WO2015079558A1 - ケイ化ニオブ基複合材並びにこれを用いた高温部品及び高温熱機関 - Google Patents

ケイ化ニオブ基複合材並びにこれを用いた高温部品及び高温熱機関 Download PDF

Info

Publication number
WO2015079558A1
WO2015079558A1 PCT/JP2013/082177 JP2013082177W WO2015079558A1 WO 2015079558 A1 WO2015079558 A1 WO 2015079558A1 JP 2013082177 W JP2013082177 W JP 2013082177W WO 2015079558 A1 WO2015079558 A1 WO 2015079558A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
composite material
based composite
less
niobium silicide
Prior art date
Application number
PCT/JP2013/082177
Other languages
English (en)
French (fr)
Inventor
玉艇 王
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to PCT/JP2013/082177 priority Critical patent/WO2015079558A1/ja
Publication of WO2015079558A1 publication Critical patent/WO2015079558A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention relates to a niobium silicide (Nb-Si) based composite material, a high temperature component using the same, and a high temperature heat engine.
  • High-temperature technology contributes greatly to improving the thermal efficiency of heat engines such as gas turbines, and the development of high-temperature heat-resistant materials plays an important role.
  • Ni nickel
  • superalloys are mainly used for gas turbine members, but the improvement of the service temperature is approaching its limit, and further improvement is difficult.
  • refractory metals such as tungsten (W), molybdenum (Mo), niobium (Nb), and tantalum (Ta) whose melting point exceeds 2000 ° C.
  • W tungsten
  • Mo molybdenum
  • Nb niobium
  • Ta tantalum
  • intermetallic compounds such as Nb-Al, solid solution strengthened Nb-based alloys, precipitation strengthened or dispersion strengthened Nb based composites, and the like.
  • Nb 3 Al As an Nb—Al-based intermetallic compound, Nb 3 Al having an A15 type crystal structure has attracted attention. Since Nb 3 Al is extremely brittle near room temperature, there has been a proposal to improve room temperature toughness and high temperature strength by adding W and Ta as third elements (Patent Document 1). However, it is extremely difficult to drastically improve the basic properties of intermetallic compounds that are hard and brittle, and further improvement is necessary for practical use as a structural material.
  • Patent Document 2 As an example of a solid solution strengthened niobium-based alloy, an alloy containing 5 to 30 atomic% of Mo and 5 to 15 atomic% of W is known (Patent Document 2). However, even if the solid solution strengthening elements Mo and W are added, further improvement is necessary to obtain sufficient strength in the high temperature region.
  • Nb-Si niobium silicide
  • Si silicon
  • Mo molybdenum
  • W niobium silicide
  • Nb—Si based composite material that strengthens by depositing silicide is known (Patent Document 3).
  • This material is an Nb-based composite material having a network structure in which niobium silicide as a dispersed phase is mainly Nb 5 Si 3 and the niobium silicide is connected to each other. Since the amount of niobium silicide is increased, the high temperature strength is high. However, niobium silicide is fragile in nature, and when it has a network structure, the progress of cracks does not stop and further improvement is required in terms of room temperature brittleness.
  • Patent Document 4 discloses an Nb-based composite material in which titanium (Ti) is added in a range of 24 to 27 atomic% for the purpose of improving the toughness of the metal phase.
  • Ti titanium
  • the toughness of the composite material can be improved by adding Ti
  • the high melting point of the composite material cannot be maintained, and the high-temperature strength decreases. Therefore, further improvement is required to achieve both the toughness (ductility) and high temperature strength of the composite material by adding Ti.
  • Ti is added at a high concentration, there is also a problem that undesired segregation of titanium during the casting process, that is, segregation in the melt during solidification tends to occur.
  • an object of the present invention is to provide a niobium silicide based composite material that is excellent in high-temperature strength and has high toughness in a normal temperature range.
  • One aspect of the present invention is a niobium silicide-based composite material that achieves the above object, 10 atomic% or more and 25 atomic% or less of Si; 5 atomic% or more and 10 atomic% or less of Cr, 1 atomic% or more and 4.9 atomic% or less of Ti; 1 to 5 atomic percent of Hf, 0.5 atomic% or more and 6 atomic% or less of Al, 0.5 atomic% to 10 atomic% Ta, 0.5 atomic% or more and 5 atomic% or less of Zr; 0.5 atomic% to 5 atomic% W; Containing 0.5 atomic% or more and 5 atomic% or less of Mo, Provided is a niobium silicide based composite material characterized in that the balance is Nb and inevitable impurities.
  • a niobium silicide based composite material having excellent high temperature strength and high toughness in a normal temperature range can be provided.
  • heat resistant materials that can be used in a wide temperature range (high-temperature parts such as gas turbine turbine blades and gas turbine turbine stationary blades, gas turbines, jet engines, etc. High-temperature heat engine).
  • Ti is known to have an effect of improving the toughness of the Nb phase, which is a metal phase.
  • the present inventors have found by thermodynamic calculation that the amount of Ti solid solution in the Nb phase differs depending on the additive element (hafnium (Hf), zirconium (Zr), aluminum (Al), W, Mo, etc.). Based on this result, the present inventors further conducted intensive research on the composition (additive element concentration) of Nb-Si with the aim of balancing the strength in the ultrahigh temperature range (1300 ° C) and the toughness in the normal temperature range at a high level. The inventors have found a specific composition that achieves the above object. The present invention is based on this finding.
  • Nb base crystal particles particle Nb crystal
