grating forming surface was bonded using a black LN substrate as a supporting substrate.
  • the black LN substrate side was attached to a polishing surface plate, and the back surface of the LN substrate on which the grating was formed was precisely polished to a thickness (Ts) of 1.2 ⁇ m. Thereafter, the surface plate was removed and the polished surface was sputtered to form a buffer layer 16 made of SiO 2 with a thickness of 0.5 ⁇ m.
  • Black LN is lithium niobate in an oxygen deficient state and can suppress the generation of charges due to pyroelectricity. As a result, it is possible to prevent substrate cracks due to surge resistance when there is a temperature fluctuation.
  • both ends were optically polished, both ends were formed with a 0.1% AR coat, and finally the chip was cut to produce a grating element.
  • the element size was 1 mm wide and L wg 500 ⁇ m long.
  • Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated from the characteristics. The results are shown in FIG.
  • SLD super luminescence diode
  • LN and Ta205 are almost the same.
  • the center wavelength was 945 nm
  • the maximum reflectance was 20%
  • the full width at half maximum ⁇ G was 2 nm.
  • Example 3 Ti was deposited on a y-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the x-axis direction by photolithography. Thereafter, a grating groove having a pitch interval of ⁇ 224 nm and a length of Lb of 100 ⁇ m was formed by fluorine reactive ion etching using the Ti pattern as a mask. The groove depth of the grating was set to 20, 40, and 60 nm. In addition, in order to form an optical waveguide for x-axis propagation, a groove with a width of Wm 3 ⁇ m and a Tr of 0.5 ⁇ m was formed in the grating portion with an excimer laser.
  • a buffer layer 17 made of SiO 2 was formed on the groove forming surface by a sputtering apparatus to a thickness of 0.5 ⁇ m, and the grating forming surface was bonded using a black LN substrate as a supporting substrate.
  • the black LN substrate side was attached to a polishing surface plate, and the back surface of the LN substrate on which the grating was formed was precisely polished to a thickness (Ts) of 1.2 ⁇ m. Thereafter, the surface plate was removed and the polished surface was sputtered to form a buffer layer 16 made of SiO 2 with a thickness of 0.5 ⁇ m.
  • both ends were optically polished, both ends were formed with a 0.1% AR coat, and finally the chip was cut to produce a grating element.
  • the element size was 1 mm wide and L wg 500 ⁇ m long.
  • the optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting the TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer. The reflection characteristics were evaluated from the characteristics. The results are shown in FIG.
  • SLD super luminescence diode
  • the reflectance and the half value width of the element examples 1 to 3 are the same, and the reflectance and the half value width of the LN and TA205 are also the same result.
  • a center wavelength of 945 nm, a maximum reflectance of 20%, and a full width at half maximum ⁇ G of 2 nm were obtained for the TE mode.
  • Example 4 A device as shown in FIG. 4 was produced. Specifically, Ti was deposited on a z-plate MgO-doped lithium niobate crystal substrate, and a grating pattern was produced in the y-axis direction by photolithography. Thereafter, a grating groove having a pitch interval of ⁇ 214 nm and a length of Lb of 100 ⁇ m was formed by fluorine-based reactive ion etching using the Ti pattern as a mask. The groove depth of the grating was 40 nm.
  • an excimer laser was used to form a groove with a width of Wm 3 ⁇ m and a Tr of 0.5 ⁇ m in the grating portion. Further, a buffer layer 16 made of SiO2 was formed to 0.5 ⁇ m on the groove forming surface by a sputtering apparatus, and the grating forming surface was adhered using a black LN substrate as a supporting substrate.
  • the black LN substrate side was attached to a polishing surface plate, and the back surface of the LN substrate on which the grating was formed was precisely polished to a thickness (Ts) of 1.2 ⁇ m. Thereafter, the surface plate was removed, and the buffer layer 17 made of SiO 2 was formed to a thickness of 0.5 ⁇ m by sputtering.
  • both ends were optically polished, both ends were formed with a 0.1% AR coat, and finally the chip was cut to produce a grating element.
  • the element size was 1 mm wide and L wg 500 ⁇ m long.
  • Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
  • SLD super luminescence diode
  • the reflection characteristics were evaluated from the characteristics. As a result, a characteristic with a center wavelength of 945 nm, a maximum reflectance of 20%, and a full width at half maximum ⁇ G of 2 nm with respect to the TE mode was obtained.
  • a laser module was mounted as shown in FIG. 1 in order to evaluate the characteristics of the external cavity laser using this grating element.
  • a light source element having a GaAs laser structure, a highly reflective film on one end face, and an AR coat having a reflectance of 0.1% on the other end face was prepared.
  • Light source element specifications Center wavelength: 950nm Output 20mW Half width: 50nm Laser element length 250 ⁇ m Mounting specifications: Lg: 1 ⁇ m Lm: 20 ⁇ m
  • the module After mounting the module, it was driven by current control (ACC) without using a Peltier element, and it was found that the laser characteristics were center wavelength 945nm and output 50mW.
  • the spectral characteristics of the laser are shown in FIG.
  • a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured.
  • the temperature coefficient of the oscillation wavelength was 0.05 nm / ° C.
  • the temperature range where the output fluctuation due to the mode hop was large was 80 ° C.
  • the power output fluctuation within this temperature range was within 1% even when the mode hop occurred.
  • Example 5 A grating groove having a pitch interval of ⁇ 222 nm and a length of Lb of 100 ⁇ m was formed in the same manner as in Example 4.
  • the grating groove depth was 40 nm.
  • Optical characteristics of the grating element are reflected from its transmission characteristics by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting light into the grating element and analyzing the output light with an optical spectrum analyzer. Characteristics were evaluated. As a result, with respect to the TE mode, a center wavelength of 975 nm, a maximum reflectance of 20%, and a full width at half maximum ⁇ G of 2 nm were obtained.
  • SLD super luminescence diode
  • the light source element was a normal GaAs laser, and the exit end face was not coated with AR.
  • Light source element specifications Center wavelength: 977nm Output: 50mW Half width: 0.1nm Laser element length 250 ⁇ m Mounting specifications: Lg: 1 ⁇ m Lm: 20 ⁇ m
  • the module After mounting the module, when driven by current control (ACC) without using a Peltier element, it oscillates at a center wavelength of 975 nm corresponding to the reflection wavelength of the grating, and the output is smaller than that without the grating element, but a 40 mW laser It was a characteristic.
  • ACC current control
  • a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured. As a result, the temperature coefficient of the oscillation wavelength was 0.05 nm / ° C., the temperature range where the output fluctuation due to the mode hop was large was 80 ° C., and the power output fluctuation within this temperature range was within 1% even when the mode hop occurred.
  • Example 5 In Example 5, when there was no grating element, the temperature coefficient of the laser oscillation wavelength was large at 0.3 nm / ° C., and the mode hop temperature was about 10 ° C. At 10 ° C or higher, the power fluctuation became large, and the output fluctuation became 10% or more.
  • Example 6 A waveguide layer was formed by depositing 1.2 ⁇ m of Ta 2 O 5 on a quartz substrate using a sputtering apparatus. Next, Ni was deposited on Ta2O5, and a grating pattern was produced in the y-axis direction by photolithography. Thereafter, grating grooves having a pitch interval of ⁇ 232 nm and a length of Lb of 100 ⁇ m were formed by fluorine-based reactive ion etching using the Ni pattern as a mask. The grating groove depth was 40 nm. Next, an optical waveguide having the shape shown in FIGS. 2 and 3 was formed by reactive ion etching in the same manner as described above.
  • Optical characteristics of the grating element are reflected from its transmission characteristics by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting light into the grating element and analyzing the output light with an optical spectrum analyzer. Characteristics were evaluated. As a result, a characteristic with a center wavelength of 945 nm, a maximum reflectance of 20%, and a full width at half maximum ⁇ G of 2 nm with respect to the TE mode was obtained.
  • SLD super luminescence diode
  • the light source element was a normal GaAs laser, and a 0.1% AR coat was formed on the emission end face.
  • Light source element specifications Center wavelength: 950nm Output: 20mW Half width: 50nm Laser element length 250 ⁇ m Mounting specifications: Lg: 1 ⁇ m Lm: 20 ⁇ m
  • the module When the module was mounted and driven by current control (ACC) without using a Peltier device, it oscillated at a central wavelength of 945 nm corresponding to the reflection wavelength of the grating, and the output was 50 mW.
  • ACC current control
  • a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured.
  • the temperature coefficient of the oscillation wavelength was 0.03 nm / ° C.
  • the temperature range where the output fluctuation due to the mode hop was large was 50 ° C.
  • the power output fluctuation in that temperature range was within 1% even when the mode hop occurred.
  • Example 7 A waveguide layer 11 was formed by depositing 2 ⁇ m of Ta 2 O 5 on a support substrate 10 made of quartz by a sputtering apparatus. Next, Ni was deposited on the waveguide layer 11 made of Ta2O5, and a grating pattern was produced in the y-axis direction by photolithography. Thereafter, a grating groove having a pitch interval of ⁇ 228 nm and a length of Lb of 100 ⁇ m was formed by fluorine-based reactive ion etching using the Ni pattern as a mask. The groove depth of the grating was 140 nm.
  • the optical waveguide 18 having the shape shown in FIGS. 2 and 3 was formed by reactive ion etching in the same manner as described above.
  • Optical characteristics of the grating element are reflected from its transmission characteristics by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting light into the grating element and analyzing the output light with an optical spectrum analyzer. Characteristics were evaluated. As a result, a characteristic with a center wavelength of 945 nm, a maximum reflectance of 20%, and a full width at half maximum ⁇ G of 2 nm with respect to the TE mode was obtained. Apart from this, reflection peaks were observed at a plurality of wavelengths on the short wavelength side.
  • SLD super luminescence diode
  • the transverse mode of the light emitted from the optical waveguide becomes a multimode. That is, in the case of the multimode, the effective refractive index and the equivalent refractive index are smaller than those of the fundamental mode, and therefore it can be inferred that a reflection peak due to the multimode appears on the short wavelength side.
  • the near field pattern of the optical waveguide was observed. As a result, although the fundamental mode was excited, it was confirmed that the multimode was excited when the axis was shifted, and it was confirmed as a multimode waveguide.
  • the light source element was a normal GaAs laser, and the exit end face was not coated with AR.
  • Light source element specifications Center wavelength: 977nm Output: 50mW Half width: 0.1nm Laser element length 250 ⁇ m Mounting specifications: Lg: 1 ⁇ m Lm: 20 ⁇ m
  • the module After mounting the module, it was driven by current control (ACC) without using a Peltier device, and oscillated at a central wavelength of 975 nm corresponding to the reflection wavelength of the grating.
  • the transverse mode of the laser light oscillated from this module was the fundamental mode.
  • the laser beam output was smaller than that without the grating element, but the laser characteristic was 40 mW.
  • a module was installed in a thermostat and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured.
  • the temperature coefficient of the oscillation wavelength was 0.03 nm / ° C.
  • the temperature range where the output fluctuation due to the mode hop was large was 50 ° C.
  • the power output fluctuation in this temperature range was within 1% even when the mode hop occurred.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

