WO2015076105A1 - 屈曲光ファイバの製造方法 - Google Patents

屈曲光ファイバの製造方法 Download PDF

Info

Publication number
WO2015076105A1
WO2015076105A1 PCT/JP2014/079346 JP2014079346W WO2015076105A1 WO 2015076105 A1 WO2015076105 A1 WO 2015076105A1 JP 2014079346 W JP2014079346 W JP 2014079346W WO 2015076105 A1 WO2015076105 A1 WO 2015076105A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
bending
irradiation
bent
laser pulse
Prior art date
Application number
PCT/JP2014/079346
Other languages
English (en)
French (fr)
Inventor
靖臣 金内
雄一 水戸瀬
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/434,438 priority Critical patent/US20160016843A1/en
Priority to CN201480064435.0A priority patent/CN105765427A/zh
Publication of WO2015076105A1 publication Critical patent/WO2015076105A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/14Re-forming fibres or filaments, i.e. changing their shape
    • C03B37/15Re-forming fibres or filaments, i.e. changing their shape with heat application, e.g. for making optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • C03B2203/06Axial perturbations, e.g. twist, by torsion, undulating, crimped
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3608Fibre wiring boards, i.e. where fibres are embedded or attached in a pattern on or to a substrate, e.g. flexible sheets
    • G02B6/3612Wiring methods or machines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present invention relates to a method for manufacturing a bent optical fiber.
  • Patent Document 1 discloses a technique of attaching an optical fiber (coated optical fiber) to an optical component at an angle ⁇ with respect to the center line of the optical component. According to this technology, it is possible to reduce the size of an optical fiber component including the optical fiber and the optical component by substantially reducing the radius of curvature of the optical fiber.
  • Patent Document 2 discloses a technique for bending an optical fiber by continuously heating the optical fiber while shifting the irradiation position by arc discharge along the longitudinal direction of the optical fiber. With this technique, the optical fiber can be bent with a desired radius of curvature.
  • the inventors have discovered the following problems as a result of studying a bending technique for a conventional optical fiber. That is, the technique described in Patent Document 1 gives an angle ⁇ to the optical fiber at one point of the end portion of the optical component. For this reason, stress concentrates on the bent portion of the optical fiber, and problems such as a reduction in the diameter of the optical fiber tend to occur. Moreover, the technique of the said patent document 2 is bending to the optical fiber by heating an optical fiber continuously along the longitudinal direction. Therefore, the optical fiber is heated more than necessary, and problems such as a reduction in the diameter of the optical fiber are likely to occur.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method of manufacturing a bent optical fiber capable of suppressing the reduction in the diameter of the optical fiber and realizing a desired radius of curvature. It is said.
  • a local bending process by irradiation with infrared laser pulse light is repeated for an optical fiber made of silica glass and having a first end face and a second end face facing the first end face.
  • the present invention relates to a method for manufacturing a bent optical fiber. That is, in the method of manufacturing a bent optical fiber according to the first aspect of the present embodiment, an optical fiber made of silica glass and having a first end face and a second end face facing the first end face is prepared, and the light A heating source is provided that outputs laser light (for example, infrared laser pulse light) having a thermal power distribution having a shape that maximizes the thermal power on the axis.
  • laser light for example, infrared laser pulse light
  • the fiber is bent to a predetermined radius of curvature.
  • laser light is irradiated onto an irradiation region of the optical fiber, and the optical fiber is bent at a bending portion softened by laser irradiation in the irradiation region during the laser irradiation period.
  • the width of the bent portion along the longitudinal direction of the optical fiber is narrower than the width of the irradiation region.
  • the irradiation position is moved after the optical fiber is bent, and the irradiation position of the laser beam is moved by a predetermined movement amount along the longitudinal direction of the optical fiber.
  • the predetermined amount of movement is equal to the irradiation region when the optical fiber is bent with respect to the next irradiation region in the next laser irradiation that forms the next irradiation region and the next bending portion included in the next irradiation region with respect to the optical fiber.
  • it is the amount that the bent portion is separated when the optical fiber is bent next time with respect to the bent portion.
  • the manufacturing method of the bent optical fiber according to the second aspect of the present embodiment is also applicable to the first aspect, and includes at least a first bending process and a second bending process.
  • the first bending step the first bending softened by the irradiation of the infrared laser pulse light in the first irradiation region (first portion) while heating the first irradiation region of the optical fiber by the irradiation of the infrared laser pulse light.
  • the optical fiber is bent at a first angle (bending angle).
  • an infrared laser pulse in the second irradiation region is heated while heating a second irradiation region (second portion) of the optical fiber different from the first irradiation region by irradiation with infrared laser pulse light.
  • the optical fiber is bent at a second angle (bending angle) in the second bending portion softened by the light irradiation.
  • the heating section of the optical fiber irradiated with the infrared laser pulse light is composed of a plurality of irradiation areas including the first irradiation area and the second irradiation area, and this configuration is such that the second bending step is performed once or more. Can be realized.
  • the 1st bending process is equivalent to a 1st bending process.
  • the n-th bending step corresponds to the second bending step
  • the irradiation region of the (n-1) -th bending step corresponds to the first irradiation region.
  • the first bending portion and the second bending portion are separated along the longitudinal direction of the optical fiber. It is preferable.
  • the optical fiber in the first bending step, is a non-softened portion adjacent to the first bent portion. The central axes are bent so as to form a first angle.
  • the second irradiation region is formed at a position shifted along the longitudinal direction of the optical fiber with respect to the formation position of the first irradiation region, and the optical fiber is adjacent to the second bending portion.
  • the central axes of the non-softened portions that are to be bent are bent so as to form a second angle.
  • the heating section is defined by a section extending along the longitudinal direction of the optical fiber from the irradiation area closest to the first end face to the irradiation area closest to the second end face among the plurality of irradiation areas.
  • each of the first bending step and the second bending step is lighter than the first irradiation region and the second irradiation region. While the load material is attached to the first end surface side of the fiber, it is preferable that the second end surface side of the optical fiber is fixed to the first irradiation region and the second irradiation region.
  • the infrared laser pulse light preferably includes laser light having a wavelength of more than 1.5 ⁇ m.
  • the infrared laser pulse light irradiated to the first irradiation region has a thermal power in the first bending portion being the first. It is preferable to have a power distribution that is higher than the thermal power in the remaining portion excluding the one bent portion. Note that the infrared laser pulse light irradiated to the second irradiation region also has a power distribution in which the thermal power in the second bending portion is higher than the thermal power in the remaining portion excluding the second bending portion. Is preferred.
  • the irradiation condition of the infrared laser pulse light irradiated to each of the plurality of irradiation areas is set to one irradiation area.
  • the heating section of the optical fiber may be bent to a predetermined radius of curvature by controlling the number of pulses of the infrared laser pulse light to be irradiated and the center interval of each of the plurality of irradiation regions.
  • the heating section of the fiber may be bent to a predetermined radius of curvature.
  • the optical fiber may be a multi-core optical fiber having a plurality of cores extending along a predetermined axis.
  • the multi-core optical fiber is defined by a straight line orthogonal to the predetermined axis and adjacent to one of the plurality of cores on the bending axis that coincides with the bending direction in each of the first bending portion and the second bending portion. It is preferable to bend so that there is no core to perform.
  • FIG. 3 is a cross-sectional view of a multi-core optical fiber.
  • the manufacturing method of the refractive optical fiber according to the present embodiment includes a preparation process, an attachment process, a first bending process, and a second bending process.
  • the second bending step may be executed a plurality of times, and the n-th bending step (n is a natural number of 2 or more) disclosed below includes the second bending step.
  • FIG. 1 is a diagram for explaining a preparation process of a method for manufacturing a refractive optical fiber according to the present embodiment.
  • the optical fiber 1 and the load material 10 (weight) are prepared.
  • FIG. 1 shows a cross section in the fiber axial direction.
  • the optical fiber 1 is a single core optical fiber, and a core 2 extending in the fiber axial direction is surrounded by a clad 3.
  • the refractive index of the core 2 is higher than that of the cladding 3.
  • the cross-sectional shape perpendicular to the fiber axis of the core 2 is a circle.
  • Each of the core 2 and the clad 3 contains silica glass as a main component, and an impurity for adjusting the refractive index is added as necessary.
  • the core 2 is silica glass to which GeO 2 is added
  • the cladding 3 is pure silica glass.
  • the core 2 may be pure silica glass
  • the clad 3 may be silica glass to which an F element is added.