  • a fine structure having high temperature strength eg lamellar structure
  • both high temperature strength and room temperature toughness are achieved.
  • the present inventors can further improve the toughness of the Nb phase by adding an appropriate element, and combine high temperature strength and room temperature toughness at a high level by combining with an appropriate heat treatment process. I found out.
  • Nb crystal includes a crystal of Nb alone (Nb) and a crystal of Nb solid solution.
  • niobium silicide may be any compound containing Nb and Si, and the other compositions are not particularly limited.
  • lamellar structure is a general term for parts other than Nb crystal particles, and includes not only the lamellar structure but also other fine structures.
  • composition of Nb-Si matrix composite The composition of the Nb—Si based composite material according to the present invention will be described.
  • the Nb—Si binary alloy has a eutectic point in the vicinity of 18.7 atomic% of the Si component according to the phase diagram. In the vicinity of the eutectic point, the Nb phase having high toughness tends to be a continuous phase. Considering that the eutectic point shifts back and forth due to the addition of other elements, the Si addition amount is preferably 10 atomic percent to 25 atomic percent, more preferably 12.5 atomic percent to 20.5 atomic percent, More preferably, the atomic% is 18 atomic% or less. If the Si addition amount is less than 10 atomic%, the silicide phase (strengthening phase) is small, so that the high temperature strength cannot be sufficiently obtained. On the other hand, when the added amount of Si exceeds 25 atomic%, since there are many silicide phases, the material becomes hard and brittle, and sufficient toughness cannot be obtained.
  • Cr component (5 atomic% or more and 10 atomic% or less): According to conventional research, it is known that toughness is improved by coarsening of Nb crystal particles. Cr is an effective element for coarsening the Nb crystal particles. And the effect appears more remarkably from 5 atomic% or more. However, when the amount of Cr is too large, a brittle LAVES phase (Laves phase) is precipitated and the toughness is lowered. Therefore, it is desirable that the upper limit be 10 atomic% in balance with other additive elements. From the above, the Cr addition amount is preferably 5 atomic percent or more and 10 atomic percent or less, more preferably 6 atomic percent or more and 9 atomic percent or less, and further preferably 6.5 atomic percent or more and 8.5 atomic percent or less.
  • Ti component (1 atomic% or more and 4.9 atomic% or less) Ti improves the toughness of the Nb-Si composite by dissolving in the Nb phase. However, if the amount of Ti added is too large, Ti forms silicide with Si (TiSi 3 or Ti 5 Si 3 ), and the silicide is brittle, so that the toughness of the composite material deteriorates. Furthermore, Ti has a low melting point, and if the addition amount is too large, the high temperature strength of the niobium silicide composite material is deteriorated by lowering the melting point of the Nb-Si composite material. In view of the above, the amount of Ti added is preferably 1 atomic% to 4.9 atomic%, more preferably 3 atomic% to 4.9 atomic%, and more preferably 3.5 atomic% to 4.8 atomic%. Is more preferable.
  • Hf component (1 atomic% or more and 5 atomic% or less):
  • the Hf element has the greatest effect of increasing the amount of Ti dissolved in the Nb phase as compared with other additive elements. The effect appears more noticeably from 1 atomic% or more. However, if the amount of Hf is too large, HFSi 2 appears and the toughness and high-temperature strength are reduced. Therefore, it is desirable that the upper limit of Hf be 5 atomic%.
  • the amount of Hf added is preferably 1 atom% to 5 atom%, more preferably 2 atom% to 4 atom%, still more preferably 2.2 atom% to 3.8 atom%.
  • Al component (0.5 atomic% to 6 atomic%):
  • the addition of Al has the effect of increasing the solid solution amount of Ti in the Nb phase, similar to Hf. The effect appears more prominently from 0.5 atoms or more.
  • the amount of Al which is a low melting point element, is too large, the melting point of the composite material is lowered and the high temperature strength may be deteriorated. Therefore, it is desirable that the upper limit of Al is 6 atomic%.
  • the amount of Al added is preferably 0.5 atomic percent or more and 6 atomic percent or less, more preferably 2 atomic percent or more and 4 atomic percent or less, and even more preferably 2.2 atomic percent or more and 3.7 atomic percent or less. .
  • Ta component (0.5 atomic% to 10 atomic%): Ta is an element effective for structure control. In particular, it is an element indispensable for forming a lamellar structure having a fine structure. And the effect appears more remarkably from 0.5 atomic% or more. However, when the amount of Ta becomes too large, Ta 5 Si 3 or TaSi 3 phase precipitates and the toughness decreases. In view of the above, the amount of Ta added is preferably 0.5 atomic percent to 10 atomic percent, more preferably 3 atomic percent to 8 atomic percent, and even more preferably 4 atomic percent to 7 atomic percent.
  • Zr component (0.5 atomic% or more and 5 atomic% or less):
  • the addition of Zr accelerates the eutectoid decomposition rate of Nb 3 Si during the heat treatment process, and is effective in coarsening the Nb phase. The effect appears more prominently from 0.5 atomic% or more. However, if the amount of Zr is too large, ZrSi 2 appears and the toughness and high-temperature strength are reduced. Therefore, it is desirable that the upper limit of Zr is 5 atomic%. From the above, the amount of Zr added is preferably 0.5 atomic percent or more and 5 atomic percent or less, more preferably 2 atomic percent or more and 4 atomic percent or less, and further preferably 2.5 atomic percent or more and 3.5 atomic percent or less. preferable.
