WO2014183622A1 - 具有多个单位空腔的真空保温层及其制作方法 - Google Patents

具有多个单位空腔的真空保温层及其制作方法 Download PDF

Info

Publication number
WO2014183622A1
WO2014183622A1 PCT/CN2014/077280 CN2014077280W WO2014183622A1 WO 2014183622 A1 WO2014183622 A1 WO 2014183622A1 CN 2014077280 W CN2014077280 W CN 2014077280W WO 2014183622 A1 WO2014183622 A1 WO 2014183622A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
layer
unit
sealing
vacuum
Prior art date
Application number
PCT/CN2014/077280
Other languages
English (en)
French (fr)
Inventor
徐传宾
Original Assignee
开县人人有余科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 开县人人有余科技有限公司 filed Critical 开县人人有余科技有限公司
Publication of WO2014183622A1 publication Critical patent/WO2014183622A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the present invention relates to a vacuum insulation layer having a plurality of unit cavities, particularly a multi-sealing unit having high strength, seamlessly connecting and covering each other. Cavity vacuum insulation layer and its manufacturing method. BACKGROUND OF THE INVENTION
  • Most of the insulation structures on the market today use a foam layer, that is, a foamed insulation layer such as polyester is filled between two sheets, and a hollow structure is also provided, and the heat preservation performance is relatively good, but the resource consumption is huge and the weather is deteriorated.
  • Today, even the use of FRP as the foam layer of the splint or the hollow layer can no longer meet the needs of sustainable future insulation products.
  • vacuum layers such as vacuum glass or other laminated fiber insulation boxes.
  • the insulation performance is much better than that of foam or hollow layer. It should be the best thermal insulation layer on the market, but its weakness. It is also obvious that the damage resistance is poor. Once a little damage occurs, the whole product loses vacuum performance, and the process is relatively complicated, the production energy consumption is high, and the material unit cost is high, thus affecting its large-scale application.
  • the insulation structure currently used also affects the limitations of the insulation layer production of automobiles, refrigerators, refrigerated containers, cold storages, and buildings, and does not meet the needs of people for higher insulation requirements.
  • the thermal insulation structure directly determines the distribution efficiency, that is, the refrigerated truck provides cooling or heating conditions to the refrigerated compartment while maintaining the temperature in the compartment while transporting.
  • the problem to be solved by the present invention is to provide a vacuum insulation layer which is required to have extremely high structural strength and airtightness.
  • the second technical problem to be solved by the present invention is to provide a method for manufacturing a vacuum insulation layer having a plurality of unit cavities, which is required to produce a vacuum insulation layer having a large structural strength and a high gas seal. .
  • One of the objects of the present invention is to provide a vacuum insulation layer having a plurality of unit cavities, including an insulation layer body, the insulation layer body comprising a front seal layer and a back seal layer, and a front seal layer and a back seal, respectively.
  • Forming a side wall of the periphery of the layer, the side wall and the front and back sealing layers form a closed main cavity, and the main cavity is provided with a criss-crossing isolation sealing strip, and the isolating sealing strip will be the main Separating the cavity into a plurality of independent sealed unit cavities, so that the heat insulating layer forms a vacuum heat insulating structural layer composed of a plurality of unit cavities, and the front sealing layer and the back sealing layer are respectively disposed to protrude into the cavity
  • the mesh-like skeleton enhances the structural force of the sealing layer.
  • a cavity isolation layer is disposed between the front wall and the front and back sealing layers forming a closed main cavity between the side wall and the front and back sealing layers, the cavity isolation layer Separating the main cavity into a front cavity and a rear cavity, wherein the front cavity or the rear cavity is provided with a criss-crossing isolating sealing strip, which separates the cavity into a plurality of independent sealed a unit cavity, and a support member is disposed in the other cavity to prevent the cavity in which it is deformed to form a connected vacuum cavity, the cavity isolation layer being respectively provided with a front cavity and a rear cavity convex A mesh-like skeleton is formed to enhance the structural force of the cavity isolation layer.
  • the front cavity and the rear cavity are provided with criss-crossing isolation sealing strips, which separate the front cavity and the rear cavity into a plurality of independent
  • the sealed unit cavity enhances the insulation performance of the insulation layer body and enhances the practicability and durability of the insulation layer.
  • the front and back sealing layers and the cavity isolation layer leave a gap between the lattice-like skeleton protruding in the cavity and the skeleton opposite thereto to enhance the structural strength while making the unit There is more actual vacuum space in the cavity.
  • the arrangement of the unit cavities in the front cavity and the rear cavity are arranged in a staggered manner at the joint portion of the cavity separation layer to make the front cavity or the rear cavity.
  • the space space of the unit cavity can cover the isolation sealing strip of the unit cavity of the rear cavity or the front cavity, thereby reducing the heat conduction effect of the isolation sealing strip in the cavity and enhancing the structural force of the insulation layer.
  • the space spaces of the unit cavities of the front cavity and the rear cavity cover each other's isolation sealing strips, and the isolation sealing strips are covered by the space of the unit cavity and then vertically on both sides thereof.
  • the vacuum space is equal to maintain the uniformity of the overall performance of the insulation layer body and facilitate standard production.
  • the unit cavity is square or rectangular, and the space of the space is also square and rectangular.
  • the isolation sealing strip and the side wall are respectively disposed on the front sealing layer and the back sealing layer and the cavity isolation layer, and a protrusion is disposed on one side of the joint portion, and the groove is disposed on the other side. And bonding with the protrusions to strengthen the bonding force between the joints.
  • the protrusion is one of a circular arc shape, a square shape or a cone shape, and the groove is formed into a circular arc shape, a square shape or a tapered shape which is adapted to the shape of the protrusion.
  • the groove of the insulating sealing strip is provided with a hoop to increase the protrusion and the groove.
  • the combined bonding area of the two isolating sealing strips strengthens the bonding strength to ensure the practicability and durability of the insulating layer body.
  • the hoop position is provided with a concave position capable of accommodating the wedging sealing strip to further increase the bonding area of the bonding sides and strengthen the strength of the insulating layer body.
  • the isolating sealing strip between the front sealing layer and the back sealing layer and the cavity separating layer and the joint portion of the side wall are permanently after being evacuated in the evacuation vacuum chamber. Bonding to perform a non-porous seal on the body of the insulation layer to reduce the risk of gas leakage from the body of the insulation layer.
  • the vacuum insulation layer comprises a plurality of insulation layer bodies, and in order to reduce the influence of the blind spots in the non-vacuum area left when the insulation layer body is combined, the cover layer is disposed on one side of the insulation layer body, and the other side is provided with The coverage bit, the combined coverage area can cover the non-vacuum area blind spot of the covered position and its combination part, so as to reduce the influence of the blind spot of the non-vacuum area of the combined part on the protection object.
  • a second object of the present invention provides a method for fabricating a vacuum insulation layer having a plurality of unit cavities, comprising the steps of: S1) molding a front sealing layer, a back sealing layer and a cavity isolation layer by molding; The isolation sealing strip and the side wall are respectively symmetrically disposed on the sealing layer and the cavity isolation layer, and the side walls of each side and the isolation sealing strip are formed together into a front unit, a cavity unit and a back unit;
  • grooves and protrusions are respectively formed on the opposite end faces of the two side walls, and grooves and protrusions are respectively formed on the end faces of the pair of oppositely disposed sealing strips, and the protrusions and the grooves are selected.
  • One of the surfaces is coated with an unsaturated resin mixed with a promoter, and the surface of the other one is coated with an unsaturated resin mixed with a curing agent. Then, the front unit, the rear unit and the cavity unit are fed into the vacuum chamber and placed horizontally by the fixing means in the vacuum chamber, and the protrusions and the grooves are fixed in one-to-one correspondence and a suction gap is left;
  • step S1 the front sealing layer, the cavity separating layer and the back sealing layer are separately formed from the respective upper side walls and the isolating sealing strip, and then connected to the other part through the unsaturated resin; or the side is The wall and the isolating sealing strip are integrally formed with the sealing layer within the abrasive article.
  • step S2 specifically means that the grooved side wall and the isolating sealing strip are disposed below the raised side wall and the isolating sealing strip.
  • the heating and heat insulating layer body adopts the following method: opening the inflation valve and injecting high temperature gas into the vacuum chamber.
  • a vacuum insulation layer having a plurality of unit cavities of the present invention comprising an insulation layer body, said heat preservation
  • the sidewall of the layer body and the closed main cavity formed between the front sealing layer and the back sealing layer are provided with a cavity isolation layer, and the cavity isolation layer separates the main cavity into a front cavity and a back cavity.
  • the front cavity or the rear cavity is provided with a criss-crossing isolation sealing strip and isolated into a plurality of independent sealed unit cavities so that the main cavity forms a vacuum insulation with a plurality of unit cavities
  • the structure which separates a main cavity into a front cavity or a rear cavity and is isolated into a plurality of independent sealed standard unit cavities, obviously enhances the thermal insulation performance of the insulation layer body, and more unit cavities are
  • the damage resistance provides a strong guarantee, and the isolation seals provided in the front cavity and the rear also enhance the overall structural strength of the insulation body.
  • the advantage of multiple closed unit cavities is that when the carrier is subjected to impact or other damage, one or more parts are damaged and leaking, thereby losing the vacuum performance.
  • the unit cavity Since the unit cavity is independently sealed, it will not be adjacent to the unit. The cavity is damaged, so the unit vacancies outside the damaged unit cavity still provide effective vacuum insulation protection for the items to be insulated, which makes up for the defects of today's vacuum products.