【課題】ペルチェ素子を使用することなく、モードホップを抑制し、波長安定性を高くし、光パワー変動を抑制できるようにする。 【解決手段】グレーティング素子1は、支持基板10、支持基板上に設けられ、厚さ0.5μm以上、3.0μm以下の光学材料層11、前記光学材料層に一対のリッジ溝によって形成されているリッジ型光導波路であって、半導体レーザ光が入射する入射面と所望波長の出射光を出射する出射面を有するリッジ型光導波路、光導波路内に形成された凹凸からなるブラッググレーティング12、および入射面とブラッググレーティングとの間に設けられている伝搬部13を備える。式(1)~式(4)の関係が満足される。0.8nm≦△λG≦6.0nm・・・(1):10μm≦L≦300μm・・・(2):20nm≦td≦250nm・・・(3):n≧1.8・・・(4)

Description

グレーティング素子および外部共振器型発光装置
 本発明は、グレーティング素子、およびこれを用いた外部共振器型発光装置に関するものである。
 半導体レーザは、一般的に、活性層の両端面に形成したミラーで挟まれた光共振器を構成した、ファブリ-ペロー(FP)型が利用されている。しかしながら、このFP型レーザは、定在波条件が成立する波長で発振するために、縦モードが多モードになりやすく、とくに電流や温度が変化すると発振波長が変化し、それにより光強度が変化する。
 このため、光通信やガスセンシングなどの目的では、波長安定性の高い単一モード発振のレーザが必要である。このため、分布帰還型(DFB)レーザや分布反射型(DBR)レーザが開発された。これらのレーザは、半導体中に回折格子を設け、その波長依存性を利用して特定の波長のみを発振させるものである。
 波長安定性のある半導体レーザを実現するために、グレーティングを半導体レーザの中にモノリシックに形成したDBRレーザやDFBレーザ、またファイバーグレーティング(FBG)グレーティングをレーザの外部に取り付けた外部共振器型レーザが例示できる。これらは、ブラッグ反射を利用した波長選択性のあるミラーによりレーザ光の一部をレーザに帰還して波長安定動作を実現する原理である。
 DBRレーザは、活性層の導波路の延長上の導波路面に凹凸を形成しブラッグ反射によるミラーを構成し、共振器を実現している(特許文献1(特開昭49-128689):特許文献2(特開昭56-148880))。このレーザは、光導波層の両端に回折格子が設けられているので、活性層で発光した光は光導波層を伝搬し、この回折格子で一部が反射され、電流注入部に戻り、増幅される。回折格子から決められた方向に反射するのは、一つの波長の光だけであるので、レーザ光の波長は一定になる。
 また、この応用として、回折格子を、半導体とは異なる部品とし、外部で共振器を形成する、外部共振器型半導体レーザが開発されている。このタイプのレーザは、波長安定性、温度安定性、制御性がよいレーザとなる。外部共振器は、ファイバ・ブラッグ・グレーティング(FBG)(非特許文献1)や、ボリューム・ホログラム・グレーティング(VHG)(非特許文献2)がある。回折格子を、半導体レーザとは別部材で構成するので、反射率、共振器長を個別に設計できるという特徴があり、電流注入による発熱による温度上昇の影響を受けないので、波長安定性をさらに良くすることができる。また、半導体の屈折率の温度変化が異なるので共振器長と合わせて設計することにより、温度安定性を高めることができる。
 特許文献6(特開2002-134833)には、石英ガラス導波路に形成したグレーティングを利用した外部共振器型レーザが開示されている。これは温度コントローラなしで室温が大きく(例えば30℃以上)変化する環境で使える、周波数安定化レーザを提供しようとするものである。また、モードホッピングが抑圧され、かつ発振周波数の温度依存性がない温度無依存レーザを提供することが記載されている。
特許文献8(特開2010-171252)には、SiO、SiO1-x(xは0.55乃至0.65)、あるいはSiとSiNをコア層とする光導波路、およびこの光導波路にグレーティングを形成した外部共振器型レーザが開示されている。これは精密な温度制御なしで発振波長を一定に保つ外部共振器レーザで、回折格子の反射波長の温度変化率(ブラッグ反射波長の温度係数)を小さくすることを前提条件としている。その上でレーザ発振を縦モード:マルチモードとすることでパワー安定性を実現できることが記載されている。
特許文献9(特許第3667209)には、石英、InP、GaAs、LiNbO、LiTaO、ポリイミド樹脂とする光導波路に形成したグレーティングを利用した外部共振器レーザが開示されている。これは、光源である半導体レーザの光射出面における反射率が実効反射率R(実質的に0.1~38.4%)であり、その上でレーザ発振を縦モード:マルチモードとすることでパワー安定性を実現できることが記載されている。
特開昭49-128689 特開昭56-148880 WO2013/034813 特開2000-082864 特開2006-222399 特開2002-134833 特願2013-120999 特開2010-171252 特許第3667209
電子情報通信学会論文誌 C‐II Vol.J81, No.7 pp.664-665, 1998年7月 電子情報通信学会技術研究報告 LQE, 2005年 105巻 52号 pp.17-20 古河電工時報 平成12年1月 第105号 p24-29
 非特許文献1には、温度上昇に伴う波長安定性を損なうモードホップのメカニズムと、その改善策について言及している。温度による外部共振器レーザの波長変化量δλsは、半導体の活性層領域の屈折率変化△na、活性層の長さLa、FBG領域の屈折率変化△nf、長さLf、それぞれの温度変化δTa、δTfに対して、定在波条件より下式により表される。
Figure JPOXMLDOC01-appb-M000002
 
 
 ここで、λ0は初期状態でのグレーティング反射波長を表す。
 また、グレーティング反射波長の変化δλGは、下式で表される。
Figure JPOXMLDOC01-appb-M000003
 
 
 モードホップは、外部共振器の縦モード間隔△λが波長変化量δλsとグレーティング反射波長の変化量δλGの差に等しくなったときに発生するので、次式が成立する。
Figure JPOXMLDOC01-appb-M000004
 