  • W component (0.5 atomic% to 5 atomic%), Mo component (0.5 atomic% to 5 atomic%):
  • Mo component 0.5 atomic% to 5 atomic%):
  • the reason why both Mo and W are added as strengthening elements that dissolve in Nb is that it is easier to obtain a balance between high-temperature strength and toughness than in the case of only one of them.
  • the added amount of W + Mo is desirably 5 atomic% or more. If the total of W + Mo is less than 5 atomic%, the solid solution effect is insufficient.
  • W which is a refractory metal, can strengthen the Nb phase by solid solution.
  • the reason why the upper limits of W and Mo are 5 atomic% each is that if it is higher than this, the toughness is remarkably lowered.
  • carbon (C) may be added to the Nb—Si composite.
  • C carbon
  • B boron
  • the above-described Nb-Si based composite material according to the present invention has Nb crystal particles, a compound phase containing niobium silicide, and a coarse metal Nb crystal particle structure having high toughness, and excellent high-temperature strength. It is desirable to have a composite structure form in which fine Nb crystal particles / niobium silicide lamellar structure coexists.
  • the Nb-Si based composite material according to the present invention exhibits excellent heat resistance, strength, toughness and ductility. Therefore, the Nb—Si matrix composite according to the present invention can be suitably used as a heat resistant material, and is extremely useful as a heat resistant material that can be used in a wide temperature environment.
  • the niobium silicide-based composite material according to the present invention has excellent strength in the ultra-high temperature range (1300 ° C.) and also has toughness in the normal temperature range. Suitable for high-temperature parts such as stationary blades. Further, the high-temperature component is suitable for a high-temperature heat engine such as a gas turbine or a jet engine.
  • the manufacturing method of the Nb-Si based composite material of the present invention includes the following steps.
  • Various conditions such as temperature, material, manufacturing equipment and appliances are not particularly limited.
  • the heat treatment step is a step of heat-treating the Nb-Si based composite material that has undergone the solidification step in a solid state.
  • the heat treatment step is preferably performed in a vacuum or in an inert atmosphere.
  • the Nb—Si based composite material obtained through the heat treatment step includes coarse Nb crystal particles as a main phase and fine Nb crystal particles / niobium silicide lamellar structure (hereinafter referred to as lamellar structure).
  • the niobium silicide is MSi 3 or M 5 Si 3 (where M is Nb, Hf, Ti, Mo, Ta, W, Pt, or the like), and most is Nb 5 Si 3 .
  • the lamellar structure is formed in a network of coarsened Nb crystal particles. For this reason, cracks caused by niobium silicide are unlikely to progress. Further, the Nb crystal around niobium silicide is relatively ductile, and its toughness is higher than that of silicide. As a result, the crack growth in the silicide, which is most concerned, is suppressed.
  • the volume ratio of coarsened Nb crystal particles is preferably in the range of 35 to 65% by volume, and more preferably in the range of 45 to 60% by volume.
  • the volume ratio of the Nb crystal grains is a percentage of the area occupied by the coarsened Nb crystal grains in the total cross-sectional area of the Nb-Si-based composite material, and other than the total cross-sectional area and the coarsened Nb crystal grains. It is defined as the percentage of the value obtained by dividing the difference from the area occupied by a certain lamellar structure by the total cross-sectional area.
  • the lamellar structure is considered to improve the high temperature strength.
  • the size of these tissues is not particularly limited.
  • a lamellar structure is more preferable as it has a fine structure.
  • the volume ratio of the lamellar structure is preferably in the range of 35 to 65% by volume, and more preferably in the range of 45 to 55% by volume.
  • the volume ratio of the lamellar structure is a percentage of the area occupied by the lamellar structure in the total cross-sectional area of the Nb-Si based composite material.
  • the other than the main phase (coarsened Nb crystal grain and lamellar structure) is deposited a small amount of minor phase (Laves phase precipitation equality such as HF 2 Si phase) Formation is also permitted.
  • the volume ratio of the non-major phase is preferably 5% or less.
  • the volume ratio of the non-major phase is a percentage of the area occupied by the non-major phase in the total cross-sectional area of the Nb—Si based composite material.
  • the Nb-Si matrix composite according to the present invention can be processed and molded into a desired article by various methods.
  • the molten alloy product can be cast in a known apparatus. Mold assemblies for casting are well known in the art. One example is described in US Pat. No. 6,676,381.
  • As the casting method solidification of molten metal by a directional solidification (DS) method is suitable.
  • the DS method is well known in the art and is described, for example, in US Pat. No. 6,590,015 and US Pat. No. 4,213,497.
  • the cold-crucible induction melting method (Cold Crucible Induction Melting: CCIM) was employ
  • the cold crucible melting method there are an electron beam melting method (Electron Beam Melting: EBM), a plasma arc melting method (Plasma Arc Melting: PAM), and any melting method may be adopted.
  • EBM Electro Beam Melting: EBM
  • PAM plasma arc melting method
  • any melting method may be adopted.
  • the resulting specimen was subjected to a compression test and a four-point bending test at room temperature to evaluate the creep strain rate and room temperature fracture toughness. The results are shown in Table 2.
  • the compression test was performed at 1200 ° C. and 137 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