  • the front sealing layer and the back sealing layer and the cavity isolation layer are provided with a convex grid-like skeleton in each cavity to strengthen the structural strength of the sealing layer, and the actual vacuum space left by the opposite direction reflects the vacuum meaning, and realizes The practicality and economy of vacuum insulation products.
  • the unit cavity uniform standard provides conditions for large-scale production.
  • the space space of the unit cavity of one of the cavities of the vacuum insulation layer of the present invention having a plurality of unit cavities covers the isolation seal of the unit cavity of the other cavity, the front cavity and the rear cavity
  • the inner unit cavity can cover 1/2 part of the other side. This covering arrangement not only compensates for the thermal insulation defects of the other isolation sealing strip, but also enhances the overall structural strength of the insulating layer body and maximizes the balance of its comprehensive performance. Sexuality also emphasizes the reasons for standardization to promote large-scale production, and further provides feasibility for large-scale production.
  • the front sealing layer of the vacuum insulation layer having a plurality of unit cavities of the present invention and the joint portions of the back sealing layer and the cavity isolation layer are respectively provided with protrusions and grooves, and are provided in the isolation seal of the groove.
  • a hoop is placed on the strip.
  • the bonding feature of the convex wedge groove enhances the bonding strength of the joint, and the hoop position provided at the joint further increases the bonding area of the joint, further strengthening the bonding strength and enhancing the practicability of the insulating layer body. And durability.
  • the vacuum insulation layer of the invention having a plurality of unit cavities adopts a non-porous seal, and after the suction is achieved by the special vacuum chamber under the cooperation of the accessory, the starter seals the front seal layer and the back.
  • the surface sealing layer is combined with the side wall and the isolation sealing strip provided on the cavity isolation layer to realize the feature of the non-porous sealing.
  • the insulation layer body without the air venting hole avoids the risk of air leakage caused by the provision of the air venting hole, and further enhances the practicability and durability of the insulation layer body.
  • the manufacturing method of the present invention has the advantages of adopting a vacuum chamber-based evacuation processing method, which can complete the pumping, sealing, and setting processes together, thereby improving production efficiency.
  • the manufacturing method of the present invention has the advantages of speeding up the complete curing of the resin, and it takes a few days or weeks or even a year or so for the conventional unsaturated resin to completely cure, and shortens to less than one day. carry out.
  • Figure 1 is a front elevational view of the present invention.
  • Figure 2 is a front perspective structural view of the present invention.
  • Figure 3 is a side cross-sectional view of the present invention.
  • Figure 4 is another side cross-sectional view of the present invention.
  • Figure 5 is a front elevational view of the unit cavity of the present invention.
  • Figure 6 is a side cross-sectional view of the unit cavity of the present invention.
  • Figure ⁇ is a schematic diagram of the planar combination of the present invention.
  • Figure 8 is a schematic illustration of another planar combination of the present invention.
  • Figure 9 is a schematic illustration of a circular combination of the present invention.
  • Fig. 10 is a structural schematic view showing a vacuuming apparatus used in the vacuum insulation layer manufacturing process in the second embodiment of the present invention.
  • Embodiment 1 A vacuum insulation layer having a plurality of unit cavities
  • the vacuum insulation layer having a plurality of unit cavities of the present invention comprises an insulation layer body 1, and the insulation layer body 1 is provided on the front and back seal layers 10a, 10c and a front side sealing layer and a side wall 2 connected to the periphery of the back sealing layer 10a, 10c, the side wall and the front sealing layer and the back sealing layer 10a, 10c form a closed main cavity, and the main cavity is arranged There is a criss-crossing isolating sealing strip 2a, which separates the main cavity formed by the front sealing layer and the back sealing layer 10a, 10c and the side wall 2 into a plurality of independent sealed unit cavities 3,
  • the advantage of isolating one main cavity into a plurality of closed unit cavities 3 is that when the carrier is subjected to impact or other damage, one or more portions thereof The air leakage is lost and the vacuum performance is lost.
  • the unit cavity 3 Since the unit cavity 3 is independently sealed, it does not damage the adjacent unit cavity 3, so the unit other than the unit cavity 3 is destroyed.
  • the vacancy 3 still protects the insulated article from vacuum insulation, and the isolating sealing strip 2a disposed therein can also enhance the structural force of the thermal insulation layer, thereby enhancing the durability and practicability of the thermal insulation layer, the front sealing layer and the back surface.
  • the sealing layer 10a, 10c is provided with a convex grid-like skeleton 4 in the main cavity to enhance the structural strength of the front sealing layer and the back sealing layer 10a, 10c, expand the effective space in the cavity, and increase the vacuum space.
  • the utility model has the advantages of improving the heat preservation and energy-saving effect of the vacuum insulation layer with a plurality of unit cavities of the invention, and also saving materials.
  • the side wall 2 and the front sealing layer and the back sealing layer 10a, 10c are formed between the sealed main cavity front sealing layer and the back sealing layer 10a, 10c.
  • a cavity isolation layer 10b, the cavity isolation layer 10b isolating the main cavity into a front cavity and a rear cavity, and the front cavity or the rear cavity is provided with a criss-crossing isolation sealing strip 2a,
  • the isolating sealing strip 2a separates the front cavity or the rear cavity into a plurality of independent closed unit cavities 3, and the rear cavity or the front cavity can be provided with supporting members according to actual needs, so as to form a connected vacuum space.
  • the chamber is not provided with a separate closed unit cavity.
  • the unit cavity 3 in both the front cavity and the rear cavity. Separating the main cavity into the front cavity and the back cavity, although the thickness of the side wall 2 is only appropriately increased, it is self-evident to enhance the thermal insulation performance and the damage resistance of the body 1 of the insulation layer.
  • the damage resistance of the product to maintain the vacuum performance.
  • the provision of the front cavity and the rear cavity not only increases the vacuum space in the body 1 of the insulation layer, but also significantly enhances the insulation performance of the body 1 of the insulation layer.
  • the unit cavity 3 provides a strong guarantee for its damage resistance, and the isolation seal 2a provided in the front cavity and the rear portion also strengthens the overall structural strength of the insulation layer body 1.
  • the cavity isolation layer is provided with a grid-like skeleton 4 protruding from the front cavity and the rear cavity to enhance the overall structural strength, further enhancing the practicability and durability of the insulation layer body 1, and also saving materials. This in turn reduces costs.
  • the insulation layer body 1 In order to further enhance the heat insulating property of the insulating layer body 1, a gap is left between the mesh-like skeleton 4 provided on the front sealing layer and the back sealing layers 10a, 10c and the lattice-like skeleton 4 provided on the cavity separating layer 10b. In order to have more actual vacuum space for the front cavity and the rear cavity, the insulation layer body 1 has a true vacuum performance.
  • the arrangement of the unit cavities 3 in the front and rear cavities is interlaced at the joint portion of the cavity separating layer 10b. Arranged in such a manner that the space of the unit cavity 3a or 3b in the front cavity or the rear cavity can cover the isolation seal 2a or 2b of the rear cavity or the front cavity, thereby reducing the isolation seal 2a in the cavity.
  • the heat conduction affects and enhances the structural force of the body of the insulation layer.
  • the isolation sealing strips 2a of the respective unit cavities 3 are relatively thermally conductive, and the misalignment arrangement can compensate for this defect, that is, it is disposed on the front cavity of the cavity isolation layer 10b.
  • the isolating sealing strip 2a of the unit cavity 3a is disposed on the space of the unit vacancies 3b on the cavity behind the cavity separating layer 10b, so that in addition to the necessary contact points, the vertical surface of the insulating portion of the insulating layer body 1 is isolated.
  • each unit cavity 3 is provided with an isolating sealing strip 2a on the back surface of the cavity separating layer 10b, the interphase support makes the structural strength of the insulating layer body 1 higher, and the reinforcement is enhanced.
  • the space space is the space inside the sealing strip 2a around the periphery of the unit cavity 3, and the shape of the space space is the same as that of the unit cavity.
  • the misalignment intention can be realized to the maximum extent, that is, the misalignment of the unit vacancies 3 arranged inwardly by the upper and lower sides of the cavity or the left and right side walls 1/2 standard space space makes the space
  • the unit cavity 3 in the cavity and the rear cavity can cover the 1/2 part of the other side, and the body of the insulation layer is realized.
  • the balance performance of 1 is balanced, and the structural strength is guaranteed to the utmost extent. What is more important is that the unit cavity 3 of the same standard has a standard for the production materials, minimizing the production process and making the large-scale production more efficient. It also brings space to reduce costs.
  • the misalignment arrangement can be designed from the outside to the inside, or from the inside to the outside. Specifically, if a standard unit cavity 3 in which a cavity in the insulating layer body 1 is horizontally or longitudinally arranged is an odd number, another cavity in the body of the insulating layer is uniformly misaligned and covered in an outer direction.
  • a standard space space is cut transversely or longitudinally with the isolation sealing strip 2a inwardly along the side wall 2, and then the unit cavity 3 is set inwardly from the isolation sealing strip 2a, that is, the side wall 2 is oriented
  • the inner cover is arranged in an outwardly-inward manner; if a cavity in the body 1 of the insulating layer 1 is evenly arranged in a horizontal or vertical direction, the other cavity in the body is evenly misaligned and covered.
  • the method is optimal from the inside to the outside, that is, the center intersection of the lateral and longitudinal isolation sealing strips 2a in the cavity in which the standard unit cavity 3 is disposed is taken as a coordinate, and a standard unit cavity 3 is first set at the center of the coordinate.
  • the lateral or longitudinal isolating sealing strip 2a of the unit cavity 3 is parallel to the upper and lower sides or the left and right sides of the side wall 2, and the space space is interleaved with the insulating sealing strip 2b of the other cavity.
  • Uniform coverage is applied, that is, after the isolation sealing strip 2a is covered, the space on both sides thereof is equal, and then the unit cavity 3 is set from the inside to the outside with the lateral or longitudinal isolation sealing strip 2a as a starting point, that is, the center is outwardly covered as a starting point.
