WO2015075998A1 - ダクト式蓄熱装置 - Google Patents

ダクト式蓄熱装置 Download PDF

Info

Publication number
WO2015075998A1
WO2015075998A1 PCT/JP2014/073631 JP2014073631W WO2015075998A1 WO 2015075998 A1 WO2015075998 A1 WO 2015075998A1 JP 2014073631 W JP2014073631 W JP 2014073631W WO 2015075998 A1 WO2015075998 A1 WO 2015075998A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
duct
storage material
vertical duct
vertical
Prior art date
Application number
PCT/JP2014/073631
Other languages
English (en)
French (fr)
Inventor
祐作 河本
北村 和也
智樹 片山
佳祐 追手
Original Assignee
中外炉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外炉工業株式会社 filed Critical 中外炉工業株式会社
Priority to CN201480061984.2A priority Critical patent/CN105723154B/zh
Priority to KR1020167012081A priority patent/KR101658759B1/ko
Publication of WO2015075998A1 publication Critical patent/WO2015075998A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/005Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/02Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using granular particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a duct type heat storage device capable of completing the replacement work of the entire amount of heat storage material quickly in a short time.
  • a regenerative burner used in an industrial furnace is provided with a heat storage device that heats combustion air with exhaust heat of exhaust gas.
  • a heat storage device that heats combustion air with exhaust heat of exhaust gas.
  • a spherical heat storage material is accommodated, and among exhaust gas and combustion air flowing alternately, exhaust heat is accumulated in the spherical heat storage material when exhaust gas flows, and then when combustion air flows The combustion air is heated by a spherical heat storage material.
  • Patent Documents 1 and 2 disclose an exchange device that replaces a spherical heat storage material.
  • the “regenerative burner regenerator exchanging device” of Patent Document 1 is provided with a regenerator replenishing chamber on the outer upper side of the regenerator, and the regenerator and the regenerator replenishment chamber communicate with each other with one or a plurality of regenerator supplies.
  • the bottom of the heat storage chamber is composed of an appropriate amount of fallen floor of the heat storage body, and the heat storage body is supplied from the heat storage body replenishing chamber to the heat storage chamber through the heat storage body supply unit by the amount that has fallen from the appropriate amount of the heat storage body falling floor. I have to. *
  • Patent Document 2 “Heat storage type alternating combustion device equipped with a heat storage body exchanging mechanism” is composed of at least a pair of heat storage type burners composed of a burner section provided with a fuel nozzle and a heat storage chamber containing the heat storage body,
  • a heat storage chamber is formed in a substantially L shape, and the tip of the heat storage chamber is burned through the perforated plate.
  • a heat storage body discharge pipe connected to the rear end of the chamber and provided with a heat storage body discharge on / off valve at the bottom of the heat storage chamber, and the upper part of the heat storage chamber and the heat storage body storage tank are connected to the distributor and the distributor. It connects with the thermal storage body supply pipe provided with the on-off valve for thermal storage body supply located downstream.
  • the heat storage body can be supplied to the heat storage chamber at a stretch or discharged from the heat storage chamber at a stroke, so that the heat storage body can be gradually supplied and discharged, compared to the volume of the heat storage chamber.
  • the heat storage body supply section having a narrow or narrow passage portion, the appropriate amount of the heat storage body falling bed, the heat storage body supply pipe, and the heat storage body discharge pipe are included. For this reason, there existed a subject that a thermal storage body will be clogged in these channel
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a duct type heat storage device that can quickly complete the replacement work of the total amount of the heat storage material in a short time.
  • the upper duct is connected to the upper part
  • the lower duct is connected to the lower part
  • the granular heat storage material is accommodated at least above the lower duct
  • the granular heat storage material is interposed through the granular heat storage material.
  • a recovery container for recovering the granular heat storage material discharged from the lower gate is disposed under the vertical duct.
  • the lower gate is opened and closed with double doors. *
  • a combustion air supply pipe having an air supply valve and an exhaust gas exhaust pipe having an exhaust valve are connected to one of the upper duct and the lower duct, the exhaust valve is closed, and the air supply valve is opened.
  • the opening and closing operation of the upper gate is performed following the opening and closing operation of the lower gate in response to closing of the air supply valve.
  • the granular heat storage body is a spherical heat storage material having a spherical shape.
  • the replacement work of the total amount of the heat storage material can be completed quickly in a short time.
  • FIG. 1 is a side sectional view of a duct type heat storage device according to the present embodiment
  • FIG. 2 is a side sectional view showing a heat storage material discharging stage by the duct type heat storage device of FIG. 1
  • FIG. 3 is a duct type heat storage device of FIG.
  • FIG. 4 is a side sectional view showing a completed state of the heat storage material replacement work by the duct type heat storage device of FIG. 1.
  • the duct-type heat storage device 1 includes a straight vertical duct 2 that is erected in the vertical direction.
  • the vertical duct 2 is formed in a hollow cylindrical shape having an upper end 2a opened upward and a lower end 2b opened downward.
  • the inner diameter of the vertical duct 2 is formed with the same dimension from the upper end 2a to the lower end 2b.
  • An upper duct 3 is connected to the upper part of the vertical duct 2.
  • a lower duct 4 is connected to the lower part of the vertical duct 2.
  • a perforated plate (grating) 5 is provided at the end of the upper duct 3 connected to the vertical duct 2.
  • a perforated plate 6 is also provided at the end of the lower duct 4 connected to the vertical duct 2.
  • a combustion air supply pipe 8 having an air supply valve 7 and an exhaust gas discharge pipe 10 having an exhaust valve 9 are connected to the lower duct 4.
  • the combustion air supply pipe 8 is connected to an air supply blower (not shown) that supplies combustion air A
  • the exhaust gas discharge pipe 10 is connected to a flue (not shown) that discharges the exhaust gas B.
  • the regenerative burner is composed of a pair of burner units that alternately perform a combustion operation and an exhaust operation. Each figure has shown the principal part of one burner unit.
  • the upper duct 3 opens, for example, into the furnace of an industrial furnace, and during combustion operation, fuel is supplied to the combustion air A (indicated by solid arrows in the figure) supplied from the combustion air supply pipe 8. Mixed to create a flame into the furnace.
  • exhaust gas B in the furnace (indicated by a dotted arrow in the figure) is sucked toward the exhaust gas exhaust pipe 10. *
  • the combustion air A supplied from the combustion air supply pipe 8 into the furnace flows from the lower duct 4 through the vertical duct 2 to the upper duct 3.
  • the exhaust gas B discharged from the exhaust gas discharge pipe 10 is circulated from the upper duct 3 to the lower duct 4 via the vertical duct 2, contrary to the flow of the combustion air A. That is, the combustion air A and the exhaust gas B are distributed such that the combustion air A and the exhaust gas B are in opposite directions, the combustion air A is transferred from the lower duct 4 to the upper duct 3, and the exhaust gas B is transferred from the upper duct 3 to the lower part. It is made to distribute to the duct 4.
  • combustion air supply pipe 8 and the exhaust gas discharge pipe 10 may be connected to the upper duct 3 in place of the lower duct 4, and the lower duct 4 may be connected to the inside of the furnace.
  • combustion air A and exhaust gas B are alternately circulated in the vertical duct 2 provided between the upper duct 3 and the lower duct 4.
  • a granular heat storage material made of ceramics for example, a spherical heat storage material 11 having a spherical shape in this embodiment, is accommodated inside the vertical duct 2 at least up to the upper portion of the lower duct 4.