 
 縦モード間隔△λは、近似的に下式となる。
Figure JPOXMLDOC01-appb-M000005
 
 
 数式3と数式4より、数式5が成立する。
Figure JPOXMLDOC01-appb-M000006
 
 
 モードホップを抑制するためには、△Tall以下の温度内で使用する必要があり、ペルチェ素子にて温度制御している。数式5では、活性層とグレーティング層の屈折率変化が同じ場合(△na/na=△nf/nf)、分母が零になり、モードホップが生じる温度が無限大になり、モードホップがなくなることを示している。しかしながら、モノリシックDBRレーザでは、レーザ発振させるために、活性層は電流注入がなされるために、活性層とグレーティング層の屈折率変化は一致させることができないので、モードホップが生じてしまう。
 モードホップは、共振器内の発振モード(縦モード)が、あるモードから違うモードに移る現象である。温度や注入電流が変化すると、ゲインや共振器の条件が異なり、レーザ発振波長が変化し、キンクといわれる、光パワーが変動するという問題を生じる。したがって、FP型のGaAs半導体レーザの場合、通常、波長が0.3nm/℃の温度係数で変化するが、モードホップが生じると、これよりも大きな変動が起こる。それと同時に、出力が5%以上変動する。
 このため、モードホップを抑制するために、ペルチェ素子を用いて温度制御している。しかし、このために部品点数が増え、モジュールが大きくなり、コストが高くなる。
 特許文献6では、温度無依存にするために、従来の共振器構造はそのままで光導波路層に応力を与えることで、熱膨張に起因する温度係数を補償することにより、温度無依存性を実現している。このため、素子に金属板を貼りつけ、さらに導波路中に温度係数を調整する層を付加させている。このため共振器構造が、さらに大きくなるという問題がある。
 本発明者は、光導波路型グレーティング素子を用いた外部共振器型のレーザ構造を、特許文献7において開示した。この出願では、グレーティング素子の反射特性の半値全幅△λGが特定の式を満足する場合に、温度コントロールなしで波長安定性が高くパワー変動のないレーザ発振が可能としている。
 本発明の課題は、ペルチェ素子を使用することなく、モードホップを抑制し、波長安定性を高くし、光パワー変動を抑制できるようにすることである。
 本発明に係るグレーティング素子は、
 支持基板、
 前記支持基板上に設けられ、厚さ0.5μm以上、3.0μm以下の光学材料層、
 光学材料層に一対のリッジ溝によって形成されているリッジ型光導波路であって、半導体レーザ光が入射する入射面と所望波長の出射光を出射する出射面を有するリッジ型光導波路、
 このリッジ型光導波路内に形成された凹凸からなるブラッググレーティング、および
 前記入射面と前記ブラッググレーティングとの間に設けられている伝搬部を備えており、下記式(1)~式(4)の関係が満足されることを特徴とする。
 
0.8nm≦△λG≦6.0nm・・・(1)
10μm≦L≦300μm  ・・・(2)
20nm≦td≦250nm  ・・・(3)
≧1.8         ・・・(4)
 