 高温強度に優れ、かつ、常温域における高い靭性を兼ね備えたケイ化ニオブ基複合材を提供する。本発明に係るケイ化ニオブ基複合材は、10原子%以上25原子%以下のSiと、5原子%以上10原子%以下のCrと、1原子%以上4.9原子%以下のTiと、1原子%以上5原子%以下のHfと、0.5原子%以上6原子%以下のAlと、0.5原子%以上10原子%以下のTaと、0.5原子%以上5原子%以下のZrと、0.5原子%以上5原子%以下のWと、0.5原子%以上5原子%以下のMoとを含有し、残部がNbと不可避不純物とからなることを特徴とする

Description

ケイ化ニオブ基複合材並びにこれを用いた高温部品及び高温熱機関
 本発明は、ケイ化ニオブ(Nb‐Si)基複合材並びにこれを用いた高温部品及び高温熱機関に関する。
 ガスタービン等の熱機関の熱効率の改善には、高温化技術が大きく寄与しており、高温耐熱材料の開発が重要な役割を担っている。現在、ガスタービン部材には、主にニッケル(Ni)基超合金が用いられているが、耐用温度の向上は限界に近づいており、更なる向上は困難な状況にある。
 熱効率を向上するため、新たな耐熱材料は、従来材のNi基超合金(融点約1300℃)より高い耐用温度が求められている。従来材のNi基超合金の発展を振り返ると、生産技術の革新・発展(一方向凝固、単結晶など)によって材料特性が改善されてきた。しかし、次世代の高温材料として最も重要かつ本質的な特性は、融点が高いことである。したがって、耐用温度を本質的に向上するためには、高融点金属をベース材とした材料の開発が最も現実的な選択である。
 これを満たすものとして、融点が2000℃を越えるタングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)等の、いわゆる高融点金属が考えられる。その中でも、特にNbは、Niより融点が1000℃以上も高く、セラミックスに比べて室温での靭性に優れ、かつ、低密度(8.57g/cm)である。しかし、Nb単体を耐熱材料として実用化することは、高温強度及び常温靭性の面から課題が残っている。よって、この2つの特性を強化する合金を開発する必要がある。
 そこで、Nb‐Al系等の金属間化合物、固溶強化型のNb基合金、析出強化型若しくは分散強化型のNb基複合材等に関して、種々の検討が行われている。
 Nb‐Al系金属間化合物としては、A15型結晶構造を有するNbAlが注目されている。NbAlは、室温付近で極めて脆いため、第三元素としてW、Taを添加することにより常温靭性や高温強度を改善する提案もあった(特許文献1)。しかし、硬くて脆いという金属間化合物の基本的性質を大幅に改善することは極めて困難であり、構造材料として実用化するためには、さらなる改善が必要である。
 固溶強化型のニオブ基合金の例としては、Moを5~30原子%とWを5~15原子%含む合金が知られている(特許文献2)。しかし、固溶強化元素Mo及びWを添加したとしても、高温領域において十分な強度を得るためには、さらなる改善が必要である。
 また、ケイ化ニオブ(Nb‐Si)基複合材の例としては、Nbにシリコン(Si)を5~20原子%、Moを5~30原子%およびWを5~15原子%添加し、ニオブシリサイドを析出させて強化するNb‐Si系複合材料が知られている(特許文献3)。この材料は、分散相であるニオブシリサイドが主にNbSiであって、かつ、このニオブシリサイドが互いに連結したネットワーク構造を有するNb基複合材である。ニオブシリサイドの量を多くしているため、高温強度が高い。しかし、ニオブシリサイドは、本質的に脆く、ネットワーク構造となると、亀裂の進展は止まらず、室温脆性の点でさらなる改善が必要である。
 また、特許文献4では、金属相の靭性を改善する目的で、チタン(Ti)を24~27原子%の範囲内で添加したNb基複合材が開示されている。しかしながら、Tiを添加することで複合材の靭性を向上できるが、複合材の高い融点が維持できず、高温強度が低下する。したがって、Ti添加によって、複合材の靱性(延性)及び高温強度を両立するためには、さらなる改善が必要である。更に、Tiを高濃度添加すると、鋳造工程時における望ましくないチタンの偏析、つまり凝固時における溶融液内での偏析を発生し易いという課題もある。
特開平6‐122935号公報 特開2001‐226732号公報 特開2001‐226734号公報 米国特許第5833773号明細書
 本発明は、上記事情に鑑み、高温強度に優れ、かつ、常温域における高い靭性を兼ね備えたケイ化ニオブ基複合材を提供することを目的とする。
 本発明の一態様は、上記目的を達成するため、ケイ化ニオブ基複合材であって、
10原子%以上25原子%以下のSiと、
5原子%以上10原子%以下のCrと、
1原子%以上4.9原子%以下のTiと、
1原子%以上5原子%以下のHfと、
0.5原子%以上6原子%以下のAlと、
0.5原子%以上10原子%以下のTaと、
0.5原子%以上5原子%以下のZrと、
0.5原子%以上5原子%以下のWと、
0.5原子%以上5原子%以下のMoとを含有し、
残部がNbと不可避不純物とからなることを特徴とするケイ化ニオブ基複合材を提供する。
 本発明によれば、高温強度に優れ、かつ、常温域における高い靭性を兼ね備えたケイ化ニオブ基複合材を提供することができる。また本発明に係るケイ化ニオブ基複合材を用いることで、幅広い温度範囲において使用可能な耐熱材料(ガスタービン用タービン動翼及びガスタービン用タービン静翼等の高温部品、ガスタービン及びジェットエンジン等の高温熱機関)を得ることができる。
(本発明の基本思想)
 Tiは、金属相であるNb相の靭性を改善する効果があることが知られている。本発明者らは熱力学計算により、添加元素(ハフニウム(Hf),ジルコニウム(Zr),アルミニウム(Al),W,Mo等)によってNb相におけるTi固溶量が異なることを見出した。この結果に基づき、さらに本発明者らは超高温域(1300℃)における強度と常温域における靭性を高いレベルでバランスさせることを目指してNb‐Siの組成(添加元素濃度)について鋭意研究を行い、上記目的を達成する特定の組成を見出した。本発明は該知見に基づくものである。