  • a starting point that is, the center is outwardly covered as a starting point.
  • the unit cavity is square, and may be other shapes such as a rectangle or a diamond.
  • the square of the unit cavity 3 is optimal. standard.
  • the standard unit cavity 3 is a vacuum space configuration capable of resisting air pressure in the environment and being able to withstand normal damage tests such as other extrusion, shock and collision in the environment, and maintaining the internal vacuum state unaffected by the vacuum space.
  • the sealing performance of the sealing layer and the isolating sealing strip and the strength of the rigid structure determine the overall structural strength of the integrated insulating layer body 1 under the required degree of vacuum.
  • the largest space that can be isolated is the ideal unit cavity, and the unit cavity 3 is based on this ideal standard.
  • the joint portion of the side wall 2 and the isolating sealing strip 2a is provided with a projection 12 and a groove 13, and the projection has a circular arc shape.
  • the groove is formed in a circular arc shape, a square shape or a tapered shape to match the shape of the protrusion to strengthen the bonding strength of the joint portion.
  • the joint portion is a joint position of the front seal layer and the back seal layer 10a, 10c and the side wall 2 and the isolating seal strip 2a provided on the cavity partition layer 10b, and the unit is isolated due to the isolation seal 2a provided in the main cavity.
  • the cavity 3 is independently sealed, so there are only two methods for processing the air pumping.
  • the vacuum processing is completed, and then the sidewall 2 and the isolating sealing strip 2a are respectively disposed on the front sealing layer and the back sealing layer 10a, 10c and the cavity separating layer 10b, that is, the insulating layer body 1 is separately fabricated in multiple parts, and then
  • the evacuation process is carried out in a dedicated vacuum chamber and sealed in the vacuum chamber, that is, it is not necessary to provide a suction hole in the unit cavity 3.
  • the invention preferably adopts a method in which no air venting hole is provided, and the advantage is obvious.
  • the air venting hole is provided in the sealing layer of the unit cavity 3, and is sealed after the air pumping process is completed, so that each unit cavity 3 is increased. Due to the non-damaged defects of the air leakage, it is unfavorable for the large-scale promotion of energy-saving technology.
  • the suction and sealing process in the vacuum chamber without the suction hole and the accessory fitting method will not have such defects, and the insulation layer is added. The practicality and durability of the body.
  • the side wall 2 and the isolating sealing strip 2a may be integrally provided on the front and back sealing layers 10a, 10c and the cavity separating layer 10b, or may be separately provided in two parts.
  • the side wall 2 and the isolating sealing strip 2a are respectively disposed on the front sealing layer and the back sealing layer 10a in two parts.
  • 10c and the front and back surfaces of the cavity separating layer 10b, and a convex protrusion 12 is disposed on one of the combined sides thereof, and the other side is provided with the groove 13 to bond with the protrusion 12 to enhance the bonding force of the joint portion.
  • the groove 13 of the joint portion is provided with a hoop 11 to increase the joint surface of the joint portion, and the hoop position 11 is disposed on one side or both sides of the groove 13 and left
  • the outer sealing strip 2a is accommodated in the recess 14 and the recess 14 can accommodate the isolating sealing strip 2a. Since the insulating strip 2a is too thick, the insulating effect of the insulating layer body 1 is affected, but the thinning may also be combined. The strength of the part is not enough, so it is necessary to set the hoop 11 at the joint to increase the joint area, while hooping
  • the recess 14 of the 13 also facilitates the sealing design condition.
  • the side wall 2 does not consider the hoop 11 on the side of the outer side of the main cavity, but it is conceivable to appropriately increase the thickness of the side wall 2 and the inner hoop 11 to reinforce the insulating layer body. 1
  • the strength of the side wall In order to allow sufficient operation time in the pumping process, the adhesive resin used in the joint portion is an A- and B-reactive adhesive. In order to further enhance the damage resistance of the insulating layer body 1, the present invention employs a molding technique.
  • the front sealing layer and the back sealing layer 10a, 10c are separated from the cavity.
  • the thickness of the layer 10b is not very scientific, and a support column may be provided to strengthen the support strength between the front and back sealing layers 10a, 10c and the cavity separation layer 10b.
  • two or more layers of the cavity isolation layer 10b may be disposed in the main cavity of the insulation layer body 1, that is, the thickness of the sidewall 2 is increased and the insulation layer body of the multilayer cavity is designed to further satisfy the The need to protect objects.
  • a multi-layer insulation body 1 can be used to enhance the insulation effect.
  • the insulation layer body 1 can be a heat-insulating structure of a shape such as a plane, a cylinder or a cone, such as heat preservation.
  • the container body and the refrigerated car body, the refrigerator case, the cold storage, and the insulation layer of the building, the food preservation box, etc., which need good insulation objects, can be made as a whole when necessary, or can be combined in multiple parts.
  • the joints can be designed to cover each other, that is, the combination of one of the insulation layers 1 is provided with a vacuum cavity cover.
  • Bit 5 in the combined position of another insulating layer body 1 in combination therewith, is provided with covered spaces 6 having vacuum cavities to interlace them to reduce the blind spots of the vacuum regions of the combined bits.
  • the vacuum insulation layer having multiple unit vacancies of the present invention can be used as the main body of the object to be protected, such as a food preservation box, a refrigerator, and an emergency vacuum insulation combination tent; and a decorative layer can also be added to protect the required Objects, such as the exterior of the building's exterior insulation, interior wall insulation, sound insulation and flooring require a visually pleasing surface layer; they can also be used as a mezzanine, such as refrigerated trucks and other motor vehicles, insulated containers, refrigerators and Doors and other high-strength insulation layers are required, For example, the car needs to be transported or mobilized. This cannot be ensured by the insulation layer body 1 alone. This requires a sandwich structure and an accessory inside and outside the compartment of the car to meet the comprehensive strength requirements of the car body.
  • the insulation layer body 1 is combined and bonded in the interlayer, so that the refrigerated truck compartment has an excellent thermal insulation effect.
  • the front and back sealing layers 10a, 10c and the cavity isolation layer 10b therebetween are made of FRP technology or other fiber reinforcement processes, but
  • the current FRP-made products have a fatal shortcoming, that is, the unshaped products such as flat or straight rods have poor stability in shape, are not ideal for practical use, and have poor plasticity.
  • the sealing layer 10 is made of glass fiber and hard plant sheets, which satisfies both
  • the plasticity requirements of the sealing layer also increase the use of the material, especially the large-scale use of plant sheets will facilitate the modernization of agricultural production.
  • some sheets, such as bamboo require pyrolysis to achieve better adhesion.
  • carbon fiber reinforcement should be used to ensure better safety.
  • Embodiment 2 Method for manufacturing vacuum insulation layer having a plurality of unit cavities
  • a second object of the present invention is to provide a method of fabricating the above vacuum insulation layer having a plurality of unit cavities, comprising the steps of:
  • the front sealing layer, the back sealing layer and the cavity separating layer by molding, and forming the side wall of each side and the isolating sealing strip together into a front unit, a cavity unit and a rear unit, the sealing layer and the side Wall and insulation seals have good air tightness and strong resistance to damage.
  • the front sealing layer, the cavity separating layer and the back sealing layer may be separately formed from the respective upper side wall and the isolating sealing strip, and then connected to the other part through the unsaturated resin; or the side wall And the isolating sealing strip and the sealing layer are completed together in the grinding tool.
  • the specific production process of the existing fiber reinforced technology includes glass fiber, plant fiber, metal fiber or polyester fiber and unsaturated resin or other resin composite production can be achieved, but requires good air tightness and strong damage resistance Performance
  • the 101 is placed horizontally and fixed one by one and left with a suction gap.
  • horizontally placing the front surface, the cavity and the back unit helps prevent the unsaturated resin from flowing downward, and the resin is relatively viscous.
  • the unsaturated resin applied to the horizontally placed side walls and the isolating sealing strip has strong interlinking properties, the adsorption force can offset the anti-gravity traction, while the oblique or vertical unsaturated resin may go down Flow, because the left and right adjacent molecules of the horizontal unsaturated resin are the gravity traction of the clumps against the vertical direction, while the diagonally and vertically placed side walls and the adjacent upper molecules of the unsaturated resin on the isolating seals will The gravity is superimposed on the molecules below the molecules, so the linking force between the unsaturated resin molecules may not be sufficient to eliminate the force other than gravity, and the thickness of the unsaturated resin on the sidewall and the isolation sealing strip is uneven. In turn, affecting the bonding performance;
  • the outer wall of the vacuum chamber is wrapped with the body of the heat insulating layer of the invention or a thick hollow insulating layer of foam or foam to prevent excessive heat loss in the vacuum chamber.
  • the temperature in the heating vacuum chamber can be directly heated without using gas, which can ensure the vacuum environment outside the body of the insulation layer and prevent the possibility of air leakage due to insufficient curing strength of the side wall, but for large vacuum chambers, direct heating equipment Cost and heating energy consumption are higher than gas heating methods;
  • vacuum is currently the best material for insulation and sound insulation.
  • the main reason for the lack of large-scale application is the high cost and poor damage resistance of existing vacuum products.
  • An important reason for this factor is the production.
  • the defect of the process, that is, the vacuum products used in the past are perforated seals with a single cavity. the way.
  • the advantage of the insulating layer body of the present invention is that the risk of damaged air leakage is shared by a plurality of unit cavities, and more importantly, even if one or most of the unit cavities are damaged and leaked, the remaining hollow is
  • the thermal insulation performance of the structure is also better than that of the foam insulation layer, and the strength of the support structure is much higher, so its practicability is the best in the prior art, and provides a structural basis for the large-scale application of vacuum insulation and sound insulation products.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