(式(1)において、△λGは、ブラッグ反射率のピークにおける半値全幅である。
 式(2)において、Lは、前記ブラッググレーティングの長さである。
 式(3)において、tdは、前記ブラッググレーティングを構成する凹凸の深さである。
 式(4)において、nは、前記ブラッググレーティングを構成する材質の屈折率である。)
 また、本発明は、半導体レーザ光を発振する光源、およびこの光源と外部共振器を構成するグレーティング素子を備える外部共振器型発光装置であって、
 前記光源が、前記半導体レーザ光を発振する活性層を備えており、前記グレーティング素子が前記のものであることを特徴とする。
 一般的に、ファイバグレーティングを使用する場合に、石英は屈折率の温度係数が小さいのでdλG/dTが小さく、|dλG/dT―dλTM/dT|が大きくなる。このためモードホップがおこる温度域△Tが小さくなってしまう傾向がある。
 このため本発明では、グレーティングが形成される導波路基板の屈折率が1.8以上の材料を使用する。これにより屈折率の温度係数を大きくでき、dλG/dTが大きくできるので、|dλG/dT―dλTM/dT|を小さくでき、モードホップがおこる温度域△Tを大きくできる。
 そして、本発明では、これを前提として、当業者の常識に反して、ブラッグ反射率のピークにおける半値全幅△λGを大きめに設定している。その上で、モードホップが起こりにくいようにするために、位相条件を満足する波長間隔(縦モード間隔)を大きくする必要がある。このため、共振器長を短くする必要があるので、グレーティング素子の長さLbを300μm以下と短くした。
 その上で、ブラッググレーティングを構成する凹凸の深さtdを20nm以上、250nm以下の範囲内で調節することによって、△λGを0.8nm以上、6nm以下にすることができ、この△λGの範囲内に縦モードの数を2~5に調節できる。すなわち、位相条件を満足する波長は離散的であり、△λGの中に縦モードの数が2以上、5以下存在しているときには、△λGの中でモードホップを繰り返し、この外にはずれることはない。このため大きなモードホップが起きないので、波長安定性を高くし、光パワー変動を抑制できることを見いだし、本発明に到達した。
図1は、外部共振器型発光装置の模式図である。 グレーティング素子の横断面図である。 グレーティング素子を模式的に示す斜視図である。 他のグレーティング素子の横断面図である。 他の実施形態に係る外部共振器型発光装置の模式図である。 従来例によるモードホップの形態を説明する図である。 従来例によるモードホップの形態を説明する図である。 実施例1における反射特性結果を示す。 実施例1における、グレーティング長が10μm~1000μmまでの反射率と反射半値幅の結果を示す。 実施例1における、グレーティング溝深さが200nmと350nmのグレーティング長100μm以上での反射率と半値幅の結果を示す。 実施例1における、グレーティング溝深さ20、40、60nmにした場合のグレーティング長50~1000μmの反射率と半値幅の結果を示す。 実施例3における反射特性を示す。 本発明における、離散的な位相条件例を示す。 実施例4において、光源の光量のスペクトルおよびこの光源にグレーティング素子を付加して得た装置のスペクトルを示す。 レーザ発振条件を説明する図である。 リッジ溝の深さTを0.1μmから1.2μmにしたときの、光導波路の横モード:基本モードの実効屈折率(等価屈折率)の計算結果である。 図16で計算した光導波路の基本モードの水平方向と垂直方向のスポットサイズの計算結果である。
 図1に模式的に示す外部共振器型発光装置1は、半導体レーザ光を発振する光源2と、グレーティング素子9とを備えている。光源2とグレーティング素子9とは、共通基板3上にマウントされている。
 光源2は、半導体レーザ光を発振する活性層5を備えている。本実施形態では、活性層5は基体4に設けられている。基体4の外側端面には反射膜6が設けられており、活性層5のグレーティング素子側の端面には無反射層7Aが形成されている。
また、光源2は、単独でレーザ発振するものであってよい。ここで、単独でレーザ発振するとは、グレーティング素子と外部共振器を構成することなしにレーザ発振できることを意味する。この場合、光源2は、縦モードがシングルモード発振するものが好ましい。しかし、グレーティング素子を使用した外部共振器型レーザの場合、反射特性に波長依存性を持たせることができる。このため、反射特性の波長依存性の形状を制御することにより、光源2は縦モードがマルチモード発振していても、外部共振器からはシングルモード発振させることが可能である。 
この場合、基体4の外側端面には高反射膜6が設けられており、グレーティング素子側の端面7Aにはグレーティングの反射率よりも小さい反射率の膜が形成されている。
 図1、図3に示すように、グレーティング素子7には、半導体レーザ光Aが入射する入射面11aと所望波長の出射光Bを出射する出射面11bを有する光学材料層11が設けられている。Cは反射光である。光学材料層11内には、ブラッググレーティング12が形成されている。光学材料層11の入射面11aとブラッググレーティング12との間には、回折格子のない伝搬部13が設けられており、伝搬部13が活性層5と間隙14を介して対向している。7Bは、光学材料層11の入射面側に設けられた無反射膜であり、7Cは、光学材料層11の出射面側に設けられた無反射膜である。光学材料層18はリッジ型光導波路であり、光学材料層11に設けられている。光学材料層11は、ブラッググレーティング12と同一面に形成されていてもよく、相対する面に形成されていてもよい。
 無反射層7A、7B、7Cの反射率は、グレーティング反射率よりも小さい値であればよく、さらに0.1%以下が好ましい。しかし、端面における反射率がグレーティング反射率よりも小さい値であれば、無反射層はなくてもよく、反射膜であってもよい。
 図2に示すように、本例では、基板10上に接着層15、下側バッファ層16を介して光学材料層11が形成されており、光学材料層11上に上側バッファ層17が形成されている。光学材料層11には例えば一対のリッジ溝19が形成されており、リッジ溝の間にリッジ型の光導波路18が形成されている。
 また、リッジ溝19は光学材料層11を完全に切り込まない構造になっている。すなわち、各リッジ溝19下にはそれぞれ肉薄部11eが形成されており、各肉薄部11eの外側に延在部11fが形成されている。本発明においては、リッジ溝19は光学材料層11を完全に切り込まず、リッジ溝19の底面とバッファ層との間に肉薄部11eを残留させる。
 この場合、ブラッググレーティングは平坦面11c面に形成していてもよく、11d面に形成していてもよい。ブラッググレーティング、およびリッジ溝の形状ばらつきを低減するという観点では、ブラッググレーティングを11c面上に形成することによって、ブラッググレーティングとリッジ溝19とを基板の反対側に設けることが好ましい。
 このようなリッジ型の光導波路は、リッジ溝を完全に切り込んだ構造(肉薄部11eが設けられておらず、延在部11dが形成されている構造)と比較して、光の閉じ込めを弱くすることができる。このため光のスポット形状が大きくなっても横モード:マルチモードが励振することなく、基本モードを励振することができる。
 これまでのグレーティング素子は、光学材料層を完全に切り込んだコア層を光導波路としている。特許文献8で開示される光導波路はこの切り込み型のコア層を形成している。コア層としてSiO1-x、クラッド層にSiOの場合には、コアの幅1.2μm、厚み0.4μmとなっている。
 またコア層としてこれより屈折率の大きいSi/SiNとクラッド層にSiOを使用する場合には、コアの幅が0.28μm、厚みが0.255μmとなっており、サイズが小さくなっている。この場合、光導波路の光閉じ込めが強いために、横モードが基本モードの光のみを励振するために、サイズを小さくしていると考えられる。
 特許文献9には、拡散導波路やプロトン交換導波路が開示されている。これらの光導波路の場合、スポット形状はドーピングしたTiやプロトンの拡散分布に依存するために、コア部とクラッド部の屈折率差を大きくすることができず、光の閉じ込めは、リッジ光導波路よりもさらに小さくなる。このためスポット形状の水平方向/垂直方向のアスペクト比を大きくできず、形状の制御も難しい。
 光閉じ込めを大きくするために、高濃度ドーピングすると伝搬損失が大きくなることや光損傷により劣化するといった問題も生じる。
 グレーティング素子を外部共振器レーザに使用する場合には、出力光がガウス分布の光スポット形状が必要であり、横モードが基本モードとなることが望まれる。したがって、グレーティング素子の光導波路はレーザ光によってマルチモードが励振されないように基本モード導波路であることが好ましい。
 図16は、光学材料層をTaとして屈折率2.08、厚みT=1.2μm、リッジ幅Wm=3μmの場合に溝深さTを0.1μmから1.2μmにしたとき、波長800nmにおける光導波路の横モード:基本モードの実効屈折率(等価屈折率)の計算結果である。
 この結果から、Tが0.1から0.4μmまでは基板に光が漏れ、基板モードで光伝搬している。Tが0.5から1.1μmまでは、実効屈折率が変化せず、リッジ導波モードで伝搬する。しかし、完全に切り込まれたTが1.2μmでは実効屈折率が増加して閉じ込めが強くなることがわかる。
 図17は、図16で計算した光導波路の基本モードの水平方向と垂直方向のスポットサイズの計算結果である。この結果から、Tを大きくすると水平方向のスポットサイズは小さくなり閉じ込めが強くなることがわかる。その後、Tが0.5μmから完全に切り込まれた1.2μmまで水平方向のスポット形状はほとんど変化しない。また、垂直方向はTに依存せずほぼ一定値になることがわかる。
 外部共振器レーザの場合、レーザ光がグレーティング素子の基本モードを効率よく励振するために、グレーティング素子の光スポット形状はレーザ光のスポット形状よりも大きくすることが好ましく、光学材料層の厚みTsは0.5μm以上が好ましい。また、厚みTsが大きいとマルチモードの影響を抑えることが難しくなり、この観点で光学材料層の厚みTsは3μm以下が好ましく、さらに2.5μm以下が好ましい。
 溝深さTは、前述した観点からは、光学材料層の材質を変更した場合にも、光学材料層の厚みTで規格化することができることを確認した。すなわち、T/Tは0.4以上が好ましく、0.9以下であることが好ましい。
 外部共振器レーザにグレーティング素子を使用する場合には、前述のように横モード:基本モードが好ましい。しかし、レーザ光の導波路への結合を高効率にするためには光学材料層の厚みは0.5μm以上が好ましく、導波路はマルチモード化しやすくなる。
 光導波路から出射する光の横モードがマルチモードであるときに、それぞれの導波モードの実効屈折率に対応して複数のグレーティング反射波長が存在する。このためマルチモードに対応したレーザ発振が起こってしまう。しかし、基本モードと高次モードの実効屈折率の差を大きくし、高次モードの反射波長をレーザのゲイン範囲外にシフトできれば高次モードでレーザ発振することなく基本モード光を得ることができる。この観点で基本モードと高次モードの反射波長の差は2.5nm以上が好ましく、さらに3nm以上が好ましい。
 光源2として半導体レーザを使用する場合には、レーザのゲイン範囲が小さく発振波長範囲が狭いので基本モード光をさらに容易に得ることができる。
 一対のリッジ溝を形成した光導波路をグレーティング素子は閉じ込めを弱くすることができるので横モード:マルチモードが発生しにくい。またマルチモードが発生しても基本モードとの差を大きくできマルチモードの励振を抑えることができる。この観点において、T/Tは下限値として0.4以上が好ましく、さらに0.55が好ましい。上限値については0.9以下が好ましく、さらに0.75以下であることが好ましい。
 また、図4に示す素子9Aでは、基板10上に接着層15、下側バッファ層16を介して光学材料層11が形成されており、光学材料層11上に上側バッファ層17が形成されている。光学材料層11の基板10側には、例えば一対のリッジ溝19が形成されており、リッジ溝19の間にリッジ型の光導波路18が形成されている。この場合、ブラッググレーティングは平坦面11c側に形成していてもよく、リッジ溝のある11d面に形成していてもよい。ブラッググレーティング、およびリッジ溝の形状ばらつきを低減するという観点では、ブラッググレーティングを平坦面11c面側に形成することによって、ブラッググレーティングとリッジ溝19とを基板の反対側に設けることが好ましい。また、上側バッファ層17はなくてもよく、この場合、空気層が直接グレーティングに接することができる。これによりグレーティング溝が有る無しで屈折率差を大きくすることができ、短いグレーティング長で反射率を大きくすることができる。
 図5は、他の実施形態に係る装置1Aを示す。本装置1Aの大部分は図1の装置1と同様のものである。光源2は、レーザ光を発振する活性層5を備えているが、活性層5のグレーティング素子9側の端面に無反射層7Aを設けず、その代わりに反射膜20が形成されている。
 この場合、レーザ光の発振波長は、グレーティングにより反射される波長で決定される。グレーティングによる反射光と活性層5のグレーティング素子側の端面からの反射光がレーザのゲイン閾値を上回れば、発振条件を満足する。これにより波長安定性の高いレーザ光を得ることができる。
 波長安定性をより高くするには、グレーティングからの帰還量を大きくすればよく、この観点からグレーティングの反射率は活性層5の端面における反射率よりも大きくする方が好ましい。
 光源としては、高い信頼性を有するGaAs系やInP系材料によるレーザが好適である。本願構造の応用として、例えば、非線形光学素子を利用して第2高調波である緑色レーザを発振させる場合は、波長1064nm付近で発振するGaAs系のレーザを用いることになる。GaAs系やInP系のレーザは信頼性が高いため、一次元状に配列したレーザアレイ等の光源も実現可能である。スーパールミネッセンスダイオードや半導体光アンプ(SOA)であってもよい。
 波長が長くなるとブラッグ波長の温度変化が大きくなることから、波長安定性を高めるには、光源2の中心波長は990nm以下が特に好ましい。一方、波長が短くなると半導体の屈折率変化△naが大きくなりすぎるため、波長安定性を高めるためには光源2の中心波長は、780nm以上が特に好ましい。
 また、活性層の材質や波長も適宜選択できる。
 なお、半導体レーザとグレーティング素子との組み合わせでパワー安定化を行う方法は、下記に開示されている。
(非特許文献3: 古河電工時報 平成12年1月 第105号 p24-29)
 リッジ型の光導波路は、例えば外周刃による切削加工やレーザアブレーション加工することによって物理的に加工し、成形することによって得られる。
 ブラッググレーティングは以下のようにして物理的、あるいは化学的なエッチングにより形成することができる。
 具体例として、Ni、Tiなどの金属膜を高屈折率基板に成膜し、フォトリソグラフィーにより周期的に窓を形成しエッチング用マスクを形成する。その後、反応性イオンエッチングなどのドライエッチング装置で周期的なグレーティング溝を形成する。最後に金属マスクを除去することにより形成できる。
 高屈折率層中には、光導波路の耐光損傷性を更に向上させるために、マグネシウム(Mg)、亜鉛(Zn)、スカンジウム(Sc)及びインジウム(In)からなる群より選ばれる1種以上の金属元素を含有させてもよく、この場合、マグネシウムが特に好ましい。また結晶中には、ドープ成分として、希土類元素を含有させることができる。希土類元素としては、特にNd、Er、Tm、Ho、Dy、Prが好ましい。
 接着層の材質は、無機接着剤であってよく、有機接着剤であってよく、無機接着剤と有機接着剤との組み合わせであってよい。
 また、光学材料層11は、支持基体上に薄膜形成法によって成膜して形成してもよい。こうした薄膜形成法としては、スパッタ、蒸着、CVDを例示できる。この場合には、光学材料層11は支持基体に直接形成されており、上述した接着層は存在しない。
 支持基体の具体的材質は特に限定されず,ニオブ酸リチウム、タンタル酸リチウム、石英ガラスなどのガラスや水晶、Si、サファイア、窒化アルミニウム、SiCなどを例示することができる。
 無反射層の反射率は、グレーティング反射率以下である必要があり、無反射層に成膜する膜材としては、二酸化珪素、五酸化タンタルなどの酸化物で積層した膜や、金属類も使用可能である。
 また、光源素子、グレーティング素子の各端面は、それぞれ、端面反射を抑制するために斜めカットしていてもよい。また、グレーティング素子と支持基板の接合は、図2の例では接着固定だが、直接接合でもよい。
 以下、図15に示すような構成において本発明の条件の意味について更に述べる。
 ただし、数式は抽象的で理解しにくいので、最初に、従来技術の典型的な形態と本発明の実施形態とを端的に比較し、本発明の特徴を述べる。次いで、本発明の各条件について述べていくこととする。
 まず、半導体レーザの発振条件は、下式のようにゲイン条件×位相条件で決まる。
Figure JPOXMLDOC01-appb-M000007
 