  • the spherical heat storage material 11 may be accommodated near the upper duct 3 or above the upper duct 3 as indicated by a virtual line D in FIG. Thereby, the combustion air A and the exhaust gas B flowing from the upper duct 3 and the lower duct 4 and flowing inside the vertical duct 2 are circulated through the spherical heat storage material 11 and brought into contact with the spherical heat storage material 11.
  • the spherical heat storage material 11 collects exhaust heat from the exhaust gas B when the exhaust gas B flows, and heats the combustion air A with the recovered exhaust heat when the combustion air A flows.
  • the perforated plates 5 and 6 of the upper duct 3 and the lower duct 4 prevent the spherical heat storage material 11 from spilling from the inside of the vertical duct 2 into the upper duct 3 and the lower duct 4 while circulating the combustion air A and the exhaust gas B. Hold. *
  • the perforated plates 5 and 6 are installed so that the surfaces 5a and 6a facing the inside of the vertical duct 2 are substantially flush with the inner surface 2c of the vertical duct 2, thereby allowing the spherical heat storage material 11 to be vertically aligned as described later. When discharging from the inside of the duct 2, the spherical heat storage material 11 falls smoothly and does not remain around the perforated plates 5 and 6. *
  • a supply hopper 12 for supplying the spherical heat storage material 11 into the vertical duct 2 is provided on the upper end 2 a of the vertical duct 2.
  • the supply hopper 12 is formed of an inclined surface whose lower end portion is inclined toward the supply direction.
  • the opening of the lower end 12 a of the supply hopper 12 is formed with substantially the same size as the opening of the vertical duct 2.
  • the spherical heat storage material 11 is previously sent from the spherical heat storage material supply path 13 and stored therein.
  • the one-time storage amount is set to the total replacement amount of the spherical heat storage material 11.
  • An upper gate 14 is provided between the lower end 12a of the supply hopper 12 and the upper end 2a of the vertical duct 2 so as to be opened and closed.
  • the supply hopper 12 is blocked from the inside of the vertical duct 2, and the spherical heat storage material 11 is held in the supply hopper 12.
  • the upper gate 14 keeps the inside of the vertical duct 2 airtight.
  • the supply hopper 12 communicates with the inside of the vertical duct 2, and the spherical heat storage material 11 is dropped from the supply hopper 12 into the vertical duct 2.
  • the upper gate 14 is slidably driven in the horizontal direction so that the pair of left and right upper gate plates 14a come in contact with each other, closed when approached, and opened when separated.
  • Each upper gate plate 14a is preferably driven away to a position where the upper end 2a of the vertical duct 2 is fully opened.
  • a hydraulic cylinder or the like may be used as the drive mechanism.
  • a lower gate 15 is provided at the lower end 2b of the vertical duct 2 so as to be freely opened and closed.
  • the lower gate 15 is closed to block the inside of the vertical duct 2 from the outside and hold the spherical heat storage material 11 inside the vertical duct 2.
  • the lower gate 15 keeps the inside of the vertical duct 2 airtight.
  • the inside of the vertical duct 2 communicates with the outside, and the spherical heat storage material 11 is discharged from the inside of the vertical duct 2.
  • the lower gate 15 is driven to open and close with double doors so that the pair of left and right lower gate plates 15a are in contact with each other.
  • the lower gate 15 is rotatably supported by a support shaft 15b provided at the outer portion of the vertical duct 2 at the base end of each lower gate plate 15a, and each lower gate plate 15a is rotated around the base end. These tips 15c are closed when they approach each other, and opened when they are separated.
  • each lower gate board 15a is moved apart to the position where the lower end 2b of the vertical duct 2 is fully opened.
  • a gear mechanism may be used as the drive mechanism.
  • the lower gate 15 may be opened and closed by sliding in the horizontal direction. Further, like the lower gate 15, the upper gate 14 may be driven to open and close with double doors. *
  • the vertical dimension required for installation can be made small, and the duct type heat storage device 1 can be made compact.
  • the spherical heat storage material 11 can be supplied and discharged instantaneously and quickly by using a double door.
  • reinforcing ribs 15d are provided on the lower surface of the lower gate plate 15a, thereby reducing the thickness of the lower gate plate 15a.
  • the lower portion of the lower gate 15 is empty, but a discharge chute for guiding the discharge of the spherical heat storage material 11 may be provided immediately below the lower gate 15.
  • the lower duct 4 is connected above the lower end 2b of the vertical duct 2 where the lower gate 15 is provided, whereby a bottom region C is formed around the lower end 2b of the vertical duct 2. Since the pressure in the bottom region C around the lower end 2b of the vertical duct 2 below the lower duct 4 is stabilized once the exhaust gas B or the like enters, the flow of the exhaust gas B or the like to the bottom region C is hindered thereafter. It is done. *
  • the exhaust gas B or the like does not enter the bottom region C, and the air layer between the spherical heat storage materials 11 is combined to exhibit heat insulation. For this reason, it is possible to prevent the periphery of the lower gate 15 from being heated to a high temperature. Therefore, the heat-resistant material applied to the lower gate 15 can be reduced, and the weight and cost reduction of the lower gate 15 can be achieved.
  • a recovery container 18 for recovering the spherical heat storage material 11 discharged from the lower gate 15 is disposed on the installation floor 17 of the duct heat storage device 1 so as to be positioned below the vertical duct 2.
  • the collection container 18 has an upward opening 18a.
  • the recovery container 18 may be any form of container such as a container form as long as it can receive the spherical heat storage material 11.
  • the collection container 18 is provided with wheels 18 b that can run on the installation floor 17. *
  • the duct-type heat storage device 1 includes a controller 19 that is connected to and controls the upper gate 14, the lower gate 15, the air supply valve 7, and the exhaust valve 9. *
  • the air supply valve 7 is opened during the combustion operation of the regenerative burner (the opening operation is indicated by a white notation in the figure), and the combustion air A from the combustion air supply pipe 8 is moved upward from the vertical duct 2. It is sent to the duct 3. The combustion air A sent to the upper duct 3 is then mixed with fuel, thereby generating a flame toward the furnace. At this time, the exhaust valve 9 is closed (the closing operation is indicated by black solid notation in the figure). On the other hand, during the exhaust operation of the regenerative burner, the air supply valve 7 is closed and the exhaust valve 9 is opened, so that the exhaust gas B from the furnace flows into the vertical duct 2 through the upper duct 3. Then, it is discharged into the exhaust gas discharge pipe 10. *
  • the controller 19 relates to one of the burner units of the regenerative burner pair, the exhaust valve 9 is closed, the air supply valve 7 is opened, and the combustion air A circulates through the vertical duct 2.
  • the air supply valve 7 is closed and its operation signal is input from the air supply valve 7 during the combustion operation in the state (the other burner unit is in the exhaust operation state)
  • the spherical heat storage material 11 can be replaced.
  • a closing signal of the air supply valve 7 is input to the controller 19 during the combustion operation, the replacement operation of the spherical heat storage material 11 can be performed using this input operation as a trigger.
  • an open signal is sent from the controller 19 to the lower gate 15. Thereafter, when it is confirmed that the total amount of the spherical heat storage material 11 has fallen into the recovery container 18 by e.g. a predetermined time counted by a timer provided in the controller 19, a closing signal is sent to the lower gate 15. Thereafter, when it is confirmed that the lower gate 15 is closed by a sensor or the like that detects opening / closing of the lower gate 15, an open signal is sent from the controller 19 to the upper gate 14.