一种具有多个单位空腔的真空保温层,包括保温层本体(1),所述保温层本体(1)包括正面密封层(10a)和背面密封层(10c)以及和密封层周边连接形成的主空腔的侧壁(2),所述主空腔内的正面密封层(10a)和背面密封层(10c)之间设置有空腔隔离层(10b)并将主空腔隔离成前空腔和后空腔,所述前空腔和后空腔内分别设置有纵横交错的隔离密封条(2a)并将其所在空腔隔离成多个独立的密闭的单位空腔(3),设置多个独立的密闭的标准单位空腔(3),明显增强了保温层本体(1)的保温性能,更多的单位空腔(3)更是对其抗损性能提供了有力的保证,而且前空腔和后空腔内设置的隔离密封条也加强了保温层本体(1)的整体结构强度。该真空保温层的制作方法,其采用无孔并永久密封工艺,使该真空保温层具有较高的密封性能和较强的结构强度。

Description

具有多个单位空腔的真空保温层及其制作方法 技术领域 本发明涉及一种具有多个单位空腔的真空保温层, 特别是一种强度高, 可 无缝连接并相互覆盖的多密封单位空腔真空保温层及其制作方法。 背景技术 现今市场上的保温结构大都采用泡沫层, 即在两层板材之间填充聚酯等发 泡的保温层, 也有中空结构的, 其保温性能相对较好, 但在资源消耗巨大和气 候恶化的今天, 即便是采用玻璃钢作为夹板的泡沫层还是中空层已经不能满足 可持续发展的未来保温产品需要。 也有采用真空层的, 如真空玻璃或其它层叠 堆砌的纤维隔热箱等, 其保温性能相对泡沬或中空层又要好很多, 应该来说是 目前市场上最好的保温结构层, 但其弱点也很明显, 即抗损性能差, 一旦有一 点损伤就会漏气进而整个产品失去真空性能, 而且其工序相对复杂, 制作能耗 高, 材料单位成本高, 因而影响其大规模应用。
有鉴于此, 目前使用的保温结构也影响了汽车、 冰箱、 冷藏集装箱、 冷库 以及楼房等的保温层制作的局限, 满足不了人们对更高保温需求的需要。
以冷藏车为例, 随着人类的发展, 对食品配送或其它冷藏需求的物品越来 越需要冷藏车来配送, 由于配送距离和具体环境的需要, 有时可能几天几夜甚 至更长时间, 这对冷藏车的配置提出了更高要求。 由于冷藏产品对冷藏条件的 要求, 在提高其它部件的性能的同时, 其保温结构直接决定其配送效率, 即冷 藏车在运输的同时对冷藏车厢提供制冷或加热条件以保持车厢内的温度, 这就 是说冷藏车携带同样能源的情况下, 提高车厢保温性能可以更好的保证配送物 品的质量, 增加其运输里程, 减少车厢内的单位能耗。 但目前的保温产品不能 理想的满足其要求。 发明内容 有鉴于此, 本发明要解决的问题是提供一种真空保温层, 要求其具有极高 的结构强度和气密性能。 本发明要解决的技术问题之二是提供了一种所述具有 多个单位空腔的真空保温层的制作方法, 要求通过该制作方法可以生产出结构 强度大、 气密封极高的真空保温层。
本发明通过以下技术手段解决上述技术问题:
本发明的目的之一提供了一种具有多个单位空腔的真空保温层, 包括保温 层本体, 所述保温层本体包括分别设置于正面密封层和背面密封层以及与正面 密封层和背面密封层周边连接的侧壁, 所述侧壁以及正面和背面密封层三者之 间形成密闭的主空腔, 所述主空腔内设置有纵横交错的隔离密封条, 所述隔离 密封条将主空腔隔离成多个独立的密闭的单位空腔, 以使保温层形成多个单位 空腔构成的真空保温结构层, 所述正面密封层和背面密封层上分别设置有向空 腔内凸出的网格状骨架以增强密封层的结构力。
为进一步增强保温层的保温性能, 所述侧壁以及正面和背面密封层三者之 间形成密闭的主空腔的正面和背面密封层之间设置有空腔隔离层, 所述空腔隔 离层将主空腔隔离成前空腔和后空腔, 所述前空腔或后空腔内设置有纵横交错 的隔离密封条,所述隔离密封条将所在空腔隔离成多个独立的密闭的单位空腔, 并在另一空腔内设置有支撑部件以防止其所在空腔形变, 以使其形成连通的真 空空腔, 所述空腔隔离层分别设置有向前空腔和后空腔凸出的网格状骨架以增 强空腔隔离层的结构力。
为进一步增强保温层的实用性和耐用性, 所述前空腔和后空腔内设置有纵 横交错的隔离密封条, 所述隔离密封条将前空腔和后空腔隔离成多个独立的密 闭的单位空腔,以加强保温层本体的保温性能并增强保温层的实用性和耐用性。
为进一步增强保温层的保温性能, 所述正面和背面密封层以及空腔隔离层 向空腔内凸出的网格状骨架和与其对面的骨架间留有空隙, 以增强结构强度的 同时使单位空腔内拥有更多的实际真空空间。 为进一步增强保温层的保温性能, 所述前空腔和后空腔内的单位空腔的设 置方式在空腔隔离层的结合部以相互交错的方式排列, 以使前空腔或后空腔的 单位空腔的空格空间能覆盖后空腔或前空腔的单位空腔的隔离密封条, 进而减 少空腔内隔离密封条的导热影响并增强保温层的结构力。
为统一制作标准, 所述前空腔和后空腔的单位空腔的空格空间相互覆盖另 一空腔的隔离密封条, 所述隔离密封条被单位空腔的空格空间覆盖后垂直在其 两边的真空空间相等,以保持保温层本体综合性能的均匀性和方便标准化制作。
为进一步统一制作标准, 所述单位空腔为正方形或长方形, 进而其空格空 间也是正方形和长方形。
为加强保温层的强度, 所述隔离密封条以及侧壁分别设置在正面密封层和 背面密封层与空腔隔离层上, 并在结合部的其中一方设置有凸起, 另一方设置 了凹槽, 以和凸起结合粘结后增强结合部相互之间的结合力。
进一步, 所述凸起呈圆弧形、 方形或锥形中的一种, 所述凹槽制成与凸起 形状相配适的圆弧形、 方形或锥形。
为进一步增强正面密封层和背面密封层与空腔隔离层之间的隔离密封条以 及侧面的结合部的结合强度, 所述隔离密封条的凹槽一方设置有箍位以增加凸 起和凹槽两方隔离密封条的结合粘结面积, 强化其结合强度以保证保温层本体 的实用性和耐用性。
进一步的, 所述箍位设置有凹位, 该凹位能容纳楔入的隔离密封条, 以进 一步增加结合双方的结合面积, 强化保温层本体的强度。
为进一步增强保温层的实用性和耐用性, 所述正面密封层和背面密封层与 空腔隔离层之间的隔离密封条以及侧壁的结合部在抽气真空室内完成抽气后进 行永久性粘接以对保温层本体实施无孔密封, 以减少保温层本体漏气风险。
进一步的, 所述真空保温层包含有多个保温层本体, 为减少保温层本体组 合时留下的非真空区域盲点的影响, 在保温层本体的其中一方设置有覆盖位, 另一方设置了被覆盖位, 组合后覆盖位能覆盖被覆盖位及其组合部的非真空区 域盲点, 以减少组合部位非真空区域盲点对保护对象的影响。 本发明的目的之二提供了一种上述具有多个单位空腔的真空保温层的制作 方法, 其包括以下步骤: S1 ) 采用模压的方式制作正面密封层、 背面密封层和 空腔隔离层, 所述隔离密封条和侧壁各自对称设置在密封层与空腔隔离层上, 并将各自一边的侧壁和隔离密封条一同制作成正面单元、空腔单元和背面单元;
52)在两两相对设置的侧壁端面上分别加工出凹槽和凸起,并在两两相对设 置的隔离密封条端面上也分别加工出凹槽和凸起, 选择在凸起和凹槽其中之一 表面涂抹混合有促进剂的不饱和树脂, 在其中另一个的表面上涂抹混合有固化 剂的不饱和树脂。 然后将正面单元、 背面单元和空腔单元送入真空室并通过真 空室内的固定装置将其分别水平放置并使凸起和凹槽一一对应固定并留有抽气 空隙;