 より具体的には、延性に富むNbベース結晶粒子(粒子状のNb結晶)と、高温強度を有する微細な組織(例:ラメラー組織)とを組み合わせることにより、高温強度と常温靭性とを両立することの可能性を検討した。本発明者らは、組織制御に基ついて、更に適切な元素の添加でNb相の靭性が改善され、適切な熱処理工程とを組み合わせることにより、高温強度と常温靭性とを高いレベルで両立可能であることを見出した。
 以下、本発明の実施形態について説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。なお、本明細書において「Nb結晶」は、Nb単体(Nb)の結晶及びNb固溶体の結晶を含む。また、「ニオブシリサイド」は、Nb及びSiを含む化合物であればよく、その他の組成等については特に限定されるものではない。さらに、「ラメラー組織」は、Nb結晶粒子以外の部分の総称であり、ラメラー組織だけでなく、他の微細な組織も含むものとする。
 (Nb‐Si基複合材の組成)
 本発明に係るNb‐Si基複合材の組成について説明する。
 Si成分(10原子%以上25原子%以下):
 Nb‐Si系の二元系合金は、その状態図により、Si成分が18.7原子%付近に共晶点がある。共晶点の付近では、靭性が大きいNb相が連続相になり易い。他の元素の添加により共晶点が前後にずれることを考慮し、Si添加量は10原子%以上25原子%以下が好ましく、12.5原子%以上20.5原子%以下がより好ましく、13原子%以上18原子%以下が更に好ましい。Si添加量が10原子%未満であると、シリサイド相(強化相)が少ないため、高温強度が十分に得られない。一方、Siの添加量が25原子%超では、シリサイド相が多いため、硬くて脆い材料になり、靭性が十分に得られない。
 Cr成分(5原子%以上10原子%以下):
 従来の研究により、Nb結晶粒子の粗大化により、靭性を向上することが知られている。Crは、Nb結晶粒子の粗大化のために有効な元素である。そして、その効果がより顕著に現れるのは、5原子%以上からである。しかし、Cr量が多くなりすぎると、脆いLAVES相(ラーベス相)が析出して靭性が低下する。そのため、他の添加元素とのバランスをとって、その上限を10原子%とすることが望ましい。以上のことから、Cr添加量は、5原子%以上10原子%以下が好ましく、6原子%以上9原子%以下がより好ましく、6.5原子%以上8.5原子%以下が更に好ましい。
 Ti成分(1原子%以上4.9原子%以下):
 TiはNb相に固溶することでNb‐Si複合材の靭性を向上する。しかし、Tiの添加量が多すぎると、TiはSiとシリサイド(TiSi又はTiSi)を形成し、それらのシリサイドは脆いため、複合材の靭性が劣化する。更に、Tiは低融点であり、添加量が多すぎると、Nb‐Si複合材の融点を低下することで、ケイ化ニオブ複合材の高温強度が劣化する。以上のことから、Tiの添加量は1原子%以上4.9原子%以下が好ましく、3原子%以上~4.9原子%以下がより好ましく、3.5原子%以上4.8原子%以下が更に好ましい。
 Hf成分(1原子%以上5原子%以下):
 Hf元素は、他の添加元素と比較して、TiのNb相への固溶量を増加させる効果が最も大きい。その効果がより顕著に現れるのは1原子%以上からである。しかし、Hf量が多くなりすぎると、HFSiが現れることで靭性および高温強度が低下する。そのために、Hfの上限を5原子%とすることが望ましい。以上のことから、Hfの添加量は1原子%以上5原子%以下が好ましく、2原子%以上~4原子%以下がより好ましく、2.2原子%以上3.8原子%以下が更に好ましい。
 Al成分(0.5原子%以上6原子%以下):
 Alの添加はHfと同様にNb相へのTiの固溶量を増加させる効果がある。その効果がより顕著に現れるのは0.5原子以上からである。しかし、低融点元素であるAl量が多くなりすぎると、複合材の融点が低下し、高温強度が劣化する可能性がある。そのために、Alの上限を6原子%とすることが望ましい。以上のことから、Alの添加量は0.5原子%以上6原子%以下が好ましく、2原子%以上4原子%以下がより好ましく、2.2原子%以上3.7原子%以下が更に好ましい。
 Ta成分(0.5原子%以上10原子%以下):
 Taは組織制御に有効な元素である。とくに、微細な組織を有するラメラー組織の形成に欠かせない元素である。そして、その効果がより顕著に現れるのは0.5原子%以上からである。しかし、Ta量が多くなりすぎると、TaSi又はTaSi相が析出して靭性が低下する。以上のことから、Taの添加量は、0.5原子%以上10原子%以下が好ましく、3原子%以上8原子%以下がより好ましく、4原子%以上7原子%以下がさらに好ましい。
 Zr成分(0.5原子%以上5原子%以下):
 Zrを添加することで、熱処理工程中のNbSiの共析分解速度を加速させて、Nb相の粗大化に効果がある。その効果がより顕著に現れるのは0.5原子%以上からである。しかし、Zr量が多くなりすぎると、ZrSiが現れることで靭性および高温強度が低下する。そのために、Zrの上限を5原子%とすることが望ましい。以上のことから、Zrの添加量は、0.5原子%以上5原子%以下が好ましく、2原子%以上4原子%以下がより好ましく、2.5原子%以上3.5原子%以下がさらに好ましい。
 W成分(0.5原子%以上5原子%以下)、Mo成分(0.5原子%以上5原子%以下):
 Nbに固溶する強化元素として、MoとWを共に添加する理由は、いずれか一方のみの場合より、高温強度と靭性のバランスを得易いためである。W+Moの添加量を5原子%以上することが望ましい。W+Moの合計5原子%未満では、固溶効果が不十分である。高融点金属であるWの添加は、Nb相を固溶強化することができる。WとMoの上限をそれぞれ5原子%とする理由は、これより高いと、靭性は著しく低下するためである。