  • the operation control of the valves 7 and 9 and the gates 14 and 15 is not performed by counting up by a timer or the like of the controller 19, but the operator confirms the situation visually and operates the controller 19 to operate the gates 14 and 15 and the valves 7 and 15. , 9 may be opened and closed. Even in that case, the controller 19 allows the control of the exchange operation in response to the air supply valve 7 being closed on condition that the exhaust valve 9 is closed. Therefore, the controller 19 prohibits the control of the exchange operation during the exhaust operation in which the exhaust valve 9 is opened.
  • FIG. 1 shows the combustion operation state of one burner unit during normal operation of the regenerative burner.
  • the air supply valve 7 is opened, the exhaust valve 9 is closed, and the combustion air A is circulated from the combustion air supply pipe 8 through the vertical duct 2 to the upper duct 3.
  • the exchange operation of the spherical heat storage material 11 is performed during this combustion operation.
  • the collection container 18 is arranged on the equipment floor 17 below the vertical duct 2 with the upward opening 18 a facing the lower gate 15.
  • the supply hopper 12 stores the total amount of the spherical heat storage material 11.
  • the air supply valve 7 is closed. Thereby, the circulation of the combustion air A is stopped. At this time, the fuel supply is also stopped.
  • the lower gate 15 is opened by the controller 19. Thereby, the spherical heat storage material 11 inside the vertical duct 2 is discharged from the lower gate 15 into the recovery container 18 instantaneously and at once. Next, the lower gate 15 is closed by the controller 19. *
  • the upper gate 14 is opened by the controller 19. Thereby, the spherical heat storage material 11 in the supply hopper 12 is dropped into the vertical duct 2 from the upper gate 14 instantaneously and at once.
  • the controller 19 closes the upper gate 14. Thereafter, the exhaust valve 9 is opened. Thereby, the distribution of the exhaust gas B is started in the one burner unit and the exhaust operation state is shifted, and at the same time, the combustion operation is started in the other burner unit.
  • the collection container 18 is transferred to a cleaning facility or the like at an appropriate timing.
  • the spherical heat storage material 11 regenerated by cleaning or the like is supplied from the spherical heat storage material supply path 13 to the supply hopper 12 and reused.
  • the spherical heat storage material 11 is accommodated in the vertical duct 2 having a straight shape in the vertical direction, the spherical heat storage material 11 is replaced.
  • the discharging operation and the dropping operation for refilling can be performed instantly and at a stroke without clogging, and the replacement operation of the entire amount of the spherical heat storage material 11 can be completed quickly in a very short time.
  • the opening of the lower end 12a of the supply hopper 12 is formed with substantially the same size as the opening of the vertical duct 2, and the perforated plates 5 and 6 are formed on the surface 5a facing the inside of the vertical duct 2. Since 6a is installed so as to be substantially flush with the inner surface 2c of the vertical duct 2, the spherical heat storage material 11 does not remain around the supply hopper 12 and the perforated plates 5 and 6, more smoothly and appropriately. Exchange work can be completed. *
  • the discharging operation if the lower gate 15 is opened, the entire amount of the spherical heat storage material 11 can be discharged as it is, and complicated operations such as scraping can be eliminated. Moreover, since it is the vertical duct 2, the structure is very simple, and even if the spherical heat storage material 11 is dropped or discharged, it is possible to prevent damage from occurring.
  • the recovery container 18 Since the recovery container 18 is disposed under the vertical duct 2 and the spherical heat storage material 11 is recovered by the recovery container 18, the discharged spherical heat storage material 11 can be easily moved to another location.
  • Reinforcing the lower gate plate 15a with the reinforcing ribs 15d or forming a heat-insulating bottom region C directly above the lower gate 15 ensures a reduction in the thickness of the lower gate plate 15a and the amount of heat-resistant material applied.
  • the opening / closing operation time of the lower gate 15 can be shortened, and the replacement work time can be further shortened.
  • the replacement work of the spherical heat storage material 11 may be performed only by opening and closing the lower gate 15 and the upper gate 14, and the work can be completed easily in a short time, and the operation stop period of the regenerative burner can be shortened. it can. *
  • the spherical heat storage material 11 can be discharged instantaneously and quickly compared to the slide type, and this also facilitates shortening of the replacement time.
  • a combustion air supply pipe 8 having an air supply valve 7 and an exhaust gas exhaust pipe 10 having an exhaust valve 9 are connected to the lower duct 4, the exhaust valve 9 is closed, the air supply valve 7 is opened, and the combustion air A is Since the upper gate 14 is opened and closed following the opening and closing operation of the lower gate 15 in response to the closing of the air supply valve 7 in the state of flowing through the vertical duct 2, the flow of the high-temperature exhaust gas B While the exchange operation is prohibited at the time, the supply of the combustion air A is stopped only during the exchange operation during the distribution period of the combustion air A, and the supply is stopped, that is, the operation of closing the air supply valve 7 is performed. Even during the operation period of the regenerative burner, the spherical heat storage material 11 can be exchanged while suppressing fluctuations in the internal temperature as much as possible. *
  • the replacement work is performed during the flow of the low-temperature combustion air A, the temperature of the spherical heat storage material 11 can be lowered and discharged, and the safety of the work can be improved.
  • the operation is switched to the exhaust operation. Accordingly, the other burner unit is immediately switched from the exhaust operation to the combustion operation.
  • the continuous operation of the regenerative burner can be ensured while incorporating the replacement work of the spherical heat storage material 11, and the furnace can be operated continuously.
  • the low-temperature spherical heat storage material 11 immediately after the replacement is first heated by the exhaust gas B during the exhaust operation and starts to store and raise the temperature, it is sufficient when the combustion air A is circulated during the subsequent combustion operation. It has reached a high temperature state, the combustion air A can be appropriately heated, and the flame temperature generated in the furnace can be kept high.
  • any one of the regenerative burners is stopped due to the thinning-out operation.
  • the replacement work may be performed during the shutdown period.
  • the vertical duct 2 portion forming the bottom region C may be formed of an iron shell without using a refractory material or the like. In this way, the manufacturing cost of the vertical duct 2 can be reduced.
  • the spherical heat storage material 11 of the spherical shape was illustrated and explained about the granular heat storage body, the granular shape is not limited to the spherical shape, and may be any form that exhibits rolling properties such as an ellipse, a cylindrical shape, and a crushed shape. Any form may be used.
  • the spherical shape does not need to be a true sphere, and may be a spherical shape with distortion or unevenness.
  • Duct-type heat storage device 2 Vertical duct 2a Top end of vertical duct 2b Lower end of vertical duct 2c Inside surface of vertical duct 3 Upper duct 4 Lower duct 5,6 perforated plate 5a, 6a Surface of perforated plate 7 Air supply valve 8 Combustion air supply pipe 9 Exhaust valve 10 Exhaust gas exhaust pipe 11 Spherical heat storage material 12 Supply hopper 12a Lower end of supply hopper 13 Spherical regenerator supply path 14 Upper gate 14a Upper gate plate 15 Lower gate 15a Lower gate plate 15b spindle 15c Tip 15d reinforcement rib 17 Equipment floor 18 Collection container 18a upward opening 18b wheel 19 Controller A Combustion air B exhaust gas C Bottom area D Virtual line indicating the storage height of the spherical heat storage material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)