53)关闭真空室室门, 然后将抽气设备的抽气端口与真空室的抽气端口连 接, 打开阀门开始抽取真空室内的空气, 在达到要求的真空度时关闭阀门, 然 后通过动力装置将侧壁和隔离密封条上的凸起或凹槽与其对面的凹槽或凸起合 拢并适当用力压紧;
54 ) 在计算的反应时间后确定不饱和树脂固化并具有密封性能后, 加热保 温层本体以使保温层本体内的不饱和树脂尽快完全固化;
55 ) 打开真空室室门将保温层本体取出既得具有多个单位空腔的真空保温 层。
进一步,步骤 S1中所述正面密封层、空腔隔离层和背面密封层与其各自上 面的侧壁和隔离密封条分开制作, 然后再将其与各自的另一部分通过不饱和树 脂连接; 或者将侧壁和隔离密封条与密封层在磨具内一体制成。
进一步,步骤 S2中所述水平放置具体是指,将带有凹槽的侧壁和隔离密封 条设置在带有凸起的侧壁和隔离密封条的下方。
进一步,步骤 S4中所述加热保温层本体具体采用以下方法:打开充气阀门 向真空室内注入高温气体。
本发明的有益效果:
1、本发明的具有多个单位空腔的真空保温层, 包括保温层本体, 所示保温 层本体的侧壁以及正面密封层和背面密封层三者之间形成密闭的主空腔内设置 有空腔隔离层, 所述空腔隔离层将主空腔隔离成前空腔和后空腔, 所述前空腔 或后空腔内设置有纵横交错的隔离密封条, 并将其隔离成多个独立的密闭的单 位空腔, 以使主空腔形成具有多个单位空腔的真空保温结构, 将一个主空腔隔 离成前空腔或后空腔并隔离成多个独立的密闭的标准单位空腔, 明显增强了保 温层本体的保温性能, 更多的单位空腔更是对其抗损性能提供了有力的保证, 而且前空腔和后内设置的隔离密封条也加强了保温层本体的整体结构强度。 多 个密闭的单位空腔的好处是当载体受到冲击或其它损伤, 其中一个或多个部位 受到破坏出现漏气进而失去真空性能, 由于单位空腔是独立密闭的, 不会对相 邻的单位空腔构成损坏, 所以被破坏单位空腔以外的单位空位仍然对被保温的 物品进行有效的真空保温保护, 弥补了现今真空制品的缺陷。 所述正面密封层 和背面密封层以及空腔隔离层向各自空腔内设置凸出的网格状骨架加强了密封 层的结构强度, 其相向留下的实际真空空间体现了真空意义, 实现了真空保温 产品的实用性和经济性。 所述单位空腔统一标准对规模化生产提供了条件。
2、本发明的具有多个单位空腔的真空保温层的其中一个空腔的单位空腔的 空格空间覆盖了另一个空腔的单位空腔的隔离密封条, 其前空腔和后空腔内的 单位空腔都可以覆盖对方 1/2部分, 这种覆盖排列方式既弥补了另一方的隔离 密封条导热缺陷, 又增强了保温层本体的整体结构强度并最大限度的保证其综 合性能均衡性, 同时也强调了标准化促进规模化制作的理由, 进一步为规模化 生产提供了可行性。
3、本发明的具有多个单位空腔的真空保温层的正面密封层和背面密封层与 空腔隔离层相互间的结合部分别设置有凸起和凹槽, 并在设置凹槽的隔离密封 条上设置了箍位。 采用凸起楔入凹槽的粘结特征增强了结合部的结合强度, 在 结合部设置的箍位进一步增加了结合双方的粘结面积,进一步强化了结合强度, 增强了保温层本体的实用性和耐用性。
4、本发明的具有多个单位空腔的真空保温层采用无孔密封, 通过专用的真 空室在附件的配合下在抽气达到要求的真空度后, 启动附件将正面密封层和背 面密封层与空腔隔离层上设置的侧壁和隔离密封条结合密闭, 实现了无孔密封 的特征。 没有抽气孔的保温层本体避免了设置抽气孔会带来的漏气风险, 进一 步增强了保温层本体的实用性和耐用性。
5、 本发明的制作方法, 其优点在于采用以真空室为基础的抽气加工方式, 其可以将抽气、 密封工序和定型工序一同完成, 提高了生产效率。
6、 本发明的制作方法, 其优点在于加快了树脂完全固化的速度, 使以往不 饱和树脂完全固化需要几天或几个星期甚至一年左右的时间, 缩短为只需要不 到 1天即可完成。
7、 本发明的制作方法, 其采用无孔并永久密封工艺, 使通过本发明生产的 产品具有较高的密封性能和较强的结构强度。 附图说明 下面结合附图对本发明作进一步说明:
图 1是本发明的正面示意图。
图 2是本发明的正面透视结构图。
图 3是本发明的一种侧面剖视图。
图 4是本发明的另一种侧面剖视图。
图 5是本发明单位空腔的正面示意图。
图 6是本发明单位空腔的侧面剖视图。
图 Ί是本发明的平面组合示意图。
图 8是本发明的另一种平面组合示意图。
图 9是本发明的圆形组合示意图。
图 10是本发明实施例 2中在真空保温层制作过程中使用的一种抽真空设备 结构示意图。 具体实施方式 下面结合附图和实施例对本发明进行详细说明: 实施例 1 一种具有多个单位空腔的真空保温层
参照附图 1至 6所示, 本发明的具有多个单位空腔的真空保温层, 包括保 温层本体 1, 所示保温层本体 1包括设置于正面密封层和背面密封层 10a、 10c 以及与正面密封层和背面密封层 10a、 10c周边连接的侧壁 2, 所述侧壁以及正 面密封层和背面密封层 10a、 10c三者之间形成密闭的主空腔, 所述主空腔内设 置有纵横交错的隔离密封条 2a, 所述隔离密封条 2a将正面密封层和背面密封 层 10a、 10c与侧壁 2三者形成的主空腔隔离成多个独立的密闭的单位空腔 3, 以使主空腔形成具有多个单位空腔 3的真空保温结构, 将一个主空腔隔离成多 个密闭的单位空腔 3的好处是当载体受到冲击或其它损伤, 其中一个或多个部 位受到破坏出现漏气进而失去真空性能, 由于单位空腔 3是独立密闭的, 不会 对相邻的单位空腔 3构成损坏, 所以被破坏单位空腔 3以外的单位空位 3仍然 对被保温的物品进行真空保温保护,同时设置在其中的隔离密封条 2a还可以增 强保温层的结构力, 进而增强了保温层的耐用性和实用性, 所述正面密封层和 背面密封层 10a、 10c面向主空腔内设置有凸出的网格状骨架 4, 以增强正面密 封层和背面密封层 10a、 10c的结构强度, 拓展了空腔内的有效空间, 增加了真 空空间, 用以提高本发明具有多个单位空腔的真空保温层的保温节能效果, 同 时也节约了材料。
为进一步增强保温层本体 1的保温性能, 所述侧壁 2以及正面密封层和背 面密封层 10a、 10c三者之间形成密闭的主空腔正面密封层和背面密封层 10a、 10c之间设置有空腔隔离层 10b,所述空腔隔离层 10b将主空腔隔离成前空腔和 后空腔, 所述前空腔或后空腔内设置有纵横交错的隔离密封条 2a, 所述隔离密 封条 2a将前空腔或后空腔隔离成多个独立的密闭的单位空腔 3, 所述后空腔或 前空腔可以根据实际需要设置支撑部件, 以使其形成连通的真空空腔而不设置 独立的密闭的单位空腔。 当然, 增强抗损性, 体现实用性和实现耐用性作为本 发明的主题, 前空腔和后空腔均设置单位空腔 3为最佳。 将主空腔隔离成前空 腔和后空腔, 虽然只是适当增加了侧壁 2的厚度, 但其对增强保温层本体 1的 保温性能和抗损伤强度是不言而喻的, 在选择真空产品的时候, 对其实用性和 耐用性一个主要指标就是该产品保持真空性能的抗损性能, 设置前空腔和后空 腔不但增加了保温层本体 1内的真空空间进而明显增强了保温层本体 1的保温 性能, 更多的单位空腔 3更是对其抗损性能提供了有力的保证, 而且前空腔和 后内设置的隔离密封条 2a也加强了保温层本体 1的整体结构强度。所述空腔隔 离层设置有向前空腔和后空腔凸出的网格状骨架 4以增强其综合结构强度, 进 一步增强保温层本体 1的实用性和耐用性, 同时也节约了材料, 进而降低了成 本。
