WO2015075815A1 - 電子式回路遮断器 - Google Patents
電子式回路遮断器 Download PDFInfo
- Publication number
- WO2015075815A1 WO2015075815A1 PCT/JP2013/081531 JP2013081531W WO2015075815A1 WO 2015075815 A1 WO2015075815 A1 WO 2015075815A1 JP 2013081531 W JP2013081531 W JP 2013081531W WO 2015075815 A1 WO2015075815 A1 WO 2015075815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- circuit breaker
- trip
- output
- signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/3277—Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/3271—Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
- G01R31/3275—Fault detection or status indication
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
- H02H3/04—Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
- H02H3/044—Checking correct functioning of protective arrangements, e.g. by simulating a fault
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
- H02H3/05—Details with means for increasing reliability, e.g. redundancy arrangements
Definitions
- the present invention relates to an electronic circuit breaker, and more particularly to an electronic circuit breaker having a self-diagnosis function capable of periodically and automatically performing an operation test without interrupting power supply to a load.
- Patent Document 1 discloses a built-in battery, a triangular wave generation circuit that organizes an AC power supply, a filter circuit that brings the output of the triangular wave generation circuit close to a sine wave, and a pseudo sine wave from the filter circuit.
- Electronic circuit breaker as a signal corresponding to overcurrent, short circuit, and ground fault of the electronic circuit breaker for operation test, and the direct current of the battery as the power source for operating the electronic circuit of the electronic circuit breaker, respectively.
- Connect the operation test device equipped with the connector to be supplied to the circuit breaker to the electronic circuit breaker drive the tripping device of the electronic circuit breaker in the power supply stop state, and trip the electronic circuit breaker The operation test was done.
- an overcurrent relay operation test apparatus equipped with a zero-phase current transformer for detecting a ground fault and a tripping current circuit for driving the tripping apparatus is connected with a trip current circuit during an operation test.
- a test apparatus capable of performing an operation test even in a live line state by disconnecting the disconnection apparatus from an analog switch and disabling the disconnection apparatus.
- the present invention has been made to solve the above problems, and even during an operation test, it is possible to trip the circuit breaker when an overcurrent, short circuit, or ground fault occurs. Furthermore, it is intended to provide an electronic circuit breaker having a self-diagnosis function capable of periodically and automatically performing an operation test, and capable of improving an operation rate and facility reliability by performing an operation test from a steady state. It is the purpose.
- An electronic circuit breaker includes a rectifier circuit that rectifies a secondary output of a current transformer that detects a current of a main circuit, and a microcomputer and a circuit breaker trip device driven by the current output from the rectifier circuit.
- the microcomputer includes a constant voltage circuit for generating a constant voltage power supply for the A / D converter to which a signal under measurement from the rectifier circuit is input, an overcurrent, an instantaneous current, and a leakage current flowing through the main circuit.
- a threshold value determination unit that determines whether or not an input signal to the A / D conversion unit exceeds any one of the threshold values, and the threshold value determination unit determines whether the overcurrent, instantaneous current, or leakage current is A sine that simulates the secondary output of the current transformer in an electronic circuit breaker having a trip signal output unit that outputs a trip signal to the trip device when it is determined that any threshold is exceeded Wave signal, above A test signal output circuit that outputs a test signal that exceeds a set threshold value of the value determination unit, and is connected in series between the current transformer and the rectifier circuit; the switching time is controlled by a control signal from the microcomputer; and A first changeover switch for periodically switching a signal input to the rectifier circuit between a signal output from the current transformer and a test signal output from the test signal output circuit; and the trip signal output unit And a trip output determination circuit for determining the operation state of the circuit breaker based on the output state of the first switch and the connection state of the first changeover switch.
- the electronic circuit breaker of the present invention it is possible to remove the breaker when an overcurrent, a short circuit, or a ground fault occurs even during an operation test, and more regularly and automatically.
- a self-diagnosis function that can perform an operation test is provided, and the operation rate and facility reliability can be improved by performing an operation test from a steady state.