  • the optical fiber 1 before bending shown in FIG. 1 includes a first end face 1a and a second end face 1b facing the first end face 1a, and the central axis of one end including the first end face 1a.
  • AX 1 and the central axis AX 2 of the other end portion including the second end face 1b is, as the fiber axis, in the same straight line.
  • the load material 10 is a cylindrical body having a through hole 10 a having a diameter equal to the outer diameter of the optical fiber 1.
  • the load member 10 may be a cylindrical body such as a connector ferrule.
  • the load material 10 should just be comprised with the material which is not fuse
  • the load member 10 may have a shape other than a cylindrical body, but a cylindrical body is preferable in preventing unintended deformation such as twisting during processing.
  • the load member 10 may be a part of a finished product including the optical fiber 1 (bending optical fiber) after bending. Further, the load member 10 may be temporarily removed from the optical fiber 1 after the bending process. In this case, a part that is a part of the finished product may be attached to the end portion including the first end face 1a of the optical fiber 1 after bending as a part of the finished product.
  • FIG. 2 is a view for explaining an attachment process of the method for manufacturing a bent optical fiber according to the present embodiment.
  • one end side including the first end face 1 a of the optical fiber 1 is inserted into the through hole 10 a of the load material 10.
  • the optical fiber including the first end surface 1a is joined by joining the outer peripheral surface of one end of the optical fiber 1 including the first end surface 1a and the inner peripheral surface of the through hole 10a of the load member 10 together.
  • a load material 10 is attached to one end side of the fiber 1.
  • the other end side of the optical fiber 1 including the second end surface 1 b is fixed to the fixing unit 20. Thereby, the load material 10 and the optical fiber 1 are held in a cantilever state.
  • FIG. 3A and FIG. 3B are views for explaining a first bending step of the method for manufacturing a bent optical fiber according to the present embodiment.
  • first bending step first, as shown in FIG. 3A, red light from the heating source 100 is applied to the first irradiation region (first portion) S 1 of the optical fiber 1 that is not covered with the load material 10.
  • the external laser pulse light L is irradiated through the galvano scanner 110.
  • the first irradiation region S 1 by irradiation of infrared laser pulse light L is heated, further first irradiation area S portion of one (the first bending processing unit C 1) is softened.
  • the first irradiation region S 1 which is an irradiation region length of the fiber axis direction may if the fiber diameter or. That is, since the infrared laser pulse light L is usually a circular spot light, the optical fiber 1 only needs to be covered in the radial direction by the irradiation region when viewed from the irradiation direction of the infrared laser pulse light L. . That is, the spot diameter (width in the longitudinal direction of the optical fiber 1) of the infrared laser pulse light (laser light) is preferably equal to the diameter of the optical fiber 1 or at least twice the diameter.
  • the load of the load material 10 is applied to the first bent portion C 1 softened by the irradiation with the infrared laser pulse light L together with the weight of the optical fiber 1. Therefore, as shown in FIG. 3 (b), the first bend processing unit C 1 included in the first irradiation region S 1, in particular of the first bending processing unit C 1 which is the center point O 1 (softening red The optical fiber 1 is bent at a first angle ⁇ 1 (bending angle) around a position where the thermal power of the outer laser pulse light is maximized.
  • the heating source 100 of the optical fiber 1 shown in FIG. 3A is light including laser light having a wavelength of more than 1.5 ⁇ m, and can be heat-processed from infrared to near-infrared wavelengths. Any laser light source that outputs laser light in a band may be used, and a CO 2 laser light source is preferable.
  • a laser pulse light source is shown as the heating source 100.
  • the optical fiber 1 can be bent from the position closest to the load member 10. Further, since the load member 10 is not fused to the optical fiber 1 by the bending process, the load member 10 can be removed.
  • the infrared laser light from the heating source 100 is pulsed, the thermal influence of each pulse on the optical fiber 1 hardly remains.
  • optical fiber 1 itself is not melted or excessively softened by excessive heating.
  • the former reduces the diameter of the optical fiber 1 and causes a decrease in mechanical strength.
  • the latter causes optical loss by bending the optical fiber 1 to 90 degrees with only one bending. Therefore, it is necessary to verify and grasp the relationship among the irradiation time, repetition frequency, pulse width, pulse energy, and pulse peak power per region of the irradiation location in advance, and to appropriately optimize it.
  • FIG. 4A and FIG. 4B are diagrams for explaining the second bending step of the method for manufacturing a bent optical fiber according to the present embodiment.
  • the second bending step as shown in FIG. 4 (a), a section which is not covered by the load member 10, and second irradiation regions of different optical fiber 1 and the first irradiation area S 1 (Second part) S 2 is irradiated with infrared laser pulse light from the heating source 100 via the galvano scanner 110.
  • the galvano scanner 110 shifts the propagation path of the infrared laser pulse light in the direction indicated by the arrow B, so that the second irradiation region S 2 of the optical fiber 1 is different from the first irradiation region S 1 .
  • the second irradiation region S 2 is heated by this laser irradiation, and a part (second bending portion C 2 ) of the second irradiation region S 2 is softened.
  • the second irradiation region S 2 that is the irradiation region is an irradiation region different from the first irradiation region S 1 , and as shown in FIG. 4A, the optical fiber 1 of the first irradiation region S 1 . This is an irradiation region that is shifted from the first end surface 1a toward the second end surface 1b by a certain distance.
  • the load of the load material 10 is applied to the second bending portion C 2 softened by the irradiation with the infrared laser pulse light L together with the weight of the optical fiber 1. Therefore, as shown in FIG. 4 (b), the second bent processed part C 2 in the second irradiation area S 2, in particular of its central point O 2 (softened second bending processing unit C 2 Red
  • the optical fiber 1 is bent at the second angle ⁇ 2 (bending angle) with the center at the position where the thermal power of the outer laser pulse light is maximized.
  • the irradiation position of the infrared laser pulse light L is shifted from the first end surface 1a of the optical fiber 1 toward the second end surface 1b by a predetermined interval while being irradiated with the infrared laser pulse light L.
  • the optical fiber 1 is bent.
  • the amount of movement of the irradiation position may be equal to or less than the length of the irradiation region in the fiber axis direction.
  • the movement amount of the irradiation position is an interval between the center positions of the irradiation regions. That is, in the example of FIG.
  • the amount of movement of the irradiation position is equal to the first irradiation area S 1 and the second center distance d of the irradiation area S 2 which is an irradiation region, more specifically, first between the center O 1 of the first bending processing unit C 1 included in the irradiation area S 1, equal to the center distance d between the center O 2 of the second bending processed part C 2 in the second irradiation area S 2. Therefore, the non-softened portion ST 1 is present between the first bending processing unit C 1 and the second bending processing unit C 2.
  • the first end face 1a side of the second bending processing unit C 2 non softened section ST 1 (hereinafter, referred to as a first end surface Date softened portion) is present, the second the second end face 1b side of the bent processed part C 2 is present the second end surface side non-softened portion ST 2.
  • the irradiation position may be moved by changing the optical path of the infrared laser pulse light using the galvano scanner 110. It may be used to move the position of the heating source 100 relative to the optical fiber 1. Moreover, you may bend an optical fiber with a lever according to the movement of an irradiation location using the rotation stage provided with the lever. An example of the rotary stage is described in Patent Document 2.
  • Optical fiber primary step both the first bending step and the second bending process is finished includes a first irradiation area S 1 and the second irradiation region S 2, it is bent in the heating section of the optical fiber 1, the bending thereof
  • the angle ⁇ is the sum of the first angle ⁇ 1 and the second angle ⁇ 2 .
  • the center axis AX 1 of the one end portion including a first end face 1a, the central axis of the first end surface side non-softened portion ST 1, the second end surface side non-softened portion ST 2 center axis, each center axis AX 2 of the other end portion including the second end face 1b is, so as to be positioned on the same plane before and after the bending process, the optical fiber 1 is bent.
  • the n irradiation area S n which is an irradiation region, the (n-1) by a constant center distance d shifted toward the first end face 1a of the optical fiber 1 to the irradiation area S n-1 to the second end face 1b Irradiation area.
  • the load of the load material 10 is applied to the n-th bent portion C n softened by the irradiation with the infrared laser pulse light L together with the weight of the optical fiber 1. Therefore, the n-th bending processed portion C n, as in particular around its center point O n, the optical fiber 1 is bent to the n angle theta n (bending angle).
  • the desired bending angle ⁇ at a desired radius of curvature can be processed.
  • the final bending angle ⁇ in the heating section is the sum of the first angle ⁇ 1 , the second angle ⁇ 2, and the nth angle ⁇ n . That is, FIG. 5 shows the optical fiber 1 after the bending process in which the first bending process and the subsequent n-th bending process (including the second bending process) are performed. In the example of FIG. 5, the load material 10 is removed from the end of the optical fiber 1 including the first end face 1a.