为进一步增强保温层本体 1 的保温性能, 所述正面密封层和背面密封层 10a, 10c上设置的网格状骨架 4与空腔隔离层 10b上设置的网格状骨架 4之间 留有空隙, 以使前空腔和后空腔拥有更多的实际真空空间, 使保温层本体 1具 有真正意义真空性能。
如图 2和 3所示, 为进一步增强保温层本体 1的保温性能, 所述前空腔和 后空腔内的单位空腔 3的设置方式在空腔隔离层 10b的结合部以相互交错的方 式排列, 以使前空腔或后空腔内的单位空腔 3a或 3b的空格空间能覆盖后空腔 或前空腔的隔离密封条 2a或 2b, 进而减少空腔内隔离密封条 2a的导热影响并 增强保温层本体的结构力。 保温层本体 1主空腔内虽说是真空结构, 但各个单 位空腔 3的隔离密封条 2a却是相对导热的, 相互错位排列可以弥补这个缺陷, 即设置在空腔隔离层 10b前空腔上单位空腔 3a的隔离密封条 2a被设置在空腔 隔离层 10b后空腔上单位空位 3b的空格空间覆盖, 这样除了必须的接触点外, 在保温层本体 1所隔离保温部位的垂直面上就更有效率了, 同时由于每个单位 空腔 3的空间在空腔隔离层 10b的背面都设置有隔离密封条 2a, 其交相支撑使 保温层本体 1的结构强度更高了, 增强了保温层本体 1的实用性和耐用性。
所述空格空间是单位空腔 3周边隔离密封条 2a以内的空间,进而空格空间 的形状和所在单位空腔 3—致。
如图 2和 3所示, 以此可以最大限度的实现错位意图, 即以空腔周边上下 或左右的侧壁 1/2标准空格空间为标准向内排列的单位空位 3的错位方式使前 空腔和后空腔内的单位空腔 3都可以覆盖对方 1/2部分, 既实现了保温层本体 1 的保温性能均衡, 又最大限度的保障了其结构强度, 更重要的是同一标准的 单位空腔 3使制作材料也有了标准, 最大程度的减少制作工序, 使规模化生产 更有效率, 同时也给降低成本带来了空间。
为统一标准化, 特别是正方形、 长方形和圆柱形等标准化保温层本体, 所 采用的错位排列可以是由外向内设计, 也可以由内向外进行错位设计排列。 具 体来说, 如果保温层本体 1内的一个空腔横向或纵向适合排列的标准单位空腔 3 为奇数, 则该保温层本体内的另一空腔对其均匀错位覆盖排列的方式以由外 向内为最佳,即沿侧壁 2向内先用隔离密封条 2a横向或纵向平均切割一个标准 空格空间, 然后以该隔离密封条 2a为起点向内设置单位空腔 3, 即以侧壁 2向 内覆盖的方式由外向内排列设计; 如果保温层本体 1内的一个空腔横向或纵向 适合排列的标准单位空腔 3为偶数, 则该保温层本体内的另一空腔对其均匀错 位覆盖排列的方式以由内向外为最佳, 即以设置了标准单位空腔 3的空腔内横 向和纵向隔离密封条 2a的中心交叉点为坐标,以该坐标为中心先设置一个标准 单位空腔 3, 该单位空腔 3的横向或纵向的隔离密封条 2a与侧壁 2上下或左右 平行, 其空格空间对另一空腔的隔离密封条 2b交错部位实施了均匀覆盖, 即覆 盖隔离密封条 2a后其两边的空间相等, 然后以所述横向或纵向隔离密封条 2a 为起点由内向外设置单位空腔 3, 即以中心向外覆盖的方式为起点由内向外设 计排列。 对于非标准或不规则形状的真空保温层根据具体形状实际情况设计, 建议由内向外的方式设计排列, 当到排列侧壁 2时余下的空间不足一个标准空 格空间时与侧壁形成独立的密封的空腔, 该空间既不能组成标准单位空腔 3, 表明其已经在隔离密封条 2a和侧壁的承载力范围内。
进一步的, 所述单位空腔为正方形, 也可以是长方形或菱形等其他形状, 为使保温层本体 1的结构强度和保温、 隔音性能能够最大限度的均衡, 单位空 腔 3选择正方形为最佳标准。 所述标准单位空腔 3, 是在所在环境下能够抵抗 气压, 并能经受该环境其它挤压、 震荡和碰撞等正常损伤性考验, 保持其内部 真空状态不受影响的真空空间配置, 它由密封层和隔离密封条的密封性能和刚 性结构强度决定, 在要求的真空度下, 其综合保温层本体 1的整体结构强度所 能隔离的最大空间为理想单位空腔, 所述单位空腔 3以这一理想标准为制作准 则。
为进一步增强保温层本体 1的结构强度, 如图 3和 4所示, 所述侧壁 2和 隔离密封条 2a的结合部设置有凸起 12和凹槽 13, 所述凸起呈圆弧形、 方形或 锥形中的一种, 所述凹槽制成与凸起形状相配适的圆弧形、 方形或锥形, 以加 强结合部的粘合强度。所述结合部是正面密封层和背面密封层 10a、 10c与空腔 隔离层 10b上设置的侧壁 2和隔离密封条 2a的结合位置,由于主空腔内设置的 隔离密封条 2a隔离的单位空腔 3是独立密闭的,因此对其加工抽气的手段只有 两种, 一是先把保温层本体制作好并在每个单位空腔的密封层上 3设置抽气孔 进而通过抽气设备来完成真空加工,再就是将侧壁 2和隔离密封条 2a分别设置 在正面密封层和背面密封层 10a、 10c以及空腔隔离层 10b上, 即将保温层本体 1 以多个部分分别制作, 然后在专用的真空室内进行抽气工序并在真空室内将 其密封, 即不用在单位空腔 3设置抽气孔。 本发明优先采用不设置抽气孔的方 式, 其优点是显而易见的, 在单位空腔 3的密封层设置抽气孔, 当完成抽气工 序后对其密封, 这样每个单位空腔 3就多出了因抽气孔漏气的非损伤性缺陷, 对大规模推广节能技术不利, 不设置抽气孔而采用附件配合的方式在真空室内 进行抽气和密封工序就不会有这样的缺陷, 增加了保温层本体的实用性和耐用 性。侧壁 2和隔离密封条 2a可以整体设置在正面密封层和背面密封层 10a、 10c 与空腔隔离层 10b上, 也可以分成两部分分别设置。 为了满足正面密封层和背 面密封层 10a、 10c与空腔隔离层 10b的制作工序刚性需要, 优先选择侧壁 2 和隔离密封条 2a以两部分的方式分别设置在正面密封层和背面密封层 10a、10c 以及空腔隔离层 10b的正面和背面上, 并在其结合的其中一方设置凸出的凸起 12, 另一方设置凹槽 13以和凸起 12结合粘结后增强结合部的结合力。
为了进一步增强结合部的结合力, 所述结合部的凹槽 13 —面设置了箍位 11以增加结合部的结合面, 所述箍位 11设置在凹槽 13的一边或两边, 并留有 容纳另一边的隔离密封条 2a凹位 14,所述凹位 14可以容纳隔离密封条 2a, 由 于隔离密封条 2a太厚了会影响保温层本体 1的保温效果,但薄了也可能使结合 部的强度不够, 因此需要在结合部设置箍位 11 以增加其结合面积, 同时箍位