Abstract

【課題】短時間で迅速に蓄熱材全量の交換作業を完了することが可能なダクト式蓄熱装置を提供する。 【解決手段】上部ダクト3が上部に接続されると共に、下部に下部ダクト4が接続され、少なくとも下部ダクト上方まで球状蓄熱材11が収容されて、球状蓄熱材を介して上部ダクトと下部ダクトの間に交互に燃焼用空気Aと排ガスBが流通される鉛直ダクト2と、鉛直ダクト上に設けられ、球状蓄熱材を当該鉛直ダクト内部に供給するための供給ホッパー12と、供給ホッパーと鉛直ダクトとの間に開閉自在に設けられ、閉じられて球状蓄熱材を供給ホッパー内に保持すると共に、開放されて供給ホッパーから鉛直ダクト内部に球状蓄熱材を投下するための上部ゲート14と、鉛直ダクト下端2bに開閉自在に設けられ、閉じられて球状蓄熱材を鉛直ダクト内に保持すると共に、開放されて当該鉛直ダクト内部から球状蓄熱材を排出する下部ゲート15とを備えた。

Description

ダクト式蓄熱装置
本発明は、短時間で迅速に蓄熱材全量の交換作業を完了することが可能なダクト式蓄熱装置に関する。
工業炉に用いられるリジェネレイティブバーナには、排ガスの排熱で燃焼用空気を加熱する蓄熱装置が備えられている。この蓄熱装置には、球状蓄熱材が収容され、交互に流通する排ガスと燃焼用空気のうち、排ガスが流通するとき排熱が球状蓄熱材に蓄積され、その後、燃焼用空気が流通するときに当該燃焼用空気が球状蓄熱材で加熱されるようになっている。 
この種の蓄熱装置に関しては、球状蓄熱材を交換する交換装置が特許文献1及び2で開示されている。特許文献1の「リジェネレイティブバーナの蓄熱体交換装置」は、蓄熱室上部外側に蓄熱体補充室を設け、前記蓄熱室と蓄熱体補充室とを単数又は複数の蓄熱体供給部で連通し、前記蓄熱室の底部は蓄熱体適量落下床で構成し、その蓄熱体適量落下床から落下した量だけ、前記蓄熱体補充室から蓄熱体供給部を介して蓄熱室に蓄熱体を供給するようにしている。 
特許文献2の「蓄熱体交換機構を備えた蓄熱式交番燃焼装置」は、燃料ノズルを備えたバーナ部と、蓄熱体を収納した蓄熱室とからなる少なくとも一対の蓄熱式バーナとで構成され、前記一対の蓄熱式バーナを交互に燃焼と排気とを行わせる蓄熱式交番燃焼装置の、蓄熱室を略L字状に形成し、前記蓄熱室の先端が多孔板を介して前記バーナ部の燃焼室後端に接続され、前記蓄熱室の底部に蓄熱体排出用開閉弁を備えた蓄熱体排出管を設け、また、前記蓄熱室の上部と蓄熱体貯蔵タンクとを分配器および当該分配器の下流に位置する蓄熱体供給用開閉弁を備えた蓄熱体供給管で接続するようにしている。
特開平9-159148号公報 特開2001-317732号公報
いずれの背景技術にあっても、蓄熱体が蓄熱室へ一気に供給されたり、蓄熱室から一気に排出されないよう、蓄熱体を徐々に供給・排出できるように、蓄熱室の容積に比して、十分に狭いあるいは細い通路部分を有する蓄熱体供給部や蓄熱体適量落下床、蓄熱体供給管、蓄熱体排出管を備えて構成されていた。このため、蓄熱体がこれら通路部分で目詰まりしてしまい、蓄熱体を交換できなくなってしまうという課題があった。 
また、蓄熱体の交換については、少量ずつ交換するよりも全量を一気に交換した方が、交換されない蓄熱体が蓄熱室内にいつまでも残存してしまうなどの不都合がなく、設備管理上好ましい。全量を交換する場合には、リジェネレイティブバーナや工業炉設備を停止する必要がある。この停止期間を短縮するには、迅速な交換作業が求められるが、このような要請に応えることが難しかった。 
本発明は上記従来の課題に鑑みて創案されたものであって、短時間で迅速に蓄熱材全量の交換作業を完了することが可能なダクト式蓄熱装置を提供することを目的とする。
本発明にかかるダクト式蓄熱装置は、上部ダクトが上部に接続されると共に、下部に下部ダクトが接続され、少なくとも該下部ダクト上方まで粒状蓄熱材が収容されて、該粒状蓄熱材を介して該上部ダクトと該下部ダクトの間に交互に燃焼用空気と排ガスが流通される鉛直ダクトと、該鉛直ダクト上に設けられ、上記粒状蓄熱材を当該鉛直ダクト内部に供給するための供給ホッパーと、該供給ホッパーと上記鉛直ダクトとの間に開閉自在に設けられ、閉じられて上記粒状蓄熱材を該供給ホッパー内に保持すると共に、開放されて該供給ホッパーから該鉛直ダクト内部に上記粒状蓄熱材を投下するための上部ゲートと、上記鉛直ダクト下端に開閉自在に設けられ、閉じられて上記粒状蓄熱材を該鉛直ダクト内に保持すると共に、開放されて当該鉛直ダクト内部から該粒状蓄熱材を排出する下部ゲートとを備えたことを特徴とする。 
前記鉛直ダクト下には、前記下部ゲートから排出される前記粒状蓄熱材を回収する回収容器が配置されることを特徴とする。 
前記下部ゲートは、観音開きで開閉されることを特徴とする。 
前記上部ダクト及び前記下部ダクトのいずれか一方には、給気バルブを有する燃焼用空気供給管と排気バルブを有する排ガス排出管が接続され、上記排気バルブが閉じられ上記給気バルブが開かれて燃焼用空気が前記鉛直ダクトに流通している状態で、該給気バルブを閉じたことに応じて、前記下部ゲートの開閉動作に引き続き前記上部ゲートの開閉動作が行われるように構成したことを特徴とする。 
前記粒状蓄熱体は、球体形状の球状蓄熱材であることを特徴とする。
本発明にかかるダクト式蓄熱装置にあっては、短時間で迅速に蓄熱材全量の交換作業を完了することができる。
本発明に係るダクト式蓄熱装置の好適な一実施形態を示す側断面図である。 図1のダクト式蓄熱装置による蓄熱材排出段階を示す側断面図である。 図1のダクト式蓄熱装置による蓄熱材投下段階を示す側断面図である。 図1のダクト式蓄熱装置による蓄熱材交換作業の完了状態を示す側断面図である。
以下に、本発明にかかるダクト式蓄熱装置の好適な一実施形態を、添付図面を参照して詳細に説明する。図1は、本実施形態に係るダクト式蓄熱装置の側断面図、図2は、図1のダクト式蓄熱装置による蓄熱材排出段階を示す側断面図、図3は、図1のダクト式蓄熱装置による蓄熱材投下段階を示す側断面図、図4は、図1のダクト式蓄熱装置による蓄熱材交換作業の完了状態を示す側断面図である。 