 
 ゲイン条件は、(2-1)式より下式となる。
Figure JPOXMLDOC01-appb-M000008
 
 
 ただし、αa、αg、αwg、αgrは、それぞれ、活性層、半導体レーザと導波路間のギャップ、入力側のグレーティング未加工導波路部、グレーティング部の損失係数であり、La、Lg、Lwg、Lgrは、それぞれ、活性層、半導体レーザと導波路間のギャップ、入力側のグレーティング未加工導波路部、グレーティング部の長さであり、r1、r2は、ミラー反射率(r2はグレーティングの反射率)であり、Coutは、グレーティング素子と光源との結合損失であり、ξtgtは、レーザ媒体のゲイン閾値であり、φ1は、レーザ側反射ミラーによる位相変化量であり、φ2は、グレーティング部での位相変化量である。
 (2-2)式より、レーザ媒体のゲインξtgth(ゲイン閾値)が損失を上回れば、レーザ発振することを表す。レーザ媒体のゲインカーブ(波長依存性)は、半値全幅は50nm以上あり、ブロードな特性をもっている。また、損失部(右辺)は、グレーティングの反射率以外はほとんど波長依存性がないので、ゲイン条件はグレーティングにより決まる。このため、比較表では、ゲイン条件はグレーティングのみで考えることができる。
 一方、位相条件は(2-1)式から、下式のようになる。ただし、φ1については零となる。
Figure JPOXMLDOC01-appb-M000009
 
 
 光源2がレーザ発振している場合は、複合共振器になるために上記の(2-1)、(2-2)、(2-3)式は複雑な数式になり、レーザ発振の目安として考えることができる。
 外部共振器型レーザは、外部共振器として、石英系ガラス導波路、FBGを用いたものが製品化されている。従来の設計コンセプトは、図6と図7に示すように、グレーティングの反射特性は△λG=0.2nm程度、反射率10%となっている。このことから、グレーティング部の長さは1mmとなっている。一方、位相条件については、満足する波長は離散的になり、△λG内に、(2-3)式が2~3点あるように設計されている。このため、レーザ媒体の活性層長さが長いものが必要になり、1mm以上のものが使用されている。
 ガラス導波路やFBGの場合、λgの温度依存性は非常に小さく、dλG/dT=0.01nm/℃程度となる。このことから、外部共振器型レーザは、波長安定性が高いという特徴をもつ。
 しかし、位相条件を満足する波長の温度依存性は、これに比してdλs/dT=dλTM/dT =0.05nm/℃と大きく、その差は0.04nm/℃となる。
 また、コア層としてSi02やSiO(1-x)Nxを使用する場合、屈折率の温度変化率△nfは 1×10-5/℃と小さく、波長1.3μmではλgの温度依存性は非常に小さくdλG/dT=0.01nm/℃となる。一方、外部共振器の位相条件が成り立つ波長(発振波長)の温度係数について、InGaAsP系レーザを使用した場合、光源の等価屈折率3.6、屈折率の温度変化3×10-4/℃、長さLa=400μm、回折格子の等価屈折率1.54、1×10-5/℃、長さ155μmとするとdλG/dT=dλTM/dT= 0.09nm/℃となる。したがって、その差は0.08 nm/℃となる。
このようにしてレーザ発振したレーザ光のスペクトル波形は、線幅は0.2nm以下となる。広い温度範囲でレーザ発振するために、さらにモードホップしない温度範囲をより広くするために、室温25℃における外部共振器によるレーザ発振波長はグレーティング反射率の中心波長よりも短波長側であることが好ましい。この場合、温度が上昇するにつれてレーザ発振波長は長波長側にシフトしてグレーティング反射率の中心波長よりも長波長側でレーザ発振することになる。
また広い温度範囲でレーザ発振するために、さらにモードホップしない温度範囲をより広くするために、室温25℃における外部共振器によるレーザ発振波長は光源2の同じ温度での発振波長よりも長波長側で発振することが好ましい。この場合、温度が上昇するにつれて、外部共振器によるレーザ発振波長は、光源2の発振波長に対して短波長側でレーザ発振することになる。
室温での外部共振器によるレーザ発振波長と光源2の発振波長の差は、レーザ発振の温度許容範囲を広くする観点において、0.5nm以上が好ましく、さらに2nm以上であってもよい。しかし、波長差を大きくしすぎると、パワーの温度変動が大きくなるので、この観点から10nm以下が好ましく、さらに6nm以下が好ましい。
 一般的に、モードホップが起こる温度Tmhは、非特許文献1より下式のように考えることができる(Ta=Tfとして考える)。
 ΔGTMは、外部共振器レーザの位相条件を満足する波長間隔(縦モード間隔)である。先に用いた△λは△GTMに等しく、λはλTMに等しい。
Figure JPOXMLDOC01-appb-M000010
 
 
 これより従来の場合、Tmhは5℃程度となる。このためモードホップが起こりやすい。したがって、モードホップが起こってしまうと、グレーティングの反射特性に基づきパワーが変動し、5%以上変動することになる。
 以上から、実動作において、従来のガラス導波路やFBGを利用した外部共振器型レーザは、ペルチェ素子を利用して温度制御を行っていた。
 これに対し、本発明は、前提条件として(2-4)式の分母が小さくなるグレーティング素子を使用するものである。(2-4)式の分母は、0.03nm/℃以下にすることが好ましく、具体的な光学材料層としては、ガリウム砒素(GaAs)、ニオブ酸リチウム(LN)、酸化タンタル(Ta2O5)、酸化亜鉛(ZnO)、酸化アルミナ(Al2O3)が好ましい。
 位相条件を満足する波長は、△λG内に5点以下存在していれば、モードホップが起こったとしても、安定なレーザ発振条件で動作が可能であることがわかった。
 すなわち、本発明構造は、例えば、LNのz軸の偏光を使用する場合に温度変化に対して、発振波長はグレーティングの温度特性に基づき0.1nm/℃で変化するが、モードホップは起こしてもパワー変動が起こりにくくすることが可能である。本願構造は、△λGを大きくするためにグレーティング長Lbは例えば100μmとし、△GTMを大きくするためにLaは例えば250μmとしている。
 なお、特許文献6との相違についても補足する。
 本願は、グレーティング波長の温度係数と半導体のゲインカーブの温度係数を近づけることを前提としている。このことから屈折率が1.8以上の材料を使用することとしている。さらにグレーティングの溝深さtdを20nm以上、250nm以上とし、反射率を3%以上、60%以下で、かつその半値全幅△λGを0.8nm以上、250nm以下としている。これらにより共振器構造をコンパクトにでき、かつ付加するものをなくして温度無依存性が実現できる。特許文献6では、各パラメータは以下のように記載されており、いずれも従来技術の範疇となっている。
 △λG=0.4nm
 縦モード間隔△GTM=0.2nm
 グレーティング長Lb=3mm
 LD活性層長さLa=600μm
 伝搬部の長さ=1.5mm
 以下、本発明の以下の各条件について更に具体的に述べる。
 0.8nm≦△λG≦6.0nm・・・(1)
10μm≦L≦300μm  ・・・(2)
20nm≦td≦250nm  ・・・(3)
≧1.8         ・・・(4)
 式(4)において、ブラッググレーティングを構成する材質の屈折率nは1.8以上とする。
 従来は石英などの、より屈折率の低い材料が一般的であったが、本発明の思想では、ブラッググレーティングを構成する材質の屈折率を高くする。この理由は、屈折率が大きい材料は屈折率の温度変化が大きいからであり、(2-4)式のTmhを大きくすることができ、さらに前述のようにグレーティングの温度係数dλG/dTを大きくできるからである。この観点からは、nは1.9以上であることが更に好ましい。また、nの上限は特にないが、グレーティングピッチが小さくなりすぎて形成が困難になることから4以下であるが、さらに3.6以下であることが好ましい。また、同じ観点で光導波路の等価屈折率は3.3以下であることが好ましい。
 ブラッグ反射率のピークにおける半値全幅△λGを0.8nm以上とする(式1)。λはブラッグ波長である。すなわち、図6、図7に示すように、横軸にブラッググレーティングによる反射波長をとり、縦軸に反射率をとったとき、反射率が最大となる波長をブラッグ波長とする。またブラッグ波長を中心とするピークにおいて、反射率がピークの半分になる二つの波長の差を半値全幅△λGとする。
 ブラッグ反射率のピークにおける半値全幅△λGを0.8nm以上とする(式(1))。これは、反射率ピークをブロードにするためである。この観点からは、半値全幅△λGを1.2nm以上とすることが好ましく、1.5nm以上とすることが更に好ましい。また、半値全幅△λGを5nm以下とするが、3nm以下とすることが更に好ましく、2nm以下とすることが好ましい。
 ブラッググレーティングの長さLは300μm以下とする(式2)。ブラッググレーティングの長さLは、光導波路を伝搬する光の光軸の方向におけるグレーティング長である。ブラッググレーティングの長さLを300μm以下と従来に比べて短くすることは、本発明の設計思想の前提となる。すなわち、モードホップをしにくくするために位相条件を満足する波長間隔(縦モード間隔)を大きくする必要がある。このためには、共振器長を短くする必要がありグレーティング素子の長さを短くする。この観点からは、ブラッググレーティングの長さLを200μm以下とすることがいっそう好ましい。
 グレーティング素子の長さを短くすることは、損失を小さくすることになりレーザ発振の閾値を低減できる。この結果、低電流、低発熱、低エネルギーで駆動が可能となる。
 また、グレーティングの長さLは、3%以上の反射率を得るためには、5μm以上が好ましく、5%以上の反射率を得るためには、10μm以上が更に好ましい。
 式(3)において、tdは、前記ブラッググレーティングを構成する凹凸の深さである。20nm≦td≦250nmとすることで、△λGを0.8nm以上、250nm以下とすることができ、縦モードの数を△λGの中に2以上、5以下に調整することができる。こうした観点からは、tdは、30nm以上が更に好ましく、また、200nm以下が更に好ましい。半値全幅を3nm以下とするには150nm以下が好ましい。
 好適な実施形態においては、レーザ発振を促進するために、グレーティング素子の反射率は3%以上、40%以下に設定することが好ましい。この反射率は、より出力パワーを安定させるために5%以上が更に好ましく、また、出力パワーを大きくするためには25%以下が更に好ましい。
 レーザ発振条件は、図15に示すように、ゲイン条件と位相条件から成立する。位相条件を満足する波長は離散的であり、たとえば図13に示される。すなわち、本願構造ではゲインカーブの温度係数(GaAsの場合0.3nm/℃)とグレーティングの温度係数dλG/dTを近づけることにより、発振波長を△λGの中に固定することができる。さらに△λGの中に縦モードの数が2以上、5以下存在するときには、発振波長は△λGの中でモードホップを繰り返し、△λGの外でレーザ発振する確率を低減できることから大きなモードホップが起こることがなく、さらに波長が安定で、出力パワーが安定に動作できる。
 好適な実施形態においては、活性層の長さLも500μm以下とする。この観点からは、活性層の長さLを300μm以下とすることが更に好ましい。また、レーザの出力を大きくするという観点では活性層の長さLは、150μm以上とすることが好ましい。
Figure JPOXMLDOC01-appb-M000011
 