  • the bending angle ⁇ in the heating section including the plurality of irradiation regions S 1 to S n is the bending angle ⁇ in the first to n-th bending portions C 1 to C n as shown in FIG. is represented by the sum of 1 ⁇ theta n, the bending angle theta in the heating section corresponding to the angle between the central axis AX 2 of the end portion including a central axis AX 1 of the end portion including a first end surface 1 and the second end face 1b To do.
  • center axis AX 1 of the end including the first end surface 1a, the first to n-th bent portions C 1 to C n , and the center axis AX 2 of the end including the second end surface 1b are set before and after each bending step.
  • the optical fiber 1 is bent so as to be on the same plane.
  • the radius of curvature in the heating section of the optical fiber 1 on which the first to nth bending steps have been performed is defined as shown in FIG. That is, among the plurality of irradiation regions S 1 to S n (specifically, the first to n-th bent portions C 1 to C n ) included in the heating section, the first bent portion closest to the first end face 1a.
  • two straight lines L3a intersect at an angle ⁇ on the perpendicular bisector L2, identifies the L3b. Then, two straight lines L3a at each center point O 1, O n, L3b is the radius of the circle as the tangent is defined as the radius of curvature at every bending process the heating section of the optical fiber 1 passing through.
  • the load member 10 has been mounted on an end portion including a first end face 1a of the optical fiber 1, the location of the optical fiber 1 than the first irradiation area S 1 in which the load member 10 is mounted It may be anywhere as long as it is on the first end face 1a side.
  • the second end face 1b of the optical fiber 1 is fixed to the fixing unit 20, a position for fixing to the fixing unit 20, the irradiation area including the first irradiation area S 1 and the second irradiation region S 2 S be anywhere as long as the second end face 1b side of the optical fiber 1 than 1 ⁇ S n.
  • FIG. 7 is a cross-sectional view of the multi-core optical fiber, and shows a cross-section of the multi-core optical fiber corresponding to the cross-section of the optical fiber 1 along the line II in FIG.
  • seven cores 2 extending in the fiber axial direction are surrounded by a common cladding 3.
  • one of the seven cores 2 is arranged at the center, and the other six cores are arranged at equal intervals on the circumference of a circle centered on the center core.
  • the bending direction A (coincidence with the bending direction in each of the first to n-th bending portions in FIG. 6B) is set so that there is no adjacent core on the bending axis that coincides with the bending direction A.
  • the multi-core optical fiber shown in FIG. 7 is an example, and the arrangement of the cores is not limited to this.
  • FIG. 8 is a graph showing the thermal energy distribution of the infrared laser pulsed light L with respect to the position of the optical fiber in the method for manufacturing a bent optical fiber according to the present embodiment.
  • the horizontal axis indicates the position of the optical fiber 1 in the fiber axis direction.
  • the left side in FIG. 8 is the first end face 1a side of the optical fiber 1, and the right side is the second end face 1b side.
  • the first irradiation region S 1 , the second irradiation region S 2 ,..., And the nth irradiation region Sn are arranged in order from the first end face 1a side of the optical fiber 1 at the center interval d.
  • the center distance d is small relative to the irradiation area S 1 ⁇ S n which is the irradiation area, the irradiation area S 1 ⁇ S n are overlapping.
  • the infrared laser pulse light L has a maximum power distribution at the center thereof.
  • the region where the thermal power exceeds the predetermined power P ⁇ b> 1 contributes to the bending of the optical fiber 1.
  • the area where the heat power exceeds a predetermined power P1 in the first irradiation area S 1, the first a bend processing unit C 1, a position O 1 to the maximum power, the first irradiation region S 1 and the first bending processing unit corresponding to C 1 both centers. That is, in the first bending processing unit C 1, thermal power is higher than the remaining region in the first irradiation area S 1 which is an irradiation region of the infrared laser pulse light L.
  • the area where the heat power exceeds a predetermined power P1 in the second irradiation area S 2 is the second bending processed portion C 2, the position O 2 of the maximum power, the second irradiation region S 2 and the second bending corresponding to the processing unit C 2 both centers. That is, in the second bending processed portion C 2, thermal power is greater than the remaining region in the second irradiation area S 2 which is an irradiation region of the infrared laser pulse light L.
  • the area where the heat power in the n irradiation area S n exceeds a predetermined power P1 is the n-th bending processed portion C n. In other words, in the n-th bending processed portion C n, thermal power is higher than other regions in the n irradiation area S n which is an irradiation region of the infrared laser pulse light L.
  • the power distribution of the infrared laser pulse light L is set so that each irradiation region S 1 to S n overlaps, while each bending portion C 1 to C n is separated from each other.
  • the processed portions C 1 to C n do not overlap (a non-softened portion exists between the bent portions C 1 to C n ).
  • the infrared laser pulse light L has a high peak power, the pulse width is short, so that the glass is hardly damaged.
  • the influence on the glass can be suppressed as much as possible.
  • the bent portions C 1 to C n are preferably equal to or larger than the fiber diameter. However, if it is too large, the modified region may increase and some adverse effects may occur. Therefore, it is preferable that the refracted portions C 1 to C n have such a size that the modified region does not increase excessively. .
  • FIG. 9 is a graph showing the thermal energy distribution of arc discharge with respect to the position of the optical fiber in the conventional method of manufacturing a bent optical fiber (Patent Document 2).
  • the heating region by arc discharge is continuously moved in the fiber axis direction between the processing start time t 1 and the processing end time t n to bend the optical fiber.
  • the bending portion C becomes one continuous region, and the continuous bending extends over the entire irradiation region in the arc discharge.
  • the heat power is shown as flat for simplicity, but it is considered that the heat power actually changes.
  • FIG. 10 is a graph showing the bent state of the optical fiber with respect to the position according to the bent optical fiber manufacturing method according to the present embodiment.
  • the X axis is the distance in the fiber axis direction (not bent) from the second end face 1 b of the optical fiber 1.
  • the Y axis is a moving distance that each part of the optical fiber 1 moves in the bending direction with reference to the position of the second end face 1b of the optical fiber 1. In this way, the bent portions C 1 to C n are arranged apart from each other.
  • FIG. 11 is a graph showing a bent state of an optical fiber with respect to a position according to a conventional bent optical fiber manufacturing method.
  • the continuous area between the times t 1 and t n is the irradiation area and the bending portion C.
  • FIG. 12 is a photograph showing an example of the appearance (a part of the heating section) of the bent optical fiber according to the present embodiment. As can be seen from FIG. 12, there is no reduction in the diameter of the optical fiber 1 (bending optical fiber) that has undergone the entire bending process.
  • the optical fiber 1 is heated with the infrared laser pulsed light L, so that the number of pulses of the irradiated infrared laser pulsed light is controlled.
  • the heating state of the optical fiber 1 it is easier to control the heating state of the optical fiber 1 than in the case of continuous heating. Therefore, it is difficult to cause melting and excessive softening of the optical fiber 1 due to excessive heating, and the problem that the optical fiber 1 is bent at 90 degrees only by reducing the diameter or bending at one place can be solved.
  • the optical fiber 1 is bent by a predetermined angle ⁇ 1 to ⁇ n in a plurality of irradiation regions S 1 to S n that are separated in the longitudinal direction of the optical fiber 1, and includes the plurality of irradiation regions S 1 to S n .
  • the optical fiber 1 is bent to a predetermined radius of curvature over the entire heating section (see FIGS. 5 and 6B). Therefore, as compared with the case of bending in only one place bent, bending stress on each irradiation area S 1 ⁇ S n can be dispersed, problems such as diameter of the optical fiber 1 is less likely to occur. Further, by controlling the center interval between the irradiation areas S 1 ⁇ S n, tends to an optical fiber 1 is bent at a desired radius of curvature.
  • the load member 10 is attached to the fiber end including the first end face 1 a of the optical fiber 1, while the fiber end including the second end face 1 b is fixed to the fixing part 20. Therefore, the optical fiber 1 softened by the infrared laser pulse light L can be easily bent by the load of the load member 10 and the weight of the optical fiber 1.
  • the prepared optical fiber is a single core optical fiber having an outer diameter of 0.125 mm.
  • the prepared load material is a borosilicate glass, a capillary having an outer diameter of 1.8 mm, a length of 6.05 mm, and a weight of 0.04 g.
  • the irradiation device As the irradiation device, a CO 2 laser light source is used, and laser pulse light for 1 second (repetition frequency 20 kHz, average power 10.4 W) at one place, the irradiation area of the laser pulse light is an irradiation mark on an acrylic plate and has a diameter of 3 mm. Prepared) was applied to the prepared optical fiber. By using laser pulse light, discrete and intermittent irradiation is possible, and by using local and temporary heating, it is possible to suppress heating of the optical fiber more than necessary in unnecessary portions.
  • the movement of the irradiation position was performed using a galvano scanner.
  • the bending of the optical fiber was performed by the load of the load material (weight) and the weight of the optical fiber.
  • FIG. 13 shows the results of measuring the bending angle and the radius of curvature of the bent optical fiber manufactured by changing the interval between the central positions of the irradiation regions and the number of irradiation points. It was confirmed that the bending angle changed with the number of irradiation spots and the bending radius changed with the irradiation center position interval.
  • SYMBOLS 1 Optical fiber, 1a ... One end, 1b ... The other end, 10 ... Load material (weight), d ... Center space