本実施形態に係るダクト式蓄熱装置1は、上下鉛直方向に立設された真っ直ぐな鉛直ダクト2を備える。鉛直ダクト2は、上端2aが上方に開放され、下端2bが下方に開放された中空筒体状に形成される。鉛直ダクト2の内径は、上端2aから下端2bまで同一寸法で形成される。 
鉛直ダクト2の上部には、上部ダクト3が接続される。鉛直ダクト2の下部には、下部ダクト4が接続される。鉛直ダクト2に接続される上部ダクト3の端部には、多孔板(グレーチング)5が設けられる。鉛直ダクト2に接続される下部ダクト4の端部にも、多孔板6が設けられる。 
下部ダクト4には、給気バルブ7を有する燃焼用空気供給管8と排気バルブ9を有する排ガス排出管10が接続される。燃焼用空気供給管8は、燃焼用空気Aを供給する空気供給ブロアー(図示せず)に接続され、排ガス排出管10は、排ガスBを排出する煙道(図示せず)に接続される。 
リジェネレイティブバーナは、燃焼動作と排気動作を交互に行う一対のバーナユニットで構成される。各図は、一方のバーナユニットの主要部を示している。上部ダクト3は、例えば工業用炉の炉内に向けて開口していて、燃焼動作時には、燃焼用空気供給管8から供給される燃焼用空気A(図中、実線矢印で示す)に燃料が混合されて、炉内に向けて火炎を生成する。排気動作時には、炉内の排ガスB(図中、点線矢印で示す)が排ガス排出管10に向けて吸引される。 
図1に示すように、燃焼用空気供給管8から炉内へ供給される燃焼用空気Aは、下部ダクト4から鉛直ダクト2を経て、上部ダクト3へ流通される。排ガス排出管10から排出される排ガスBは、燃焼用空気Aの流れとは逆に、上部ダクト3から鉛直ダクト2を経て、下部ダクト4へ流通される。すなわち、燃焼用空気A及び排ガスBの流通経路は、これら燃焼用空気A及び排ガスBを互いに反対向きで、燃焼用空気Aを下部ダクト4から上部ダクト3へ、排ガスBを上部ダクト3から下部ダクト4へ流通させるようにする。また、燃焼用空気供給管8及び排ガス排出管10を、下部ダクト4に代えて、上部ダクト3に接続するようにして、下部ダクト4を炉内側に接続するようにしてもよい。いずれにしても、上部ダクト3と下部ダクト4の間に設けられる鉛直ダクト2には、交互に燃焼用空気Aと排ガスBが流通される。 
鉛直ダクト2の内部には、少なくとも下部ダクト4上方まで、セラミックス製などの粒状蓄熱材、本実施形態では球状形態の球状蓄熱材11が収容される。球状蓄熱材11は、図1中の仮想線Dで示すように、上部ダクト3付近あるいは上部ダクト3上方まで収容しても良いことはもちろんである。これにより、上部ダクト3や下部ダクト4から流れ込んで鉛直ダクト2内部を流れる燃焼用空気A及び排ガスBが球状蓄熱材11を介して流通され、当該球状蓄熱材11に接触される。 
球状蓄熱材11は、排ガスBが流通するとき、排ガスBから排熱を回収し、燃焼用空気Aが流通するとき、回収した排熱で燃焼用空気Aを加熱する。上部ダクト3及び下部ダクト4の多孔板5,6は、燃焼用空気Aや排ガスBを流通させつつ、球状蓄熱材11が鉛直ダクト2内部から上部ダクト3や下部ダクト4にこぼれ出ないように保持する。 
多孔板5,6は、鉛直ダクト2内部に面する表面5a,6aが鉛直ダクト2の内面2cとほぼ面一となるように設置され、これにより、後述するように、球状蓄熱材11を鉛直ダクト2内部から排出するとき、球状蓄熱材11が円滑に落下して、多孔板5,6の周辺に残存しないようになっている。 
鉛直ダクト2の上端2a上には、球状蓄熱材11を鉛直ダクト2内部に供給するための供給ホッパー12が設けられる。供給ホッパー12はよく知られているように、下端部が供給方向に向かって傾斜する傾斜面で形成される。
供給ホッパー12の下端12aの開口は、鉛直ダクト2の開口とほぼ同一寸法で形成される。供給ホッパー12には、鉛直ダクト2内部に供給する前に予め、球状蓄熱材供給経路13から球状蓄熱材11が送り込まれ、貯留される。一回の貯留量は、球状蓄熱材11の交換総量に設定される。 
供給ホッパー12の下端12aと鉛直ダクト2の上端2aとの間には、開閉自在に上部ゲート14が設けられる。上部ゲート14は、閉じられることにより、供給ホッパー12を鉛直ダクト2内部から遮断し、球状蓄熱材11を供給ホッパー12内に保持する。同時に、上部ゲート14は、鉛直ダクト2内部を気密に保持する。他方、上部ゲート14は、開放されることにより、供給ホッパー12と鉛直ダクト2内部とを連通し、供給ホッパー12から鉛直ダクト2内部に球状蓄熱材11を投下する。 
本実施形態では、上部ゲート14は、左右一対の上部ゲート板14aが互いに接離するように、水平方向にスライド駆動され、接近することで閉じられ、離隔することで開放される。各上部ゲート板14aは好ましくは、鉛直ダクト2の上端2aが全開とされる位置まで離隔駆動される。駆動機構としては例えば、油圧シリンダなどを用いればよい。 
鉛直ダクト2の下端2bには、開閉自在に下部ゲート15が設けられる。下部ゲート15は、閉じられることにより、鉛直ダクト2内部を外部から遮断し、球状蓄熱材11を鉛直ダクト2内部に保持する。同時に、下部ゲート15は、鉛直ダクト2内部を気密に保持する。他方、下部ゲート15は、開放されることにより、鉛直ダクト2内部と外部とを連通し、鉛直ダクト2内部から球状蓄熱材11を排出する。 
本実施形態では、下部ゲート15は、左右一対の下部ゲート板15aが互いに接離するように、観音開きで開閉駆動される。具体的には、下部ゲート15は、各下部ゲート板15aの基端が鉛直ダクト2の外側部分に設けられる支軸15bに回転自在に支持され、各下部ゲート板15aが基端周りに回転されてそれらの先端15cが互いに接近することで閉じられ、離隔することで開放される。 
これにより、各下部ゲート板15aは、鉛直ダクト2の下端2bが全開される位置まで離隔移動される。駆動機構としては例えば、ギア機構などを用いればよい。