13的凹部 14也方便了密封设计条件, 侧壁 2在主空腔外面的一侧不考虑设置 箍位 11, 但可以考虑适当增加侧壁 2和内侧箍位 11的厚度, 以加强保温层本 体 1侧壁的强度。 为了使抽气工序有足够的操作时间, 结合部使用的胶粘树脂 采用 A、 B反应型粘结剂。 为了进一步增强保温层本体 1的抗损性能, 本发明采 用模压技术。
如单位空腔 3的空格空间需要加大或需要强化其承受力, 考虑到保温层本 体 1需要尽可能多的真空空间和制作成本, 增加正面密封层和背面密封层 10a、 10c与空腔隔离层 10b的厚度不是很科学, 可以设置支撑柱来加强正面密封层 和背面密封层 10a、 10c与空腔隔离层 10b之间的支撑强度。
根据需要, 保温层本体 1的主空腔内可以设置两层或两层以上的空腔隔离 层 10b, 即增加侧壁 2的厚度并设计成多层空腔的保温层本体, 以进一步满足 被保护对象的需要。 同样, 也可以采用多层保温层本体 1来强化其保温效果。
参见附图 7、 8和 9, 为了进一步扩大真空节能技术的实用范围, 充分利用 真空良好的保温、 隔音优点, 保温层本体 1可以成为平面、 圆柱或圆锥等形状 的保温结构, 如需要保温的集装箱箱体和冷藏车厢体、 冰箱箱体、 冷库以及楼 房、 食品保鲜箱等需要良好保温对象的保温层, 在需要的时候, 保温层本体 1 可以整体制作, 也可以多部分分体制作后组合, 为了避免组合部位的结合部留 下的真空盲点给被保温物品带来影响, 其结合部可以设计成相互覆盖的特征, 即在其中一个保温层本体 1 的组合位设置具有真空空腔的覆盖位 5, 在与其组 合的的另一个保温层本体 1 的组合位设置具有真空空腔的被覆盖位 6, 以使其 相互交错来减少组合位的真空区域盲点。
在实际应用中, 本发明的具有多个单位空位的真空保温层可以单独作为被 保护对象的主体, 如食品保鲜箱、 冷藏库和应急真空保温组合帐篷等; 也可以 增加装饰层来保护所需对象, 如大楼外墙保温的外部, 室内装饰的墙体保温、 隔音层和地板等需要视觉美感表面层; 还可以作为夹层来使用, 如冷藏车和其 它机动车的车厢、 保温集装箱、 冰箱和门等需要高强度的保温层, 以冷藏车为 例, 其车厢需要运输或调动, 这就不能单靠保温层本体 1来保证其需要的强度 了, 这需要设计成夹层结构, 并在车厢的夹层内外设置附件以满足车厢厢体的 综合强度要求, 保温层本体 1组合粘结于夹层中, 这样, 冷藏车车厢就拥有了 超绝的保温效果。
为增强保温层本体 1的耐用性实用性以使其规模化应用, 所述正面密封层 和背面密封层 10a、 10c和其之间的空腔隔离层 10b采用玻璃钢技术或其它纤维 增强工艺, 但目前的玻璃钢制作产品有个致命的缺点, 就是平面或直棒等无造 型产品保持形状的稳定性差, 实用起来很不理想, 可塑性差。 因此需要在玻璃 钢增强纤维的材料中增加硬质材料, 如木片, 竹片等植物类或金属类片材来增 强其可塑性, 密封层 10采用玻璃纤维和硬质植物片材配合制作, 既满足了密封 层可塑性的要求, 也增加了材料使用面, 特别是对植物片材的大量使用将促使 农业生产现代化的进程。 在植物片材的使用过程中, 有的片材, 如竹片需要进 行热解处理才能更好的胶粘。 如果是轿车类载人车厢, 则应采用碳纤维增强工 艺以更好的保障安全。
实施例 2 —种具有多个单位空腔的真空保温层的制作方法
本发明的目的之二提供了一种上述具有多个单位空腔的真空保温层的制作 方法, 其包括以下步骤:
51 ) 采用模压的方式制作正面密封层、 背面密封层和空腔隔离层, 并将各 自一边的侧壁和隔离密封条一同制作成正面单元、 空腔单元和背面单元, 所述 密封层、 侧壁和隔离密封条具有良好的气密性能和较强的抗损性能。 具体地, 所述正面密封层、 空腔隔离层和背面密封层与其各自上面的侧壁和隔离密封条 可以分开制作, 然后再将其与各自的另一部分通过不饱和树脂连接; 或者将侧 壁和隔离密封条与密封层在磨具内一同完成。 其具体制作工艺现有纤维增强技 术包括以玻璃纤维、 植物纤维、 金属纤维或聚酯纤维与不饱和树脂或其它树脂 复合制作均可以实现, 但要求具有良好的气密性和较强的抗损性能;
52 ) 选择在隔离密封条的凸起和凹槽其中之一表面涂抹混合有促进剂的不 饱和树脂, 在其中另一个的表面上涂抹混合有固化剂的不饱和树脂。 然后将正 面单元、 背面单元和空腔单元送入真空室 100并通过真空室 100内的固定装置
101将其分别水平放置并一一对应固定并留有抽气空隙, 如图 10所示, 水平放 置正面、 空腔和背面单元有助于防止不饱和树脂向下流动, 树脂是比较粘稠的 液体, 涂抹在水平放置的侧壁和隔离密封条上的不饱和树脂具有较强的相互链 接性能, 其吸附力能够抵消抗重力的牵引, 而斜放或竖放不饱和树脂则可能会 向下流动, 原因是水平的不饱和树脂左右相邻的分子是抱团抵抗竖直方向的重 力牵引, 而斜放和竖放的侧壁和隔离密封条上的不饱和树脂的相邻的上方的分 子会将自身的重力叠加给分子下方的分子, 因而不饱和树脂分子间的链接力可 能不足以抵消除自身重力以外的力而出现流动, 造成侧壁和隔离密封条上的不 饱和树脂的厚度不均匀进而影响结合性能;
53 ) 关闭真空室室门, 然后将抽气设备 102的抽气端口与真空室的抽气端 口连接, 打开阀门 103开始抽取真空室内的空气, 在达到要求的真空度时关闭 阀门, 然后通过动力装置将侧壁和隔离密封条上的凸起或凹槽与其对面的凹槽 或凸起合拢并适当用力压紧,然后将抽气设备的端口和真空室的抽气端口脱离;
54) 在计算的反应时间后确定正面密封层、 空腔隔离层和背面密封层上的 侧壁上的不饱和树脂固化并具有相当密封性能后, 打开充气阔门 104向真空室 内注入加热气体, 以使保温层本体内的不饱和树脂尽快完全固化, 所述真空室 的室壁的外部包裹有本发明的保温层本体或加厚的中空或泡沫保温层, 以防止 真空室内的热量过快流失。 加热真空室内的温度可以直接加热而不使用气体, 这样可以确保保温层本体外部的真空环境进而防止因侧壁的固化强度不足而发 生漏气可能, 但对于大型真空室来说, 直接加热的设备成本和加热能耗高于气 体加热方式;
55 ) 打开真空室门将保温层本体 1取出既得具有多个单位空腔的真空保温 层。
所属领域的人都知道, 真空是目前保温、 隔音性能最好的材料, 其没有规 模化应用的主要原因是现有制作真空产品的高成本和抗损性能差, 这一因素一 个重要原因是制作工艺的缺陷, 即以往真空产品都是采用单个空腔的有孔密封 方式。本发明的保温层本体的优点是将受损漏气的风险以多个单位空腔来分担, 更重要的是, 即使是某一个或大部分单位空腔受损漏气, 其剩下的中空结构的 保温性能也比泡沫保温层好, 而支撑结构强度则更是高很多, 因而其实用性是 现有技术中最好的, 为真空保温、 隔音产品的规模化应用提供了结构依据。
最后需要说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理 解, 可以对本发明的技术方案进行修改或等同替换, 而不脱离本发明技术方案 的主题范围, 其均应涵盖在本发明的气流要求范围当中。