- FIG. 1 It is a block diagram which shows the structure of the electronic circuit breaker in Embodiment 1 of this invention. It is a figure which shows the switching timing chart of the 1st selector switch in FIG. It is a block diagram which shows the structure of the electronic circuit breaker in Embodiment 2 of this invention. It is a block diagram which shows the structure of the electronic circuit breaker in Embodiment 3 of this invention. It is a block diagram which shows the structure of the electronic circuit breaker in Embodiment 4 of this invention. It is a block diagram of the external attachment apparatus in FIG.
- FIG. FIG. 1 is a block diagram showing a configuration of an electronic circuit breaker according to Embodiment 1 of the present invention
- FIG. 2 is a diagram showing a switching timing chart of a first changeover switch in FIG.
- the base (not shown) of the circuit breaker 100 stores the current transformer 1.
- the current transformer 1 When a current flows through the main circuit, the current transformer 1 outputs an output current proportional to the current to the secondary side of the current transformer 1.
- the output current is input to the constant voltage circuit 4 through the rectifier circuit 2, and the constant voltage circuit 4 generates a power source for driving the microcomputer 6 in the circuit breaker and the circuit breaker tripping device 3.
- the current output from the rectifier circuit 2 is converted from a current signal to a voltage signal by the rectifier circuit 2 and input to the A / D converter 7 of the microcomputer 6.
- the value of the current flowing through the circuit is detected.
- the first changeover switch 5 is connected in series between the current transformer 1 and the rectifier circuit 2, and is always periodically switched by a changeover switch control signal from the control signal output circuit 9 of the microcomputer 6. The signal from the tester 1 and the test signal from the test signal output circuit 11 are switched.
- FIG. 2 shows an example of the switching timing of the first selector switch 5.
- the first changeover switch 5 detects the signal from the current transformer 1 when the control signal from the control signal output circuit 9 of the microcomputer 6 is at the H level, and the microcomputer 6 acquires the data by the A / D converter 7. To do.
- the control signal becomes L level
- the first changeover switch 5 is switched, the signal from the test signal output circuit 11 is detected, and the A / D converter 7 acquires the data by the microcomputer 6.
- the signal from the current transformer 1 and the test signal from the test signal output circuit 11 are alternately detected.
- the values of the signal from the current transformer 1 and the test signal from the test signal output circuit 11 input to the A / D conversion unit 7 are the overcurrent, instantaneous current, and leakage current flowing through the main circuit. Whether or not the predetermined threshold value is exceeded is determined by the threshold value determination unit 61. If the threshold value is exceeded, a trip signal is output from the trip signal output unit 62. A second change-over switch 8 different from the first change-over switch 5 is connected between the trip signal output unit 62 and the trip device 3. The opening and closing of the second changeover switch 8 is performed by a control signal from the control signal output circuit 9 of the microcomputer 6, similarly to the first changeover switch 5.
- the trip output determination circuit 10 is connected to the trip signal output unit 62.
- the trip output determination circuit 10 is connected to the control signal from the control signal output circuit 9 to check whether the circuit breaker 100 is operating normally. Make a negative decision.
- the test signal output circuit 11 always repeatedly outputs a signal exceeding the threshold value of the threshold value determination unit 61 in which predetermined threshold values of overcurrent, instantaneous current, and leakage current are set, and the trip output determination circuit. 10 is determined as normal operation while the first change-over switch 5 is connected to the test signal output circuit 11 and the trip signal is output from the trip signal output unit 62. Further, the first changeover switch 5 is connected to the test signal output circuit 11, but no trip signal is output from the trip signal output unit 62, or the first changeover switch 5 is connected to the test signal output circuit 11. If the trip signal is output from the trip signal output unit 62, it is determined that the operation is abnormal, and the trip output determination circuit 10 outputs an alarm output to the outside of the circuit breaker 100. Do.
- the opening / closing time of the first changeover switch 5 is adjusted by a control signal from the control signal output circuit 9 of the microcomputer 6, the signal input to the A / D converter 7 of the microcomputer 6 is output from the current transformer 1. Therefore, it is possible to determine whether the signal is proportional to the current of the main circuit or the test signal output from the test signal output circuit 11, and the malfunction of the circuit breaker 100 due to signal mixing can be prevented.
- a second changeover switch 8 is connected in series between the trip signal output unit 62 and the trip device 3.