下部ゲート15は、上部ゲート14と同様に、水平方向にスライド駆動されることで開閉されるようにしてもよい。また、上部ゲート14は、下部ゲート15と同様に、観音開きで開閉駆動されてもよい。 
スライド駆動であれば、設置に必要な上下寸法を小さくすることができ、ダクト式蓄熱装置1をコンパクト化することができる。他方、鉛直ダクト2の上下にスペースの余裕がある場合には、観音開きとすることで、球状蓄熱材11の供給・排出を瞬時に迅速に行うことができる。 
本実施形態では、下部ゲート板15aを軽量化するために、当該下部ゲート板15aの下面に補強リブ15dが配設され、これにより下部ゲート板15aの薄肉化が図られている。また、図示例では、下部ゲート15の下方は空所とされているが、下部ゲート15直下に、球状蓄熱材11の排出を案内する排出シュートを設けるようにしても良い。 
下部ダクト4は、下部ゲート15が設けられる鉛直ダクト2の下端2bよりも上方に接続され,これにより鉛直ダクト2の下端2b周辺に底部領域Cが形成される。下部ダクト4よりも下方となる鉛直ダクト2の下端2b周辺の底部領域Cは、一旦排ガスB等が入り込むと圧力が安定するので、その後は、この底部領域Cへの排ガスB等の流通が妨げられる。 
すなわち、底部領域Cには排ガスB等が回り込まず、球状蓄熱材11同士の間の空気層も相俟って、断熱性が発現される。このため、下部ゲート15周辺が高温に加熱されることを防止できる。従って、下部ゲート15に施工される耐熱材を削減でき、下部ゲート15の軽量化・低コスト化を達成できる。 
ダクト式蓄熱装置1の設置床17の上には、鉛直ダクト2下に位置させて、下部ゲート15から排出される球状蓄熱材11を回収する回収容器18が配置される。回収容器18は、上向き開口部18aを有する。回収容器18は、球状蓄熱材11を受容できるものであれば、コンテナ形態など、どのような形態の容器であってもよい。本実施形態では、移動の利便性を向上するために、回収容器18には、設置床17上で走行自在な車輪18bが設けられている。 
ダクト式蓄熱装置1には、上部ゲート14、下部ゲート15、給気バルブ7及び排気バルブ9に接続されてこれらを制御するコントローラ19が備えられる。 
給気バルブ7は、リジェネレイティブバーナの燃焼動作時に開かれ(開動作は、図中、白抜き表記で示す)、燃焼用空気供給管8からの燃焼用空気Aが、鉛直ダクト2から上部ダクト3へ送り込まれる。上部ダクト3へ送り込まれた燃焼用空気Aは、その後燃料と混合され、これにより炉内に向けて火炎が生成される。このとき、排気バルブ9は閉じられている(閉動作は、図中、黒ベタ表記で示す)。他方、リジェネレイティブバーナの排気動作時には、給気バルブ7は閉じられると共に、排気バルブ9が開かれ、これにより、炉内からの排ガスBが上部ダクト3を介して鉛直ダクト2内部に流通し、その後、排ガス排出管10へと排出される。 
コントローラ19は、リジェネレイティブバーナの対になっているバーナユニットの一方のバーナユニットに関し、排気バルブ9が閉じられ給気バルブ7が開かれて燃焼用空気Aが鉛直ダクト2を流通している状態にある燃焼動作時(他方のバーナユニットは排気動作状態)に、給気バルブ7が閉じられてその操作信号が給気バルブ7から入力されると、球状蓄熱材11の交換操作を可能とする。あるいは、燃焼動作時に、コントローラ19に給気バルブ7の閉じ信号を入力すると、この入力操作をトリガーとして、球状蓄熱材11の交換操作を実施可能とする。 
給気バルブ7が閉じられ、鉛直ダクト2内の気流が一旦停止されたことに応じて、コントローラ19から下部ゲート15に開放信号が送出される。その後、コントローラ19に備えられるタイマなどによるカウントで所定時間が経過する等によって球状蓄熱材11の全量が回収容器18に落下したことを確認すると、下部ゲート15に閉じ信号が送出される。その後、下部ゲート15の開閉を検知するセンサ等により下部ゲート15が閉じられたことを確認すると、コントローラ19から上部ゲート14に開放信号が送出される。 
その後、コントローラ19のタイマなどによるカウントによって所定時間が経過する等によって球状蓄熱材11の全量が供給ホッパー12から鉛直ダクト2内に投下されたことを確認すると、コントローラ19から上部ゲート14に閉じ信号が送出されるようになっている。最後に、上部ゲート14の開閉を検知するセンサ等により上部ゲート14が閉じられたことを確認すると、コントローラ19から排気バルブ9に開き信号が送出されて当該一方のバーナユニットは排気動作に移行し、これにより、対になっている他方のバーナユニットで燃焼動作が開始される。 
バルブ7,9やゲート14,15の動作制御は、コントローラ19のタイマ等によるカウントアップによることなく、作業者が目視で状況を確認しつつ、コントローラ19を操作してゲート14,15やバルブ7,9を開閉操作するようにしてもよい。その場合においても、コントローラ19は、排気バルブ9が閉じられていることを条件に、給気バルブ7が閉じられることに応じて、交換操作の制御を許容する。従って、コントローラ19は、排気バルブ9が開かれている排気動作時には、交換操作の制御を禁止するようになっている。 
次に、本実施形態に係るダクト式蓄熱装置1の作用について説明する。図1~図4には、図の順に従って、球状蓄熱材11の交換操作の手順が示されている。図1は、リジェネレイティブバーナの通常運転時における一方のバーナユニットの燃焼運転状態が示されている。 
燃焼動作時には、給気バルブ7が開かれると共に、排気バルブ9が閉じられ、燃焼用空気Aは、燃焼用空気供給管8から鉛直ダクト2を経て、上部ダクト3へ流通される。球状蓄熱材11の交換操作は、この燃焼動作時に行われる。 