 
 式(6)において、dλG/dTは、ブラッグ波長の温度係数である。
 また、dλTM/dTは、外部共振器レーザの位相条件を満足する波長の温度係数である。
 ここで、λTMは、外部共振器レーザの位相条件を満足する波長であり、つまり前述した(2.3式)の位相条件を満足する波長である。これを本明細書では「縦モード」と呼ぶ。
 以下、縦モードについて補足する。
 (2.3)式の中のβ=2πneff/λであり、neffはその部の実効屈折率であり、これを満足するλがλTMとなる。φ2は、ブラッググレーティングの位相変化であり、λTMは図13で示される。
 △GTMは、外部共振器レーザの位相条件を満足する波長間隔(縦モード間隔)である。λTMは、複数存在するので、複数のλTMの差を意味する。
 したがって、式(6)を満足することで、モードホップが起こる温度を高くし、事実上モードホップを抑制することができる。式(6)の数値は、0.025以下とすることが更に好ましい。
 好適な実施形態においては、グレーティング素子の長さLWGも600μm以下とする。LWGは400μm以下が好ましく、300μm以下が更に好ましい。また、LWGは50μm以上が好ましい。
 好適な実施形態においては、光源の出射面と光導波路の入射面との距離Lは、1μm以上、10μm以下とする。これによって安定した発振が可能となる。
 好適な実施形態においては、伝搬部の長さLは、100μm以下とする。さらに外部共振器の長さを短くするという観点で40μm以下が好ましい。これによって安定した発振が促進される。また、伝搬部の長さLの下限値は特にないが、10μm以上が好ましく、20μm以上が更に好ましい。
(実施例1)
 図1、図2に示すような素子9を作製した。
 具体的には、石英基板にスパッタ装置にてTa2O5を1.2μm成膜して導波路層を形成した。次に、Ta2O5上にTiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ232nm、長さLb 5~ 100μm、300μm、500μm、1000μmのグレーティング溝を形成した。グレーティングの溝深さtdは20、40、60、100、160、200、350nmとした。さらにy軸伝搬の光導波路を形成するために、上記と同様な方法で反応性イオンエッチングにより、幅Wm3μm、Tr0.5μmの溝加工を実施した。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面を0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは幅1mm、長さLwg 500μmとした。
 グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。測定した素子の反射中心波長は全て945±1nmであった。
 溝深さtdが200nmの場合、グレーティング長30μm~70μmまでの反射特性結果を図8に示す。この結果からグレーティング長が短くなるにつれ、反射率が小さくなることがわかった。
 さらにグレーティング長が10μm~1000μmまでの反射率と反射半値幅の結果を図9に示す。この結果から、グレーティング長9μmでは、反射率2%、半値幅7nmとなるが、10μm(17μm)以上では、反射率3%(20%)以上となり、半値幅は6nm(5nm)以下となる。
 グレーティング溝深さが200nmと350nmのグレーティング長100μm以上での反射率と半値幅の結果を図10に示す。この結果から、この深さ、長さでは反射率、半値幅は変化がなく、制御できない。
 また、グレーティング溝深さ20、40、60nmにした場合のグレーティング長50~1000μmの反射率と半値幅の結果を図11に示す。この溝深さの領域では、グレーティング長によって大きく反射率を制御できることがわかる。半値幅はグレーティング長が400μm以下では単調増加する傾向がある。深さ20nmではグレーティング長200μm以上になると半値幅が0.8nmよりも小さくなる。
(実施例2)
 z板MgOドープのニオブ酸リチウム結晶基板にTiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ214nm、長さLb 100μmのグレーティング溝を形成した。グレーティングの溝深さは20、40、60nmとした。また、y軸伝搬の光導波路を形成するために、エキシマレーザにて、グレーティング部に、幅Wm3μm、Tr0.5μmの溝加工を実施した。さらに、溝形成面にSiO2からなるバッファ層17をスパッタ装置で0.5μm成膜し、支持基板としてブラックLN基板を使用してグレーティング形成面を接着した。
 次に、ブラックLN基板側を研磨定盤に貼り付け、グレーティングを形成したLN基板の裏面を精密研磨して1.2μmの厚み(Ts)とした。その後、定盤からはずし研磨面をスパッタにてSiO2からなるバッファ層16を0.5μm成膜した。
 ブラックLNとは、酸素欠損状態にしたニオブ酸リチウムのことであり、焦電による電荷発生を抑制できる。これにより温度変動があった場合の耐サージによる基板クラックを防止できる。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面を0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは幅1mm、長さLwg 500μmとした。
 グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。結果を図11に示す。
 この結果から、LN、Ta205はほぼ同じことがわかる。
 TEモードに対して中心波長945nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。
(実施例3)
 y板MgOドープのニオブ酸リチウム結晶基板にTiを成膜して、フォトリソグラフィー技術によりx軸方向にグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ224nm、長さLb 100μmのグレーティング溝を形成した。グレーティングの溝深さは20、40、60nmとした。また、x軸伝搬の光導波路を形成するために、エキシマレーザにて、グレーティング部に、幅Wm3μm、Tr0.5μmの溝加工を実施した。さらに、溝形成面にSiO2からなるバッファ層17をスパッタ装置で0.5μm成膜し、支持基板としてブラックLN基板を使用してグレーティング形成面を接着した。
 次に、ブラックLN基板側を研磨定盤に貼り付け、グレーティングを形成したLN基板の裏面を精密研磨して1.2μmの厚み(Ts)とした。その後、定盤からはずし研磨面をスパッタにてSiO2からなるバッファ層16を0.5μm成膜した。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面を0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは幅1mm、長さLwg 500μmとした。
 グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。結果を図12に示す。
 この結果から、素子実施例1から3の反射率と半値幅は同じとなり、LN、TA205の反射率と半値幅も同じ結果になる。TEモードに対して中心波長945nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。
 また波長が変わっても600nm~1.55μmの波長領域ではほとんど同じ反射率、半値幅が得られることがわかった。
(実施例4)
 図4に示すような装置を作製した。
 具体的には、z板MgOドープのニオブ酸リチウム結晶基板にTiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ214nm、長さLb 100μmのグレーティング溝を形成した。グレーティングの溝深さは40nmであった。また、y軸伝搬の光導波路を形成するために、エキシマレーザにて、グレーティング部に、幅Wm3μm、Tr0.5μmの溝加工を実施した。さらに、溝形成面にSiO2からなるバッファ層16をスパッタ装置で0.5μm成膜し、支持基板としてブラックLN基板を使用してグレーティング形成面を接着した。
 次に、ブラックLN基板側を研磨定盤に貼り付け、グレーティングを形成したLN基板の裏面を精密研磨して1.2μmの厚み(Ts)とした。その後、定盤からはずし研磨面をスパッタにてSiO2からなるバッファ層17を0.5μm成膜した。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面を0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは幅1mm、長さLwg 500μmとした。
 グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。その結果、TEモードに対して中心波長945nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。
 次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図1に示すようにレーザモジュールを実装した。光源素子としてGaAs系レーザ構造を有し、片端面には高反射膜、もう一方の端面は反射率0.1%のARコートを成膜したものを用意した。
光源素子仕様:
 中心波長:   950nm
出力      20mW
 半値幅:    50nm
 レーザ素子長  250μm
実装仕様:
 Lg:      1μm
 Lm:     20μm
 モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、中心波長945nm、出力50mWのレーザ特性であった。レーザのスペクトル特性を図14に示す。また動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、出力変動を測定した。その結果、発振波長の温度係数は0.05nm/℃、モードホップによる出力変動が大きくなる温度域は80℃、この温度域内でのパワー出力変動はモードホップが起こっても1%以内であった。
 また、TM光を素子に入射させた場合にも同様な実験を行った結果、波長907nmでレーザ発振をして、その発振波長の温度係数は0.1nm/℃であった。さらに、モードホップによる出力変動が大きくなる温度域は100℃まで広がることを確認でき、この温度域内でのパワー出力変動はモードホップが起こっても1%以内であった。
 これは、LN結晶の場合、y軸、x軸よりもz軸方向の屈折率の温度変動が大きいことに起因する。
(実施例5)
 実施例4と同じ方法でピッチ間隔Λ222nm、長さLb 100μmのグレーティング溝を形成した。グレーティングの溝深さは40nmとした。グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子に光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。その結果、TEモードに対して中心波長975nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。
 次に、図5に示すようにレーザモジュールを実装した。光源素子は通常のGaAs系レーザで出射端面にはARコートなしとした。
光源素子仕様:
 中心波長:   977nm
 出力:     50mW
 半値幅:    0.1nm
 レーザ素子長  250μm
実装仕様:
 Lg:      1μm
 Lm:     20μm
 モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、グレーティングの反射波長に対応した中心波長975nmで発振し、出力はグレーティング素子がない場合よりも小さくなるが40mWのレーザ特性であった。また動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、出力変動を測定した。その結果、発振波長の温度係数は0.05nm/℃、モードホップによる出力変動が大きくなる温度域は80℃、この温度域でのパワー出力変動はモードホップが起こっても1%以内であった。
(比較例)
 実施例5において、グレーティング素子がない場合には、レーザ発振波長の温度係数は0.3nm/℃で大きく、モードホップ温度は10℃程度とであった。10℃以上ではパワー変動が大きくなり、出力変動は10%以上となった。
(実施例6)
 石英基板にスパッタ装置にてTa2O5を1.2μm成膜して導波路層を形成した。次に、Ta2O5上にNiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Niパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ232nm、長さLb 100μmのグレーティング溝を形成した。グレーティングの溝深さは40nmとした。次に、上記と同様にして反応性イオンエッチングにより、図2、図3に示す形状の光導波路を形成した。グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子に光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。その結果、TEモードに対して中心波長945nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。
 次に、図1に示すようにレーザモジュールを実装した。光源素子は通常のGaAs系レーザで出射端面には0.1%ARコートを成膜した。
光源素子仕様:
 中心波長:   950nm
 出力:     20mW
 半値幅:    50nm
 レーザ素子長  250μm
実装仕様:
 Lg:      1μm
 Lm:     20μm
 モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、グレーティングの反射波長に対応した中心波長945nmで発振し、出力は50mWであった。また動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、出力変動を測定した。その結果、発振波長の温度係数は0.03nm/℃、モードホップによる出力変動が大きくなる温度域は50℃、その温度域でのパワー出力変動はモードホップが起こっても1%以内であった。
(実施例7)
 石英からなる支持基板10にスパッタ装置にてTa2O5を2μm成膜して導波路層11を形成した。次に、Ta2O5からなる導波路層11上にNiを成膜して、フォトリソグラフィー技術によりy軸方向にグレーティングパターンを作製した。その後、Niパターンをマスクにしてフッ素系の反応性イオンエッチングにより、ピッチ間隔Λ228nm、長さLb 100μmのグレーティング溝を形成した。グレーティングの溝深さは140nmとした。
 次に、上記と同様にして反応性イオンエッチングにより、図2、図3に示す形状の光導波路18を形成した。グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子に光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。その結果、TEモードに対して中心波長945nm、最大反射率は20%で、半値全幅△λGは2nmの特性を得た。
また、これとは別に短波長側で複数の波長で反射ピークが観察された。
 この原因を確かめるためにシミュレーションを実施した結果、光導波路から出射する光の横モードがマルチモードになることがわかった。つまり、マルチモードの場合、実効屈折率、等価屈折率が基本モードのそれよりも小さくなり、このために短波長側にマルチモードに起因する反射ピークが出現することが推察できる。これを実験的に確認するために光導波路のニアフィールドパターンを観察した。この結果、基本モードが励振されるが、軸ずれさせるとマルチモードが励振されることがわかりマルチモード導波路と確認できた。
 次に、図5に示すようにレーザモジュールを実装した。光源素子は通常のGaAs系レーザで出射端面にはARコートなしとした。
光源素子仕様:
 中心波長:   977nm
 出力:     50mW
 半値幅:    0.1nm
 レーザ素子長  250μm
実装仕様:
 Lg:      1μm
 Lm:     20μm
 モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、グレーティングの反射波長に対応した中心波長975nmで発振した。このモジュールから発振したレーザ光の横モードが基本モードであった。レーザ光の出力は、グレーティング素子がない場合よりも小さくなるが、40mWのレーザ特性であった。また動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、出力変動を測定した。その結果、発振波長の温度係数は0.03nm/℃、モードホップによる出力変動が大きくなる温度域は50℃、この温度域でのパワー出力変動はモードホップが起こっても1%以内であった。