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Laser Beam Processing (AREA)

Abstract

 本発明は、光ファイバの細径化の抑制と所望の曲率半径を実現する屈曲光ファイバの製造方法に関する。用意された光ファイバには、赤外レーサパルス光の加熱区間として、その長手方向に沿って配置された複数の照射領域が設定される。各照射領域では、赤外レーザパルス光の照射により軟化した屈曲加工部において、光ファイバが所定の角度に屈曲される。全照射領域の屈曲加工部において光ファイバが屈曲されることにより、加熱区間において所定の曲率半径を有する屈曲光ファイバが得られる。

Description

屈曲光ファイバの製造方法
 本発明は、屈曲光ファイバの製造方法に関するものである。
 電子部品の高密度実装に伴い、電子部品近傍で使用される光ファイバなどの光伝送媒体についても低背化を伴う実装が必要とされている。
 例えば、特許文献1には、光ファイバ素線(coated optical fiber)を光部品に取り付ける際に、光部品の中心線に対して角度θで取り付ける技術が開示されている。この技術によれば、光ファイバ素線の曲率半径を実質的に小さくすることで、光ファイバ素線および光部品で構成される光ファイバ部品の小型化が可能になる。
 また、例えば、特許文献2には、光ファイバの長手方向に沿ってアーク放電による照射位置をずらしながら光ファイバを連続的に加熱することで、光ファイバを屈曲させる技術が開示されている。この技術により、光ファイバを所望の曲率半径で屈曲させることができる。
特開2004-325622号公報 国際公開2010/044273号
 発明者らは、従来の光ファイバに対する屈曲加工技術について検討した結果、以下のような課題を発見した。すなわち、上記特許文献1に記載の技術は、光部品の端部分の一点において光ファイバ素線に角度θを付与している。そのため、光ファイバ素線の曲げ部分に応力が集中し、光ファイバ素線の細径化などの課題が生じやすくなる。また、上記特許文献2に記載の技術は、光ファイバをその長手方向に沿って連続的に加熱することで、光ファイバに屈曲加工を施している。そのため、必要以上に光ファイバが加熱され、光ファイバの細径化などの課題が生じやすくなる。
 本発明は、上述のような課題を解決するためになされたものであり、光ファイバの細径化の抑制、および、所望の曲率半径を実現できる屈曲光ファイバの製造方法を提供することを目的としている。
 本実施形態は、シリカガラスからなり、かつ、第1端面と第1端面に対向する第2端面を有する光ファイバに対して、赤外レーザパルス光の照射による局所的な屈曲加工を繰り返すことにより得られる屈曲光ファイバの製造方法に関する。すなわち、本実施形態の第1の態様に係る屈曲光ファイバの製造方法では、シリカガラスからなり、かつ、第1端面と第1端面に対向する第2端面を有する光ファイバが用意され、その光軸上において熱パワーが最大となる形状の熱パワー分布を有するレーザ光(例えば、赤外レーザパルス光)を出力する加熱源が用意される。また、光ファイバを屈曲させること、および照射位置を移動させることを、光ファイバの第1端面と第2端面との間に設定された加熱区間において繰り返すことにより、光ファイバの加熱区間において、光ファイバを所定の曲率半径に屈曲させる。なお、光ファイバを屈曲させることでは、レーザ光を光ファイバの照射領域に照射し、レーザの照射期間中に、照射領域のうちレーザの照射により軟化した屈曲加工部において、光ファイバが屈曲される。光ファイバの長手方向に沿った屈曲加工部の幅は、照射領域の幅よりも狭い。また、照射位置を移動させることでは、光ファイバを屈曲させることの後に実施され、光ファイバの長手方向に沿ってレーザ光の照射位置を所定の移動量だけ移動させる。所定の移動量は、光ファイバに対して次回照射領域および次回照射領域に含まれる次回屈曲加工部を形成する次回レーザ照射において、次回照射領域に対して光ファイバを屈曲させることにおける照射領域が一部重複する一方、次回屈曲加工部に対して光ファイバを屈曲させることにおける屈曲加工部が離間する量である。
 本実施形態の第2の態様に係る屈曲光ファイバの製造方法は、上記第1の態様にも適用可能であり、少なくとも、第1屈曲工程と、第2屈曲工程を備える。第1屈曲工程では、赤外レーザパルス光の照射により光ファイバの第1照射領域を加熱しながら、第1照射領域(第1部位)のうち赤外レーザパルス光の照射により軟化した第1屈曲加工部において、光ファイバが第1角度(曲げ角度)に屈曲される。また、第2屈曲工程では、第1照射領域とは異なる光ファイバの第2照射領域(第2部位)を赤外レーザパルス光の照射により加熱しながら、第2照射領域のうち赤外レーザパルス光の照射により軟化した第2屈曲加工部において、光ファイバが第2角度(曲げ角度)に屈曲される。赤外レーザパルス光が照射される光ファイバの加熱区間は、第1照射領域および第2照射領域を含む複数の照射領域で構成され、この構成は、第2屈曲工程が1回以上実施されることにより実現可能である。なお、用意される光ファイバに対しn(2以上の自然数)回の屈曲工程が実施される場合、1回目の屈曲工程が第1屈曲工程に相当する。n回目の屈曲工程は第2屈曲工程に相当し、(n-1)回目の屈曲工程の照射領域が第1照射領域に相当する。このように複数の照射領域それぞれにおいて光ファイバを屈曲させることにより、加熱区間において所定の曲率半径を有する屈曲光ファイバが得られる。
 上記第1および第2の態様のうち少なくとも何れかの態様に適用可能な第3の態様として、第1屈曲加工部と第2屈曲加工部は、前記光ファイバの長手方向に沿って離間しているのが好ましい。また、上記第1~第3の態様のうち少なくとも何れかの態様に適用可能な第4の態様として、第1屈曲工程において、光ファイバは、第1屈曲加工部にそれぞれ隣接する非軟化部の中心軸同士が第1角度を成すように屈曲される。第2屈曲工程において、第2照射領域は、第1照射領域の形成位置を基準として光ファイバの長手方向に沿ってシフトされた位置に形成され、光ファイバは、第2屈曲加工部にそれぞれ隣接する非軟化部の中心軸同士が第2角度を成すように屈曲される。そして、加熱区間は、複数の照射領域のうち第1端面に最も近い照射領域から第2端面に最も近い照射領域までの、光ファイバの長手方向に沿って延びた区間により規定される。
 上記第1~第4の態様のうち少なくとも何れかの態様に適用可能な第5の態様として、第1屈曲工程および第2屈曲工程のそれぞれは、第1照射領域および第2照射領域よりも光ファイバの第1端面側に荷重材が取り付けられる一方、第1照射領域および第2照射領域よりも光ファイバの第2端面側が固定された状態で行われるのが好ましい。
 上記第1~第5の態様のうち少なくとも何れかの態様に適用可能な第6の態様として、赤外レーザパルス光は、波長1.5μm超のレーザ光を含むのが好ましい。
 上記第1~第6の態様のうち少なくとも何れかの態様に適用可能な第7の態様として、第1照射領域に照射される赤外レーザパルス光は、第1屈曲加工部における熱パワーが第1屈曲加工部を除いた残りの部分における熱パワーよりも高くなるパワー分布を有するのが好ましい。なお、第2照射領域に照射される赤外レーザパルス光についても、第2屈曲加工部における熱パワーが第2屈曲加工部を除いた残りの部分における熱パワーよりも高くなるパワー分布を有するのが好ましい。
 上記第1~第7の態様のうち少なくとも何れかの態様に適用可能な第8の態様として、複数の照射領域のそれぞれに照射される赤外レーザパルス光の照射条件として、1つの照射領域に照射される赤外レーザパルス光のパルス数および複数の照射領域それぞれの中心間隔を制御することで、光ファイバの加熱区間を所定の曲率半径に屈曲させてもよい。また、上記第1~第8の態様のうち少なくとも何れかの態様に適用可能な第9の態様として、赤外レーザパルス光がそれぞれ照射される複数の照射領域の数を設定することで、光ファイバの加熱区間を所定の曲率半径に屈曲させてもよい。
 上記第1~第9の態様のうち少なくとも何れかの態様に適用可能な第10の態様として、光ファイバは、所定軸に沿って延びた複数のコアを有するマルチコア光ファイバで合ってもよい。この場合、マルチコア光ファイバは、所定軸に直交する直線で規定され、かつ、第1屈曲加工部および第2屈曲加工部のそれぞれにおける屈曲方向に一致する屈曲軸上に、複数のコアのうち隣接するコアが存在しないよう、屈曲されるのが好ましい。
 本実施形態によれば、光ファイバの細径化が効果的に抑制され、かつ、所望の曲率半径の屈曲加工が施された屈曲光ファイバが得られる。
は、本実施形態に係る屈曲光ファイバの製造方法の準備工程を説明するための図である。 は、本実施形態に係る屈曲光ファイバの製造方法の、加重材取付け工程を説明するための図である。 は、本実施形態に係る屈曲光ファイバの製造方法の第1屈曲工程を説明するための図である。 は、本実施形態の屈曲光ファイバの製造方法の第2屈曲工程を説明するための図である。 は、本実施形態に係る屈曲光ファイバの製造方法により得られた屈曲光ファイバの全体構造を説明するための図である。 は、屈曲加工部における角度、加熱区間における曲げ角度、加熱区間における曲率半径を説明するための図である。 は、マルチコア光ファイバの断面図である。 は、本実施形態に係る屈曲光ファイバの製造方法における赤外レーザパルス光の熱エネルギー分布を光ファイバの位置に対して示すグラフである。 は、従来の屈曲光ファイバの製造方法におけるアーク放電の熱エネルギー分布を光ファイバの位置に対して示すグラフである。 は、本実施形態に係る屈曲光ファイバの製造方法による光ファイバの屈曲状態を位置に対して示すグラフである。 は、従来の屈曲光ファイバの製造方法による光ファイバの屈曲状態を位置に対して示すグラフである。 は、本実施形態に係る屈曲光ファイバの外観の例を示す写真である。 は、本実施形態に係る屈曲光ファイバの複数サンプルについて、それらの曲げ角度および曲率半径の測定結果を示す表である。