図2に示すように、まず、鉛直ダクト2下方の設備床17上に、上向き開口部18aを下部ゲート15に向けて、回収容器18が配置される。また、供給ホッパー12には、交換総量の球状蓄熱材11が貯留される。次に、給気バルブ7が閉じられる。これにより、燃焼用空気Aの流通が停止される。このとき、燃料の供給も停止する。 
その後、コントローラ19により、下部ゲート15が開放される。これにより、鉛直ダクト2内部の球状蓄熱材11が瞬時にかつ一気に、下部ゲート15から回収容器18内に排出される。次いで、コントローラ19により、下部ゲート15が閉じられる。 
次いで、図3に示すように、コントローラ19により、上部ゲート14が開放される。これにより、供給ホッパー12内の球状蓄熱材11が瞬時にかつ一気に、上部ゲート14から鉛直ダクト2内に投下される。 
その後、図4に示すように、コントローラ19により、上部ゲート14が閉じられる。その後、排気バルブ9が開かれる。これにより、当該一方のバーナユニットでは排ガスBの流通が開始されて排気運転状態に移行し、これと同時に、他方のバーナユニットでは燃焼運転か開始される。回収容器18は、下部ゲート15が閉じられた後、適宜タイミングで、洗浄設備等へ搬送される。洗浄等で再生された球状蓄熱材11は、球状蓄熱材供給経路13から供給ホッパー12へ供給され、再利用される。 
以上説明した本実施形態に係るダクト式蓄熱装置1にあっては、上下方向にストレートな形態の鉛直ダクト2に球状蓄熱材11を収容するようにしたので、球状蓄熱材11を交換する際の排出作業も、再度充填するための投下作業も、目詰まりが生じることなく、瞬時にかつ一気に行うことができ、球状蓄熱材11全量の交換作業をきわめて短時間で迅速に完了することができる。 
従って、球状蓄熱材11を対象としたリジェネレイティブバーナのメンテナンスを簡素化できる。また、球状蓄熱材11の全量を一気に交換することができるので、交換されない球状蓄熱材11がいつまでも残存してしまうなどの不都合がなく、設備の管理を向上することができる。 
本実施形態では、供給ホッパー12の下端12aの開口を、鉛直ダクト2の開口とほぼ同一寸法で形成していること、並びに、多孔板5,6を、鉛直ダクト2内部に面する表面5a,6aが鉛直ダクト2の内面2cとほぼ面一となるように設置しているので、これら供給ホッパー12や多孔板5,6周辺に球状蓄熱材11が残存することなく、よりスムーズにかつ適切に交換作業を完了することできる。 
殊に、排出作業では、下部ゲート15を開けば球状蓄熱材11をそのまま全量排出でき、掻き出すなどの煩雑な作業をなくすことができる。また、鉛直ダクト2であるので、構造がきわめて簡易であり、球状蓄熱材11が投下されたり排出されても、これによる損傷発生を防止することができる。 
鉛直ダクト2下に回収容器18を配置し、回収容器18で球状蓄熱材11を回収するようにしたので、排出された球状蓄熱材11を容易に別の場所へ移動することができる。 
下部ゲート板15aを補強リブ15dで補強したり、下部ゲート15直上に、断熱性のある底部領域Cを形成したことにより、下部ゲート板15aの薄肉化や耐熱材の施工量の削減を確保することができ、これにより、下部ゲート15の開閉動作時間を短縮できて、交換作業時間をさらに短くすることができる。 
球状蓄熱材11の交換作業は、下部ゲート15及び上部ゲート14の開閉操作だけでよく、簡易に短時間で作業を完了することができて、リジェネレイティブバーナの運転停止期間を短縮することができる。 
下部ゲート15を観音開きとしたので、スライド式に比べて、球状蓄熱材11の排出を瞬時に迅速に行うことができ、これによっても交換時間の短縮化を促進できる。 
下部ダクト4に、給気バルブ7を有する燃焼用空気供給管8と排気バルブ9を有する排ガス排出管10を接続し、排気バルブ9が閉じられ給気バルブ7が開かれて燃焼用空気Aが鉛直ダクト2に流通している状態で、給気バルブ7を閉じたことに応じて、下部ゲート15の開閉動作に引き続き上部ゲート14の開閉動作を行うように構成したので、高温排ガスBの流通時は交換作業を禁止する一方で、燃焼用空気Aの流通期間中、交換作業時のみ燃焼用空気Aの供給を停止するようにして、この供給停止、すなわち給気バルブ7の閉じ操作によって炉内温度の変動を極力抑えつつ、リジェネレイティブバーナの運転期間中であっても、球状蓄熱材11の交換作業を行うことができる。 
また、低温な燃焼用空気Aの流通時に交換作業をするので、球状蓄熱材11の温度を下げて排出することができ、作業の安全性を高めることができる。
そして、一方のバーナユニットにおいて、球状蓄熱材11の交換作業を終えて上部ゲート14を閉じたら排気運転に切り換えるようにしたので、これに応じて他方のバーナユニットを排気運転から直ちに燃焼運転に切り換えることができ、球状蓄熱材11の交換作業を組み入れながら、リジェネレイティブバーナの連続運転を確保することができて、これにより炉を連続的に操業することができる。 
また、交換直後の低温の球状蓄熱材11は、まず排気運転時に排ガスBで加熱されて蓄熱・昇温することから始まるので、その後の燃焼運転時に燃焼用空気Aが流通されるときには、十分な高温状態に達していて、当該燃焼用空気Aを適切に加熱することができ、炉内に生成される火炎温度を高く維持することができる。 
また、リジェネレイティブバーナを複数運転する場合、間引き運転によりいずれかのリジェネレイティブバーナは運転停止している。この運転停止期間中に交換作業を行っても良いことはもちろんである。 
底部領域Cは、断熱性を有するので、この底部領域Cを形成する鉛直ダクト2部分は、耐火材などを用いることなく、鉄製シェルで形成してもよい。このようにすれば、鉛直ダクト2の製作費を低減することができる。 
なお、粒状蓄熱体について、球体形状の球状蓄熱材11を例示して説明したが、粒状とは、球状に限らず、楕円上や円筒状、破砕した形状など、転がり性を呈する形態であれば、どのような形態であってもよい。球状についても、真球である必要はなく、歪みや凹凸のある球状でよい。
1 ダクト式蓄熱装置

 2 鉛直ダクト

 2a 鉛直ダクトの上端

 2b 鉛直ダクトの下端

 2c 鉛直ダクトの内面

 3 上部ダクト

 4 下部ダクト

 5,6 多孔板

 5a,6a 多孔板の表面

 7 給気バルブ

 8 燃焼用空気供給管

 9 排気バルブ

 10 排ガス排出管

 11 球状蓄熱材

 12 供給ホッパー

 12a 供給ホッパーの下端

 13 球状蓄熱体供給経路

 14 上部ゲート

 14a 上部ゲート板

 15 下部ゲート

 15a 下部ゲート板

 15b 支軸

 15c 先端

 15d 補強リブ

 17 設備床

 18 回収容器

 18a 上向き開口部

 18b 車輪

 19 コントローラ

 A 燃焼用空気

 B 排ガス

 C 底部領域

 D 球状蓄熱材の収容高さを示す仮想線

Claims (5)

  1. 上部ダクトが上部に接続されると共に、下部に下部ダクトが接続され、少なくとも該下部ダクト上方まで粒状蓄熱材が収容されて、該粒状蓄熱材を介して該上部ダクトと該下部ダクトの間に交互に燃焼用空気と排ガスが流通される鉛直ダクトと、 該鉛直ダクト上に設けられ、上記粒状蓄熱材を当該鉛直ダクト内部に供給するための供給ホッパーと、 該供給ホッパーと上記鉛直ダクトとの間に開閉自在に設けられ、閉じられて上記粒状蓄熱材を該供給ホッパー内に保持すると共に、開放されて該供給ホッパーから該鉛直ダクト内部に上記粒状蓄熱材を投下するための上部ゲートと、 上記鉛直ダクト下端に開閉自在に設けられ、閉じられて上記粒状蓄熱材を該鉛直ダクト内に保持すると共に、開放されて当該鉛直ダクト内部から該粒状蓄熱材を排出する下部ゲートとを備えたことを特徴とするダクト式蓄熱装置。
  2. 前記鉛直ダクト下には、前記下部ゲートから排出される前記粒状蓄熱材を回収する回収容器が配置されることを特徴とする請求項1に記載のダクト式蓄熱装置。
  3. 前記下部ゲートは、観音開きで開閉されることを特徴とする請求項1または2に記載のダクト式蓄熱装置。
  4. 前記上部ダクト及び前記下部ダクトのいずれか一方には、給気バルブを有する燃焼用空気供給管と排気バルブを有する排ガス排出管が接続され、上記排気バルブが閉じられ上記給気バルブが開かれて燃焼用空気が前記鉛直ダクトに流通している状態で、該給気バルブを閉じたことに応じて、前記下部ゲートの開閉動作に引き続き前記上部ゲートの開閉動作が行われるように構成したことを特徴とする請求項1~3いずれかの項に記載のダクト式蓄熱装置。
  5. 前記粒状蓄熱体は、球体形状の球状蓄熱材であることを特徴とする請求項1~4いずれかの項に記載のダクト式蓄熱装置。
PCT/JP2014/073631 2013-11-20 2014-09-08 ダクト式蓄熱装置 WO2015075998A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480061984.2A CN105723154B (zh) 2013-11-20 2014-09-08 管道式蓄热装置
KR1020167012081A KR101658759B1 (ko) 2013-11-20 2014-09-08 덕트식 축열 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013240420A JP5782094B2 (ja) 2013-11-20 2013-11-20 ダクト式蓄熱装置
JP2013-240420 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015075998A1 true WO2015075998A1 (ja) 2015-05-28

Family

ID=53179270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073631 WO2015075998A1 (ja) 2013-11-20 2014-09-08 ダクト式蓄熱装置

Country Status (5)

Country Link
JP (1) JP5782094B2 (ja)
KR (1) KR101658759B1 (ja)
CN (1) CN105723154B (ja)
TW (1) TWI568975B (ja)
WO (1) WO2015075998A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066757A (zh) * 2015-08-13 2015-11-18 北方民族大学 一种固体颗粒的空气蓄热放热装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113819651B (zh) * 2021-09-26 2023-05-23 芜湖新农夫机械股份有限公司 一种具有废气净化功能的智能化热风炉及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807695A (en) * 1985-08-27 1989-02-28 British Gas Plc Regenerator for a regenerative heating system
JPH09159146A (ja) * 1995-12-07 1997-06-20 Tokyo Gas Co Ltd リジェネレイティブバ−ナの蓄熱層の温度分布を維持しつつ蓄熱体を置換する方法及び装置
JP2005090893A (ja) * 2003-09-18 2005-04-07 Ishikawajima Harima Heavy Ind Co Ltd 蓄熱式熱交換器及びそれを用いた工業炉、微粉炭焚ボイラ等燃焼装置
JP2011038741A (ja) * 2009-08-17 2011-02-24 Sanken Sangyo Co Ltd 直接噴射式リジェネバーナ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159148A (ja) 1995-12-07 1997-06-20 Tokyo Gas Co Ltd リジェネレイティブバ−ナの蓄熱体交換装置
JPH11211370A (ja) * 1998-01-27 1999-08-06 Nippon Furnace Kogyo Kaisha Ltd 蓄熱体及びそれに使用する蓄熱材ブロック片並びに蓄熱体の接着方法
JP4181289B2 (ja) 2000-05-10 2008-11-12 中外炉工業株式会社 蓄熱体交換機構を備えた蓄熱式交番燃焼装置
JP4121937B2 (ja) * 2003-12-15 2008-07-23 Jfeスチール株式会社 蓄熱体の清掃方法
CN101319782B (zh) * 2008-06-26 2010-08-18 上海应用技术学院 在线更换蓄热球的蓄热式燃烧装置
CN202638179U (zh) * 2012-05-24 2013-01-02 叶国清 一种陶瓷过滤器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807695A (en) * 1985-08-27 1989-02-28 British Gas Plc Regenerator for a regenerative heating system
JPH09159146A (ja) * 1995-12-07 1997-06-20 Tokyo Gas Co Ltd リジェネレイティブバ−ナの蓄熱層の温度分布を維持しつつ蓄熱体を置換する方法及び装置
JP2005090893A (ja) * 2003-09-18 2005-04-07 Ishikawajima Harima Heavy Ind Co Ltd 蓄熱式熱交換器及びそれを用いた工業炉、微粉炭焚ボイラ等燃焼装置
JP2011038741A (ja) * 2009-08-17 2011-02-24 Sanken Sangyo Co Ltd 直接噴射式リジェネバーナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066757A (zh) * 2015-08-13 2015-11-18 北方民族大学 一种固体颗粒的空气蓄热放热装置

Also Published As

Publication number Publication date
TWI568975B (zh) 2017-02-01
KR20160057493A (ko) 2016-05-23
TW201522867A (zh) 2015-06-16
CN105723154B (zh) 2017-07-07
CN105723154A (zh) 2016-06-29
KR101658759B1 (ko) 2016-09-21
JP2015099002A (ja) 2015-05-28
JP5782094B2 (ja) 2015-09-24

Similar Documents

Publication Publication Date Title
US20170203989A1 (en) Processes for producing molten glasses from glass batches using turbulent submerged combustion melting, and systems for carrying out such processes
JP2020176277A (ja) モノリス構成要素構造を有するコークス炉
NO338738B1 (no) Gipsbehandlingsanording
JP5782094B2 (ja) ダクト式蓄熱装置
RU2534691C1 (ru) Отражательная печь для переплава алюминиевого лома
JP5785240B2 (ja) ダクト式蓄熱装置
KR20100033289A (ko) 전기겸용 고체연료 보일러
CN205576025U (zh) 一种沥青两用加热设备
KR100932994B1 (ko) 다목적보일러장치
RU2398999C1 (ru) Механизм регулирования расхода воздуха в печи
EP2957828A1 (en) Burner that uses a granular-type solid biomass fuel
US6631754B1 (en) Regenerative heat exchanger and method for heating a gas therewith
RU2654800C1 (ru) Механическое топочное устройство для сжигания твердого топлива (варианты)
JP2016166723A (ja) 固形燃料用のチェーンストーカ火格子を用いる複合式蒸気ボイラ
KR101369605B1 (ko) 보일러
KR101053090B1 (ko) 재처리가 가능한 이중연소기를 가지는 레토르트 타입 펠렛보일러
CN201100752Y (zh) 燃煤热水炉
TWI746691B (zh) 蓄熱式燃燒器系統
KR100447486B1 (ko) 연탄보일러 장치
US1050317A (en) Fire-grate for refuse-destructors and other furnaces.
JP6052649B1 (ja) 間接加熱方式炭化処理システム
CN104625037A (zh) 钢包烘烤窑炉
JP2021139519A (ja) ボイラ装置
US904230A (en) Hot-air furnace.
KR200403446Y1 (ko) 전자동 석탄보일러의 난방수 예열장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167012081

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201603995

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14864239

Country of ref document: EP

Kind code of ref document: A1