Claims (9)

  1.  支持基板、
     前記支持基板上に設けられ、厚さが0.5μm以上、3.0μm以下の光学材料層、
     前記光学材料層に一対のリッジ溝によって形成されているリッジ型光導波路であって、半導体レーザ光が入射する入射面と所望波長の出射光を出射する出射面を有するリッジ型光導波路、
     このリッジ型光導波路内に形成された凹凸からなるブラッググレーティング、および
     前記入射面と前記ブラッググレーティングとの間に設けられている伝搬部を備えており、下記式(1)~式(4)の関係が満足されることを特徴とする、グレーティング素子。
     
    0.8nm≦△λG≦6.0nm・・・(1)
    10μm≦L≦300μm  ・・・(2)
    20nm≦td≦250nm  ・・・(3)
    ≧1.8         ・・・(4)
     
    (式(1)において、△λGは、ブラッグ反射率のピークにおける半値全幅である。
     式(2)において、Lは、前記ブラッググレーティングの長さである。
     式(3)において、tdは、前記ブラッググレーティングを構成する凹凸の深さである。
     式(4)において、nは、前記ブラッググレーティングを構成する材質の屈折率である。)
  2.  前記リッジ溝の深さTの前記光学材料層の厚さTに対する比率(T/T)が0.4以上、0.9以下であることを特徴とする、請求項1記載のグレーティング素子。
  3.  前記ブラッググレーティングを構成する前記材質が、ガリウム砒素、ニオブ酸リチウム単結晶、酸化タンタル、酸化亜鉛および酸化アルミナからなる群より選択されることを特徴とする、請求項1または2記載のグレーティング素子。
  4.  半導体レーザ光を発振する光源、およびこの光源と外部共振器を構成するグレーティング素子を備える外部共振器型発光装置であって、
     前記光源が、前記半導体レーザ光を発振する活性層を備えており、前記グレーティング素子が、請求項1~3のいずれか一つの請求項に記載のグレーティング素子であることを特徴とする、外部共振器型発光装置。
  5.  下記式(5)の関係が満足されることを特徴とする、請求項4記載の装置。
     
     LWG ≦500μm    ・・・(5)
     
    (式(5)において、LWGは、前記グレーティング素子の長さである。)
     
  6.  前記半値全幅△λGの中に、レーザ発振の位相条件が満足可能な波長が2以上、5以下存在することを特徴とする、請求項4または5記載の装置。
  7.  下記式(6)の関係が満足されることを特徴とする、請求項4~6のいずれか一つの請求項に記載の装置。
     