- the second changeover switch 8 is opened and closed by a control signal from the control signal output circuit 9 of the microcomputer 6 in the same manner as the first changeover switch 5, and a trip signal is a signal output from the current transformer 1. If there is, the second changeover switch 8 is closed and the tripping device 3 is driven to trip the circuit breaker. On the other hand, if the trip signal is a signal output from the test signal output circuit 11, the second change-over switch 8 is opened and the trip device 3 is deactivated.
- the trip signal is output from the trip signal output unit 62 when the signal input to the A / D conversion unit 7 exceeds the threshold value of the threshold judgment unit 61. Is tripped and fed back to the output determination circuit 10, and together with the control signal from the control signal output circuit 9 of the microcomputer 6, it is determined whether or not the circuit breaker is operating normally.
- the path through which the test signal from the test signal output circuit 11 is input to the A / D converter 7 of the microcomputer 6 is from the current transformer 1. Since it is the same as the path through which the secondary output is input, the operation test can be performed in a state close to the actual use conditions, and it is possible to configure without increasing the A / D conversion section 7 that is the input section of the microcomputer 6. It is.
- test signal output circuit 11 always inputs a test signal to the A / D converter 7 of the microcomputer 6, trips the trip signal from the trip signal output unit 62, and feeds it back to the signal determination circuit 10.
- a special tester is not required, and an operation test can be automatically performed to have a self-diagnosis function.
- an alarm is output from the trip signal determination circuit 10 to notify the user of the abnormality, so that the abnormal circuit breaker is continuously used. This improves the reliability of the equipment.
- the first change-over switch 5 is always switched periodically, and the current of the main circuit is always detected from the current transformer 1, so that overload occurs during the operation test. Even if a short circuit, a ground fault, or the like occurs, the circuit breaker 100 can be operated as usual, and the load device connected to the circuit breaker 100 can be protected.
- FIG. FIG. 3 is a block diagram showing a configuration of an electronic circuit breaker according to Embodiment 2 of the present invention.
- the output of the current transformer 1 and the test signal from the test signal output circuit 11 are periodically switched by the first changeover switch 5, so that the rectifier and the current transformer 1 are rectified for a short time. There is a time zone when the circuit 2 is not connected. If an instantaneous large current such as a short circuit or a ground fault flows during that time, the output from the current transformer 1 may not be detected.
- the second embodiment deals with such a case, and, as shown in FIG. 3, the signal in the previous stage of the first changeover switch 5 is input to the microcomputer calculation unit via the Schmitt trigger circuit 12. It is a thing.
- the output from the Schmitt trigger circuit 12 is input to the instantaneous current threshold judgment circuit 61 regardless of whether the first changeover switch 5 is opened or closed, and the trip signal output unit 62
- the tripping device 3 is driven by a tripping signal from. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
- the Schmitt trigger circuit 12 is provided to detect the output from the current transformer 1 regardless of the switching timing of the first changeover switch 5 when an instantaneous large current flows. Therefore, even if a short circuit or a ground fault occurs during the operation test, the circuit breaker 100 can be more reliably operated, and the load device connected to the circuit breaker can be protected.
- FIG. FIG. 4 is a block diagram showing a configuration of an electronic circuit breaker according to Embodiment 3 of the present invention.
- a trip command is output from the trip output determination circuit 10 to the trip device 3 instead of outputting an alarm from the trip output determination circuit 10 in the second embodiment. Is. Since other configurations are the same as those in the second embodiment, description thereof is omitted.
- the trip output determination circuit 10 determines that the operation is abnormal, the trip command is output to the trip device 3 and the circuit breaker 100 is operated. It is possible to automatically and promptly disconnect some of the circuit breakers 100 that are present, and to avoid a state in which the load equipment connected to the circuit breakers cannot be protected, further improving the reliability of the equipment. be able to.
- FIG. FIG. 5 is a block diagram showing a configuration of an electronic circuit breaker according to Embodiment 4 of the present invention
- FIG. 6 is a block diagram showing a configuration of the external accessory device shown in FIG.
- a power source for driving all the circuits is obtained from the current transformer 1, and therefore an operation test cannot be performed in a state where no current flows in the main circuit.
- the test signal output circuit is controlled not only by the circuit breaker but also by an external accessory device in the second embodiment.