 上記のNb‐Si複合体には、ニオブ結晶以外に、例えば、炭素(C)を添加してもよい。これにより、炭化物を形成することができ、この炭化物によってNb‐Si複合体を強化することができる。なお、化合物の安定化の面から、B(ホウ素)を添加することも有効である。
 上述した本発明に係るNb‐Si基複合材は、Nb結晶粒子と、ニオブシリサイドを含む化合物相とを有し、高い靭性を有する粗大化した金属Nb結晶粒子組織と、優れた高温強度を有する微細なNb結晶粒子/ニオブシリサイドラメラー組織とが共存する複合組織形態を有することが望ましい。
 本発明に係るNb‐Si基複合材は、優れた耐熱性、強度、靭性及び延性を示す。よって、本発明に係るNb‐Si基複合材は、耐熱材料として好適に用いることができ、特に幅広い温度環境において使用可能な耐熱材料として非常に有用である。
 より具体的には、本発明に係るケイ化ニオブ基複合材は、超高温域(1300℃)における強度に優れ、かつ、常温域における靭性を兼ね備えているので、ガスタービン用タービン動翼、タービン静翼等の高温部品に好適である。さらに、該高温部品はガスタービン、ジェットエンジン等の高温熱機関に好適である。
 (Nb‐Si基複合材の製造方法)
 本発明のNb‐Si基複合材の製造方法は、次の工程を含む。
 すなわち、Nbを含む材料と、Siを含む材料と、適切な(上述した添加量の)添加元素とを混合し、溶融する溶融工程と、該溶融工程によって得られた溶融物を凝固する凝固工程と、該凝固工程によって得られた凝固物を固体状態で熱処理する熱処理工程である。温度、材料、製造設備・器具等の諸条件については、特に限定されるものではない。
 上記の熱処理工程は、上記の凝固工程を経たNb‐Si基複合材を固体状態のまま熱処理する工程である。また、熱処理工程は、真空中又は不活性雰囲気中で行うことが好ましい。
 上記熱処理工程を経て得られたNb‐Si基複合材は、主要相として粗大化したNb結晶粒子と、微細なNb結晶粒子/ニオブシリサイドラメラー組織(以下、ラメラー組織)とを含むことが望ましい。上記ニオブシリサイドはMSiまたはMSi(ここでMは、Nb、Hf、Ti、Mo、Ta、W又はPt等)であり、大部分がNbSiである。また、上記ラメラー組織は、粗大化したNb結晶粒子のネットワーク中に形成された状態になっている。そのため、ニオブシリサイドで生じた亀裂は進展しにくい。また、ニオブシリサイドの周囲のNb結晶は比較的延性があり、その靭性もシリサイドと比較して高い。その結果、最も懸念されるシリサイド中の亀裂進展は抑制される。
 また、粗大化したNb結晶粒子の体積率は、35~65体積%の範囲が好ましく、45~60体積%の範囲がより好ましい。ここで、Nb結晶粒の体積率は、Nb‐Si基複合材の全断面積のうち粗大化したNb結晶粒子が占める面積の百分率であり、当該全断面積と粗大化したNb結晶粒以外であるラメラー組織等が占める面積との差を当該全断面積で割った値の百分率として定義する。
 一方、ラメラー組織は、高温強度を向上すると考えられる。これらの組織の大きさは特に限定されない。ラメラー組織は、細かい構造を有するものほど好ましい。ラメラー組織の体積率は、好ましくは35~65体積%の範囲であり、更に好ましくは45~55体積%の範囲である。ここで、ラメラー組織の体積率は、Nb‐Si基複合材の全断面積のうちラメラー組織が占める面積の百分率である。熱処理後のNb‐Si基複合材は、上記主要相(粗大化したNb結晶粒子及びラメラー組織)以外には、析出量の少ない非主要相(Laves相、HFSi相などの析出相等)の形成も認められる。非主要相の体積率は5%以下であることが好ましい。ここで、非主要相の体積率は、Nb‐Si基複合材の全断面積のうち非主要相が占める面積の百分率である。
 本発明に係るNb‐Si基複合材は、様々な方法によって所望の物品に加工及び成形することができる。例えば、溶融させた合金製品は、公知の装置内で鋳造することができる。鋳造のためのモールド組立体は、当技術分野においてよく知られている。その一例としては、米国特許第6676381号明細書に記載されている。また、鋳造法としては、方向性凝固(DS)法による溶融金属の凝固が好適である。DS法は、当技術分野においてよく知られており、例えば米国特許第6059015号明細書及び米国特許第第4213497号明細書に記載されている。
 以下、実施例を用いて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(本発明のNb‐Si基複合材の作製と評価)
 本発明のNb‐Si基複合材の試験片(TP‐1及びTP‐2)を作製した。
TP‐1及びTP‐2の名目組成を後述する表1に示す。試験片は、コールドクルーシブル溶解法で試料を作製した(溶融工程及び凝固工程)。その後の熱処理工程では、アルゴン(Ar)雰囲気において1200℃~1700℃で10~50時間の条件で熱処理を行った。
 なお、ここではコールドクルーシブル溶解法としては、コールドクルーシブル誘導溶解法(Cold Crucible Induction Melting:CCIM)を採用した。コールドクルーシブル溶解法には、このほか、電子ビーム溶解法(Electron Beam Melting:EBM)、プラズマアーク溶解法(Plasma Arc Melting:PAM)等があるが、いずれの溶解法を採用してもよい。
Figure JPOXMLDOC01-appb-T000001
 得られた試験片に対して、圧縮試験および室温で四点曲げ試験を実施し、クリープ歪速度及び室温破壊靭性を評価した。結果を表2に示す。なお、圧縮試験の条件は1200℃で137MPaとした。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、本発明に係るNb‐Si基複合材はいずれも優れた高温強度及び常温靭性とを兼ね備えることが確認された。したがって、本発明に係るNb‐Si基複合材は、耐熱材料として非常に有用であることが示された。
 なお、上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。