    Figure JPOXMLDOC01-appb-M000001
     
     
    (式(6)において、dλG/dTは、ブラッグ波長の温度係数である。
     dλTM/dTは、外部共振器レーザの位相条件を満足する波長の温度係数である。)
  8.  前記外部共振器型発光装置が単一モード発振することを特徴とする、請求項5~7のいずれか一つの請求項に記載の装置。
  9.  前記リッジ型光導波路の横モードがマルチモードであって、前記外部共振器型発光装置から出力するレーザ光の横モードが基本モードであることを特徴とする、請求項5~7のいずれか一つの請求項に記載の装置。
PCT/JP2014/080478 2013-11-27 2014-11-18 グレーティング素子および外部共振器型発光装置 WO2015079974A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480063856.1A CN105765803B (zh) 2013-11-27 2014-11-18 光栅元件以及外部谐振器型发光装置
EP14865392.6A EP3076501B1 (en) 2013-11-27 2014-11-18 Grating element and external-resonator-type light emitting device
JP2015528735A JP5936777B2 (ja) 2013-11-27 2014-11-18 グレーティング素子および外部共振器型発光装置
US15/163,221 US9859684B2 (en) 2013-11-27 2016-05-24 Grating element and external-resonator-type light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013244538 2013-11-27
JP2013-244538 2013-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/163,221 Continuation US9859684B2 (en) 2013-11-27 2016-05-24 Grating element and external-resonator-type light emitting device

Publications (1)

Publication Number Publication Date
WO2015079974A1 true WO2015079974A1 (ja) 2015-06-04

Family

ID=53198919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080478 WO2015079974A1 (ja) 2013-11-27 2014-11-18 グレーティング素子および外部共振器型発光装置

Country Status (5)

Country Link
US (1) US9859684B2 (ja)
EP (1) EP3076501B1 (ja)
JP (1) JP5936777B2 (ja)
CN (1) CN105765803B (ja)
WO (1) WO2015079974A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018100868A1 (ja) * 2016-12-02 2019-10-17 日本碍子株式会社 光学素子及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016115723A1 (de) * 2016-08-24 2018-03-01 Forschungsverbund Berlin E.V. Wellenleiterstruktur und optisches System mit Wellenleiterstruktur
CN111786255B (zh) * 2020-08-04 2024-04-19 中国工程物理研究院总体工程研究所 一种稳频和稳光强双压电陶瓷调谐外腔半导体激光器
CN111913244A (zh) * 2020-08-26 2020-11-10 上海华虹宏力半导体制造有限公司 光栅器件的形成方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128689A (ja) 1973-04-06 1974-12-10
JPS56148880A (en) 1980-04-21 1981-11-18 Nec Corp Single longitudinal mode semiconductor laser
JPH02154476A (ja) * 1988-12-06 1990-06-13 Fujitsu Ltd 半導体光学装置
JPH05257184A (ja) * 1992-03-13 1993-10-08 Hitachi Ltd 導波路共振型shg光源とその製造方法
JPH1098230A (ja) * 1996-09-25 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> 周波数安定化レーザ
JPH1197784A (ja) * 1997-09-19 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> 周波数安定化レーザ
JP2000082864A (ja) 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> レーザ装置
JP2001257422A (ja) * 2000-03-10 2001-09-21 Sumitomo Electric Ind Ltd 半導体レーザモジュール
JP2002134833A (ja) 2000-10-23 2002-05-10 Nippon Telegr & Teleph Corp <Ntt> 温度無依存型レーザ
JP2004219751A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 光導波路デバイスならびにそれを用いた光導波路レーザおよびそれを備えた光学装置
JP3667209B2 (ja) 2000-08-01 2005-07-06 住友電気工業株式会社 半導体レーザ
JP2006222399A (ja) 2005-02-14 2006-08-24 Hamamatsu Photonics Kk 半導体レーザ装置
JP2007264487A (ja) * 2006-03-29 2007-10-11 Sumitomo Osaka Cement Co Ltd 光制御素子及びその製造方法
JP2010171252A (ja) 2009-01-23 2010-08-05 Fujitsu Ltd 光送信装置
WO2013034813A2 (en) 2011-09-07 2013-03-14 Epicrystals Oy Wavelength conversion unit
JP2013120999A (ja) 2011-12-06 2013-06-17 Seiko Epson Corp 画像処理装置および画像処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0201031D0 (en) * 2002-01-17 2002-03-06 Bookham Technology Plc Method of producing a rib waveguide
JP2005142400A (ja) * 2003-11-07 2005-06-02 Mitsubishi Cable Ind Ltd レーザ光源
KR101038264B1 (ko) * 2009-06-12 2011-06-01 (주)엠이엘 외부공진형 파장가변 레이저 모듈
JP2013140225A (ja) 2011-12-28 2013-07-18 Citizen Holdings Co Ltd レーザ光源
US9184564B2 (en) 2013-06-07 2015-11-10 Ngk Insulators, Ltd. External resonator type light emitting system
WO2015079986A1 (ja) * 2013-11-27 2015-06-04 日本碍子株式会社 反射型光センサ素子
US9331454B2 (en) 2013-11-27 2016-05-03 Ngk Insulators, Ltd. External resonator type light emitting system
JPWO2015107960A1 (ja) * 2014-01-14 2017-03-23 日本碍子株式会社 外部共振器型発光装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128689A (ja) 1973-04-06 1974-12-10
JPS56148880A (en) 1980-04-21 1981-11-18 Nec Corp Single longitudinal mode semiconductor laser
JPH02154476A (ja) * 1988-12-06 1990-06-13 Fujitsu Ltd 半導体光学装置
JPH05257184A (ja) * 1992-03-13 1993-10-08 Hitachi Ltd 導波路共振型shg光源とその製造方法
JPH1098230A (ja) * 1996-09-25 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> 周波数安定化レーザ
JPH1197784A (ja) * 1997-09-19 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> 周波数安定化レーザ
JP2000082864A (ja) 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> レーザ装置
JP2001257422A (ja) * 2000-03-10 2001-09-21 Sumitomo Electric Ind Ltd 半導体レーザモジュール
JP3667209B2 (ja) 2000-08-01 2005-07-06 住友電気工業株式会社 半導体レーザ
JP2002134833A (ja) 2000-10-23 2002-05-10 Nippon Telegr & Teleph Corp <Ntt> 温度無依存型レーザ
JP2004219751A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 光導波路デバイスならびにそれを用いた光導波路レーザおよびそれを備えた光学装置
JP2006222399A (ja) 2005-02-14 2006-08-24 Hamamatsu Photonics Kk 半導体レーザ装置
JP2007264487A (ja) * 2006-03-29 2007-10-11 Sumitomo Osaka Cement Co Ltd 光制御素子及びその製造方法
JP2010171252A (ja) 2009-01-23 2010-08-05 Fujitsu Ltd 光送信装置
WO2013034813A2 (en) 2011-09-07 2013-03-14 Epicrystals Oy Wavelength conversion unit
JP2013120999A (ja) 2011-12-06 2013-06-17 Seiko Epson Corp 画像処理装置および画像処理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"IEICE Transactions on Fundamentals of Electronics", COMMUNICATIONS AND COMPUTER SCIENCES, C-II, vol. J81, no. 7, July 1998 (1998-07-01), pages 664 - 665
FURUKAWA REVIEW, January 2000 (2000-01-01), pages 24 - 29
FURUKAWA REVIEW, vol. 105, January 2000 (2000-01-01), pages 24 - 29
IEICE TECHNICAL REPORT LQE, vol. 105, no. 52, 2005, pages 17 - 20

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018100868A1 (ja) * 2016-12-02 2019-10-17 日本碍子株式会社 光学素子及びその製造方法
JP7061572B2 (ja) 2016-12-02 2022-04-28 日本碍子株式会社 光学素子及びその製造方法

Also Published As

Publication number Publication date
CN105765803A (zh) 2016-07-13
US20160344161A1 (en) 2016-11-24
US9859684B2 (en) 2018-01-02
CN105765803B (zh) 2020-01-07
EP3076501B1 (en) 2019-03-06
EP3076501A1 (en) 2016-10-05
JPWO2015079974A1 (ja) 2017-03-16
JP5936777B2 (ja) 2016-06-22
EP3076501A4 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6125631B2 (ja) 外部共振器型発光装置
JP5936771B2 (ja) 外部共振器型発光装置
US9331454B2 (en) External resonator type light emitting system
JP6554035B2 (ja) グレーティング素子および外部共振器型発光装置
WO2015107960A1 (ja) 外部共振器型発光装置
JP5641631B1 (ja) 外部共振器型発光装置
JP5936777B2 (ja) グレーティング素子および外部共振器型発光装置
WO2015190348A1 (ja) 光学デバイスおよび光学デバイスの製造方法
WO2015190569A1 (ja) 外部共振器型発光装置
WO2015190385A1 (ja) 外部共振器型発光装置
JP2015039011A (ja) 外部共振器型発光装置
WO2016093187A1 (ja) 外部共振器型発光装置
WO2015108197A1 (ja) 外部共振器型発光装置
JP2015115457A (ja) 外部共振器型発光装置
WO2015087914A1 (ja) 外部共振器型発光装置
JP2015103732A (ja) グレーティング素子および外部共振器型発光装置
WO2017043222A1 (ja) 光学デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015528735

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865392

Country of ref document: EP