- the external accessory device 18 is an independent housing including a DC power supply 16, a constant voltage circuit 15, a circuit breaker operating power supply 14, a microcomputer 13, and a display module 17, separately from the circuit breaker 100.
- the DC power source 16 is a portable power source, for example, a dry battery, and generates a power source for driving the microcomputer 13 and the display module 17 by the constant voltage circuit 15.
- the constant voltage circuit 15 is connected to the external accessory device detection circuit 19 of the circuit breaker, and makes the circuit breaker internal microcomputer 6 recognize that the external accessory device 18 is connected.
- test signal output circuit 11 is controlled to output a test signal corresponding to the test current value.
- the circuit breaker is tripped by supplying power to drive the tripping device 3 from the circuit breaker operation power source 14.
- the power supply 16 of the external accessory device 18 is not limited to a DC power source such as a dry cell, but may be configured to include an AC / DC conversion circuit in the external accessory device 18 and drive it by applying an AC voltage from the outside. I do not care.
- the circuit breaker operation power supply 14 provided in the external accessory device 18 is used. Since the tripping device 3 is driven, it is possible to check even a mechanical operation such that the tripping device 3 is driven normally and the circuit breaker trips. In addition, since it is possible to instruct the test signal output circuit 11 to output a test signal from the microcomputer 13 of the external accessory device 18 at an arbitrary timing, it is possible to freely perform an operation test during periodic inspections when the equipment is stopped. Is possible.
- the present invention relates to an electronic circuit breaker having a self-diagnosis function capable of performing an operation test periodically and automatically without interrupting power supply to a load, and has improved the operation rate and facility reliability. It is useful as a circuit breaker.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Breakers (AREA)
- Emergency Protection Circuit Devices (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Description
また、特許文献2に示される装置では、動作試験中は引き外し装置を不動作とするため、動作試験中に地絡事故が起きた場合、経路を切り離すことができず、本来の目的である回路保護が達成できないという問題もあった。
図1はこの発明の実施の形態1の電子式回路遮断器の構成を示すブロック図、図2は図1における第1の切り替えスイッチの切り替えタイミングチャートを示した図である。
図1において、回路遮断器100の図示しないベースは、変流器1を格納している。変流器1は、主回路に電流が流れた場合、その電流に比例した出力電流を変流器1の二次側に出力する。出力された電流は整流回路2を介して、定電圧回路4に入力され、定電圧回路4は遮断器内部のマイコン6や遮断器の引き外し装置3を駆動させるための電源を生成する。それと同時に、整流回路2から出力された電流は、整流回路2にて電流信号から電圧信号へ変換され、マイコン6のA/D変換部7へそれぞれ入力されることで、回路遮断器100の主回路に流れる電流値を検知する。第1の切り替えスイッチ5は、変流器1と整流回路2の間に直列に接続され、マイコン6の制御信号出力回路9からの切り替えスイッチ制御信号により常時周期的に切り替えが行われ、変流器1からの信号とテスト信号出力回路11からのテスト信号との切替を行う。
第1の切り替えスイッチ5は、マイコン6の制御信号出力回路9からの制御信号がHレベルのときには変流器1からの信号を検知し、A/D変換部7によってそのデータをマイコン6が取得する。
制御信号がLレベルになると、第1の切り替えスイッチ5が切り替わり、テスト信号出力回路11からの信号を検知し、A/D変換部7によってそのデータをマイコン6が取得する。この操作を常時繰り返すことで変流器1からの信号とテスト信号出力回路11からのテスト信号を交互に検知する。
第2の切り替えスイッチ8の開閉は、第1の切り替えスイッチ5と同様に、マイコン6の制御信号出力回路9からの制御信号によって行われる。引き外し信号出力部62には引き外し出力判定回路10が接続されており、引き外し出力判定回路10は、制御信号出力回路9からの制御信号と併せ、回路遮断器100が正常動作しているか否の判定を行う。
図3は、この発明の実施の形態2の電子式回路遮断器の構成を示すブロック図である。
実施の形態1では第1の切り替えスイッチ5によって、変流器1の出力とテスト信号出力回路11からのテスト信号を周期的に切替えている関係上、短い時間ではあるが変流器1と整流回路2が接続されていない時間帯がある。その時間帯に短絡、地絡事故のような瞬間的な大電流が流れた場合、変流器1からの出力を検出できない可能性がある。
この実施の形態2はこのような場合に対処するもので、図3に示すように、第1の切り替えスイッチ5の前段の信号を、シュミットトリガ回路12を介してマイコン演算部へ入力するようにしたものである。
なお、その他の構成については、実施の形態1と同様であるので、説明を省略する。
図4は、この発明の実施の形態3の電子式回路遮断器の構成を示すブロック図である。
この実施の形態3は、実施の形態2において、引外し出力判定回路10より警報を外部に出力するのではなく、引外し出力判定回路10より引き外し装置3へトリップ命令を出力するようにしたものである。
なお、その他の構成については、実施の形態2と同様であるので、説明を省略する。
図5は、この発明の実施の形態4における電子式回路遮断器の構成を示すブロック図、図6は、図5に示す外部付属装置の構成を示すブロック図である。
上述の実施の形態1~3の構成では変流器1から全ての回路を駆動させるための電源を得ているため、主回路に電流が流れていない状態では動作試験を行うことができない。
この実施の形態4は、実施の形態2において、テスト信号出力回路の制御を回路遮断器だけではなく、外部付属装置でも行うようにしたものである。
主回路に電流が流れていない状態で、使用者が意図的に外部付属装置18を介して動作試験を行う場合には、操作部20および表示モジュール17によって試験電流値を決定し、マイコン13によって、テスト信号出力回路11が試験電流値に該当するテスト信号を出力するよう制御する。テスト信号が閾値判定部61の閾値を超えた場合、回路遮断器動作用電源14から引き外し装置3を駆動させる電源を供給し、回路遮断器をトリップさせる。もちろん外部付属装置18の電源16は乾電池のような直流電源に限るものではなく、外部付属装置18内に交直流変換回路を備えさせ、外部から交流電圧を印加することで駆動させるような形態でも構わない。
5 第1の切り替えスイッチ、6 遮断器内部マイコン、
7 A/D変換部、8 第2の切り替えスイッチ、
9 制御信号出力回路、10 引き外し出力判定回路、
11 テスト信号出力回路、12 シュミットトリガ回路、
13 外部付属装置内部マイコン、14 回路遮断器動作用電源、
15 定電圧回路、16 直流電源、17 表示モジュール、
18 外部付属装置、19 外部付属装置検出回路、
20 操作部、61 閾値判定部、62 引き外し信号出力部、
100 回路遮断器。
Claims (7)
- 主回路の電流を検出する変流器の二次出力を整流する整流回路、この整流回路から出力された電流によりマイコンおよび遮断器の引き外し装置を駆動するための定電圧電源を生成する定電圧回路を備え、上記マイコンは、上記整流回路からの被測定信号が入力されるA/D変換部と、主回路に流れる過電流、瞬時電流、漏洩電流の閾値が設定され、上記A/D変換部への入力信号が上記いずれかの閾値を超えたか否かを判定する閾値判定部と、この閾値判定部が上記過電流、瞬時電流、漏洩電流のいずれかの閾値を超えたと判定した場合に上記引き外し装置へ引き外し信号を出力する引き外し信号出力部とを備えた電子式回路遮断器において、
上記変流器の二次出力を模擬した正弦波信号であって上記閾値判定部の設定閾値を超えたテスト信号を出力するテスト信号出力回路と、上記変流器と上記整流回路の間に直列接続され、上記マイコンからの制御信号によって開閉時間が制御され、且つ上記整流回路に入力される信号を、上記変流器より出力された信号と上記テスト信号出力回路より出力されたテスト信号とに周期的に切り替える第1の切り替えスイッチ、および、上記引き外し信号出力部の出力状態と上記第1の切り替えスイッチの接続状態に基づいて、回路遮断器の動作状態を判定する引き外し出力判定回路を備えたことを特徴とする電子式回路遮断器。 - 上記第1の切り替えスイッチの開閉時間を遮断器内部のマイコンの制御信号によって制御することにより、上記整流回路の出力が、上記変流器からの二次出力信号か、上記テスト信号出力回路からのテスト信号かを判別するようにしたことを特徴とする請求項1に記載の電子式回路遮断器。
- 上記引き外し信号出力部から引き外し装置までの間へ直列に、上記第1の切り替えスイッチと同様にマイコンからの制御信号によって開閉が制御される第2の切り替えスイッチを設け、上記引き外し信号出力部から出力される引き外し信号が、上記変流器より出力された信号に基づく場合は第2の切り替えスイッチを閉じ、引き外し装置を駆動させて遮断器をトリップさせ、上記テスト信号出力回路より出力されたテスト信号に基づく場合は第2の切り替えスイッチを開き引き外し装置を不動作とすることを特徴とする請求項2に記載の電子式回路遮断器。
- 上記第1の切り替えスイッチの前段にシュミットトリガ回路を接続し、上記第1の切り替えスイッチの前段の信号を、上記シュミットトリガ回路を介して上記マイコンの閾値判定部へ入力するようにしたことを特徴とする請求項3に記載の電子式回路遮断器。
- 上記引き外し信号出力部からの引き外し信号を上記引き外し出力判定回路にフィードバックすることで、遮断器自身が動作状態を判定する自己診断機能を有し、上記引き外し出力判定回路は、動作の異常が認められた場合には外部へ警報を出力するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載の電子式回路遮断器。
- 上記引き外し信号出力部からの引き外し信号を上記引き外し出力判定回路にフィードバックすることで、遮断器自身が動作状態を判定する自己診断機能を有し、上記引き外し出力判定回路は、動作の異常が認められた場合には上記引き出し装置への引き外し信号を出力し、自動トリップするようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載の電子式回路遮断器。
- 回路遮断器動作用電源、表示部、及び上記テスト信号出力回路の出力を制御するマイコンを備えた外部付属装置を回路遮断器に接続し、回路遮断器内部に上記外部付属装置の接続状態を検出する外部付属装置検出回路を設け、主回路に電流が流れている場合には、上記外部付属装置の表示部に回路遮断器の動作状態を表示し、主回路に電流が流れていない場合は、上記回路遮断器動作用電源から引き外し装置へ動作用の電源を供給すると共に、上記マイコンにより上記テスト信号出力回路を駆動してテスト信号を上記回路遮断器に入力し、遮断器のトリップ動作まで試験可能としたことを特徴とする請求項1~請求項4のいずれか1項に記載の電子式回路遮断器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167005230A KR101699674B1 (ko) | 2013-11-22 | 2013-11-22 | 전자식 회로 차단기 |
JP2015548936A JP6076499B2 (ja) | 2013-11-22 | 2013-11-22 | 電子式回路遮断器 |
PCT/JP2013/081531 WO2015075815A1 (ja) | 2013-11-22 | 2013-11-22 | 電子式回路遮断器 |
EP13897955.4A EP3073281B1 (en) | 2013-11-22 | 2013-11-22 | Electronic circuit breaker |
CN201380081095.8A CN105765393B (zh) | 2013-11-22 | 2013-11-22 | 电子式电路断路器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/081531 WO2015075815A1 (ja) | 2013-11-22 | 2013-11-22 | 電子式回路遮断器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015075815A1 true WO2015075815A1 (ja) | 2015-05-28 |
Family
ID=53179121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/081531 WO2015075815A1 (ja) | 2013-11-22 | 2013-11-22 | 電子式回路遮断器 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3073281B1 (ja) |
JP (1) | JP6076499B2 (ja) |
KR (1) | KR101699674B1 (ja) |
CN (1) | CN105765393B (ja) |
WO (1) | WO2015075815A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106486961A (zh) * | 2015-08-25 | 2017-03-08 | 三菱电机株式会社 | 漏电断路器 |
CN107272792A (zh) * | 2017-07-05 | 2017-10-20 | 温州大学 | 一种用于断路器测试的恒流源装置 |
WO2021044485A1 (ja) * | 2019-09-02 | 2021-03-11 | 東芝三菱電機産業システム株式会社 | インバータ装置の試験装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3062676B1 (fr) | 2017-02-07 | 2019-06-07 | Safran Aircraft Engines | Procede de regulation de la vitesse et de la puissance d'une helice de turbomachine |
EP3386052B1 (en) | 2017-04-04 | 2021-06-23 | ABB Schweiz AG | Electronic protection device |
CN107402324B (zh) * | 2017-09-08 | 2023-08-15 | 威胜能源技术股份有限公司 | 基于单电流互感器的供电采样电路、方法及其低压断路器 |
KR20200064988A (ko) * | 2017-09-28 | 2020-06-08 | 미쓰비시덴키 가부시키가이샤 | 전자식 차단기 |
KR102126314B1 (ko) * | 2018-03-08 | 2020-06-24 | 엘에스일렉트릭(주) | 누전 차단기 및 이에 착탈 가능한 아크 검출 장치 |
CN110007261B (zh) * | 2019-03-14 | 2024-03-19 | 国网新疆电力有限公司昌吉供电公司 | 电压互感器一次侧高压熔断器熔断判断装置及其判断方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09166634A (ja) | 1995-12-14 | 1997-06-24 | Mitsubishi Electric Corp | 電子式回路遮断器の引外し動作試験装置 |
JP2000261951A (ja) | 1999-03-05 | 2000-09-22 | Fuji Electric Co Ltd | 過電流保護継電器 |
JP2007220382A (ja) * | 2006-02-15 | 2007-08-30 | Fuji Electric Holdings Co Ltd | 漏電遮断器 |
JP2010277769A (ja) * | 2009-05-27 | 2010-12-09 | Mitsubishi Electric Corp | 漏電遮断器 |
JP2010284057A (ja) * | 2009-06-08 | 2010-12-16 | Mitsubishi Electric Corp | 保護継電装置の特性試験システム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02123912A (ja) * | 1988-10-31 | 1990-05-11 | Omron Tateisi Electron Co | 開閉器制御装置 |
JP2755697B2 (ja) * | 1989-06-27 | 1998-05-20 | 株式会社東芝 | 保護継電装置 |
JPH03135321A (ja) * | 1989-10-16 | 1991-06-10 | Toshiba Corp | 回路遮断器 |
JP3032317B2 (ja) * | 1991-04-11 | 2000-04-17 | 松下冷機株式会社 | 空気調和機の制御装置 |
FR2700076B1 (fr) * | 1992-12-28 | 1995-03-17 | Merlin Gerin | Déclencheur électronique comportant un dispositif de test. |
KR200186786Y1 (ko) * | 2000-02-08 | 2000-06-15 | 주식회사해정지점 | 의자용 결착 부재의 높낮이 조절 구조 |
US6421214B1 (en) * | 2000-03-03 | 2002-07-16 | Pass & Seymour, Inc. | Arc fault or ground fault detector with self-test feature |
EP1207622B1 (en) * | 2000-11-21 | 2013-02-27 | Omron Corporation | Semiconductor relay system |
JP2002345145A (ja) * | 2001-05-18 | 2002-11-29 | Mitsubishi Electric Corp | 回路遮断器 |
KR200268296Y1 (ko) * | 2001-08-10 | 2002-03-16 | 한홍석 | 휴대용 차단기시험기 |
JP4908245B2 (ja) * | 2007-01-26 | 2012-04-04 | 三菱電機株式会社 | 回路遮断器 |
JP5434835B2 (ja) * | 2010-01-13 | 2014-03-05 | 三菱電機株式会社 | 回路遮断器の電気操作装置 |
JP5791796B2 (ja) * | 2012-05-21 | 2015-10-07 | 三菱電機株式会社 | 保護継電装置の動作試験システム |
-
2013
- 2013-11-22 JP JP2015548936A patent/JP6076499B2/ja active Active
- 2013-11-22 EP EP13897955.4A patent/EP3073281B1/en active Active
- 2013-11-22 KR KR1020167005230A patent/KR101699674B1/ko active IP Right Grant
- 2013-11-22 WO PCT/JP2013/081531 patent/WO2015075815A1/ja active Application Filing
- 2013-11-22 CN CN201380081095.8A patent/CN105765393B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09166634A (ja) | 1995-12-14 | 1997-06-24 | Mitsubishi Electric Corp | 電子式回路遮断器の引外し動作試験装置 |
JP2000261951A (ja) | 1999-03-05 | 2000-09-22 | Fuji Electric Co Ltd | 過電流保護継電器 |
JP2007220382A (ja) * | 2006-02-15 | 2007-08-30 | Fuji Electric Holdings Co Ltd | 漏電遮断器 |
JP2010277769A (ja) * | 2009-05-27 | 2010-12-09 | Mitsubishi Electric Corp | 漏電遮断器 |
JP2010284057A (ja) * | 2009-06-08 | 2010-12-16 | Mitsubishi Electric Corp | 保護継電装置の特性試験システム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106486961A (zh) * | 2015-08-25 | 2017-03-08 | 三菱电机株式会社 | 漏电断路器 |
CN106486961B (zh) * | 2015-08-25 | 2018-10-16 | 三菱电机株式会社 | 漏电断路器 |
CN107272792A (zh) * | 2017-07-05 | 2017-10-20 | 温州大学 | 一种用于断路器测试的恒流源装置 |
CN107272792B (zh) * | 2017-07-05 | 2019-10-29 | 温州大学 | 一种用于断路器测试的恒流源装置 |
WO2021044485A1 (ja) * | 2019-09-02 | 2021-03-11 | 東芝三菱電機産業システム株式会社 | インバータ装置の試験装置 |
JPWO2021044485A1 (ja) * | 2019-09-02 | 2021-09-27 | 東芝三菱電機産業システム株式会社 | インバータ装置の試験装置 |
JP7006792B2 (ja) | 2019-09-02 | 2022-01-24 | 東芝三菱電機産業システム株式会社 | インバータ装置の試験装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015075815A1 (ja) | 2017-03-16 |
CN105765393B (zh) | 2018-09-11 |
KR20160039261A (ko) | 2016-04-08 |
EP3073281A1 (en) | 2016-09-28 |
JP6076499B2 (ja) | 2017-02-08 |
CN105765393A (zh) | 2016-07-13 |
EP3073281B1 (en) | 2020-05-13 |
KR101699674B1 (ko) | 2017-01-24 |
EP3073281A4 (en) | 2017-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6076499B2 (ja) | 電子式回路遮断器 | |
KR101153296B1 (ko) | 직류전원장치나 직류전원선로의 지락 및 누설전류 감시기능을 가지는 직류전원감시기 | |
CN106066450B (zh) | 具有电压监控的绝缘监控装置及基于其的方法 | |
KR101553766B1 (ko) | 누전 차단기 | |
WO2014027571A1 (ja) | デジタル保護リレー、デジタル保護リレー試験装置、およびデジタル保護リレー試験方法 | |
US20080112100A1 (en) | Digital electric leakage detecting and monitoring device | |
EP2608341A1 (en) | Grounding device | |
US20090085759A1 (en) | High voltage indication system | |
RU2553669C2 (ru) | Автоматический выключатель с индикацией отказов и вторичным источником питания | |
KR101336067B1 (ko) | 전력계통 이상 표시장치 | |
KR20080062841A (ko) | 기중차단기의 보호장치 | |
KR100827208B1 (ko) | 오작동 방지 기능을 갖는 누전차단기 | |
KR20130039475A (ko) | 변류기 2차 회로의 개방 상태를 진단하는 과전류계전기 및 그 방법 | |
JP6405807B2 (ja) | 太陽光発電システムの検査装置および太陽光発電システムの検査方法 | |
JP5082961B2 (ja) | 配電盤の交流電圧回路試験装置およびその方法 | |
KR101094434B1 (ko) | 전원 이상 감지 장치 | |
JP6509029B2 (ja) | 分電盤 | |
KR101234819B1 (ko) | 직류 누전차단기 | |
JP5858236B2 (ja) | 蓄電池システム | |
KR100955806B1 (ko) | 부하의 전원상태를 감지하면서 부하로 상용전원과 태양광발전전원을 선택접속하기 위한 자동전원절환장치 | |
KR20100000592U (ko) | 변압기의 누설전류 통합 감시장치 | |
JP3110462U (ja) | 直流電源自動検出装置 | |
KR101198281B1 (ko) | 누전 차단기의 노이즈에 의한 오류 방지용 누전 검출 장치 | |
JP2006345699A (ja) | 負荷回路保護装置 | |
JP2008277227A (ja) | 回路遮断器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13897955 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015548936 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013897955 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013897955 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167005230 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |