WO2015072099A1 - 真空断熱筐体 - Google Patents
真空断熱筐体 Download PDFInfo
- Publication number
- WO2015072099A1 WO2015072099A1 PCT/JP2014/005483 JP2014005483W WO2015072099A1 WO 2015072099 A1 WO2015072099 A1 WO 2015072099A1 JP 2014005483 W JP2014005483 W JP 2014005483W WO 2015072099 A1 WO2015072099 A1 WO 2015072099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum
- case
- inner box
- gas barrier
- box
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 198
- 230000004888 barrier function Effects 0.000 claims abstract description 144
- 239000000463 material Substances 0.000 claims description 58
- 239000011810 insulating material Substances 0.000 claims description 50
- 238000010438 heat treatment Methods 0.000 claims description 20
- 239000012790 adhesive layer Substances 0.000 claims description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000006260 foam Substances 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 2
- 238000003860 storage Methods 0.000 abstract description 38
- 239000012774 insulation material Substances 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 147
- 239000011347 resin Substances 0.000 description 91
- 229920005989 resin Polymers 0.000 description 91
- 238000004519 manufacturing process Methods 0.000 description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 48
- 238000001746 injection moulding Methods 0.000 description 35
- 238000007789 sealing Methods 0.000 description 26
- 238000000465 moulding Methods 0.000 description 20
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 17
- 239000010410 layer Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 229920000106 Liquid crystal polymer Polymers 0.000 description 13
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 13
- 239000012778 molding material Substances 0.000 description 13
- 239000005001 laminate film Substances 0.000 description 12
- 230000007774 longterm Effects 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000007666 vacuum forming Methods 0.000 description 12
- 230000001154 acute effect Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000007769 metal material Substances 0.000 description 8
- 238000004381 surface treatment Methods 0.000 description 8
- 238000003466 welding Methods 0.000 description 8
- 239000011162 core material Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 239000012212 insulator Substances 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000012611 container material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R13/00—Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
- B60R13/08—Insulating elements, e.g. for sound insulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/04—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0278—Polyurethane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/06—Open cell foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2509/00—Household appliances
- B32B2509/10—Refrigerators or refrigerating equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2220/00—Components of central heating installations excluding heat sources
- F24D2220/08—Storage tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2201/00—Insulation
- F25D2201/10—Insulation with respect to heat
- F25D2201/14—Insulation with respect to heat using subatmospheric pressure
Definitions
- the present invention relates to a vacuum insulation case used for a refrigerator or the like.
- a vacuum heat insulation material 101 having a structure in which a fiber mat 103 of a core material is covered with a laminate film 102 is used, and a technology for improving the heat insulation performance has been proposed.
- a vacuum heat insulating material means the thing of the structure which improved the heat insulation performance by making the inside of a container vacuum (for example, refer patent document 1).
- the vacuum heat insulating material 101 needs heat insulation of the vehicle interior space 107 such as the partition wall, ceiling surface, back surface, floor surface and side surfaces, etc., as well as the engine room and bonnet, etc. Plural pieces are placed (pasted) in the places where With such a configuration, a technique for improving the heat insulation performance has been proposed (see, for example, Patent Document 3).
- a bag-like member formed of a laminate film 102 or an aluminum film coated with a resin is used as an inner bag.
- a fiber mat 103 is used as a core material, and the fiber mat 103 is provided inside the laminate film 102.
- the inside of the laminate film 102 in which the fiber mat 103 is installed is evacuated and then sealed to obtain a vacuum heat insulating material 101.
- the form of the conventional vacuum heat insulating material 101 is basically a flat plate shape as used in the refrigerator main body 104.
- a flat plate-shaped vacuum heat insulating material 101 is used as a heat insulating material (not shown) of a hot water storage tank of a hot water storage type water heater.
- the flat-plate-shaped vacuum heat insulating material 101 is used also as the heat insulating material arrange
- the core material inside the vacuum heat insulating material 101 is provided with a thin portion and a thick portion to make it easy to bend the flat plate-shaped vacuum heat insulating material 101, whereby it is disposed on an uneven surface or the like.
- the thin portion is provided in the core material contributing to the heat insulating performance of the vacuum heat insulating material 101, the heat insulating performance is lowered. Further, it can not be used for a surface having an acute shape which can not withstand the bending stress of the vacuum heat insulating material 101 or the like. Furthermore, it is difficult to form a vacuum insulation material 101 having a three-dimensional shape and a complicated form such as a through hole.
- a gas barrier film is used for the conventional vacuum heat insulating material 101 which is used for the car body 106 of a car. Since the gas barrier film is thin, easily damaged and easily broken, the gas barrier film is easily damaged during the assembly work of the product or in the process of manufacturing the vacuum heat insulating material. When the gas barrier film is damaged, the degree of vacuum inside the vacuum heat insulating material 101 can not be maintained, and it becomes difficult to ensure the quality of the vacuum heat insulating material 101 and the long-term reliability.
- the conventional vacuum heat insulating material 101 is used in a structure in which the vacuum heat insulating material 101 is housed separately and separately from the housing in a housing constituting a refrigerator or a car. It is done. For this reason, it is difficult for the conventional vacuum heat insulating material 101 to use the vacuum heat insulating material 101 itself as a housing member which forms an external appearance.
- the present invention can form a complicated form such as a three-dimensional shape, an acute angled bending shape, a partial unevenness or a through hole, and use the vacuum heat insulating material itself as an inner casing member or an outer casing member
- the present invention comprises an outer case forming an appearance, an inner case forming an interior, an outer case forming an appearance, and a heat insulating material disposed inside the inner case forming an interior, forming an appearance
- the inner case forming the outer case and the inner case is a vacuum thermal insulation housing of a structure in which the outer case forming the outer appearance and the inner case forming the inner case are vacuum sealed and joined together.
- FIG. 1 is a perspective view of a vacuum insulation case according to a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing according to the first embodiment of the present invention.
- FIG. 3 is a cross-sectional view showing an example of sealing of a vacuum thermal insulation housing according to Embodiment 2 of the present invention.
- FIG. 4 is a cross-sectional view showing an example of sealing of a vacuum thermal insulation housing according to Embodiment 2 of the present invention.
- FIG. 5 is a cross-sectional view showing an example of sealing of a vacuum thermal insulation housing according to Embodiment 2 of the present invention.
- FIG. 6 is a cross-sectional view showing an example of sealing of a vacuum thermal insulation housing according to Embodiment 3 of the present invention.
- FIG. 7 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the third embodiment of the present invention.
- FIG. 8 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the third embodiment of the present invention.
- FIG. 9 is a cross-sectional view showing an example of sealing of a vacuum thermal insulation housing according to a fourth embodiment of the present invention.
- FIG. 10 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the fourth embodiment of the present invention.
- FIG. 11 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the fourth embodiment of the present invention.
- FIG. 12 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the fifth embodiment of the present invention.
- FIG. 13 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the fifth embodiment of the present invention.
- FIG. 14 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the fifth embodiment of the present invention.
- FIG. 15 is a cross-sectional view showing an example of sealing of a vacuum thermal insulation housing in the sixth embodiment of the present invention.
- FIG. 16 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the seventh embodiment of the present invention.
- FIG. 17 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the eighth embodiment of the present invention.
- FIG. 12 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing in the fifth embodiment of the present invention.
- FIG. 14 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing
- FIG. 18 is a perspective view of a refrigerator provided with a vacuum insulation housing according to a ninth embodiment of the present invention.
- FIG. 19 is a perspective view seen from the front of the ice making door of a refrigerator provided with a vacuum insulation housing according to a ninth embodiment of the present invention.
- FIG. 20 is a perspective view seen from the rear of the ice making door of the refrigerator provided with the vacuum insulation housing according to the ninth embodiment of the present invention.
- FIG. 21 is a component development view of an ice-making door of a refrigerator provided with a vacuum heat-insulation housing according to a ninth embodiment of the present invention.
- FIG. 22A is a cross-sectional view of a fixing upper jig used for manufacturing an ice making door according to a ninth embodiment of the present invention.
- FIG. 22B is a cross-sectional view of the lower fixed jig used for manufacturing the ice-making door according to the ninth embodiment of the present invention.
- FIG. 23A is a cross-sectional view of a fixing upper jig used for manufacturing an ice making door according to a ninth embodiment of the present invention.
- FIG. 23B is a cross-sectional view of the lower fixed jig used for manufacturing the ice-making door according to the ninth embodiment of the present invention.
- FIG. 24A is a cross-sectional view of a fixing upper jig used for manufacturing an ice making door according to a ninth embodiment of the present invention.
- FIG. 24B is a cross-sectional view of the lower fixed jig used for manufacturing the ice-making door according to the ninth embodiment of the present invention.
- FIG. 25 is a cross-sectional view of a fixing jig showing a method of manufacturing an ice-making door according to a ninth embodiment of the present invention.
- FIG. 26 is a sectional view of a fixing jig showing a method of manufacturing an ice making door according to a ninth embodiment of the present invention.
- FIG. 27 is a sectional view of a fixing jig showing a method of manufacturing an ice making door according to a ninth embodiment of the present invention.
- FIG. 25 is a cross-sectional view of the lower fixed jig used for manufacturing the ice-making door according to the ninth embodiment of the present invention.
- FIG. 25 is a cross-sectional view of a fixing jig showing a method of manufacturing an ice-making door according to a ninth embodiment of the present invention.
- FIG. 26
- FIG. 28 is a cross-sectional view of an automobile using a vacuum thermal insulation housing according to a tenth embodiment of the present invention as viewed from the side.
- FIG. 29 is a cross-sectional view of an automobile using a vacuum thermal insulation housing according to a tenth embodiment of the present invention as viewed from the front.
- FIG. 30 is a component development view of a vacuum heat insulation housing of the hot water storage tank of the heat pump water heater according to the eleventh embodiment of the present invention.
- FIG. 31 is a cross-sectional view of the vacuum insulation housing of the hot water storage tank of the heat pump water heater according to the eleventh embodiment of the present invention as viewed from above.
- FIG. 32 is a cross-sectional view of a portion of a vacuum heat-insulated housing of the hot water storage tank of the heat pump water heater according to the eleventh embodiment of the present invention.
- FIG. 33 is a cross-sectional view of a conventional vacuum heat insulating material.
- FIG. 34 is a schematic side view of a conventional refrigerator using a vacuum heat insulating material.
- FIG. 35 is a side cross-sectional view of a conventional automobile using a vacuum heat insulating material.
- FIG. 1 is a perspective view of a vacuum heat insulation casing 1 according to a first embodiment
- FIG. 2 is a cross sectional view showing a sealing example of the vacuum heat insulation casing 1 according to the first embodiment.
- the vacuum insulation case 1 is provided in an outer case 2 forming an appearance, an inner case 3 forming an interior, an outer case 2 forming an appearance, and an inner case 3 forming an interior And a thermal insulation 4 arranged and formed of a porous structure.
- the outer case 2 and the inner case 3 are formed of gas barrier members.
- the inside of the outer case 2 and the inner case 3 in which the heat insulating material 4 is disposed is vacuum sealed, and the outer case flat portion 2a and the inner case flat portion 3a are pressurized, and the outer case flat portion 2a and the inner case flat portion 3a is joined by local heating. In this way, the vacuum insulation housing 1 is obtained.
- the outer case 2 forming the external appearance and the inner case 3 forming the interior are respectively formed by gas barrier members, and the heat insulating material 4 is provided inside the outer case 2 and the inner case 3.
- the form in which is disposed is a vacuum sealed and bonded structure.
- the vacuum insulation case 1 is not a configuration obtained by reducing the pressure in a form in which the entire surface of the core material is covered with a soft material such as a gas barrier film like the conventional vacuum heat insulation material 101, but forms an appearance Since the outer case 2 and the inner case 3 for forming the interior are respectively formed by the gas barrier members, the vacuum insulation case 1 is obtained which is resistant to scratches, dents and the like in working processes and physical distribution in a factory.
- the outer case 2 and the inner case 3 formed of gas barrier members have a three-dimensional shape, an acute bending shape, a complicated shape such as partial unevenness or a through hole.
- the heat insulating material 4 may be disposed inside the outer case 2 and the inner case 3 having such a structure, and the inner case of the outer case 2 and the inner case 3 may be vacuum sealed. With such a configuration, it is possible to obtain a complicated form of the vacuum thermal insulation housing 1 having high vacuum thermal insulation performance and long-term reliability without impairing the degree of vacuum of the vacuum thermal insulation housing 1.
- the heat insulating material 4 by forming the heat insulating material 4 with a porous structure such as open-celled urethane foam or glass wool, it is easy to reliably evacuate the entire inner volume of the vacuum heat insulation housing 1 to a predetermined set degree of vacuum. Become. With such a configuration, it is possible to realize the desired vacuum heat insulation performance and to improve the rigidity of the housing.
- the vacuum heat insulating casing 1 of the present embodiment vacuum sealing of the inside of the outer case 2 and the inner case 3 is carried out even if the materials used for the outer case 2 and the inner case 3 are the same or different materials.
- the outer case 2 and the inner case 3 can be joined together.
- the outer box 2 and the inner box 3 are made of a material having no gas permeation such as a metal plate, or a resin material etc. having a good gas barrier property and a low oxygen permeability, a combination of various materials.
- casing 1 comprised by the appearance member and the interior member can be obtained.
- the vacuum degree of the vacuum insulation case 1 is slightly deteriorated with age, for example, when a resin material with a low gas permeability is used as the material of the outer case 2 and the inner case 3 and the gas permeability is low.
- the heat insulating material 4 and the air adsorbent (not shown) inside the vacuum heat insulation housing 1, the air which has permeated from the outside of the vacuum heat insulation housing 1 can be adsorbed to the air adsorbent. With such a configuration, the degree of vacuum of the vacuum heat insulation casing 1 is maintained, so that heat insulation performance having long-term reliability can be realized.
- a resin material having a good gas barrier property and a low air permeability for example, a molding material of ethylene-vinyl alcohol copolymer or liquid crystal polymer is preferable. By using these materials, it is possible to cope with mass production, so it is possible to obtain the appearance parts and interior parts of the vacuum insulation housing 1 at low cost.
- the same material is used for the material of the outer box flat portion 2a of the outer box 2 and the inner box flat portion 3a of the inner box 3.
- the materials having the same melting point are joined, which facilitates the joining.
- the peel strength can also be increased by the material used for the parts to be joined. With such a configuration, the degree of vacuum inside the vacuum heat insulation housing 1 can be maintained for a long time.
- the vacuum heat insulating casing 1 of the present embodiment includes the outer case 2 forming the appearance, the inner case 3 forming the interior, and the heat insulating material disposed inside the outer case 2 and the inner case 3. 4 and the outer case 2 and the inner case 3 are constituted by gas barrier members, and the insides of the outer case 2 and the inner case 3 are vacuum sealed so that the outer case 2 and the inner case 3 are joined.
- the vacuum insulation case 1 of a rigid case that can be used as it is as an appearance part and an interior part can be obtained.
- the vacuum insulation case 1 having high vacuum insulation performance and long-term reliability can be obtained, which is resistant to scratches and dents in working processes in the factory and physical distribution.
- FIGS. 3 to 5 are cross-sectional views showing a sealing example of the vacuum thermal insulation housing 1 of the second embodiment. The description of the same configuration as that of the first embodiment is omitted.
- FIG. 3 shows a configuration in which the inner box gas barrier member 3 c is disposed on the inner surface of the inner box 3.
- FIG. 4 shows a configuration in which the inner case gas barrier member 3 c is disposed on the outer surface of the inner case 3.
- FIG. 5 shows a configuration in which the inner box 3 is constituted by the inner box resin portion 3b of two layers, and the inner box gas barrier member 3c is disposed between the layers.
- An adhesive layer is formed on the joint surface of at least one of the outer box flat portion 2a and the inner box flat portion 3a.
- the outer case 2 of the vacuum heat insulation case 1 of FIG. 3 is made of, for example, a material such as a metal plate and a glass plate which is not permeable to gas.
- the inner box gas barrier member 3c is insert injection-molded to the inner box resin portion 3b, and the inner box resin portion 3b and the inner box gas barrier member 3c are formed in a composite.
- An adhesive layer (not shown) is formed on the joint surface of at least one of the outer box flat portion 2a and the inner box flat portion 3a, and the outer box flat portion 2a and the inner box flat portion 3a are locally heated.
- the inner box gas barrier member 3c of FIG. 3 for example, a molding material for extrusion such as ethylene-vinyl alcohol co-heavy rigid body or liquid crystal polymer is used.
- the inner box gas barrier member 3c is primarily processed into a sheet shape or a film shape, and is secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded in the inner box resin portion 3b by forming the inner box 3 by tertiary injection molding of the inner box resin portion 3b.
- the vacuum thermal insulation housing 1 thus formed can realize the mass production and the production with reduced investment in the molding die in the manufacture of a large-sized member constituting a refrigerator, an automobile or the like.
- a resin laminate film material including a metal foil layer may be used for the inner box gas barrier member 3 c of FIG. 3.
- the inner box gas barrier member 3c is primarily processed into a film shape, and then secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded in the inner box resin portion 3b by forming the inner box 3 by tertiary injection molding of the inner box resin portion 3b.
- the vacuum insulation case 1 thus formed can realize the mass production and the production with reduced material costs and investment in molding dies in the manufacture of large-sized members constituting a refrigerator, an automobile or the like.
- the inner box gas barrier member 3c of FIG. 3 a molding material for extrusion such as ethylene-vinyl alcohol co-rigid body or liquid crystal polymer, a film-shaped material, or a resin laminate film material including a metal layer may be used. . Since the inner box gas barrier member 3c is disposed on the inner surface of the inner box 3, the inner box gas barrier member 3c is not easily affected by scratches during manufacturing and transportation, and high vacuum insulation performance and long-term reliability can be obtained.
- the injection molding material used when forming the inner box gas barrier member 3c of FIG. 3 for example, ethylene-vinyl alcohol co-heavy rigid body or liquid crystal polymer may be used.
- the inner box gas barrier member 3c is insert injection molded in the inner box resin portion 3b, whereby the inner box 3 is formed.
- the inner box 3 and the inner box gas barrier member 3c may be simultaneously formed by injection molding in a two-color injection molding machine.
- the molding cycle can be shortened, and mass production can be realized.
- casing 1 of this Embodiment is preferable to manufacture of goods, such as a refrigerator or a motor vehicle, etc. which were comprised by several doors, and can implement mass production.
- the inner box gas barrier member 3c of FIGS. 3 and 4 may be formed by surface treatment such as plating treatment with a metal material or deposition treatment with a metal material.
- surface treatment can be applied to any of the inner and outer surfaces of the inner box resin portion 3b. According to the present embodiment, it is possible to obtain the vacuum adiabatic casing 1 having a very complicated shape, such as a shape having a large unevenness, an acute angle shape, or a three-dimensional shape, as the shape of the inner box 3.
- an ethylene-vinyl alcohol copolymer is used for the inner box gas barrier member 3c of FIG.
- a laminated structure of the inner box gas barrier member 3c and the inner box resin portion 3b is formed.
- secondary processing by vacuum forming or pressure forming is performed after the inner case gas barrier member 3c is primarily processed into a sheet shape.
- the inner box 3 is formed by tertiary processing by external shape cutting.
- Such a configuration can reduce the process of forming the inner box 3.
- Third Embodiment 6 to 8 are cross-sectional views showing a sealing example of the vacuum thermal insulation housing 1 of the third embodiment. Descriptions of configurations similar to those in Embodiment 1 and Embodiment 2 will be omitted.
- outer box resin portion 2b is provided on outer box flat portion 2a constituting the outer periphery of outer box 2, and outer box flat portion 2a and outer box resin portion 2b are joined to inner box flat portion 3a. Be done.
- an adhesive layer may be formed on the joint surface of at least one of outer case flat portion 2a and inner case flat portion 3a.
- the outer box 2 of the vacuum heat insulating casing 1 is made of a material such as a metal plate and a glass plate which does not allow gas to pass therethrough.
- an outer case resin portion 2b is formed on the outer case 2 by insert injection molding.
- the inner box gas barrier member 3c is formed on the inner box resin portion 3b by insert injection molding to obtain the inner box 3.
- the same material is used for the outer box flat portion 2a, the inner box flat portion 3a and the outer box resin portion 2b, and they are coupled by local heating. As described above, when the same material is used for the parts to be joined, since the melting points of the parts to be joined are the same, the bondability is good, and the sealability and the peel strength of the joint parts are improved.
- Such a configuration provides the vacuum insulation housing 1 having long-term reliability and high thermal insulation performance.
- the inner box gas barrier member 3c of FIG. 6 for example, a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer is used.
- the inner box gas barrier member 3c is primarily processed into a sheet shape or a film shape, and is secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded in the inner box resin portion 3b by forming the inner box 3 by tertiary injection molding of the inner box resin portion 3b.
- a resin laminate film material including a metal layer may be used for the inner box gas barrier member 3c of FIG.
- the inner box gas barrier member 3c is primarily processed into a film shape, and then secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded in the inner box resin portion 3b by forming the inner box 3 by tertiary injection molding of the inner box resin portion 3b.
- the inner box gas barrier member 3c of FIG. 6 for example, a molding material for an extruded sheet such as ethylene-vinyl alcohol copolymer or liquid crystal polymer, a film-shaped material, or a resin laminate film material including a metal layer is used. . Since the inner box gas barrier member 3c is disposed on the inner surface of the inner box 3, the inner box gas barrier member 3c is not easily affected by scratches during manufacturing and transportation. Such a configuration provides a vacuum insulation housing 1 having high vacuum insulation performance and long-term reliability.
- the inner box gas barrier member 3c of FIG. 6 for example, an ethylene-vinyl alcohol rigid rigid body or a liquid crystal polymer is used.
- the inner box gas barrier member 3c is insert injection molded in the inner box resin portion 3b, whereby the inner box 3 is formed.
- the inner box 3 and the inner box gas barrier member 3c are simultaneously formed by injection molding in a two-color injection molding machine. With such a configuration, the molding cycle can be shortened, and mass production can be realized.
- the inner box gas barrier member 3c in FIGS. 6 and 7 may be formed by surface treatment such as plating treatment with a metal material or deposition treatment with a metal material.
- surface treatment can be performed on any of the inner and outer surfaces of the inner box resin portion 3b.
- the shape of the inner case 3 can form the vacuum heat insulation housing
- an ethylene-vinyl alcohol copolymer is used as the inner box gas barrier member 3c of FIG.
- a laminated structure of the inner box gas barrier member 3c and the inner box resin portion 3b is formed.
- the inner case gas barrier member 3c is primarily processed into a sheet shape and then secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box 3 is formed by tertiary processing by external shape cutting.
- Such a configuration can reduce the process of forming the inner box 3.
- Embodiment 4 9 to 11 are cross-sectional views showing an example of sealing of the vacuum thermal insulation housing 1 of the fourth embodiment. Descriptions of configurations similar to those in Embodiment 2 and Embodiment 3 are omitted.
- the outer case 2 is composed of a face plate 2e such as a decorative panel and an outer case resin portion 2b constituting a back surface, and an outer case gas barrier member 2c is provided in the outer case resin portion 2b. There is. On the outer periphery of the outer case 2 and the inner case 3, the outer case resin portion 2b and the inner case flat portion 3a are joined.
- an outer case gas barrier member 2c is formed in the outer case resin portion 2b of the outer case 2 by insert injection molding. Further, the inner box gas barrier member 3c is formed on the inner box resin portion 3b by insert injection molding, and the inner box 3 is obtained.
- the same material is used for the outer box flat portion 2a and the inner box flat portion 3a, and the outer box flat portion 2a and the inner box flat portion 3a are sealed by vacuuming the inside of the outer box 2 and the inner box 3 It is then combined by local heating. Thereafter, the surface plate 2e of the outer box 2 is joined to the outer box resin portion 2b to obtain the vacuum thermal insulation housing 1.
- the surface plate 2e of the outer box 2 forming the appearance of the product is formed in the final step of the manufacturing process, scratches during manufacturing can be prevented, and the yield can be improved. Process defects in mass production can be reduced.
- a gas-permeable material for the surface plate 2e it is also possible to use a gas-permeable material for the surface plate 2e. That is, at the time of evacuation, it is possible to form the vacuum thermal insulation casing 1 made of a gas-permeable material without covering the core material with a covering material such as a gas barrier film.
- the vacuum heat insulating casing 1 can be formed without forming the outer case gas barrier member 2c in the outer case resin portion 2b by insert molding.
- the inner box gas barrier member 3c of FIG. 9 for example, a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer is used.
- the inner box gas barrier member 3c is primarily processed into a sheet shape or a film shape, and is secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded into the inner box resin portion 3b by the third box processing by outer shape cutting, whereby the inner box 3 is formed.
- a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer is used.
- the inner box gas barrier member 3c is primarily processed into a sheet shape or a film shape, and is secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded into the inner box resin portion 3b by the third box processing by outer shape cutting, whereby the inner box 3 is formed.
- Such a configuration makes it possible to manufacture a large-
- the inner box gas barrier member 3c of FIG. 9 for example, a resin laminate film material including a metal layer is used.
- the inner case gas barrier member 3c is primarily processed into a film shape, it is secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded into the inner box resin portion 3b by the third box processing by outer shape cutting, whereby the inner box 3 is formed.
- Such a configuration makes it possible to manufacture a large-sized member such as a refrigerator or an automobile while making it possible to reduce the material cost and the investment in the molding die while realizing mass production.
- the inner box gas barrier member 3c of FIG. 9 for example, a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer, a film-shaped material, or a resin laminate film material including a metal layer may be used. . Since the inner box gas barrier member 3c is disposed on the inner surface of the inner box 3, the inner box gas barrier member 3c is not easily affected by scratches during manufacturing and transportation. With such a configuration, the vacuum insulation case 1 having the vacuum insulation performance and the long-term reliability can be obtained.
- a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer, a film-shaped material, or a resin laminate film material including a metal layer may be used. . Since the inner box gas barrier member 3c is disposed on the inner surface of the inner box 3, the inner box gas barrier member 3c is not easily affected by scratches during manufacturing and transportation. With such a configuration, the vacuum insulation case 1 having the vacuum insulation performance and the long-term reliability can be obtained.
- the inner box 3 is formed by subjecting the inner box gas barrier member 3c formed by injection molding in advance to insert injection molding on the inner box resin portion 3b.
- the inner box 3 and the inner box gas barrier member 3c are simultaneously formed by injection molding in a two-color injection molding machine.
- mass production can be realized, which is preferable for manufacturing a product such as a refrigerator or a car, which is composed of several doors.
- the inner box gas barrier member 3c in FIGS. 9 and 10 may be formed, for example, by surface treatment such as plating treatment with a metal material or deposition treatment with a metal material.
- surface treatment can be applied to any of the inner and outer surfaces, so the inner box 3 has a shape with large irregularities, an acute angle or It is possible to form the vacuum insulation housing 1 having a very complicated shape such as a three-dimensional shape.
- the inner box gas barrier member 3c of FIG. 11 for example, an ethylene-vinyl alcohol copolymer is used.
- FIG. 11 a laminated structure of the inner box gas barrier member 3c and the inner box resin portion 3b is formed.
- the inner case gas barrier member 3c is primarily processed into a sheet shape and then secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box 3 is formed by tertiary processing by external shape cutting.
- Such a configuration can reduce the process of forming the inner box 3.
- mass production can be implement
- Fifth Embodiment 12 to 14 are cross-sectional views showing a sealing example of the vacuum thermal insulation housing 1 of the fifth embodiment. The description of the same configuration as that of the fourth embodiment is omitted.
- the outer case 2 is composed of a face plate 2e such as a decorative panel and an outer case resin portion 2b, the outer case resin portion 2b constituting the back surface is composed of two layers, and outer case gas barrier member between layers. 2c is provided.
- the outer box resin portion 2 b and the inner box flat portion 3 a are joined at the outer periphery of the outer box 2 and the inner box 3.
- an outer case gas barrier member 2 c is formed as a laminated sheet in the outer case resin portion 2 b of the outer case 2. Further, the inner box gas barrier member 3c is formed on the inner box resin portion 3b by insert injection molding, and the inner box 3 is obtained. The same material is used for the outer box flat portion 2a and the inner box flat portion 3a, and the outer box flat portion 2a and the inner box flat portion 3a are sealed by vacuuming the inside of the outer box 2 and the inner box 3 After that, they are combined by local heating. Thereafter, the surface plate 2e of the outer box 2 is joined to the outer box resin portion 2b to obtain the vacuum thermal insulation housing 1. According to the present embodiment, since the surface plate 2e of the outer box 2 forming the appearance of the product is formed in the final step of the manufacturing process, it is possible to prevent scratches during manufacturing and to improve the yield. And process defects during mass production can be reduced.
- the inner box gas barrier member 3c of FIG. 12 for example, a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer is used.
- the inner box gas barrier member 3c is primarily processed into a sheet shape or a film shape, and is secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded into the inner box resin portion 3b by the third box processing by outer shape cutting, whereby the inner box 3 is formed.
- a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer is used.
- the inner box gas barrier member 3c is primarily processed into a sheet shape or a film shape, and is secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box gas barrier member 3c is insert-molded into the inner box resin portion 3b by the third box processing by outer shape cutting, whereby the inner box 3 is formed.
- Such a configuration makes it possible to manufacture a large-
- a resin laminate film material including a metal layer may be used for the inner case gas barrier member 3c of FIG.
- the inner case gas barrier member 3c is primarily processed into a film shape, and then vacuum-formed or pressure-formed and secondary-processed. Thereafter, the inner box gas barrier member 3c is formed into the inner box resin portion 3b by insert injection molding, thereby forming the inner box 3.
- Such a configuration makes it possible to manufacture a large-sized member such as a refrigerator or an automobile while making it possible to reduce the material cost and the investment in the molding die while realizing mass production.
- the inner box gas barrier member 3c of FIG. 12 for example, a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer, a film-shaped material, or a resin laminate film material including a metal layer is used.
- a molding material for extrusion such as ethylene-vinyl alcohol copolymer or liquid crystal polymer, a film-shaped material, or a resin laminate film material including a metal layer.
- the inner box gas barrier member 3c is disposed on the inner surface of the inner box 3, the inner box gas barrier member 3c is not easily affected by scratches during manufacturing and transportation.
- Such a configuration makes it possible to obtain a vacuum insulation housing 1 having high vacuum insulation performance and long-term reliability.
- the inner box 3 is formed by subjecting the inner box gas barrier member 3c formed beforehand by injection molding to insert injection molding on the inner box resin portion 3b.
- the inner box 3 and the inner box gas barrier member 3c are simultaneously formed by injection molding in a two-color injection molding machine.
- Such a configuration makes it possible to shorten the molding cycle and enables mass production of products. It is preferable for manufacturing of products such as a refrigerator or a car, etc. that are configured with several doors, and mass production can be realized.
- the inner box gas barrier member 3c of FIGS. 12 and 13 may be formed by surface treatment such as plating treatment with a metal material or deposition treatment with a metal material, for example.
- surface treatment can be applied to any of the inner and outer surfaces of the inner box resin portion 3b.
- the shape of the inner case 3 can obtain the vacuum heat insulation housing
- an ethylene-vinyl alcohol copolymer is used for the inner box gas barrier member 3c in FIG.
- a laminated structure of the inner box gas barrier member 3c and the inner box resin portion 3b is formed.
- the inner case gas barrier member 3c is primarily processed into a sheet shape and then secondarily processed by vacuum forming or pressure forming. Thereafter, the inner box 3 is formed by tertiary processing by external shape cutting. Such a configuration can reduce the process of forming the inner box 3.
- FIG. 15 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing 1 of the sixth embodiment. The description of the same configuration as that of the fourth embodiment is omitted.
- the outer case 2 is composed of a face plate 2e such as a decorative panel and an outer case resin portion 2b constituting a back surface, and the outer case resin portion 2b is provided with an outer case gas barrier member 2c.
- an outer case gas barrier flat portion 2d continuous with the outer case gas barrier member 2c is provided on the outer periphery of the outer case 2.
- an inner box gas barrier flat portion 3d continuous with the inner box gas barrier member 3c is also provided in the inner box flat portion 3a.
- the outer box gas barrier flat portion 2d and the inner box gas barrier flat portion 3d are opposed and in close contact with each other, and the outer box resin portion 2b and the inner box flat portion 3a are joined at the outer periphery of the outer box 2 and the inner box 3.
- an outer case gas barrier member 2 c is formed by insert injection molding on the outer case resin portion 2 b of the outer case 2.
- the inner box gas barrier member 3 c is insert injection molded in the inner box resin portion 3 b to form the inner box 3.
- the same material is used for the outer box flat portion 2a and the inner box flat portion 3a, and after the insides of the outer box 2 and the inner box 3 are evacuated and sealed, they are joined by local heating.
- the outer case gas barrier flat portion 2d and the inner case gas barrier flat portion 3d are sealed. Thereafter, the surface plate 2 e of the outer case 2 is joined to obtain the vacuum heat insulating housing 1.
- the vacuum heat insulating casing 1 is formed in a form in which the outer case 2 and the inner case 3 formed by the gas barrier members are independent, so that the gas permeability can be reduced. Moreover, the vacuum performance of the vacuum heat insulation housing
- casing 1 can be improved, and the heat insulation characteristic can also be improved.
- outer box gas barrier flat portion 2d and the inner box gas barrier flat portion 3d are not only in close physical contact with each other, but also at the same time as the outer box resin portion 2b and the inner box flat portion 3a are joined. It may be joined and sealed.
- the outer case gas barrier member 2c may be configured to heat the outer case gas barrier member 2c and the inner case flat portion 3a to vacuum seal after the heat insulating material 4 is inserted into the inner case 3.
- FIG. 16 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing 1 of the seventh embodiment. The description of the same configuration as that of the sixth embodiment will be omitted.
- the outer box 2 is constituted of an outer box resin portion 2b subjected to three-dimensional decorative film molding instead of the surface plate 2e of the sixth embodiment, and the outer box resin portion 2b is an outer box A gas barrier member 2c is provided.
- an outer case gas barrier flat portion 2d continuous with the outer case gas barrier member 2c is provided.
- an inner box gas barrier flat portion 3d continuous with the inner box gas barrier member 3c is also provided in the inner box flat portion 3a.
- the outer box gas barrier flat portion 2d and the inner box gas barrier flat portion 3d face each other and are in close contact, and the outer box resin portion 2b and the inner box flat portion 3a are joined at the outer periphery of the outer box 2 and the inner box 3.
- an outer case gas barrier member 2c is formed in the outer case resin portion 2b of the outer case 2 by insert injection molding. Further, the inner box gas barrier member 3c is formed on the inner box resin portion 3b by insert injection molding, and the inner box 3 is obtained.
- the same material is used for the outer box flat portion 2a and the inner box flat portion 3a.
- the outer case flat portion 2a and the inner case flat portion 3a are sealed and joined by local heating after the insides of the outer case 2 and the inner case 3 are evacuated.
- the appearance of the outer box 2 can be formed by three-dimensional decorative film forming.
- the surface of the outer box 2 that forms the appearance of the product is formed in the final step of the manufacturing process, scratches during manufacturing can be prevented.
- the outer box gas barrier flat portion 2d and the inner box gas barrier flat portion 3d are not only in close physical contact with each other, but are simultaneously joined by heat welding when the outer box resin portion 2b and the inner box flat portion 3a are joined. It may be sealed.
- outer case gas barrier member 2 c heats the outer case gas barrier member 2 c and the inner case flat portion 3 a after the heat insulating material 4 is inserted into the inner case 3, and evacuates the inside of the outer case 2 and the inner case 3. It may be sealed.
- FIG. 17 is a cross-sectional view showing an example of sealing of the vacuum thermal insulation housing 1 of the eighth embodiment. The description of the same configuration as that of the fifth embodiment will be omitted.
- the surface plate 2e of the outer case 2 using the metal plate and the glass plate etc. in FIG. 14 is not provided on the surface of the outer case 2 in FIG.
- the surface of the box 2 is a point comprised only by the outer box resin part 2b.
- the outer box resin portion 2b is formed of two layers, and the outer box gas barrier member 2c is provided between the layers.
- the inner box resin portion 3b is formed of two layers, and the inner box gas barrier member 3c is provided between the layers.
- the outer box resin portion 2 b and the inner box flat portion 3 a are joined at the outer periphery of the outer box 2 and the inner box 3.
- an outer case gas barrier member 2c is formed on the outer case resin portion 2b of the outer case 2 by lamination sheet molding. Further, the inner box gas barrier member 3c is formed on the inner box resin portion 3b by lamination sheet molding, and the inner box 3 is obtained.
- the outer case gas barrier member 2c and the inner case gas barrier member 3c are primarily processed into a sheet shape, and then secondarily processed by vacuum forming or pressure forming. Thereafter, the outer case 2 and the inner case 3 are obtained by tertiary processing by outer shape removal processing. Such a configuration can reduce the steps of forming the outer case 2 and the inner case 3.
- the same material is used for the outer box flat portion 2a and the inner box flat portion 3a, and the outer box flat portion 2a and the inner box flat portion 3a are the outer box 2 and the inner box After the inside of 3 is evacuated and sealed, it is combined by local heating.
- the degree of vacuum of the vacuum heat insulation casing 1 can be improved, and the heat insulation characteristics can also be improved. For this reason, vacuum insulation case 1 of composition suitable as resin appearance members, such as interior door parts of a car, is obtained.
- FIG. 18 is a perspective view of the refrigerator 5 according to the ninth embodiment
- FIG. 19 is a perspective view of the ice making door 6 of the refrigerator as viewed from the front
- FIG. 20 is a perspective view of the ice making door 6 of the refrigerator as viewed from the rear
- FIG. 21 is an exploded view of parts of the ice making door 6.
- FIGS. 22A to 27 are cross-sectional views showing a fixing jig 50 (FIGS. 25 to 27) used for manufacturing the ice making door 6 according to the ninth embodiment.
- the ice making door 6 of the refrigerator 5 is a frame for fixing the ice making door outer case 7, the ice making door inner case 8, the gasket 10, the frame 11, the ice making door inner case 8 and the frame 11. It consists of a set screw 12. Ice door insulation 9 is inserted into the inside of the ice door outer box 7 and the ice door inner box 8, the inside of the ice door outer box 7 and the ice door inner box 8 is vacuum sealed, and the ice door outer box 7 and the ice door The box 8 is joined to form the vacuum insulation case 1.
- the fixing jig 50 which is the main part of the manufacturing facility of the ice making door 6 is a fixing upper jig 13 for fixing the ice making door outer box 7 and a fixing die fixing for fixing the ice making door inner box 8.
- the vacuum film 15 and a vacuum pump (not shown) are disposed near the opening of the fixture 14, the upper fixed jig 13 and the lower fixed jig 14.
- the ice making door 6 of the refrigerator 5 is composed of the ice making door outer case 7, the ice making door inner case 8, the gasket 10, the frame 11, and the frame set screw 12 for fixing the ice making door inner case 8 and the frame 11. It is done.
- the ice-making door outer case 7 is formed by insert-injection molding of the outer case gas barrier member 7b in the outer case resin portion 7a.
- the inner box gas barrier member 8b is formed by insert injection molding on the inner box resin portion 8a.
- Ice door thermal insulation 9 consisting of open-celled urethane foam is inserted into the inside of the ice door outer case 7 and the ice door inner case 8, and the joint portion of the ice door outer case 7 and the ice door inner case 8 is welded by local heating.
- the interior of the ice-making door outer case 7 and the ice-making door inner case 8 is vacuum-sealed to obtain the vacuum insulation case 1.
- the ice making door 6 only the joint portion of the ice making door outer case 7 and the ice making door inner case 8 is heated and welded, and the portion other than the welding portion is not heated.
- the deformation of the door inner box 8 can be minimized.
- the inside of the ice making door 6 is maintained in a vacuum state for a long time, and the heat insulating performance of the ice making door 6 can be improved.
- the rigidity and strength of the resin casing of the outer surface of the ice making door 6 can be improved.
- the frame set screw 12 is locked so as not to penetrate inside the inner box resin portion 8a, the frame 11 can be attached to the inner box without damaging the inner box gas barrier member 8b.
- the vacuum state can be improved.
- the ice making door 6 of the refrigerator 5 includes the ice making door outer case 7, the ice making door inner case 8, the gasket 10, the frame 11, the ice making door inner case 8 and the frame 11. It is comprised by the frame set screw 12 fixed.
- the ice-making door outer case 7 is formed by insert-injection molding of the outer case gas barrier member 7b in the outer case resin portion 7a.
- the ice-making door inner box 8 is formed by insert injection molding of the inner box gas barrier member 8b in the inner box resin portion 8a.
- the ice door insulation 9 is inserted into the ice door outer case 7 and the ice door inner case 8 and locally heats only the junctions of the ice door outer case 7 and the ice door inner case 8. By vacuum-sealing the inside of the ice making door inner box 8, a vacuum heat insulating structure of the vacuum heat insulating housing 1 is obtained.
- FIGS. 22A to 27 show a process of thermally welding the ice making door outer case 7 and the ice making door inner case 8 in a vacuum state.
- Each figure is sectional drawing of the fixing jig 50 which is a principal part of the manufacturing equipment of the ice making door 6, the fixing upper jig 13, and the fixing lower jig 14, and has shown the welding method in a vacuum state.
- FIG. 22A shows the state of the fixed upper jig 13 before the ice-making door outer box 7 is set.
- a fixed upper jig corner 13 a is provided around the opening surface of the fixed upper jig 13. Further, as shown in FIG. 22A, the periphery of the side surface of the fixed upper jig 13 is covered with a vacuum film 15.
- FIG. 22B shows the state of the fixed lower jig 14 before the ice making door inner box 8 is set.
- the lower fixed jig 14 is provided with a vacuum drawing hole 14a, a vacuum connection port 14b and a lower fixed jig corner 14c.
- FIG. 23A shows a state after the ice making door outer box 7 is set in the fixed upper jig 13.
- FIG. 23B shows a state after the ice-making door inner box 8 is set in the fixed lower jig 14.
- FIG. 24A shows a state after the ice making door outer box 7 is set in the fixed upper jig 13.
- FIG. 24B shows a state in which an ice making door heat insulator 9 which is an open-celled urethane foam formed of a porous structure is inserted into the ice making door inner box 8.
- the openings of the upper fixing jig 13 and the lower fixing jig 14 are moved in the vertical direction, and the vacuum film 15 forms an enclosed space between the upper fixing jig 13 and the lower fixing jig 14. It shows the status of being
- the inside of the fixing jig 50 is evacuated in the direction of the arrow by the vacuum device (not shown) connected to the vacuum connection port 14b of the lower fixing jig 14, and the upper fixing jig 13 is The vacuum film 15 covering the opening of the lower fixed jig 14 is also deformed inward and sealed.
- the vacuum film 15 is formed of a flexible and flexible material, and the upper fixing jig corner 13 a and the lower fixing jig corner 14 c are formed on the fixing jig 50. With such a configuration, the inside of the fixing jig 50 is vacuumed, the internal pressure is reduced, and problems such as breakage of the vacuum film 15 can be eliminated even if the suction operation is repeated and suitable for mass production. It is possible to provide a manufacturing method.
- the inside of the fixing jig 50 is evacuated to a set degree of vacuum, and then the lower fixing jig 14 is raised toward the upper fixing jig 13 to pressurize.
- the convex portions provided on the inner box resin portion 8a of the inner box 8 fixed to the fixed lower jig 14 locally contact the outer periphery of the outer door box 7 by heating, and the ice door is heated by heating.
- the convex part provided in the inner box resin part 8a of the inner box 8 and the ice-making door outer box 7 melt locally, and the ice-making door outer box 7 and the ice-door inner box 8 are integrated.
- the vacuum heat insulating housing 1 is formed.
- the heating can be performed by ultrasonic welding which heats with frictional heat due to resonance motion, vibration welding which heats with frictional heat due to vibrational motion, or a method of directly heating heat such as laser or infrared light.
- an adhesive may be used, for example, an adhesive which is chemically bonded by UV (ultraviolet light) or a heater or an adhesive which is thermally cured. May be used.
- the ice making door 6 manufactured by the manufacturing method of the present embodiment for welding the ice making door outer case 7 and the ice making door inner case 8 in a vacuum state needs to evacuate the inside of the case after the case completion. Since there is no need to provide an exhaust pipe, an exhaust pipe-less ice making door 6 can be provided.
- FIG. 28 is a cross-sectional view of an automobile 60 using the vacuum insulation housing in the tenth embodiment as viewed from the side
- FIG. 29 is a front view of the automobile 60 using the vacuum insulation housing in the tenth embodiment.
- the heat insulating structure of the vehicle body 16 of the automobile 60 A bonnet vacuum insulation casing 18 for preventing conduction, a vehicle interior vacuum insulation casing 19, a door vacuum insulation casing 20 and a ceiling vacuum insulation casing 21 are provided.
- the vacuum heat insulation housing 19 of the passenger compartment is a vacuum heat insulator in which a partition 19a, a floor part 19b, a rear part 19c and a side part 19d are integrated. Is configured as.
- a vacuum heat insulation case 1 is disposed as a heat insulation case 18, a vehicle interior vacuum heat insulation case 19, a partition 19 a, a door vacuum heat insulation case 20 and a ceiling vacuum heat insulation case 21.
- the vacuum heat insulating casing 1 itself has strength, it is not necessary to pay close attention to damage to the film or the like as in a laminated film type vacuum heat insulating material even in handling at the time of assembly.
- the interior 19 of the vehicle interior vacuum insulation casing 19 is a vacuum insulation where the partition 19a, the floor surface 19b, the back surface 19c and the side surface 19d are integrated. Because it is configured as a body, there is no seam of the heat insulating material and heat does not leak easily. As a result, the heat insulation property can be improved, the power energy load for cooling and heating of the vehicle interior space can be reduced, and energy saving can be realized.
- the heat insulating structure of the vehicle body 16 of the automobile 60 prevents heat conduction between the outside and the inside of the vehicle body 16 and between the outside and the vehicle interior space 17 It is configured as follows. That is, it comprises a bonnet vacuum insulation case 18 for preventing heat conduction of the engine, a vehicle interior vacuum insulation case 19, a door vacuum insulation case 20 and a ceiling vacuum insulation case 21.
- the interior vacuum insulation housing 19 is a vacuum insulation structure in which a partition 19a, a floor surface 19b, a rear surface 19c and a side surface 19d are integrated in order to improve heat insulation to the interior of the vehicle. Is configured as. With such a configuration, the heat insulating property can be improved because there is no seam of the heat insulating material and heat does not leak, and the power energy load for cooling and heating of the vehicle interior space 17 is reduced, and energy saving can be realized.
- FIG. 30 is an exploded view of a hot water storage tank vacuum insulation housing 22 of the heat pump water heater according to the eleventh embodiment
- FIG. 31 is a top view of the hot water storage tank vacuum insulation housing 22 of the heat pump water heater according to the eleventh embodiment
- FIG. 32 is a cross sectional view showing a part of the front vacuum thermal insulation casing 24 of the heat pump water heater according to the eleventh embodiment.
- the configuration of the hot water storage tank vacuum insulation case 22 for keeping warm a hot water storage tank (not shown) for storing high temperature hot water by late-night power includes a top vacuum insulation case 23 and a front vacuum insulation case 24. And the rear surface vacuum insulation case 25 and the bottom surface vacuum insulation case 26 and are configured to cover the hot water storage tank.
- the hot water storage tank vacuum insulation housing 22 is configured to cover the surface of the hot water storage tank in order to prevent heat conduction between the hot water storage tank and the outside. That is, the shape of the hot water storage tank vacuum insulation housing 22 is formed to match the surface shape of the hot water storage tank. Such a configuration can improve the heat insulation performance of the hot water storage tank. Moreover, the fall of the hot water temperature in a hot water storage tank can be prevented, and the amount of boiling hot water can be reduced. For this reason, reduction of the electric power required for boiling, ie, energy saving, can be realized.
- the hot water storage tank heat insulating material 27 is inserted into the front outer box 24a and the front inner box 24b, and the front outer box 24a and the front inner box 24b are locally heated. Bonded to form a front vacuum insulation housing 24.
- the hot water storage tank heat insulator 27 is inserted into the rear outer box 25a and the rear inner box 25b, and the rear outer box 25a and the rear inner box 25b are locally heated and joined to form the rear vacuum insulation case 25. ing.
- the front vacuum insulation case 24 and the rear vacuum insulation case 25 are combined with each other to cover the hot water storage tank 28.
- the hole shape is formed in the front outer case 24a and the front inner case 24b by injection molding.
- the vacuum heat insulating casing of each embodiment of the present invention includes the outer case 2 forming the appearance, the inner case 3 forming the interior, the outer case 2 and the inner case 3.
- the outer case 2 and the inner case 3 are constituted by gas barrier members, and the outer case 2 and the inner case 3 are characterized by a structure in which the insides of the outer case 2 and the inner case 3 are vacuum-sealed and joined.
- a rigid vacuum insulation housing 1 which can be used as an appearance part and an interior part as it is without using a container material such as a box for containing a vacuum heat insulating material.
- the vacuum thermal insulation casing 1 having a complex shape such as a three-dimensional shape, an acute angled bending shape, partial unevenness and a through hole can be formed, the degree of vacuum of the vacuum thermal insulation casing 1 is not impaired. It is possible to obtain a complex form of vacuum insulation housing 1 having high vacuum insulation performance and long-term reliability.
- the vacuum heat insulating casing 1 of the present invention is not a configuration obtained by reducing the pressure of a form in which the entire surface of the core material is covered with a soft material such as a gas barrier film like a conventional vacuum heat insulating material. It is possible to obtain a vacuum insulation case 1 which is resistant to the occurrence of scratches and dents in working processes and physical distribution in a factory.
- casing 1 was characterized by being formed with the porous structure. Therefore, since the inside of the vacuum heat insulation housing
- the material of the junctional part of the outer case 2 and the inner case 3 was characterized by being comprised with the same material.
- high thermal insulation performance can be obtained.
- the material of the junctional part of the outer case 2 and the inner case 3 was characterized by being comprised with a different material.
- the joint portion of the outer box 2 and the inner box 3 is joined in a vacuum-sealed state, so high heat insulation performance is achieved. can get.
- the vacuum insulation housing 1 suitable for a design member or the like used for a car, a refrigerator, and the like.
- the joint portion of the outer case 2 and the inner case 3 is characterized by being joined by local heating to form a housing. Since only the vicinity of the junction between the outer box 2 and the inner box 3 is locally heated and joined, the thermal influence on the entire material used for the outer box 2 and the inner box 3 is also minimized. Moreover, it can prevent that the outer case 2 and the inner case 3 deform
- the shape of the vacuum heat insulating housing can be freely formed depending on the outer shape or the inner shape, and the vacuum heat insulating structure can be provided as it is as the outer appearance part and the inner part.
- heat insulation structures such as a refrigerator, a heating apparatus such as a heat pump water heater, an electric water heater, a cooker such as a rice cooker, a bathtub, an outer wall of a house, a roof, and other house members.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Refrigerator Housings (AREA)
- Thermal Insulation (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Laminated Bodies (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
Abstract
外観を形成する外箱(2)と、内装を形成する内箱(3)と、外観を形成する外箱(2)および内装を形成する内箱(3)の内部に配置された断熱材(4)とを備え、外観を形成する外箱(2)および内装を形成する内箱(3)は、ガスバリア部材で構成され、外観を形成する外箱(2)および内装を形成する内箱(3)の内部が真空密閉されて接合された真空断熱筐体。
Description
本発明は、冷蔵庫などに用いられる真空断熱筐体に関する。
近年、地球環境問題である温暖化の対策として、省エネルギー化を推進する動きが活発し、断熱技術の進化が期待されている。従来の断熱技術として、図33に示されるように、ラミネートフィルム102でコア材の繊維マット103が覆われた構造の真空断熱材101が用いられ、断熱性能を向上させる技術が提案されている。なお、真空断熱材とは、容器内を真空にすることで断熱性能を向上させた構造のことをいう(例えば、特許文献1参照)。
また、近年の冷蔵庫において、省エネルギー化と庫内有効スペース拡大のために、断熱特性の高い真空断熱材が使用されるようになってきた。この分野における従来の断熱技術としては、図34に示されるように、冷蔵庫本体104および扉外板105に真空断熱材101が配置された構造により、断熱性能を向上させる技術が提案されている(例えば、特許文献2参照)。
また、近年の自動車において、地球環境保全の観点から、環境を保全する仕様が強化されており、燃料消費率を向上させる手段として、エンジン性能の向上およびハイブリット化の他に、補機類の動力削減がある。また、エンジンを用いないモーターを動力とした電気自動車などもある。この分野における従来の断熱技術は、図35に示されるように、自動車の車体106の断熱構成として、例えばカーエアコンの動力を低減するために、夏場の冷房負荷および冬場の暖房負荷に影響されないように、真空断熱材101が車体106内に配置されている。具体的には、真空断熱材101は、車室内空間107を構成する面、例えば隔壁、天井面、背面、床面および側面など、ならびに、エンジンルームおよびボンネットなど、車室内空間107の断熱が必要される箇所に、複数個配置され(貼られ)ている。このような構成により、断熱性能を向上させる技術が提案されている(例えば、特許文献3参照)。
上述の従来の真空断熱材101では、内袋としてラミネートフィルム102または樹脂でコーティングされたアルミフィルムなどで形成された袋状の部材が用いられている。コア材には繊維マット103が用いられ、繊維マット103はラミネートフィルム102内部に内設されている。繊維マット103を内設したラミネートフィルム102内部は、真空引きされた後封じられ、真空断熱材101が得られる。
従来の真空断熱材101の形態は、冷蔵庫本体104に使用されているような平板形状が基本である。貯湯式給湯機の貯湯タンクの断熱材など(図示せず)には、平板形状の真空断熱材101を曲げたものが使用されている。また、凹凸面などに配置される断熱材にも、平板形状の真空断熱材101が用いられている。すなわち、真空断熱材101の内部のコア材に、厚みの薄い部分と厚い部分を設けて平板形状の真空断熱材101を曲げやすくすることにより、凹凸面などに配置される。しかし、真空断熱材101の断熱性能に寄与するコア材に厚みの薄い部分を設けると断熱性能が低下する。また、真空断熱材101の曲げ応力に耐えられない鋭角な形状の面などには用いることができない。まして、三次元形状および貫通孔などの複雑な形態の真空断熱材101を形成することは困難である。
また、自動車の車体106に用いられるような従来の真空断熱材101には、ガスバリア性フィルムが使用されている。ガスバリア性フィルムは薄肉で傷に弱く破れやすいため、製品の組立作業時や、真空断熱材を製造する工程でガスバリア性フィルムに傷がつきやすい。ガスバリア性フィルムに傷がつくと、真空断熱材101の内部の真空度が保たれず、真空断熱材101の品質保証および長期信頼性の確保が困難となる。
従来の真空断熱材101の使い方としては、上述のように、冷蔵庫または自動車などを構成する筐体の中に、真空断熱材101が筐体とは別個独立して収容されるような構造で用いられている。このため、従来の真空断熱材101は、真空断熱材101そのものを、外観を形成する筐体部材として用いることが困難である。
本発明は、三次元形状、鋭角な曲げ形状、部分的な凹凸または貫通孔などの複雑な形態を形成することでき、真空断熱材そのものを内装筐体部材や外観筐体部材として使用することができる真空断熱筐体を提供する。すなわち、本発明は、外観を形成する外箱と、内装を形成する内箱と、外観を形成する外箱と内装を形成する内箱の内部に配置された断熱材とを備え、外観を形成する外箱および内装を形成する内箱は、ガスバリア部材で構成され、外観を形成する外箱および内装を形成する内箱の内部が真空密閉されて接合された構造の真空断熱筐体である。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、実施の形態1における真空断熱筐体1の斜視図、図2は同実施の形態1の真空断熱筐体1の封止例を示す断面図である。図1および図2において、真空断熱筐体1は、外観を形成する外箱2と、内装を形成する内箱3と、外観を形成する外箱2および内装を形成する内箱3の内部に配置され、多孔性構造体で形成された断熱材4とを備えている。外箱2および内箱3は、ガスバリア部材で構成されている。断熱材4が配置されている外箱2および内箱3の内部は真空密閉され、外箱平坦部2aおよび内箱平坦部3aが加圧されるとともに、外箱平坦部2aおよび内箱平坦部3aが局部加熱により接合される。このようにして、真空断熱筐体1が得られる。
図1は、実施の形態1における真空断熱筐体1の斜視図、図2は同実施の形態1の真空断熱筐体1の封止例を示す断面図である。図1および図2において、真空断熱筐体1は、外観を形成する外箱2と、内装を形成する内箱3と、外観を形成する外箱2および内装を形成する内箱3の内部に配置され、多孔性構造体で形成された断熱材4とを備えている。外箱2および内箱3は、ガスバリア部材で構成されている。断熱材4が配置されている外箱2および内箱3の内部は真空密閉され、外箱平坦部2aおよび内箱平坦部3aが加圧されるとともに、外箱平坦部2aおよび内箱平坦部3aが局部加熱により接合される。このようにして、真空断熱筐体1が得られる。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
本実施の形態の真空断熱筐体1は、外観を形成する外箱2および内装を形成する内箱3がそれぞれガスバリア部材で構成されており、外箱2および内箱3の内部に断熱材4が配置された形態が真空密閉されて接合された構造としている。このような構成により、真空断熱材を収容し、外観および内装を形成する容器材などを別個必要とせず、外観部品および内装部品としてそのまま使用できる剛性筐体の真空断熱筐体1を得ることができる。
また、真空断熱筐体1は、従来の真空断熱材101のような、コア材の全面がガスバリア性フィルムのような柔らかい材質で覆われた形態を減圧させて得られる構成ではなく、外観を形成する外箱2および内装を形成する内箱3がそれぞれガスバリア部材で構成されているため、工場内での作業工程および物流時における傷および打痕などに強い真空断熱筐体1が得られる。
さらに、本実施の形態の真空断熱筐体1は、ガスバリア部材で構成された外箱2および内箱3が、三次元形状、鋭角な曲げ形状、部分的な凹凸または貫通孔などの複雑な形状に形成された構造とし、このような構造の外箱2および内箱3の内部に断熱材4が配置され、外箱2および内箱3の内部が真空密閉された構造とすることもできる。このような構成により、真空断熱筐体1の真空度を損なうことなく、高い真空断熱性能および長期信頼性を有する、複雑な形態の真空断熱筐体1を得ることができる。
また、断熱材4を連続気泡ウレタンフォームまたはグラスウールなどの多孔性構造体で形成することにより、真空断熱筐体1の内容積全域が所定の設定真空度まで確実に真空引きされることが容易となる。このような構成により、求める真空断熱性能を実現することができるとともに、筐体の剛性を向上させることができる。
また、本実施の形態の真空断熱筐体1は、外箱2および内箱3に用いる材質が、同材質同士、或いは、異材質同士でも、外箱2および内箱3の内部を真空密閉させて外箱2および内箱3を接合させることができる。このため、外箱2および内箱3に、金属板などのガス透過がない材質、或いは、樹脂材などでガスバリア性の良好な酸素透過率の低い材質を用いることにより、様々な材質の組み合わせの外観部材および内装部材で構成された真空断熱筐体1を得ることができる。
また、外箱2および内箱3の材質に、樹脂材料でガスバリア性の良好なガス透過率の低い材質を使用する場合など、真空断熱筐体1の真空度が経年的にわずかに劣化する場合は、真空断熱筐体1の内部に断熱材4および空気吸着剤(図示せず)を配置させることにより、真空断熱筐体1外から透過した空気を空気吸着剤に吸着させることもできる。このような構成により、真空断熱筐体1の真空度が保たれるので、長期信頼性を有する断熱性能を実現できる。
また、ガスバリア性の良好な空気透過率の低い樹脂材料としては、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどによる成形材料が好ましい。これらの材料を用いることにより、大量生産にも対応できるので、安価に真空断熱筐体1の外観部品および内装部品を得ることができる。
また、図2において、外箱2の外箱平坦部2aおよび内箱3の内箱平坦部3aの材質は、同じ材質が用いられている。このように、接合させる部分に同じ材質を用いることにより、融点の同じ材質同士を接合させるため、接合が容易となる。また、接合させる部分に用いる材質によって剥離強度を強くすることもできる。このような構成により、真空断熱筐体1内部の真空度を長期的に保つこともできる。
以上のように、本実施の形態の真空断熱筐体1は、外観を形成する外箱2と、内装を形成する内箱3と、外箱2および内箱3の内部に配置された断熱材4とを備え、外箱2および内箱3は、ガスバリア部材で構成され、外箱2および内箱3の内部が真空密閉されて外箱2および内箱3が接合された構造を有している。このような構成により、外観部品および内装部品としてそのまま使用できる剛性筐体の真空断熱筐体1が得られる。また、真空断熱筐体1の真空度を損なうことなく、三次元形状などの複雑な形態の真空断熱筐体1が得られる。さらに、工場内での作業工程および物流時などの傷および打痕などに強く、高い真空断熱性能および長期信頼性を有する真空断熱筐体1が得られる。
(実施の形態2)
図3から図5は、実施の形態2の真空断熱筐体1の封止例を示す断面図である。実施の形態1と同様の構成についての説明は省略する。
図3から図5は、実施の形態2の真空断熱筐体1の封止例を示す断面図である。実施の形態1と同様の構成についての説明は省略する。
図3は内箱3の内面に内箱ガスバリア部材3cが配置された構成を示している。図4は内箱3の外面に内箱ガスバリア部材3cが配置された構成を示している。図5は内箱3を2層の内箱樹脂部3bで構成し、層間に内箱ガスバリア部材3cが配置された構成を示している。外箱平坦部2aおよび内箱平坦部3aの少なくとも一方の接合面には、接着層が形成されている。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
図3の真空断熱筐体1の外箱2には、例えば金属板およびガラス板などのガスが透過されない材質が用いられている。内箱3は、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形されて、内箱樹脂部3bおよび内箱ガスバリア部材3cが複合形成されている。外箱平坦部2aおよび内箱平坦部3aの少なくとも一方の接合面には、接着層(図示せず)が形成されており、外箱平坦部2aおよび内箱平坦部3aが局部加熱されることにより結合する。局部加熱による接着層の熱硬化により、接合面のシール性と剥離強度を向上させることができるので、長期信頼性を有する断熱性能が得られる。
図3の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重剛体または液晶ポリマーなどの押し出し用成形材料が用いられる。内箱ガスバリア部材3cは、シート形状またはフィルム形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形されることにより、内箱3が形成される。このように形成された真空断熱筐体1は、冷蔵庫または自動車などを構成する大形部材の製造において、成形金型への投資を抑えた物作りおよび量産化を実現できる。
また、図3の内箱ガスバリア部材3cには、金属箔層を含む樹脂ラミネートフィルム材料を用いてもよい。内箱ガスバリア部材3cは、フィルム形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形されることにより、内箱3が形成される。このように形成された真空断熱筐体1は、冷蔵庫または自動車などを構成する大形部材の製造において、材料費および成形金型への投資を抑えた物作りおよび量産化を実現できる。
また、図3の内箱ガスバリア部材3cには、エチレン-ビニルアルコール共重剛体または液晶ポリマーなどの押し出し用成形材料、フィルム形状材料、または、金属層を含む樹脂ラミネートフィルム材料などを用いてもよい。内箱ガスバリア部材3cは、内箱3の内面に配置されているので、製造時および運搬時などの傷による影響を受けにくく、高い真空断熱性能および長期信頼性が得られる。
図3の内箱ガスバリア部材3cを形成する際に用いられる射出用成形材料としては、例えばエチレン-ビニルアルコール共重剛体または液晶ポリマーなどを用いてもよい。この場合、予め内箱ガスバリア部材3cが射出成形された後に、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形されることにより、内箱3が形成される。或いは、二色射出成形機で、内箱3と、内箱ガスバリア部材3cとを同時に射出成形により形成してもよい。これにより、成形サイクルを短くすることができ、大量生産の物作りを実現できる。また、本実施の形態の真空断熱筐体1は、冷蔵庫または自動車など、数個の扉で構成された製品などの物作りに好ましく、量産化を実現できる。
図3および図4の内箱ガスバリア部材3cは、金属材料による鍍金処理または金属材料による蒸着処理などの表面処理により形成してもよい。この場合、内箱樹脂部3bが射出成形により形成された後、内箱樹脂部3bの内面および外面のいずれの面にも表面処理を施すことができる。本実施の形態によれば、内箱3の形状が、凹凸の大きい形状、鋭角形状または三次元形状などの、非常に複雑な形状の真空断熱筐体1を得ることができる。
図5の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重合体が用いられる。図5では、内箱ガスバリア部材3cおよび内箱樹脂部3bの積層構造が形成されている。この場合、内箱ガスバリア部材3cは、シート形状に1次加工された後、真空成形または圧空成形による2次加工が行われる。その後、外形抜き加工により3次加工され、内箱3が形成される。このような構成により、内箱3を形成する工程を削減できる。また、冷蔵庫または自動車などを構成する大形部材の製造において、成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
(実施の形態3)
図6から図8は、実施の形態3の真空断熱筐体1の封止例を示す断面図である。実施の形態1および実施の形態2と同様の構成についての説明は省略する。
図6から図8は、実施の形態3の真空断熱筐体1の封止例を示す断面図である。実施の形態1および実施の形態2と同様の構成についての説明は省略する。
図6から図8において、外箱2の外周を構成する外箱平坦部2aには外箱樹脂部2bが設けられ、外箱平坦部2aおよび外箱樹脂部2bは内箱平坦部3aと接合される。なお、実施の形態2のように、外箱平坦部2aおよび内箱平坦部3aの少なくとも一方の接合面に接着層を形成してもよい。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
図6では、真空断熱筐体1の外箱2には、金属板およびガラス板などのガスが透過しない材質が用いられている。また、外箱2に外箱樹脂部2bがインサート射出成形により形成されている。内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形により形成されて、内箱3が得られる。外箱平坦部2a、内箱平坦部3aおよび外箱樹脂部2bには同じ材質が用いられており、これらは局部加熱により結合されている。このように、結合される部分に同じ材質を用いると、結合される部分の融点が同じなので接合性が良く、接合部分のシール性と剥離強度が向上する。このような構成により、長期信頼性および高い断熱性能を有する真空断熱筐体1が得られる。
また、図6の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどの押し出し用成形材料が用いられる。内箱ガスバリア部材3cは、シート形状またはフィルム形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形されることにより、内箱3が形成される。このような構成により、冷蔵庫または自動車などを構成する大形部材の製造において、成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
また、図6の内箱ガスバリア部材3cには、金属層を含む樹脂ラミネートフィルム材料を用いてもよい。内箱ガスバリア部材3cは、フィルム形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形されることにより、内箱3が形成される。このような構成により、冷蔵庫または自動車などを構成する大形部材の製造において、材料費および成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
また、図6の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどの押し出しシート用成形材料、フィルム形状材料、または、金属層を含む樹脂ラミネートフィルム材料などが用いられる。内箱ガスバリア部材3cは、内箱3の内面に配置されているので、製造時および運搬時などの傷による影響を受けにくい。このような構成により、高い真空断熱性能および長期信頼性を有する真空断熱筐体1が得られる。
また、図6の内箱ガスバリア部材3cを形成する際に用いられる射出用成形材料としては、例えばエチレン-ビニルアルコール共剛剛体または液晶ポリマーなどが用いられる。この場合、予め内箱ガスバリア部材3cが射出成形された後に、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形されることにより、内箱3が形成される。或いは、二色射出成形機で、内箱3と、内箱ガスバリア部材3cとが同時に射出成形により形成される。このような構成により、成形サイクルを短くすることができ、大量生産の物作りを実現できる。また、冷蔵庫または自動車など、数個の扉で構成された製品の物作りに好ましく、量産化を実現できる。
また、図6および図7の内箱ガスバリア部材3cは、金属材料による鍍金処理または金属材料による蒸着処理などの表面処理により形成してもよい。この場合、内箱樹脂部3bが射出成形により形成された後、内箱樹脂部3b内面および外面のいずれの面にも表面処理を施すことができる。これにより、内箱3の形状が、凹凸の大きい形状、鋭角形状または三次元形状などの、非常に複雑な形状の真空断熱筐体1を形成することができる。
また、図8の内箱ガスバリア部材3cは、例えばエチレン-ビニルアルコール共重合体が用いられる。図8では、内箱ガスバリア部材3cおよび内箱樹脂部3bの積層構造が形成されている。この場合、内箱ガスバリア部材3cは、シート形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱3が形成される。このような構成により、内箱3を形成する工程を削減できる。また、冷蔵庫または自動車などを構成する大形部材の製造において、成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
(実施の形態4)
図9から図11は、実施の形態4の真空断熱筐体1の封止例を示す断面図である。実施の形態2および実施の形態3と同様の構成についての説明は省略する。
図9から図11は、実施の形態4の真空断熱筐体1の封止例を示す断面図である。実施の形態2および実施の形態3と同様の構成についての説明は省略する。
図9から図11において、外箱2は、化粧パネル等の表面板2eと、背面を構成する外箱樹脂部2bとからなり、外箱樹脂部2bには外箱ガスバリア部材2cが設けられている。外箱2および内箱3の外周では、外箱樹脂部2bと内箱平坦部3aとが接合されている。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
図9では、外箱2の外箱樹脂部2bに、外箱ガスバリア部材2cがインサート射出成形により形成されている。また、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形により形成され、内箱3が得られる。外箱平坦部2aおよび内箱平坦部3aには同じ材質が用いられており、外箱平坦部2aおよび内箱平坦部3aは、外箱2および内箱3の内部が真空引きされ密閉された後、局部加熱により結合される。その後、外箱樹脂部2bに外箱2の表面板2eが接合されて真空断熱筐体1が得られる。本実施の形態によれば、製品の外観を形成する外箱2の表面板2eが製造工程の最終工程で形成されるため、製造時の傷を防止でき、歩留まりを向上させることができるとともに、量産時の工程不良を削減することができる。また、この構成によれば、表面板2eにガス透過性の材料を用いることも可能となる。すなわち、真空引きの際に、コア材をガスバリアフィルム等の被覆材で覆うことなく、ガス透過性の材料で構成された真空断熱筐体1を形成することができる。
また、内箱3に断熱材4が挿入された後に、外箱ガスバリア部材2cと内箱平坦部3aとを加熱し、外箱2および内箱3の内部を真空引きして密閉する形態としてもよい。これにより、外箱ガスバリア部材2cを外箱樹脂部2bにインサート成形により形成しなくても真空断熱筐体1を形成することができる。
また、図9の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどの押し出し用成形材料が用いられる。内箱ガスバリア部材3cは、シート形状またはフィルム形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱ガスバリア部材3cが内箱樹脂部3bにインサート射出成形されることにより、内箱3が形成される。このような構成により、冷蔵庫または自動車などの大形部材の製造において、成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
また、図9の内箱ガスバリア部材3cには、例えば金属層を含む樹脂ラミネートフィルム材料が用いられる。この場合、内箱ガスバリア部材3cがフィルム形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱ガスバリア部材3cが内箱樹脂部3bにインサート射出成形されることにより、内箱3が形成される。このような構成により、冷蔵庫または自動車などの大形部材の製造において、材料費および成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
また、図9の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどの押し出し用成形材料、フィルム形状材料、または、金属層を含む樹脂ラミネートフィルム材料を用いてもよい。内箱ガスバリア部材3cは、内箱3の内面に配置されているので、製造時および運搬時などの傷による影響を受けにくい。このような構成により、真空断熱性能および長期信頼性を有する真空断熱筐体1が得られる。
また、図9の内箱ガスバリア部材3cを形成する際に用いられる射出用成形材料としては、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどが用いられる。この場合、予め射出成形により形成された内箱ガスバリア部材3cを、内箱樹脂部3bにインサート射出成形させることにより、内箱3が形成される。或いは、二色射出成形機で、内箱3と、内箱ガスバリア部材3cとが同時に射出成形により形成される。このような構成により、成形サイクルを短くすることができ、大量生産の物作りが可能となる。また、冷蔵庫または自動車など、数個の扉で構成された製品などの物作りに好ましく、量産化を実現できる。
また、図9および図10の内箱ガスバリア部材3cとしては、例えば金属材料による鍍金処理または金属材料による蒸着処理などの表面処理により形成としてもよい。この場合、内箱樹脂部3bが射出成形により形成された後、内面および外面のいずれの面にも表面処理を施すことができるので、内箱3の形状が、凹凸の大きい形状、鋭角形状または三次元形状など、非常に複雑な形状の真空断熱筐体1を形成することができる。
また、図11の内箱ガスバリア部材3cは、例えばエチレン-ビニルアルコール共合体が用いられる。図11では、内箱ガスバリア部材3cおよび内箱樹脂部3bの積層構造が形成されている。この場合、内箱ガスバリア部材3cは、シート形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱3が形成される。このような構成により、内箱3を形成する工程を削減できる。また、冷蔵庫または自動車などの大形部材の製造において、成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
(実施の形態5)
図12から図14は、実施の形態5の真空断熱筐体1の封止例を示す断面図である。実施の形態4と同様の構成についての説明は省略する。
図12から図14は、実施の形態5の真空断熱筐体1の封止例を示す断面図である。実施の形態4と同様の構成についての説明は省略する。
図12から図14において、外箱2は、化粧パネル等の表面板2eと外箱樹脂部2bとからなり、背面を構成する外箱樹脂部2bは二層からなり、層間に外箱ガスバリア部材2cが設けられている。外箱2および内箱3の外周で外箱樹脂部2bと内箱平坦部3aとが接合されている。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
図12では、外箱2の外箱樹脂部2bに、外箱ガスバリア部材2cが積層シートとして形成されている。また、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形により形成され、内箱3が得られる。外箱平坦部2aおよび内箱平坦部3aには同じ材質の材料が用いられ、外箱平坦部2aおよび内箱平坦部3aは、外箱2および内箱3の内部が真空引きされて密閉された後、局部加熱により結合される。その後、外箱樹脂部2bに外箱2の表面板2eが接合されて真空断熱筐体1が得られる。本実施の形態によれば、製品の外観を形成する外箱2の表面板2eが製造工程の最終工程で形成されるため、製造時での傷を防止でき、歩留まりを向上させることができるとともに、量産時の工程不良を削減することができる。
また、図12の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどの押し出し用成形材料が用いられる。内箱ガスバリア部材3cは、シート形状またはフィルム形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱ガスバリア部材3cが内箱樹脂部3bにインサート射出成形されることにより、内箱3が形成される。このような構成により、冷蔵庫または自動車などの大形部材の製造において、成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
また、図12の内箱ガスバリア部材3cには、金属層を含む樹脂ラミネートフィルム材料を用いてもよい。この場合、内箱ガスバリア部材3cは、フィルム形状に1次加工された後、真空成形または圧空成形し2次加工される。その後、外形抜き加工により3次加工され、内箱ガスバリア部材3cが内箱樹脂部3bにインサート射出成形により形成されることにより、内箱3形成される。このような構成により、冷蔵庫または自動車などの大形部材の製造において、材料費および成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
また、図12の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどの押し出し用成形材料、フィルム形状材料、または、金属層を含む樹脂ラミネートフィルム材料が用いられる。この場合、内箱ガスバリア部材3cは、内箱3の内面に配置されているので、製造時および運搬時などの傷による影響を受けにくい。このような構成により、高い真空断熱性能および長期信頼性を有する真空断熱筐体1を得ることができる。
また、図12の内箱ガスバリア部材3cを形成する際に用いられる射出用成形材料としては、例えばエチレン-ビニルアルコール共重合体または液晶ポリマーなどが用いられる。この場合、予めが射出成形により形成された内箱ガスバリア部材3cを、内箱樹脂部3bにインサート射出成形させることにより、内箱3が形成される。或いは、二色射出成形機で、内箱3と、内箱ガスバリア部材3cとが同時に射出成形により形成される。このような構成により、成形サイクルを短くすることができ、大量生産の物作りが可能となる。冷蔵庫または自動車など、数個の扉で構成された製品などの物作りに好ましく、量産化を実現できる。
また、図12および図13の内箱ガスバリア部材3cは、例えば金属材料による鍍金処理または金属材料による蒸着処理などの表面処理により形成してもよい。この場合、内箱樹脂部3bが射出成形により形成された後、内箱樹脂部3bの内面および外面のいずれの面にも表面処理を施すことができる。これにより、内箱3の形状が、凹凸の大きい形状、鋭角形状または三次元形状などの、非常に複雑な形状の真空断熱筐体1を得ることができる。
また、図14の内箱ガスバリア部材3cには、例えばエチレン-ビニルアルコール共重合体が用いられる。図11では、内箱ガスバリア部材3cおよび内箱樹脂部3bの積層構造が形成されている。この場合、内箱ガスバリア部材3cは、シート形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、内箱3が形成される。このような構成により、内箱3を形成する工程を削減できる。
また、冷蔵庫または自動車などを構成する大形部材の製造において、成形金型への投資を抑えた物作りが可能となるとともに、量産化を実現できる。
(実施の形態6)
図15は、実施の形態6の真空断熱筐体1の封止例を示す断面図である。実施の形態4と同様の構成についての説明は省略する。
図15は、実施の形態6の真空断熱筐体1の封止例を示す断面図である。実施の形態4と同様の構成についての説明は省略する。
図15において、外箱2は、化粧パネル等の表面板2eと、背面を構成する外箱樹脂部2bとからなり、外箱樹脂部2bには外箱ガスバリア部材2cが設けられている。外箱2の外周には、外箱ガスバリア部材2cと連続した外箱ガスバリア平坦部2dが設けられている。また、内箱平坦部3aにも内箱ガスバリア部材3cと連続した内箱ガスバリア平坦部3dが設けられている。外箱ガスバリア平坦部2dと内箱ガスバリア平坦部3dとは対向して密着され、外箱2および内箱3の外周で外箱樹脂部2bと内箱平坦部3aとが接合されている。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
図15では、外箱2の外箱樹脂部2bに、外箱ガスバリア部材2cがインサート射出成形されて形成されている。内箱3は、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形されて、内箱3が形成される。外箱平坦部2aおよび内箱平坦部3aには同じ材質の材料が用いられ、これらは、外箱2および内箱3の内部が真空引されて密閉された後、局部加熱により結合される。これと同時に、外箱ガスバリア平坦部2dと、内箱ガスバリア平坦部3dとが封止される。その後、外箱2の表面板2eが接合されて真空断熱筐体1が得られる。
本実施の形態によれば、真空断熱筐体1は、ガスバリア部材で構成された外箱2および内箱3が独立した形態で形成されるので、ガス透過率を低減させることができる。また、真空断熱筐体1の真空性能を向上させることができ、断熱特性も向上させることができる。
なお、外箱ガスバリア平坦部2dおよび内箱ガスバリア平坦部3dは、物理的に密着させるだけでなく、外箱樹脂部2bと内箱平坦部3aとが接合されるのと同時に、熱溶着などで接合し封止してもよい。また、外箱ガスバリア部材2cは、内箱3に断熱材4が挿入された後に、外箱ガスバリア部材2cと内箱平坦部3aとを加熱し、真空密閉させる形態としてもよい。
(実施の形態7)
図16は、実施の形態7の真空断熱筐体1の封止例を示す断面図である。実施の形態6と同様の構成についての説明は省略する。
図16は、実施の形態7の真空断熱筐体1の封止例を示す断面図である。実施の形態6と同様の構成についての説明は省略する。
図16において、外箱2は、実施の形態6の表面板2eの代わりに三次元加飾フィルム成形が施された外箱樹脂部2bで構成されており、外箱樹脂部2bには外箱ガスバリア部材2cが設けられている。外箱2の外周には、外箱ガスバリア部材2cと連続した外箱ガスバリア平坦部2dが設けられている。また、内箱平坦部3aにも内箱ガスバリア部材3cと連続した内箱ガスバリア平坦部3dが設けられている。外箱ガスバリア平坦部2dおよび内箱ガスバリア平坦部3dは対向して密着させ、外箱2および内箱3の外周で外箱樹脂部2bと内箱平坦部3aとが接合されている。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
図16では、外箱2の外箱樹脂部2bには、外箱ガスバリア部材2cがインサート射出成形により形成されている。また、内箱樹脂部3bに内箱ガスバリア部材3cがインサート射出成形により形成され、内箱3が得られる。外箱平坦部2aおよび内箱平坦部3aには同じ材質の材料が用いられている。外箱平坦部2aおよび内箱平坦部3aは、外箱2および内箱3の内部が真空引きされた後、局部加熱により密閉されて結合される。本実施の形態によれば、三次元加飾フィルム成形により外箱2の外観を形成できる。また、製品の外観を形成する外箱2の表面を製造工程の最終工程で形成するため、製造時の傷を防止できる。これにより、歩留まりを向上させることができ、量産時の工程不良を削減できる。なお、外箱ガスバリア平坦部2dおよび内箱ガスバリア平坦部3dは、物理的に密着させるだけでなく、外箱樹脂部2bと内箱平坦部3aとが接合されるのと同時に熱溶着により接合させ封止してもよい。
また、外箱ガスバリア部材2cは、内箱3に断熱材4が挿入された後に、外箱ガスバリア部材2cと内箱平坦部3aとを加熱し、外箱2および内箱3の内部を真空引きして密閉してもよい。
(実施の形態8)
図17は、実施の形態8の真空断熱筐体1の封止例を示す断面図である。実施の形態5と同様の構成についての説明は省略する。
図17は、実施の形態8の真空断熱筐体1の封止例を示す断面図である。実施の形態5と同様の構成についての説明は省略する。
図17および図14の構成の違いは、図14における金属板およびガラス板などを用いた外箱2の表面板2eが、図17では外箱2の表面に設けられていない点、および、外箱2の表面は外箱樹脂部2bのみで構成されている点である。本実施の形態では、外箱樹脂部2bは二層で構成されており、層間に外箱ガスバリア部材2cが設けられている。また、内箱樹脂部3bは二層で構成されており、層間に内箱ガスバリア部材3cが設けられている。外箱2および内箱3の外周で外箱樹脂部2bと内箱平坦部3aとが接合されている。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
図17では、外箱2の外箱樹脂部2bには、外箱ガスバリア部材2cが積層シート成形により形成されている。また、内箱樹脂部3bに内箱ガスバリア部材3cが積層シート成形により形成され、内箱3が得られる。外箱ガスバリア部材2cおよび内箱ガスバリア部材3cは、シート形状に1次加工された後、真空成形または圧空成形により2次加工される。その後、外形抜き加工により3次加工され、外箱2および内箱3が得られる。このような構成により、外箱2および内箱3を形成する工程を削減できる。
また、本実施の形態では、外箱平坦部2aおよび内箱平坦部3aには同じ材質の材料が用いられており、外箱平坦部2aおよび内箱平坦部3aは、外箱2および内箱3の内部が真空引きされて密閉された後、局部加熱により結合される。このような構成により、真空断熱筐体1の真空度を向上させることができ、断熱特性も向上させることができる。このため、自動車の内装ドア部品などの樹脂外観部材に適した構成の真空断熱筐体1が得られる。
(実施の形態9)
図18は、実施の形態9における冷蔵庫5の斜視図、図19は、同冷蔵庫の製氷ドア6の前方から見た斜視図、図20は、同冷蔵庫の製氷ドア6の後方から見た斜視図、および、図21は、製氷ドア6の部品展開図である。図22Aから図27は実施の形態9における製氷ドア6の製造に用いられる固定治具50(図25~図27)を示す断面図である。
図18は、実施の形態9における冷蔵庫5の斜視図、図19は、同冷蔵庫の製氷ドア6の前方から見た斜視図、図20は、同冷蔵庫の製氷ドア6の後方から見た斜視図、および、図21は、製氷ドア6の部品展開図である。図22Aから図27は実施の形態9における製氷ドア6の製造に用いられる固定治具50(図25~図27)を示す断面図である。
図18から図21において、冷蔵庫5の製氷ドア6は、製氷ドア外箱7と、製氷ドア内箱8と、ガスケット10と、フレーム11と、製氷ドア内箱8とフレーム11とを固定するフレーム止ネジ12とで構成されている。製氷ドア外箱7および製氷ドア内箱8の内部に製氷ドア断熱材9が挿入され、製氷ドア外箱7および製氷ドア内箱8の内部が真空密閉され、製氷ドア外箱7と製氷ドア内箱8とが接合されて、真空断熱筐体1が形成される。
図22Aから図25において、製氷ドア6の製造設備の主要部である固定治具50は、製氷ドア外箱7を固定する固定上治具13と、製氷ドア内箱8を固定する固定下治具14と、固定上治具13と固定下治具14の開口部近傍に配置された真空膜15および真空ポンプ(図示せず)とで構成されている。
以上のように構成された真空断熱筐体1および製氷ドア6の製造設備の主要部である固定治具50について、以下その動作および作用を説明する。
まず、冷蔵庫5の製氷ドア6は、製氷ドア外箱7と、製氷ドア内箱8と、ガスケット10と、フレーム11と、製氷ドア内箱8およびフレーム11を固定するフレーム止ネジ12とで構成されている。製氷ドア外箱7は、外箱樹脂部7aに外箱ガスバリア部材7bがインサート射出成形されることにより形成されている。また、製氷ドア内箱8は、内箱樹脂部8aに内箱ガスバリア部材8bがインサート射出成形されることにより形成されている。製氷ドア外箱7および製氷ドア内箱8の内部には、連続気泡ウレタンフォームからなる製氷ドア断熱材9が挿入され、製氷ドア外箱7および製氷ドア内箱8の接合部分を局部加熱により溶着し、製氷ドア外箱7および製氷ドア内箱8の内部が真空密閉されることにより、真空断熱筐体1が得られる。
本実施の形態によれば、製氷ドア6において、製氷ドア外箱7および製氷ドア内箱8の接合部分のみが加熱溶着され、溶着部以外の部位は加熱されないので、製氷ドア外箱7および製氷ドア内箱8の変形を最小限に抑えることができる。また、製氷ドア6内部は長期に渡って真空状態が保たれ、製氷ドア6の断熱性能を向上させることができる。さらに、製氷ドア6の外側表面の樹脂の筐体の剛性強度を向上させることができる。加えて、フレーム止ネジ12は内箱樹脂部8a内部に貫通しないように係止されるので、内箱ガスバリア部材8bを傷付けることなくフレーム11を内箱に取り付けることができ、製氷ドア6内部の真空状態を向上させることができる。
以上のように、本実施の形態において、冷蔵庫5の製氷ドア6は、製氷ドア外箱7と、製氷ドア内箱8と、ガスケット10と、フレーム11と、製氷ドア内箱8およびフレーム11を固定するフレーム止ネジ12で構成されている。製氷ドア外箱7は、外箱樹脂部7aに外箱ガスバリア部材7bがインサート射出成形されることにより形成されている。製氷ドア内箱8は、内箱樹脂部8aに内箱ガスバリア部材8bがインサート射出成形されることにより形成されている。製氷ドア断熱材9は、製氷ドア外箱7および製氷ドア内箱8の内部に挿入され、製氷ドア外箱7および製氷ドア内箱8の接合部分のみを局部加熱し、製氷ドア外箱7および製氷ドア内箱8の内部を真空密閉させることにより、真空断熱筐体1の真空断熱構造が得られる。
次に、製氷ドア6の製造方法について説明する。図22Aから図27は、製氷ドア外箱7および製氷ドア内箱8を、真空状態で熱溶着する工程を示している。各図は、製氷ドア6の製造設備の主要部である固定治具50、固定上治具13および固定下治具14の断面図であり、真空状態での溶着方法を示している。
図22Aは、製氷ドア外箱7がセットされる前の固定上治具13の状態を示している。固定上治具13の開口面の周囲には、固定上治具角部13aが設けられている。また、図22Aに示すように、固定上治具13の側面の周囲は真空膜15で覆われている。
図22Bは、製氷ドア内箱8がセットされる前の固定下治具14の状態を示している。固定下治具14には、真空引き孔14aと、真空引き接続口14bおよび固定下治具角部14cとが設けられている。
次に図23Aは、製氷ドア外箱7が固定上治具13にセットされた後の状態を示している。図23Bは、製氷ドア内箱8が固定下治具14にセットされた後の状態を示している。
次に図24Aは、図23Aと同様、製氷ドア外箱7が固定上治具13にセットされた後の状態を示している。図24Bは、製氷ドア内箱8に、多孔性構造体で形成される連続気泡ウレタンフォームである製氷ドア断熱材9が挿入された状態を示している。
次に図25は、固定上治具13および固定下治具14の開口部が縦方向に移動され、真空膜15によって、固定上治具13および固定下治具14の間に密閉空間が形成されている状態を示している。
次に図26は、固定下治具14の真空引き接続口14bに接続された真空装置(図示せず)により、固定治具50の内部が矢印の方向に真空引きされ、固定上治具13および固定下治具14の開口部を覆う真空膜15も内側へ変形されてシールされている状態を示している。
本実施の形態において、製氷ドア外箱7と、製氷ドア内箱8との間に隙間を設けることで、製氷ドア断熱材9の上面から連続気泡ウレタンフォームの真空引きを行うことができるため、真空引きの時間を短縮することができるとともに、確実な真空引きが可能となる。
また、真空膜15は、弾性を持ったフレキシブルな材料で形成されており、固定上治具角部13aおよび固定下治具角部14cが固定治具50に形成されている。このような構成により、固定治具50の内部が真空引きされ、内部圧力が低下し、吸引動作を繰返して使用しても、真空膜15の破れなどの不具合を解消でき、量産化に適した製造方法を提供できる。
次に図27は、固定治具50内部が、設定された真空度まで真空引きされた後、固定下治具14を固定上治具13に向けて上昇させて加圧する。これにより、固定下治具14に固定された製氷ドア内箱8の内箱樹脂部8aに設けられた凸部が、局部的に製氷ドア外箱7の外周で接触し、加熱により、製氷ドア内箱8の内箱樹脂部8aに設けられた凸部と製氷ドア外箱7とが局部的に溶け合い、製氷ドア外箱7および製氷ドア内箱8が一体化される。このようにして真空断熱筐体1が形成される。
加熱は、共振運動による摩擦熱で加熱する超音波溶着、振動運動による摩擦熱で加熱する振動溶着、および、レーザや赤外線など直接熱を加熱する方法などを用いることができる。
また、加熱により製氷ドア外箱7と製氷ドア内箱8とを熱溶着する代わりに、接着剤を用いてもよく、例えばUV(紫外線)やヒータによって化学結合する接着剤や熱硬化する接着剤を用いてもよい。
また、真空状態で製氷ドア外箱7および製氷ドア内箱8を溶着する、本実施の形態の製造方法によって製造された製氷ドア6は、筐体完成後に筐体内部の真空引きを行う必要がないので、排気管を設ける必要がなく、排気管レスの製氷ドア6を提供することができる。
(実施の形態10)
図28は、実施の形態10における真空断熱筐体を用いた自動車60を側面から見た断面図、および、図29は、実施の形態10における真空断熱筐体を用いた自動車60を正面から見た断面図である。
図28は、実施の形態10における真空断熱筐体を用いた自動車60を側面から見た断面図、および、図29は、実施の形態10における真空断熱筐体を用いた自動車60を正面から見た断面図である。
図28および図29において、外部と車体16内部との間、および、車室内空間17と外部との間の熱伝導を防止するために、自動車60の車体16の断熱構造は、エンジンの熱の伝導を防止するボンネット真空断熱筐体18と、車室内真空断熱筐体19と、ドア真空断熱筐体20および天井真空断熱筐体21とで構成されている。特に車室内真空断熱筐体19は、車室内空間17の断熱性を向上させるために、隔壁部19aと、床面部19bと、背面部19cおよび側面部19dとが一連の一体化した真空断熱体として構成されている。
以上のように構成された真空断熱筐体1について、以下その作用を説明する。
図28および図29に示されるように、外部との温度環境が激しく異なる自動車60の車体16において、車室内空間17と外部との間の熱伝導が発生する車体16内の各部に、ボンネット真空断熱筐体18、車室内真空断熱筐体19、隔壁部19a、ドア真空断熱筐体20および天井真空断熱筐体21として真空断熱筐体1が配置されている。このような構成により、自動車60の車内の断熱性能を向上させることができるとともに、車体16の剛性強度も向上させることができる。
また、真空断熱筐体1自体が強度を持つため、組み立て時の取り扱い等においても、ラミネートフィルム式の真空断熱材のようにフィルムの損傷等に細心の注意を払う必要もない。特に、車室内真空断熱筐体19は、車室内空間17の断熱性を向上させるために、隔壁部19aと、床面部19bと、背面部19cおよび側面部19dとが一連の一体化した真空断熱体として構成されているため、断熱材の繋目がなく、熱がリークしにくい。これにより、断熱特性を向上させることができ、車室内空間の冷房および暖房のための動力エネルギー負荷が軽減され、省エネを実現できる。
以上のように、本実施の形態において、自動車60の車体16の断熱構造は、外部と車体16内部との間、および、外部と車室内空間17との間の熱伝導を防止するために、次のように構成されている。すなわち、エンジンの熱の伝導を防止するボンネット真空断熱筐体18と、車室内真空断熱筐体19と、ドア真空断熱筐体20および天井真空断熱筐体21とで構成されている。特に車室内真空断熱筐体19は、車室内への断熱性を向上させるために、隔壁部19aと、床面部19bと、背面部19cおよび側面部19dとを一連の一体化した真空断熱構造体として構成されている。このような構成により、断熱材の繋目がなく熱がリークしないので断熱性を向上させることができ、車室内空間17の冷房および暖房のための動力エネルギー負荷が軽減され、省エネを実現できる。
(実施の形態11)
図30は、実施の形態11におけるヒートポンプ給湯機の貯湯タンク真空断熱筐体22の部品分解図、図31は、実施の形態11におけるヒートポンプ給湯機の貯湯タンク真空断熱筐体22を上から見た断面図、図32は、実施の形態11におけるヒートポンプ給湯機の前面真空断熱筐体24の一部を示す断面図である。
図30は、実施の形態11におけるヒートポンプ給湯機の貯湯タンク真空断熱筐体22の部品分解図、図31は、実施の形態11におけるヒートポンプ給湯機の貯湯タンク真空断熱筐体22を上から見た断面図、図32は、実施の形態11におけるヒートポンプ給湯機の前面真空断熱筐体24の一部を示す断面図である。
図30において、深夜電力により高温のお湯を貯める貯湯タンク(図示せず)を保温するための貯湯タンク真空断熱筐体22の構成は、天面真空断熱筐体23と、前面真空断熱筐体24と、後面真空断熱筐体25および底面真空断熱筐体26とで構成され、貯湯タンクを覆うように構成されている。
以上のように構成された貯湯タンク真空断熱筐体22について、以下その作用を説明する。
貯湯タンク真空断熱筐体22は、貯湯タンクと外部との間の熱伝導を防止するため、貯湯タンクの表面を覆うように構成されている。すなわち、貯湯タンク真空断熱筐体22の形状が、貯湯タンクの表面形状に合うように形成されている。このような構成により、貯湯タンクの断熱性能を向上させることができる。また、貯湯タンク内の湯温の低下を防止することができ、沸き上げ湯量を低減できる。このため、沸き上げに必要な電力の削減、すなわち省エネを実現することができる。
また、図31において、貯湯タンク外観部材29の内部において、前面外箱24aおよび前面内箱24b内に、貯湯タンク断熱材27が挿入され、前面外箱24aおよび前面内箱24bが局部的に加熱接合されて、前面真空断熱筐体24が形成されている。また、後面外箱25aおよび後面内箱25b内に、貯湯タンク断熱材27が挿入され、後面外箱25aおよび後面内箱25bが局部的に加熱接合されて、後面真空断熱筐体25が形成されている。前面真空断熱筐体24および後面真空断熱筐体25は、互いに組み合わされて貯湯タンク28を覆うように構成されている。
また、図32では、前面外箱24aおよび前面内箱24bに、射出成形加工により孔形状が形成されている。このような構成により、貯湯タンク28から延びた貯湯タンク配管部材30を貯湯タンク真空断熱筐体22外へ延出させることが可能となる。
このように、本実施の形態によれば、断熱構造を必要とする対象物の形状に合った、複雑な形状の真空断熱筐体を形成することができ、複雑な形状の対象物に対しても高い断熱性能を実現できる。
以上述べたように、本発明の各実施の形態の真空断熱筐体は、外観を形成する外箱2と、内装を形成する内箱3と、前記外箱2と前記内箱3の内部に配置された断熱材4とを備え、前記外箱2と前記内箱3は、ガスバリア部材で構成され、外箱2および内箱3の内部を真空密閉して接合された構造を特徴としている。これにより、真空断熱材を収容する箱などの容器材を用いることなく、外観部品および内装部品としてそのまま使用できる剛性の真空断熱筐体1を提供できる。
また、三次元形状、鋭角な曲げ形状、部分的な凹凸および貫通孔などの複雑な形状を有する真空断熱筐体1を形成することができるため、真空断熱筐体1の真空度を損なうことなく、高い真空断熱性能および長期信頼性を有する、複雑な形態の真空断熱筐体1を得ることができる。
さらに、本発明の真空断熱筐体1は、従来の真空断熱材のような、コア材の全面がガスバリア性フィルムのような柔らかい材質で覆われた形態を減圧させて得られる構成ではないので、工場内での作業工程および物流時の傷の発生および打痕などに強い真空断熱筐体1が得られる。
また、真空断熱筐体1を構成する断熱材4は、多孔性構造体で形成されたことを特徴としている。これにより、真空断熱筐体1の内部を確実に所定の設定真空度に到達させることができるので、求められる真空断熱性能を実現することができる。
実施の形態1ないし実施の形態8の真空断熱筐体1、実施の形態9の製氷ドア6の製氷ドア外箱7および製氷ドア内箱8、実施の形態10の自動車60のボンネット真空断熱筐体18、車室内真空断熱筐体19、ドア真空断熱筐体20および天井真空断熱筐体21、ならびに、実施の形態11のヒートポンプ給湯機の貯湯タンクに用いられる貯湯タンク真空断熱筐体22は、ガスバリア性を有する単層部材または異材質で形成された積層部材で構成されたことを特徴としている。これにより、外観形状や内装形状によって自由に真空断熱筐体1の形状を変えることができるため、高い断熱性能を有する、複雑な形状の真空断熱構造を提供することができる。
また、真空断熱筐体1において、外箱2および内箱3の接合部分の材質は、同材質で構成されたことを特徴としている。同材質同士が真空密閉された状態で接合されることにより、高い断熱性能が得られる。このような構成により、自動車および冷蔵庫などの内装部材や、貯湯式給湯機の貯湯タンクの断熱材などに適した真空断熱性能を実現することができる。
また、真空断熱筐体1において、外箱2および内箱3の接合部分の材質は、異材質で構成されたことを特徴としている。異材質で構成された接合部分に、どちらの材質にも結合できる接着層を設けることで、外箱2および内箱3の接合部分が真空密閉された状態で接合されるため、高い断熱性能が得られる。このような構成により、自動車および冷蔵庫などに用いられる意匠部材などに適した真空断熱筐体1を提供できる。
また、真空断熱筐体1において、外箱2および内箱3の接合部分は、局部加熱により接合されて筐体が形成されたことを特徴としている。外箱2および内箱3の接合部分近傍のみが局部加熱されて接合されるので、外箱2および内箱3に使用される材料全体への熱影響も最小限に抑えられる。また、外箱2および内箱3が加熱により変形することを防ぐことができる。さらに、外箱2および内箱3に用いられる材料の物性を損なわずに真空断熱筐体1を形成することができるので、長期信頼性を有する断熱性能を実現することができる。
以上のように、本発明は、外観形状または内装形状によって自由に真空断熱筐体の形状を形成することができ、外観部品および内装部品としてそのまま使用できる真空断熱構造を提供することができる。これにより、冷蔵庫、自動車および自動車構成部材、ヒートポンプ式給湯機、電気式湯沸かし器、炊飯器などの調理器具、浴槽、住宅の外壁、屋根その他の住宅用部材などの断熱構造に利用できる。
1 真空断熱筐体
2 外箱
2a 外箱平坦部
2b 外箱樹脂部
2c 外箱ガスバリア部材
2d 外箱ガスバリア平坦部
2e 表面板
3 内箱
3a 内箱平坦部
3b 内箱樹脂部
3c 内箱ガスバリア部材
3d 内箱ガスバリア平坦部
4 断熱材
5 冷蔵庫
6 製氷ドア
7 製氷ドア外箱
7a 外箱樹脂部
7b 外箱ガスバリア部材
8 製氷ドア内箱
8a 内箱樹脂部
8b 内箱ガスバリア部材
9 製氷ドア断熱材
10 ガスケット
11 フレーム
12 フレーム止ネジ
13 固定上治具
13a 固定上治具角部
14 固定下治具
14a 真空引き孔
14b 真空引き接続口
14c 固定下治具角部
15 真空膜
16 車体
17 車室内空間
18 ボンネット真空断熱筐体
19 車室内真空断熱筐体
19a 隔壁部
20 ドア真空断熱筐体
21 天井真空断熱筐体
22 貯湯タンク真空断熱筐体
23 天面真空断熱筐体
24 前面真空断熱筐体
24a 前面外箱
24b 前面内箱
25 後面真空断熱筐体
25a 後面外箱
25b 後面内箱
26 底面真空断熱筐体
27 貯湯タンク断熱材
28 貯湯タンク
29 貯湯タンク外観部材
30 貯湯タンク配管部材
50 固定治具
60 自動車
2 外箱
2a 外箱平坦部
2b 外箱樹脂部
2c 外箱ガスバリア部材
2d 外箱ガスバリア平坦部
2e 表面板
3 内箱
3a 内箱平坦部
3b 内箱樹脂部
3c 内箱ガスバリア部材
3d 内箱ガスバリア平坦部
4 断熱材
5 冷蔵庫
6 製氷ドア
7 製氷ドア外箱
7a 外箱樹脂部
7b 外箱ガスバリア部材
8 製氷ドア内箱
8a 内箱樹脂部
8b 内箱ガスバリア部材
9 製氷ドア断熱材
10 ガスケット
11 フレーム
12 フレーム止ネジ
13 固定上治具
13a 固定上治具角部
14 固定下治具
14a 真空引き孔
14b 真空引き接続口
14c 固定下治具角部
15 真空膜
16 車体
17 車室内空間
18 ボンネット真空断熱筐体
19 車室内真空断熱筐体
19a 隔壁部
20 ドア真空断熱筐体
21 天井真空断熱筐体
22 貯湯タンク真空断熱筐体
23 天面真空断熱筐体
24 前面真空断熱筐体
24a 前面外箱
24b 前面内箱
25 後面真空断熱筐体
25a 後面外箱
25b 後面内箱
26 底面真空断熱筐体
27 貯湯タンク断熱材
28 貯湯タンク
29 貯湯タンク外観部材
30 貯湯タンク配管部材
50 固定治具
60 自動車
Claims (8)
- 外観を形成する外箱と、内装を形成する内箱と、前記外箱および前記内箱の内部に配置された断熱材とを備え、前記外箱と前記内箱は、ガスバリア部材で構成され、前記外箱および前記内箱の内部が真空密閉されて接合された真空断熱筐体。
- 前記断熱材は、多孔性構造体で形成された請求項1に記載の真空断熱筐体。
- 前記断熱材は、連続気泡ウレタンフォームで形成された請求項1に記載の真空断熱筐体。
- 前記ガスバリア部材は、単層部材、または、異材質で形成された積層部材で構成された請求項1~3のいずれか1項に記載の真空断熱筐体。
- 前記外箱と前記内箱のとの接合部の材質は、同材質で構成された請求項1~3のいずれか1項に記載の真空断熱筐体。
- 前記外箱と前記内箱との接合部の材質は、異材質で構成された請求項1~3のいずれか1項に記載の真空断熱筐体。
- 前記外箱と前記内箱との接合部において、前記外箱と前記内箱との間に接着層が設けられた請求項1~3のいずれか1項に記載の真空断熱筐体。
- 前記外箱と前記内箱との接合部は、局部加熱により接合された請求項1~3のいずれか1項に記載の真空断熱筐体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE212014000217.6U DE212014000217U1 (de) | 2013-11-15 | 2014-10-30 | Vakuum-Wärmedämmgehäuse |
CN201490001169.2U CN206369054U (zh) | 2013-11-15 | 2014-10-30 | 真空隔热壳体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013236425A JP2015096740A (ja) | 2013-11-15 | 2013-11-15 | 真空断熱筐体 |
JP2013-236425 | 2013-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015072099A1 true WO2015072099A1 (ja) | 2015-05-21 |
Family
ID=53057052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005483 WO2015072099A1 (ja) | 2013-11-15 | 2014-10-30 | 真空断熱筐体 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015096740A (ja) |
DE (1) | DE212014000217U1 (ja) |
WO (1) | WO2015072099A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017155865A (ja) * | 2016-03-02 | 2017-09-07 | パナソニックIpマネジメント株式会社 | 真空断熱体、それを備える断熱機器、及び真空断熱体の製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108368962A (zh) * | 2015-11-25 | 2018-08-03 | 松下知识产权经营株式会社 | 真空绝热体以及使用其的绝热容器、绝热壁和冷藏库 |
JP2017106526A (ja) * | 2015-12-09 | 2017-06-15 | パナソニックIpマネジメント株式会社 | 真空断熱体、それを備える断熱機器、及び真空断熱体の製造方法 |
JP2018168949A (ja) * | 2017-03-30 | 2018-11-01 | パナソニックIpマネジメント株式会社 | 真空断熱筐体および冷蔵庫 |
JP2018169097A (ja) * | 2017-03-30 | 2018-11-01 | パナソニックIpマネジメント株式会社 | 真空断熱筐体および冷蔵庫 |
WO2018181440A1 (ja) * | 2017-03-30 | 2018-10-04 | パナソニックIpマネジメント株式会社 | 真空断熱筐体、およびこれを用いた冷蔵庫 |
JP6920633B2 (ja) * | 2017-07-10 | 2021-08-18 | パナソニックIpマネジメント株式会社 | 真空断熱筐体及び冷蔵庫 |
FR3085128B1 (fr) * | 2018-08-22 | 2022-01-07 | Hutchinson | Element thermoforme 3d |
JP7194899B2 (ja) * | 2020-02-28 | 2022-12-23 | パナソニックIpマネジメント株式会社 | 真空断熱体及びこの検査システム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007085696A (ja) * | 2005-09-26 | 2007-04-05 | Matsushita Electric Ind Co Ltd | 真空断熱箱体 |
JP2009168202A (ja) * | 2008-01-18 | 2009-07-30 | Panasonic Corp | 真空断熱箱体 |
JP2009281523A (ja) * | 2008-05-23 | 2009-12-03 | Panasonic Corp | 真空断熱箱体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6166068A (ja) | 1984-09-10 | 1986-04-04 | 株式会社日立製作所 | 真空断熱材 |
JP3811963B2 (ja) | 1995-03-09 | 2006-08-23 | 株式会社日立製作所 | 冷蔵庫 |
JP4661670B2 (ja) | 2006-04-20 | 2011-03-30 | 株式会社日立製作所 | 断熱体 |
DE102009002800A1 (de) * | 2009-05-04 | 2010-11-18 | BSH Bosch und Siemens Hausgeräte GmbH | Haushaltskältegerät und wärmeisolierende Wandung eines Haushaltskältegerätes |
-
2013
- 2013-11-15 JP JP2013236425A patent/JP2015096740A/ja active Pending
-
2014
- 2014-10-30 WO PCT/JP2014/005483 patent/WO2015072099A1/ja active Application Filing
- 2014-10-30 DE DE212014000217.6U patent/DE212014000217U1/de active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007085696A (ja) * | 2005-09-26 | 2007-04-05 | Matsushita Electric Ind Co Ltd | 真空断熱箱体 |
JP2009168202A (ja) * | 2008-01-18 | 2009-07-30 | Panasonic Corp | 真空断熱箱体 |
JP2009281523A (ja) * | 2008-05-23 | 2009-12-03 | Panasonic Corp | 真空断熱箱体 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017155865A (ja) * | 2016-03-02 | 2017-09-07 | パナソニックIpマネジメント株式会社 | 真空断熱体、それを備える断熱機器、及び真空断熱体の製造方法 |
WO2017150494A1 (ja) * | 2016-03-02 | 2017-09-08 | パナソニックIpマネジメント株式会社 | 真空断熱体、これを備える断熱機器、及び真空断熱体の製造方法 |
US20180313492A1 (en) * | 2016-03-02 | 2018-11-01 | Panasonic Intellectual Property Management Co., Ltd. | Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator |
US10539265B2 (en) * | 2016-03-02 | 2020-01-21 | Panasonic Intellectual Property Management Co., Ltd. | Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator |
Also Published As
Publication number | Publication date |
---|---|
DE212014000217U1 (de) | 2016-07-20 |
JP2015096740A (ja) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015072099A1 (ja) | 真空断熱筐体 | |
US10619912B2 (en) | Multi-layer gas barrier materials for vacuum insulated structure | |
KR100617666B1 (ko) | 냉장고 | |
US20060088685A1 (en) | Vacuum insulation panel and refrigerator incorporating the same | |
JP2013002484A (ja) | 真空断熱材及びそれを用いた冷蔵庫 | |
JP2013088036A (ja) | 断熱箱体、冷蔵庫及び貯湯式給湯器 | |
JP2014534101A (ja) | 自動車用の作動流体タンク | |
JP2009024922A (ja) | 冷蔵庫 | |
EP3397909B1 (en) | Refrigerator cabinet and method of forming a vacuum insulated refrigerator cabinet structure | |
JP2013124724A (ja) | 真空断熱材、真空断熱材を用いた断熱箱、真空断熱材を用いた機器、及び真空断熱材の製造方法 | |
JP7285416B2 (ja) | 冷蔵庫扉及び冷蔵庫 | |
JP2016080281A (ja) | 断熱箱体及び断熱扉 | |
JP2013249973A (ja) | 冷蔵庫 | |
JP4781235B2 (ja) | 真空断熱材と冷蔵庫 | |
US20110047934A1 (en) | Flexible vacuum chamber | |
TWI599737B (zh) | 真空隔熱材料、隔熱箱以及真空隔熱材料之製造方法 | |
WO2014183622A1 (zh) | 具有多个单位空腔的真空保温层及其制作方法 | |
CN206369054U (zh) | 真空隔热壳体 | |
JP2003335185A (ja) | 自動車 | |
JP7499435B2 (ja) | 真空断熱体ならびにそれを用いた断熱容器および断熱壁 | |
JP7139480B2 (ja) | 冷蔵庫 | |
JP2015055368A (ja) | 真空断熱材及びそれを用いた冷蔵庫 | |
JP5982276B2 (ja) | 真空断熱材及び真空断熱材を用いた冷蔵庫 | |
JP3938439B2 (ja) | 冷蔵庫及びそれに用いる接続板の製造方法 | |
JP4055293B2 (ja) | 断熱構造体、断熱構造体の製造方法及び冷蔵庫 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14861991 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2120140002176 Country of ref document: DE Ref document number: 212014000217 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14861991 Country of ref document: EP Kind code of ref document: A1 |