Claims

权 利 要 求 书
1、 一种具有多个单位空腔的真空保温层, 包括保温层本体(1), 其特征在 于,所述保温层本体(1)包括分别设置的正面密封层(10a)和背面密封层(10c) 以及与正面密封层 (10a) 和背面密封层 (10c) 周边连接的侧壁 (2), 所述侧 壁(2) 以及正面密封层 (10a) 和背面密封层 (10c)三者之间形成密闭的主空 腔, 所述主空腔内设置有多个相互交错的并将所述主空腔分隔成多个密闭单位 空腔 (3) 的隔离密封条 (2a)。
2、 根据权利要求 1所述的具有多个单位空腔的真空保温层, 其特征在于: 所述正面密封层 (10a)和背面密封层 (10c)之间设置有空腔隔离层(10b), 所 述空腔隔离层(10b)将主空腔隔离成第一空腔和第二空腔,所述第一空腔和第二 空腔内设置有多个相互交错的并分别将所述第一空腔和第二空腔分隔成多个密 闭单位空腔 (3) 的隔离密封条 (2a)。
3、 根据权利要求 2所述的具有多个单位空腔的真空保温层, 其特征在于: 所述正面密封层(10a)和背面密封层(10c) 以及空腔隔离层(10b)上各设置有 向第一空腔和第二空腔内凸出的网格状骨架 (4), 并与其各自空腔对面的网格 状骨架 (4) 间留有空隙。
4、 根据权利要求 3所述的具有多个单位空腔的真空保温层, 其特征在于: 所述空腔隔离层(10b)两面的单位空腔 (3) 彼此以相互交错的方式排列。
5、根据权利要求 3所述的具有多个单位空腔的真空保温层, 其特征在于:: 所述第一空腔和第二空腔的单位空腔(3)的空格空间相互覆盖另一空腔的隔离 密封条 (2a), 所述隔离密封条 (2a) 被单位空腔 (3) 的空格空间覆盖后垂直 在其两边的真空空间相等。
6、根据上述任一项权利要求所述的具有多个单位空腔的真空保温层, 其特 征在于: 所述单位空腔 (3) 为正方形。
7、根据上述任一项权利要求所述的具有多个单位空腔的真空保温层, 其特 征在于: 所述真空保温层由多个保温层本体(1)组成, 其组合部位其中一方设 置了含有真空空腔的覆盖位, 相邻的另一方设置了具有真空空腔的被覆盖位。
8、一种如权利要求 1-7中任一项所述具有多个单位空腔的真空保温层的制 作方法, 其特征在于, 包括以下步骤:
51)釆用模压的方式制作正面密封层(10a)、 背面密封层(10c)和空腔隔 离层(10b), 所述隔离密封条 (2a) 和侧壁 (2) 各自对称设置在密封层与空腔 隔离层(10b)上, 并将各自一边的侧壁 (2) 和隔离密封条 (2a) —同制作成正 面单元、 空腔单元和背面单元;
52)在两两相对设置的侧壁(2)端面上分别加工出凹槽(13)和凸起(12), 并在两两相对设置的隔离密封条 (2a) 端面上也分别加工出凹槽 (13) 和凸起
(12), 选择在凸起(12)和凹槽(13)其中之一表面涂抹混合有促进剂的不饱 和树脂, 在其中另一个的表面上涂抹混合有固化剂的不饱和树脂, 然后将正面 单元、 背面单元和空腔单元送入真空室 (100) 并通过真空室 (100) 内的固定 装置(101)将其分别水平放置并使凸起(12)和凹槽(13)—一对应固定并留 有抽气空隙;
53) 关闭真空室 (100) 室门, 然后将抽气设备 (102) 的抽气端口与真空 室(100)的抽气端口连接, 打开阔门(103)开始抽取真空室(100)内的空气, 在达到要求的真空度时关闭阀门 (103), 然后通过动力装置将侧壁和隔离密封 条上的凸起或凹槽与其对面的凹槽或凸起合拢并适当用力压紧;
54) 在计算的反应时间后确定不饱和树脂固化并具有密封性能后, 通过加 热真空室来加热保温层本体(1) 以使保温层本体 (1) 内的不饱和树脂尽快完 全固化;
55) 打开真空室 (100) 室门将保温层本体 (1) 取出既得具有多个单位空 腔的真空保温层。
9、 如权利要求 8所述的制作方法, 其特征在于, 步骤 S1中所述正面密封 层 (10a)、 空腔隔离层 (10b) 和背面密封层 (10c) 与其各自上面的侧壁 (2) 和隔离密封条 (2a) 分开制作, 然后再将其与各自的另一部分通过不饱和树脂 连接; 或者将侧壁和隔离密封条与密封层在磨具内一体制成。 10、 如权利要求 9所述的制作方法, 其特征在于, 步骤 S2中所述水平放置 具体是指, 将带有凹槽 (13) 的侧壁(2) 和隔离密封条 (2a) 设置在带有凸起
(12) 的侧壁 (2) 和隔离密封条 (2a) 的下方。
11、 如权利要求 10所述的制作方法, 其特征在于, 步骤 S4中所述加热保 温层本体 (1) 具体采用以下方法: 打开充气阀门 (104) 向真空室内注入高温 气体。
PCT/CN2014/077280 2013-05-13 2014-05-12 具有多个单位空腔的真空保温层及其制作方法 WO2014183622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320257443.XU CN203404563U (zh) 2013-05-13 2013-05-13 具有多个单位空腔的真空保温层
CN201320257443.X 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014183622A1 true WO2014183622A1 (zh) 2014-11-20

Family

ID=49940500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077280 WO2014183622A1 (zh) 2013-05-13 2014-05-12 具有多个单位空腔的真空保温层及其制作方法

Country Status (2)

Country Link
CN (1) CN203404563U (zh)
WO (1) WO2014183622A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112041A1 (de) * 2020-11-30 2022-06-02 Liebherr-Hausgeräte Ochsenhausen GmbH Wärmedämmelement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203404563U (zh) * 2013-05-13 2014-01-22 开县人人有余科技有限公司 具有多个单位空腔的真空保温层
CN108945116A (zh) * 2018-05-25 2018-12-07 苏州奇展信息科技有限公司 一种平开式的水果物流运输车厢
CN111335195A (zh) * 2020-03-12 2020-06-26 广东金衡建筑工程有限公司 一种光催化混凝土轻质隔音墙

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050042416A1 (en) * 2003-08-21 2005-02-24 Blackmon James B. Insulation system having vacuum encased honeycomb offset panels
CN202302565U (zh) * 2011-09-15 2012-07-04 江苏东邦科技有限公司 一种具有多独立腔的真空隔热泡沫板结构
CN102596557A (zh) * 2009-09-24 2012-07-18 西格弗里德·贝格哈默 隔热成型件和其制造方法
CN203404563U (zh) * 2013-05-13 2014-01-22 开县人人有余科技有限公司 具有多个单位空腔的真空保温层

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050042416A1 (en) * 2003-08-21 2005-02-24 Blackmon James B. Insulation system having vacuum encased honeycomb offset panels
CN102596557A (zh) * 2009-09-24 2012-07-18 西格弗里德·贝格哈默 隔热成型件和其制造方法
CN202302565U (zh) * 2011-09-15 2012-07-04 江苏东邦科技有限公司 一种具有多独立腔的真空隔热泡沫板结构
CN203404563U (zh) * 2013-05-13 2014-01-22 开县人人有余科技有限公司 具有多个单位空腔的真空保温层

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112041A1 (de) * 2020-11-30 2022-06-02 Liebherr-Hausgeräte Ochsenhausen GmbH Wärmedämmelement

Also Published As

Publication number Publication date
CN203404563U (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
US8342588B2 (en) Insulated composite body panel structure for a refrigerated truck body
KR100617666B1 (ko) 냉장고
US20060088685A1 (en) Vacuum insulation panel and refrigerator incorporating the same
WO2014183622A1 (zh) 具有多个单位空腔的真空保温层及其制作方法
CN201787277U (zh) 超真空绝热板
WO2015072099A1 (ja) 真空断熱筐体
CN103692740B (zh) 冷藏集装箱体、复合保温板及其制造方法
WO2010111879A1 (zh) 一种冷藏车车厢密封结构及其作业方法
CN101184610A (zh) 抽空隔热板
US11981498B2 (en) Thermally insulated air cargo container
JP2005114028A (ja) 真空パネル・断熱材積層断熱プレート
CN203937561U (zh) 冷藏车厢
WO2010111941A1 (zh) 一种冷藏车车厢一体化结构及其作业方法
JPH11130187A (ja) 断熱壁構造
US20180339490A1 (en) Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material
CN103998355B (zh) 集成冷藏集装箱的真空绝热
JP2008267481A (ja) 真空断熱複合材の製造方法および真空断熱複合材
JP3572990B2 (ja) 断熱壁部材、およびその製造方法
JP3870511B2 (ja) 断熱壁構造
US11858431B2 (en) 3D thermoformed element
CN206446418U (zh) 一种保温门板及冷藏运输设备
CN217575402U (zh) 一种冷藏车车厢结构
GB2572480A (en) Improvements to the formation of a temperature controlled compartment for a vehicle
CN219096843U (zh) Pet芯材骨架冷藏车厢板
CN212637704U (zh) 一种新能源轻量化保温车厢结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798607

Country of ref document: EP

Kind code of ref document: A1