 以下、本発明の各実施形態を添付の図面を用いて詳細に説明する。なお、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
 本実施形態に係る屈折光ファイバの製造方法は、準備工程、取付け工程、第1屈曲工程、第2屈曲工程を備える。なお、第2屈曲工程は、複数回実行されてもよく、以下に開示される第n屈曲工程(nは2以上の自然数)は、第2屈曲工程を含むものとする。
 図1は、本実施形態に係る屈折光ファイバの製造方法の準備工程を説明するための図である。準備工程では、光ファイバ1と荷重材10(錘)とが準備される。この図1は、ファイバ軸方向の断面を示している。
 光ファイバ1は、シングルコア光ファイバであり、ファイバ軸方向に延在するコア2がクラッド3で取り囲まれている。コア2の屈折率はクラッド3の屈折率より高い。コア2のファイバ軸に垂直な断面形状は円形である。コア2およびクラッド3それぞれは、シリカガラスを主成分として、必要に応じて屈折率調整用の不純物が添加される。例えば、コア2はGeOが添加されたシリカガラスであって、クラッド3は純シリカガラスである。或いは、コア2は純シリカガラスであって、クラッド3はF元素を添加されたシリカガラスであってもよい。なお、図1に示された屈曲加工前の光ファイバ1は、第1端面1aと、第1端面1aに対向する第2端面1bを備え、第1端面1aを含む一方の端部の中心軸AXと第2端面1bを含む他方の端部の中心軸AXが、ファイバ軸として、同一直線状にある。
 荷重材10は、光ファイバ1の外径に等しい直径の貫通孔10aを有する筒状体である。荷重材10はコネクタ用フェルール等の筒状体でもよい。荷重材10はレーザ照射により溶融しない材質で構成されていればよい。なお、荷重材10は、筒状体以外の形状でもよいが、加工時に捻じれ等の意図しない変形を予防する上では筒状体が好ましい。また、荷重材10は、屈曲加工後の光ファイバ1(屈曲光ファイバ)を含む完成品の一部としてもよい。また、荷重材10は、屈曲加工後に、光ファイバ1から一旦取り除かれてもよい。この場合、完成品の一部となる部品が、完成品の一部として、屈曲加工後の光ファイバ1の第1端面1aを含む端部に装着されてもよい。
 図2は、本実施形態に係る屈曲光ファイバの製造方法の取付け工程を説明するための図である。取付け工程では、光ファイバ1の第1端面1aを含む一方の端部側が荷重材10の貫通孔10a内に挿入され。このような挿入状態で、第1端面1aを含む光ファイバ1の一方の端部の外周面と荷重材10の貫通孔10aも内周面とを接合させることにより、第1端面1aを含む光ファイバ1の一方の端部側に荷重材10が装着される。また、第2端面1bを含む光ファイバ1の他方の端部側は固定部20に固定される。これにより、荷重材10および光ファイバ1は片持ち梁の状態で保持される。
 図3(a)および図3(b)は、本実施形態に係る屈曲光ファイバの製造方法の第1屈曲工程を説明するための図である。第1屈曲工程では、まず、図3(a)に示されたように、荷重材10に覆われていない光ファイバ1の第1照射領域(第1部位)Sに加熱源100からの赤外レーザパルス光Lがガルバノスキャナ110を介して照射される。この赤外レーザパルス光Lの照射により第1照射領域Sが加熱され、更に該第1照射領域Sの一部(第1屈曲加工部C)が軟化する。照射領域である第1照射領域Sはファイバ軸方向の長さがファイバ径以上あればよい。つまり、赤外レーザパルス光Lは通常円形のスポット光であるから、赤外レーザパルス光Lの照射方向から見たときに、照射領域により光ファイバ1が径方向にすべて覆われていればよい。すなわち、赤外レーザパルス光(レーザ光)のスポット径(光ファイバ1の長手方向の幅)は、光ファイバ1の直径と一致するか、少なくとも該直径の2倍以下が好ましい。このように赤外レーザパルス光Lの照射により軟化した第1屈曲加工部Cには、当該光ファイバ1の自重とともに荷重材10の荷重が加わる。そのため、図3(b)に示されたように、第1照射領域Sに含まれる第1屈曲加工部C、特にその中心点O(軟化した第1屈曲加工部Cのうち赤外レーザパルス光の熱パワーが最大となる位置)を中心にして、光ファイバ1は第1角度θ(曲げ角度)に屈曲させられる。
 ここで、図3(a)に示された光ファイバ1の加熱源100としては、波長1.5μm超のレーザ光を含む光であって、熱加工が可能な赤外~近赤外の波長帯域のレーザ光を出力するレーザ光源であればよく、COレーザ光源が好適である。なお、図3の例では、加熱源100として、レーザパルス光源が示されている。レーザ光を用いることで、荷重材10の直近から光ファイバ1を屈曲させることができる。また、屈曲工程により、荷重材10が光ファイバ1に融着しないので、荷重材10の取り外しも可能である。また加熱源100からの赤外レーザ光をパルス化することで、光ファイバ1に対する1パルス毎の熱的影響が残り難い。
 なお、過剰な加熱によって、光ファイバ1自体の溶融や過剰な軟化が生じないことが必要である。前者は光ファイバ1を細径化させ機械的強度の低下を引き起こす。後者は光ファイバ1を一カ所の屈曲のみで90度に曲げ光学ロスを引き起こす。よって、照射箇所の1領域当たりの照射時間、繰返し周波数、パルス幅、パルスエネルギー、パルスピークパワーの関係を事前に検証、把握し、適宜好適化することが必要である。
 図4(a)および図4(b)は、本実施形態に係る屈曲光ファイバの製造方法の第2屈曲工程を説明するための図である。第2屈曲工程では、図4(a)に示されたように、荷重材10に覆われていない区間であって、かつ、第1照射領域Sとは異なる光ファイバ1の第2照射領域(第2部位)Sに、加熱源100からの赤外レーザパルス光がガルバノスキャナ110を介して照射される。具体的には、ガルバノスキャナ110が赤外レーザパルス光の伝搬経路を矢印Bで示された方向にずらすことにより、第1照射領域Sに対して第2照射領域Sが光ファイバ1の長手方向に沿ってずれる。このレーザ照射により第2照射領域Sが加熱され、更に該第2照射領域Sの一部(第2屈曲加工部C)が軟化する。照射領域である第2照射領域Sは、第1照射領域Sと異なる照射領域であり、図4(a)に示されたように、第1照射領域Sに対して光ファイバ1の第1端面1aから第2端面1bに向かって一定間隔ずれた照射領域である。このように赤外レーザパルス光Lの照射により軟化した第2屈曲加工部Cには、当該光ファイバ1の自重とともに荷重材10の荷重が加わる。そのため、図4(b)に示されたように、第2照射領域Sに含まれる第2屈曲加工部C、特にその中心点O(軟化した第2屈曲加工部Cのうち赤外レーザパルス光の熱パワーが最大となる位置)を中心にして、光ファイバ1は第2角度θ(曲げ角度)で屈曲させられる。
 このように赤外レーザパルス光Lの照射位置を光ファイバ1の第1端面1aから第2端面1bへ向かって一定間隔ずつずらしながら、赤外レーザパルス光Lの照射を行うことによって、加熱区間(それぞれ赤外レーザパルス光が照射された複数の照射領域を含む)において、光ファイバ1は屈曲される。照射位置の移動量は、照射領域のファイバ軸方向の長さ以下であればよい。ここで、照射位置の移動量とは、照射領域の中心位置の間隔である。すなわち、図4(b)の例において、照射位置の移動量は、照射領域である第1照射領域Sおよび第2照射領域Sの中心間隔dに等しく、より具体的には、第1照射領域Sに含まれる第1屈曲加工部Cの中心点Oと、第2照射領域Sに含まれる第2屈曲加工部Cの中心点Oとの中心間隔dに等しい。したがって、第1屈曲加工部Cと第2屈曲加工部Cとの間には非軟化部STが存在することになる。図4(b)の例について説明すれば、第2屈曲加工部Cの第1端面1a側には非軟化部ST(以下、第1端面側日軟化部という)が存在し、第2屈曲加工部Cの第2端面1b側には第2端面側非軟化部STが存在する。
 照射位置の移動は、図3(a)、図4(a)に示されたように、ガルバノスキャナ110を使用して赤外レーザパルス光の光路を変更させてもよく、また、移動ステージを使用して、光ファイバ1に対して加熱源100の位置を相対的に移動させてもよい。また、レバーを備えた回転ステージを用いて、照射箇所の移動に合わせてレバーで光ファイバを屈曲させてもよい。回転ステージの例としては、特許文献2に記載されているものがある。
 第1屈曲工程および第2屈曲工程の双方が終了した段階の光ファイバ1は、第1照射領域Sおよび第2照射領域Sを含む、光ファイバ1の加熱区間で屈曲させられ、その曲げ角度θは第1角度θと第2角度θとの和である。なお、本実施形態の屈曲工程では、第1端面1aを含む一方の端部の中心軸AX、第1端面側非軟化部STの中心軸、第2端面側非軟化部STの中心軸、第2端面1bを含む他方の端部の中心軸AXそれぞれが、屈曲加工の前後において同一平面上に位置するよう、光ファイバ1は屈曲される。
 第1屈曲工程以降の、第2屈曲工程を含む第n屈曲工程(nは2以上の自然数)では、荷重材10に覆われていない光ファイバ1の第n照射領域Sが赤外レーザパルス光Lに照射される。その際、赤外レーザパルス光Lの照射により第n照射領域Sの一部(第n屈曲加工部C)が軟化する。照射領域である第n照射領域Sは、第(n-1)照射領域Sn-1に対して光ファイバ1の第1端面1aから第2端面1bに向かって一定の中心間隔dだけずれた照射領域である。赤外レーザパルス光Lの照射により軟化した第n屈曲加工部Cには、光ファイバ1の自重とともに荷重材10の荷重が加わる。そのため、第n屈曲加工部C、特にその中心点Oを中心として、光ファイバ1が第n角度θ(曲げ角度)に屈曲させられる。
 以上のような本実施形態に係る屈曲光ファイバの製造方法によれば、各照射領域S~Sを含む加熱区間で光ファイバ1を屈曲させ、所望の曲率半径で所望の曲げ角度θに加工することができる。加熱区間における最終的な曲げ角度θは、第1角度θ、第2角度θ・・・および第n角度θの和となる。すなわち、図5は、以上のような第1屈曲工程およびそれに続く第n屈曲工程(第2屈曲工程を含む)が実施された屈曲加工後の光ファイバ1が示されている。なお、図5の例では、第1端面1aを含む光ファイバ1の端部から荷重材10が取り外されている。
 第1~第n屈曲加工部C~Cのうち第m屈曲加工部C(m=1~n)における曲げ角度θは、図6(a)に示されたように、当該第m屈曲加工部Cに隣接する第1端面側非軟化部STおよび第2端面側非軟化部STそれぞれの中心軸AX、AXm+1の成す角度を意味する。
 また、複数の照射領域S~Sを含む加熱区間における曲げ角度θは、図6(b)に示されたように、第1~第n屈曲加工部C~Cにおける曲げ角度θ~θの合計で表され、加熱区間における曲げ角度θは第1端面1を含む端部の中心軸AXと第2端面1bを含む端部の中心軸AXとの成す角度に相当する。また、第1端面1aを含む端部の中心軸AX、第1~第n屈曲加工部C~C、第2端面1bを含む端部の中心軸AXが、各屈曲工程の前後において同一平面上に位置するよう、光ファイバ1が屈曲される。
 第1~第n屈曲工程が実施された光ファイバ1の加熱区間における曲率半径は、図6(c)に示されたように定義される。すなわち、加熱区間に含まれる複数の照射領域S~S(具体的には第1~第n屈曲加工部C~C)のうち、第1端面1aに最も近い第1屈曲加工部Cの中心点Oと、第2端面1bに最も近い第n屈曲加工部Cの中心点Oを結ぶ線分(6(c)中の直線L1)の垂直二等分線L2を作図し、中心点O、Oをそれぞれ通過し、垂直二等分線L2上において角度θで交差する2本の直線L3a、L3bを特定する。そして、中心点O、Oのそれぞれにおいて2本の直線L3a、L3bが接線となる円の半径を、全ての屈曲工程を経た光ファイバ1の加熱区間における曲率半径と定義する。
 なお、本実施形態では、荷重材10が光ファイバ1の第1端面1aを含む端部に装着されたが、荷重材10が装着される位置は第1照射領域Sよりも光ファイバ1の第1端面1a側であればどこでもよい。また、第2照射領域S以降の各照射領域は、第1照射領域Sに対して光ファイバ1の第1端面1aから第2端面1bへ向かって遠ざかっている。そのため、荷重材10は第1照射領域Sおよび第2照射領域Sを含む各照射領域S~Sよりも光ファイバ1の第1端面1a側に位置することになる。
 本実施形態では、光ファイバ1の第2端面1bが固定部20に固定されたが、固定部20に固定する位置は、第1照射領域Sおよび第2照射領域Sを含む各照射領域S~Sよりも光ファイバ1の第2端面1b側であればどこでもよい。
 また、本実施形態に用いられる光ファイバ1は、シングルコア光ファイバとして説明をしたが、これに限られない。光ファイバ1には、所定軸に沿ってそれぞれ伸びた複数のコアを有するマルチコア光ファイバも適用可能である。図7は、マルチコア光ファイバの断面図であり、図1中のI-I線に沿った光ファイバ1の断面に相当する当該マルチコア光ファイバの断面を示している。光ファイバ1は、ファイバ軸方向に延在する7個のコア2が共通のクラッド3で取り囲まれている。断面において、7個のコア2のうち1つのコアは中央に配置され、他の6個のコアは中央のコアを中心とする円の円周上に等間隔に配置されている。
 マルチコア光ファイバの場合、近接コアが屈曲方向Aに一致する屈曲軸上に存在すると、近接コア間のクロストークの要因となる。したがって、屈曲方向A(図6(b)における第1~第n屈曲加工部それぞれにおける屈曲方向に一致)は、該屈曲方向Aに一致する屈曲軸上に近接コアが存在しないように設定されるのが好ましい。なお、図7に示されたマルチコア光ファイバは一例であって、コアの配置はこれに限られない。
 図8は、本実施形態に係る屈曲光ファイバの製造方法における赤外レーザパルス光Lの熱エネルギー分布を光ファイバの位置に対して示すグラフである。横軸は光ファイバ1のファイバ軸方向の位置を示す。図8中の左側が光ファイバ1の第1端面1a側であり、右側が第2端面1b側である。光ファイバ1の第1端面1a側から順に第1照射領域S、第2照射領域S、・・・、および第n照射領域Sが中心間隔dで並んでいる。ここでは、中心間隔dが照射領域である各照射領域S~Sに対して小さいので、各照射領域S~Sはオーバーラップしている。
 赤外レーザパルス光Lは、その中心において最大となるパワー分布を有している。熱パワーが所定のパワーP1を超える領域は、光ファイバ1の曲げに寄与する。第1照射領域Sにおいて熱パワーが所定のパワーP1を超える領域は、第1屈曲加工部Cであり、最大パワーとなる位置Oが、第1照射領域Sおよび第1屈曲加工部C双方の中心に相当する。つまり、第1屈曲加工部Cでは、赤外レーザパルス光Lの照射領域である第1照射領域Sにおける残りの領域よりも熱パワーが高い。
 また、第2照射領域Sにおいて熱パワーが所定のパワーP1を超える領域は、第2屈曲加工部Cであり、最大パワーとなる位置Oが、第2照射領域Sおよび第2屈曲加工部C双方の中心に相当する。つまり、第2屈曲加工部Cでは、赤外レーザパルス光Lの照射領域である第2照射領域Sにおける残りの領域よりも熱パワーが高い。同様に、第n照射領域Sにおいて熱パワーが所定のパワーP1を超える領域は、第n屈曲加工部Cである。つまり、第n屈曲加工部Cでは、赤外レーザパルス光Lの照射領域である第n照射領域Sにおける他の領域よりも熱パワーが高い。
 各照射領域S~Sはオーバーラップしているのに対し、各屈曲加工部C~Cは離間するように赤外レーザパルス光Lのパワー分布を設定しているので、各屈曲加工部C~Cはオーバーラップしていない(各屈曲加工部C~Cの間には非軟化部が存在する)。また、赤外レーザパルス光Lは、ピークパワーは高いものの、パルス幅は短いので、ガラスが損傷され難い。さらに、赤外レーザパルス光Lのパルス幅、ピークパワー値、パルス数、照射領域(集光度でもよい)を調整することにより、ガラスへの影響を極力抑えることができる。
 屈曲加工部C~Cは、ファイバ径と同程度以上であることが好ましい。ただし、あまり大きくすると、改質領域が増加して何らかの悪影響が起こる可能性があるので、屈折加工部C~Cは、改質領域が増加し過ぎない程度の大きさであることが好ましい。
 図9は、従来(特許文献2)の屈曲光ファイバの製造方法におけるアーク放電の熱エネルギー分布を光ファイバの位置に対して示すグラフである。加工開始時間tと加工終了時間tとの間でアーク放電による加熱領域をファイバ軸方向に連続的に移動させ、光ファイバを屈曲させる。屈曲加工部Cは1つの連続した領域となり、連続的な屈曲がアーク放電での照射領域全体に及ぶ。なお、ここでは、簡単のため熱パワーをフラットに示しているが、実際には熱パワーは変化すると考えられる。
 図10は、本実施形態に係る屈曲光ファイバの製造方法による光ファイバの屈曲状態を位置に対して示すグラフである。X軸は、光ファイバ1の第2端面1bからのファイバ軸方向(屈曲してない状態)の距離である。Y軸は、光ファイバ1の第2端面1bの位置を基準として、光ファイバ1の各部位が屈曲方向へ移動した移動距離である。このように屈曲加工部C~Cは離間して並んでいる。
 図11は、従来の屈曲光ファイバの製造方法による光ファイバの屈曲状態を位置に対して示すグラフである。時間t~t間の連続領域は、照射領域であるとともに、屈曲加工部Cである。
 図12は、本実施形態に係る屈曲光ファイバの外観(加熱区間の一部)の例を示す写真図である。図12から分かるように、全屈曲工程が終了した光ファイバ1(屈曲光ファイバ)の細径化は見られない。
 以上説明したように、本実施形態の屈曲光ファイバの製造方法によれば、赤外レーザパルス光Lで光ファイバ1を加熱するので、照射される赤外レーザパルス光のパルス数を制御することにより、連続的に加熱する場合に比べて光ファイバ1の加熱状態を制御しやすい。したがって、過剰な加熱による光ファイバ1の溶融や過剰な軟化を引き起こし難く、光ファイバ1の細径化や1カ所の屈曲のみで90度に曲げてしまうという課題を解決し得る。
 また、光ファイバ1の長手方向に離間した複数の照射領域S~Sにおいて、所定の角度θ~θずつ光ファイバ1を屈曲させ、これら複数の照射領域S~Sを含む加熱区間全体で所定の曲率半径に光ファイバ1を屈曲させる(図5、図6(b)参照)。したがって、1カ所の屈曲のみで屈曲させる場合に比べて、各照射領域S~Sに曲げ応力を分散させることができ、光ファイバ1の細径化などの課題が生じ難い。また、各照射領域S~Sの中心間隔を制御することにより、光ファイバ1を所望の曲率半径で屈曲させやすい。
 また、本実施形態では、光ファイバ1の第1端面1aを含むファイバ端部に荷重材10が装着される一方、第2端面1bを含むファイバ端部が固定部20に固定される。そのため、荷重材10の荷重および光ファイバ1の自重により、赤外レーザパルス光Lによって軟化した光ファイバ1を容易に屈曲させることができる。
 次に、本実施形態に係る屈曲光ファイバの製造方法により得られた屈曲光ファイバの複数サンプルついて以下に説明する。まず、光ファイバと荷重材とが準備された。準備された光ファイバは外径0.125mmのシングルコア光ファイバである。準備された荷重材は、材質がホウ硅酸ガラスであり、外径1.8mm、長さ6.05mm、重さ0.04gのキャピラリである。
 照射装置としてはCOレーザ光源を使用し、1箇所に1秒間のレーザパルス光(繰り返し周波数20kHz、平均パワー10.4W、レーザパルス光の照射領域はアクリル板での照射痕で直径3mmになるように調整)が、準備された光ファイバに照射された。レーザパルス光とすることで、離散的かつ断続的照射を可能とし、局所的かつ一時的な加熱とすることで、不要な部分に必要以上に光ファイバを加熱することを抑えた。
 照射位置の移動はガルバノスキャナを使用して行われた。光ファイバの屈曲は、荷重材(錘)の荷重および光ファイバの自重で行われた。
 照射領域の中心位置の間隔および照射箇所数を変えて製造した屈曲光ファイバについて、曲げ角度および曲率半径を測定した結果が図13に示されている。照射箇所数で曲げ角度が変化し、照射中心位置間隔で曲げ半径が変化していることが確認された。
 1…光ファイバ、1a…一端、1b…他端、10…荷重材(錘)、d…中心間隔、A…屈曲方向、C1…第1屈曲加工部、C2…第2屈曲加工部、L…赤外レーザパルス光、S1…第1照射領域(第1部位)、S2…第2照射領域(第2部位)、θ…第1角度、θ…第2角度。

Claims (10)

  1.  シリカガラスからなり、かつ、第1端面と前記第1端面に対向する第2端面を有する光ファイバに対して屈曲加工を施すことにより得られる屈曲光ファイバの製造方法であって、
     前記光ファイバを部分的に軟化させるために赤外レーザパルス光を前記光ファイバの第1照射領域に照射し、前記赤外レーザパルス光の照射期間中に、前記第1照射領域のうち前記赤外レーザパルス光の照射により軟化した第1屈曲加工部において、前記光ファイバを第1角度に屈曲させる第1屈曲工程と、
     前記第1屈曲加工部とは異なる部位で前記光ファイバを部分的に軟化させるために前記赤外レーザパルス光を前記第1照射領域とは異なる前記光ファイバの第2照射領域に照射し、前記赤外レーザパルス光の照射期間中に、前記第2照射領域のうち前記赤外レーザパルス光の照射により軟化した第2屈曲加工部において、前記光ファイバを第2角度に屈曲させる第2屈曲工程と、を備え、
     前記赤外レーザパルス光が照射され、かつ、前記第1照射領域および前記第2照射領域を含む複数の照射領域で構成される、前記光ファイバの加熱区間において、前記光ファイバを所定の曲率半径に屈曲させる屈曲光ファイバの製造方法。
  2.  前記第1屈曲加工部と前記第2屈曲加工部は、前記光ファイバの長手方向に沿って離間している請求項1に記載の屈曲光ファイバの製造方法。
  3.  前記第1屈曲工程および前記第2屈曲工程のそれぞれは、前記第1照射領域および前記第2照射領域よりも前記光ファイバの第1端面側に荷重材が取り付けられる一方、前記第1照射領域および前記第2照射領域よりも前記光ファイバの第2端面側が固定された状態で行われる請求項1または2に記載の屈曲光ファイバの製造方法。
  4.  前記赤外レーザパルス光は、波長1.5μm超のレーザ光を含む請求項1~3の何れか一項に記載の屈曲光ファイバの製造方法。
  5.  前記第1照射領域に照射される前記赤外レーザパルス光は、前記第1屈曲加工部における熱パワーが前記第1屈曲加工部を除いた残りの部分における熱パワーよりも高くなるパワー分布を有する請求項1~4の何れか一項に記載の屈曲光ファイバの製造方法。
  6.  前記複数の照射領域のそれぞれに照射される前記赤外レーザパルス光の照射条件として、1つの照射領域に照射される前記赤外レーザパルス光のパルス数および前記複数の照射領域それぞれの中心間隔を制御することで、前記光ファイバの加熱区間を所定の曲率半径に屈曲させる請求項1~5の何れか一項に記載の屈曲光ファイバの製造方法。
  7.  前記赤外レーザパルス光がそれぞれ照射される前記複数の照射領域の数を設定することで、前記光ファイバの加熱区間を所定の曲率半径に屈曲させる請求項1~6の何れか一項に記載の屈曲光ファイバの製造方法。
  8.  前記光ファイバは、所定軸に沿って延びた複数のコアを有するマルチコア光ファイバであり、前記所定軸に直交する直線で規定され、かつ、前記第1屈曲加工部および前記第2屈曲加工部のそれぞれにおける屈曲方向に一致する屈曲軸上に、前記複数のコアのうち隣接するコア同士が存在しないよう、前記マルチコア光ファイバが屈曲される請求項1~7の何れか一項に記載の屈曲光ファイバの製造方法。
  9.  シリカガラスからなり、かつ、第1端面と前記第1端面に対向する第2端面を有する光ファイバに対して屈曲加工を施すことにより得られる屈曲光ファイバの製造方法であって、
     その光軸上において熱パワーが最大となる形状の熱パワー分布を有するレーザ光を前記光ファイバの照射領域に照射し、前記レーザ光の照射期間中に、前記光ファイバの長手方向に沿った前記照射領域の幅よりも狭い幅を有し、かつ、前記レーザ光の照射により軟化した屈曲加工部において、前記光ファイバを屈曲させ、
     前記光ファイバを屈曲させることの後に実施され、前記光ファイバに対して次回照射領域および前記次回照射領域に含まれる次回屈曲加工部を形成する次回レーザ照射において、前記次回照射領域に対して前記光ファイバを屈曲させることにおける前記照射領域が一部重複する一方、前記次回屈曲加工部に対して前記光ファイバを屈曲させることにおける前記屈曲加工部が離間する移動量だけ、前記光ファイバの長手方向に沿って前記レーザ光の照射位置を移動させ、
     前記光ファイバを屈曲させること、および、前記照射位置を移動させることを、前記光ファイバの第1端面と第2端面との間に設定された加熱区間において繰り返すことにより、前記光ファイバの加熱区間において、前記光ファイバを所定の曲率半径に屈曲させる屈曲光ファイバの製造方法。
  10.  前記レーザ光は、赤外レーザパルス光を含む請求項9に記載の屈曲光ファイバの製造方法。
PCT/JP2014/079346 2013-11-25 2014-11-05 屈曲光ファイバの製造方法 WO2015076105A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/434,438 US20160016843A1 (en) 2013-11-25 2014-11-05 Method for manufacturing bent optical fiber
CN201480064435.0A CN105765427A (zh) 2013-11-25 2014-11-05 弯曲光纤的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013242834A JP6268977B2 (ja) 2013-11-25 2013-11-25 屈曲光ファイバの製造方法
JP2013-242834 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015076105A1 true WO2015076105A1 (ja) 2015-05-28

Family

ID=53179372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079346 WO2015076105A1 (ja) 2013-11-25 2014-11-05 屈曲光ファイバの製造方法

Country Status (4)

Country Link
US (1) US20160016843A1 (ja)
JP (1) JP6268977B2 (ja)
CN (1) CN105765427A (ja)
WO (1) WO2015076105A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006713A1 (ja) * 2014-07-11 2017-04-27 古河電気工業株式会社 曲げ光ファイバの製造方法及び曲げ光ファイバ内蔵コネクタの製造方法
JP2019003125A (ja) * 2017-06-19 2019-01-10 住友電気工業株式会社 屈曲光ファイバの製造装置および製造方法
CN109416434A (zh) * 2016-07-15 2019-03-01 住友电气工业株式会社 制造光学连接部件的方法
US10836672B2 (en) 2016-08-30 2020-11-17 Sumitomo Electric Industries, Ltd. Method for manufacturing bent optical fiber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386578B2 (en) * 2014-03-14 2019-08-20 Afl Telecommunications Llc Method for making bent tip fibers
DE112015006766T5 (de) 2015-08-04 2018-04-19 Sumitomo Electric Industries, Ltd. Optische Verbindungskomponente
CN107850733A (zh) 2015-08-13 2018-03-27 住友电气工业株式会社 光连接部件
CN110255884A (zh) * 2019-06-27 2019-09-20 西安柯莱特信息科技有限公司 一种弯曲光纤的机构
CN110407454B (zh) * 2019-07-04 2021-08-17 苏州安捷讯光电科技股份有限公司 一种热弯光纤加工平台的加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173924A (en) * 1974-11-18 1976-06-26 Siemens Ag Shirikonkaranaru u gatatantai oyobi sonoseizohoho
JPS6449002A (en) * 1987-07-28 1989-02-23 Raychem Corp Bent optical fiber and manufacture thereof
JP2002162331A (ja) * 2000-11-27 2002-06-07 Canon Inc 近接場光プローブの作製方法、及び近接場光プローブ、近接場光学顕微鏡、近接場光微細加工装置、近接場光記録再生装置
JP2005515491A (ja) * 2002-01-02 2005-05-26 ユナイテッド・テクノロジーズ・コーポレーション 両側から交互に赤外レーザを照射することによって書き込まれた長周期ファイバブラッググレーティング
WO2005098490A1 (ja) * 2004-04-05 2005-10-20 The Furukawa Electric Co., Ltd. 光導波路、光導波路モジュールおよび光導波路の作成方法
WO2010044273A1 (ja) * 2008-10-17 2010-04-22 株式会社巴川製紙所 光伝送媒体成形方法、光伝送媒体成形装置及び光伝送媒体製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2454592A1 (de) * 1974-11-18 1976-06-10 Siemens Ag Vorrichtung zum abscheiden von silicium an der oberflaeche eines u-foermigen traegerkoerpers aus silicium
US4073859A (en) * 1975-02-10 1978-02-14 Siemens Aktiengesellschaft Technique for making silicon U-shaped members
US4028081A (en) * 1975-12-11 1977-06-07 Bell Telephone Laboratories, Incorporated Method for manufacturing helical optical fiber
US4129433A (en) * 1976-10-14 1978-12-12 Bell Telephone Laboratories, Incorporated Fabrication of an optical fiber waveguide with periodic variations in diameter
US4832442A (en) * 1987-07-17 1989-05-23 United Ropeworks (U.S.A.) Inc. Method and apparatus for aerial installation of fiber optic cables
JP2978585B2 (ja) * 1991-04-17 1999-11-15 本多通信工業株式会社 光ファイバコネクタ用フェルール
SE502553C2 (sv) * 1994-03-15 1995-11-13 Ericsson Telefon Ab L M Optisk fiber för sensorändamål och sätt att framställa den optiska fibern
JP2980094B2 (ja) * 1997-05-16 1999-11-22 住友電気工業株式会社 石英ガラス物品及びその製造方法
EP1792216B1 (en) * 2004-08-31 2019-08-21 Eigenlight Corporation Broadband fiber optic tap
KR100635265B1 (ko) * 2004-09-21 2006-10-19 이금석 광섬유격자센서 패키지
DE102010045094B4 (de) * 2010-09-13 2013-03-07 Schott Ag Verfahren und Vorrichtung zur lasergestützten Glasformung
WO2013052961A1 (en) * 2011-10-06 2013-04-11 Llc Ofs Fitel Systems and techniques for fabricating optical fiber gratings
US8701500B2 (en) * 2011-12-02 2014-04-22 Lake Shore Cryotronics, Inc. Method and apparatus for fixing strained optical fibers against creep and temperature and strain sensors using said technology
JP6417710B2 (ja) * 2014-05-20 2018-11-07 住友電気工業株式会社 屈曲光ファイバ製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173924A (en) * 1974-11-18 1976-06-26 Siemens Ag Shirikonkaranaru u gatatantai oyobi sonoseizohoho
JPS6449002A (en) * 1987-07-28 1989-02-23 Raychem Corp Bent optical fiber and manufacture thereof
JP2002162331A (ja) * 2000-11-27 2002-06-07 Canon Inc 近接場光プローブの作製方法、及び近接場光プローブ、近接場光学顕微鏡、近接場光微細加工装置、近接場光記録再生装置
JP2005515491A (ja) * 2002-01-02 2005-05-26 ユナイテッド・テクノロジーズ・コーポレーション 両側から交互に赤外レーザを照射することによって書き込まれた長周期ファイバブラッググレーティング
WO2005098490A1 (ja) * 2004-04-05 2005-10-20 The Furukawa Electric Co., Ltd. 光導波路、光導波路モジュールおよび光導波路の作成方法
WO2010044273A1 (ja) * 2008-10-17 2010-04-22 株式会社巴川製紙所 光伝送媒体成形方法、光伝送媒体成形装置及び光伝送媒体製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006713A1 (ja) * 2014-07-11 2017-04-27 古河電気工業株式会社 曲げ光ファイバの製造方法及び曲げ光ファイバ内蔵コネクタの製造方法
US10036856B2 (en) 2014-07-11 2018-07-31 Furukawa Electric Co., Ltd. Connector with built-in bent optical fibers and method for producing bent optical fibers
CN109416434A (zh) * 2016-07-15 2019-03-01 住友电气工业株式会社 制造光学连接部件的方法
US20190129101A1 (en) * 2016-07-15 2019-05-02 Sumitomo Electric Industries, Ltd. Method for manufacturing optical connection component
US10836672B2 (en) 2016-08-30 2020-11-17 Sumitomo Electric Industries, Ltd. Method for manufacturing bent optical fiber
JP2019003125A (ja) * 2017-06-19 2019-01-10 住友電気工業株式会社 屈曲光ファイバの製造装置および製造方法

Also Published As

Publication number Publication date
JP2015102663A (ja) 2015-06-04
JP6268977B2 (ja) 2018-01-31
CN105765427A (zh) 2016-07-13
US20160016843A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
WO2015076105A1 (ja) 屈曲光ファイバの製造方法
JP5689929B2 (ja) 光ファイバコンバイナの製造方法、光ファイバコンバイナ、及び、レーザ装置
CN110831906B (zh) 用于制造光纤预制棒的方法
JP6417710B2 (ja) 屈曲光ファイバ製造方法
CN110914015A (zh) 使用光束进行材料加工的方法和系统
US10422961B2 (en) Fiber array formed using laser bonded optical fibers
JP5224317B2 (ja) 光導波路部品および光導波路部品の製造方法
JP2009187010A (ja) フレネルレンズ一体型光ファイバ及びその製造方法{FiberLensWithFresnelZonePlateLensAndMethodForProducingTheSame}
JP4974165B2 (ja) 光ファイバの接続構造の製造方法
JP6019229B2 (ja) 光ファイバ・モードスクランブラ及びその製造方法
JP2015215426A (ja) マルチコアファイバ及びそのマルチコアファイバの製造方法
JP5902016B2 (ja) 光ファイバ・エンドキャップ接合構造及びその製造方法
JP2017538153A (ja) コネクタ付き光ファイバをレーザ研磨する方法、および、この方法によって形成されたコネクタ付き光ファイバ
JP6396821B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
JP2013007959A (ja) 光ファイバの端面処理方法及び光ファイバの端末構造
WO2017022026A1 (ja) 光接続部品の製造方法
JP5990451B2 (ja) マルチコアファイバの接続方法
JP2018087988A (ja) 屈曲光ファイバの製造方法
JP2015210306A (ja) 光コネクタ及び光コネクタの製造方法
WO2011004539A1 (ja) 光ファイバの多芯結合構造及びその製造方法
US5454057A (en) Method for fabricating star coupler for interconnecting optical fibers and a star coupler
JP2015011300A (ja) ガラス構造体及びその製造方法
JP2011099926A (ja) 光ファイバの接続方法及び光ファイバの接続構造
JP4012686B2 (ja) 光学部品
JP2018531406A6 (ja) ファイバカプラの製造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14434438

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863412

Country of ref document: EP

Kind code of ref document: A1