Claims (10)

  1.  ケイ化ニオブ基複合材であって、
    10原子%以上25原子%以下のSiと、
    5原子%以上10原子%以下のCrと、
    1原子%以上4.9原子%以下のTiと、
    1原子%以上5原子%以下のHfと、
    0.5原子%以上6原子%以下のAlと、
    0.5原子%以上10原子%以下のTaと、
    0.5原子%以上5原子%以下のZrと、
    0.5原子%以上5原子%以下のWと、
    0.5原子%以上5原子%以下のMoとを含有し、
    残部がNbと不可避不純物とからなることを特徴とするケイ化ニオブ基複合材。
  2.  前記Wと前記Moの合計添加量が5原子%以上10原子%以下であることを特徴とする請求項1に記載のケイ化ニオブ基複合材。
  3.  B、C、Ge、V、Sn、N、Fe及びInから成る群から選択される少なくとも1つの元素をさらに含むことを特徴とする請求項1に記載のケイ化ニオブ基複合材。
  4.  前記ケイ化ニオブ基複合材は、粗大化したNb結晶粒子及び微細なNb結晶粒子/ニオブシリサイドラメラー組織とを含む主要相と、非主要相とを含み、
    前記ケイ化ニオブ基複合材中、前記粗大化したNb結晶粒子の体積率が35%以上65%以下であり、前記微細なNb結晶粒子/ニオブシリサイドラメラー組織の体積率が35%以上65%以下であり、前記非主要相の体積率が5%以下であることを特徴とする請求項1に記載ケイ化ニオブ基複合材。
  5.  請求項1に記載のケイ化ニオブ基複合材を用いたことを特徴とする高温部品。
  6.  前記高温部品がガスタービン用タービン動翼であることを特徴とする請求項5に記載の高温部品。
  7.  前記高温部品がガスタービン用タービン静翼であることを特徴とする請求項5に記載の高温部品。
  8.  請求項5に記載の高温部品を用いたことを特徴とする高温熱機関。
  9.  前記高温熱機関がガスタービンであることを特徴とする請求項8に記載の高温熱機関。
  10.  前記高温熱機関がジェットエンジンであることを特徴とする請求項8に記載の高温熱機関。
PCT/JP2013/082177 2013-11-29 2013-11-29 ケイ化ニオブ基複合材並びにこれを用いた高温部品及び高温熱機関 WO2015079558A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082177 WO2015079558A1 (ja) 2013-11-29 2013-11-29 ケイ化ニオブ基複合材並びにこれを用いた高温部品及び高温熱機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082177 WO2015079558A1 (ja) 2013-11-29 2013-11-29 ケイ化ニオブ基複合材並びにこれを用いた高温部品及び高温熱機関

Publications (1)

Publication Number Publication Date
WO2015079558A1 true WO2015079558A1 (ja) 2015-06-04

Family

ID=53198545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082177 WO2015079558A1 (ja) 2013-11-29 2013-11-29 ケイ化ニオブ基複合材並びにこれを用いた高温部品及び高温熱機関

Country Status (1)

Country Link
WO (1) WO2015079558A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349864A (zh) * 2015-10-28 2016-02-24 西北有色金属研究院 一种Nb-Si-Ta-W合金材料及其制备方法
WO2016189612A1 (ja) * 2015-05-25 2016-12-01 三菱日立パワーシステムズ株式会社 ケイ化ニオブ基複合材とそれを用いた高温部品及び高温熱機関
CN108277410A (zh) * 2018-01-24 2018-07-13 北京航空航天大学 一种具有择优位向关系的NbSi合金
JP2018111853A (ja) * 2017-01-11 2018-07-19 三菱日立パワーシステムズ株式会社 ニオブ−ケイ素系合金製造物、該製造物の製造方法、および該製造物を用いた熱機関
CN113025860A (zh) * 2021-03-09 2021-06-25 陕西科技大学 一种兼具高强度、高硬度及高热稳定性的Laves相共晶合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327284A (ja) * 2001-02-02 2002-11-15 General Electric Co <Ge> ニオブ基ケイ化物複合材料用耐酸化性皮膜
JP2006219740A (ja) * 2005-02-14 2006-08-24 Chokoon Zairyo Kenkyusho:Kk 耐酸化性に優れた二オブ基合金耐熱部材
JP2007031837A (ja) * 2005-07-26 2007-02-08 General Electric Co <Ge> ケイ化ニオブを基材とした高融点金属金属間化合物複合材及びその関連する物品
JP2007051635A (ja) * 2005-06-30 2007-03-01 General Electric Co <Ge> ニオブシリサイド基タービン構成部品および関連するレーザ付着方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327284A (ja) * 2001-02-02 2002-11-15 General Electric Co <Ge> ニオブ基ケイ化物複合材料用耐酸化性皮膜
JP2006219740A (ja) * 2005-02-14 2006-08-24 Chokoon Zairyo Kenkyusho:Kk 耐酸化性に優れた二オブ基合金耐熱部材
JP2007051635A (ja) * 2005-06-30 2007-03-01 General Electric Co <Ge> ニオブシリサイド基タービン構成部品および関連するレーザ付着方法
JP2007031837A (ja) * 2005-07-26 2007-02-08 General Electric Co <Ge> ケイ化ニオブを基材とした高融点金属金属間化合物複合材及びその関連する物品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189612A1 (ja) * 2015-05-25 2016-12-01 三菱日立パワーシステムズ株式会社 ケイ化ニオブ基複合材とそれを用いた高温部品及び高温熱機関
CN105349864A (zh) * 2015-10-28 2016-02-24 西北有色金属研究院 一种Nb-Si-Ta-W合金材料及其制备方法
JP2018111853A (ja) * 2017-01-11 2018-07-19 三菱日立パワーシステムズ株式会社 ニオブ−ケイ素系合金製造物、該製造物の製造方法、および該製造物を用いた熱機関
CN108277410A (zh) * 2018-01-24 2018-07-13 北京航空航天大学 一种具有择优位向关系的NbSi合金
CN113025860A (zh) * 2021-03-09 2021-06-25 陕西科技大学 一种兼具高强度、高硬度及高热稳定性的Laves相共晶合金及其制备方法
CN113025860B (zh) * 2021-03-09 2022-07-08 陕西科技大学 一种兼具高强度、高硬度及高热稳定性的Laves相共晶合金及其制备方法

Similar Documents

Publication Publication Date Title
US9945019B2 (en) Nickel-based heat-resistant superalloy
JP5582532B2 (ja) Co基合金
JP5478601B2 (ja) Ni基鍛造合金と、それを用いたガスタービン
JP5792500B2 (ja) Ni基超合金材およびタービンロータ
CN106756249A (zh) 一种高强度且组织稳定的镍基单晶高温合金及其制备方法
WO2015079558A1 (ja) ケイ化ニオブ基複合材並びにこれを用いた高温部品及び高温熱機関
KR102437409B1 (ko) Ni기 합금, 가스 터빈재, 및 Ni기 합금의 제조 방법
JP6030250B1 (ja) ケイ化ニオブ基複合材とそれを用いた高温部品及び高温熱機関
JP2017179592A (ja) Ni基超耐熱合金の製造方法
JP2018024938A (ja) 超合金物品及び関連物品の製造方法
JPH06145854A (ja) アルミナ化ニッケル単結晶合金組成物及びその製造方法
CN112853156B (zh) 一种高组织稳定性镍基高温合金及其制备方法
JP5876943B2 (ja) 合金およびその製造方法
TWI540211B (zh) 高應力等軸晶鎳基合金
JP6189855B2 (ja) ケイ化ニオブ基複合材並びにこれを用いたガスタービン用タービン動翼、ガスタービン用タービン静翼及び高温部品並びに当該高温部品を用いたガスタービン、ジェットエンジン及び高温熱機関
KR20220067238A (ko) L21 입자 강화 고엔트로피 합금 및 그 제조 방법
TWI657147B (zh) 一種高應力鎳基合金
JP5733728B2 (ja) Ti及びCを含むNi基2重複相金属間化合物合金及びその製造方法
CN113881863B (zh) 一种NiTi-Al基合金的制备方法
TW201819646A (zh) 高抗潛變等軸晶鎳基超合金
WO2020225966A1 (ja) バナジウム基合金材料及びこれを用いた製造物
JP4276853B2 (ja) ニオブ基複合材料
JP6861363B2 (ja) Ni基金属間化合物合金及びその製造方法
UA126255C2 (uk) Жароміцний сплав на основі ніобію
JP2018111853A (ja) ニオブ−ケイ素系合金製造物、該製造物の製造方法、および該製造物を用いた熱機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP