WO2015068517A1 - 比較回路 - Google Patents

比較回路 Download PDF

Info

Publication number
WO2015068517A1
WO2015068517A1 PCT/JP2014/076908 JP2014076908W WO2015068517A1 WO 2015068517 A1 WO2015068517 A1 WO 2015068517A1 JP 2014076908 W JP2014076908 W JP 2014076908W WO 2015068517 A1 WO2015068517 A1 WO 2015068517A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch
comparator
input terminal
input
Prior art date
Application number
PCT/JP2014/076908
Other languages
English (en)
French (fr)
Inventor
稔 有山
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Priority to CN201480061760.1A priority Critical patent/CN105960757B/zh
Priority to EP14860009.1A priority patent/EP3070845B1/en
Priority to KR1020167012230A priority patent/KR102153872B1/ko
Publication of WO2015068517A1 publication Critical patent/WO2015068517A1/ja
Priority to US15/139,777 priority patent/US9768758B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45932Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by using feedback means
    • H03F3/45937Measuring at the loading circuit of the differential amplifier
    • H03F3/45941Controlling the input circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/003Changing the DC level
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/2481Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors with at least one differential stage

Definitions

  • the present invention relates to a comparison circuit that compares the magnitudes of voltages, and more particularly, to a circuit that suppresses the influence of circuit element leakage current and noise at high temperatures and performs high-precision voltage comparison.
  • a comparison circuit is used as a circuit that compares a plurality of voltages and determines the magnitude thereof (see, for example, Patent Document 1).
  • FIG. 9 shows a circuit diagram of an example of a conventional comparison circuit.
  • a conventional comparison circuit uses a comparator (comparator) to determine whether a difference voltage between two input voltages is larger or smaller than a predetermined voltage.
  • the offset voltage input offset voltage
  • noise of the comparator cause an error and the accuracy is lowered.
  • the input offset voltage is generated due to variation in characteristics of elements constituting the input circuit of the comparator.
  • the noise is generated by flicker noise of a single transistor constituting the circuit or thermal noise of a single transistor or a resistance element.
  • the comparison circuit shown in FIG. 9 has the following configuration.
  • a switch S4 connected between the non-inverting input terminal N4 and the comparison voltage input terminal Nref of the comparator 5;
  • a switch S1 connected between the non-inverting input terminal N4 of the comparator 5 and the connection point N41;
  • the capacitor 4 is connected between the input terminal N2 and the connection point N41, and the switch S2 is connected between the connection point N41 and the comparison voltage input terminal N0.
  • the voltage of the comparison voltage input terminal N0 is V0
  • the voltage of the comparison voltage input terminal Nref is Vref
  • the voltage of the input terminal N1 is V1
  • the voltage of the input terminal N2 is V2
  • the voltage of the inverting input terminal N3 of the comparator 5 is V3
  • the voltage at the non-inverting input terminal N4 of the comparator 5 is V4
  • the voltage at the output terminal of the comparator 5 is Vo.
  • the input offset voltage of the comparator 5 is assumed to be Voa.
  • One cycle of the operation includes a sample phase ⁇ 1 and a comparison phase ⁇ 2.
  • the switch S1 is turned off and the switches S2 to S4 are turned on.
  • the comparison phase ⁇ 2 the switch S1 is turned on and the switches S2 to S4 are turned off.
  • ⁇ 1 or ⁇ 2 attached to the end of the voltage at each connection point or terminal represents the voltage in the sample phase ⁇ 1 or the comparison phase ⁇ 2, respectively.
  • the charges accumulated in the capacitor 3 and the capacitor 4 in the sample phase ⁇ 1 are summarized as follows.
  • ⁇ VC3 ⁇ 1 Vref + Voa ⁇ V1 ⁇ 1 (43)
  • ⁇ VC4 ⁇ 1 V0 ⁇ V2 ⁇ 1 (44)
  • the switches S2 to S4 are turned off and the switch S1 is turned on. Since the capacitor 3 holds ⁇ VC3 ⁇ 1 expressed by the equation (43), the voltage V3 is as follows.
  • V3 ⁇ 2 V1 ⁇ 2 + ⁇ VC3 ⁇ 1 (45)
  • the voltage V4 is as follows.
  • V4 ⁇ 2 V2 ⁇ 2 + ⁇ VC4 ⁇ 1 (46)
  • the voltage V3 expressed by the equation (45) and the voltage V4 expressed by the equation (46) are compared in the comparator 5, and a high level or a low level is output from the output terminal.
  • the voltage compared by the comparator 5 is as follows.
  • the leakage current of a transistor constituting a switch increases as the temperature increases, so that the error becomes more significant as the temperature increases.
  • the transistor is a MOS transistor
  • the leakage current between the channels depends on the voltage difference between the drain and the source. Therefore, the leakage current of the switch flows due to the voltage on the side not connected to the capacitor in the off switch. The direction and size were different, and an error occurred in the comparison result.
  • connection of the switch to each capacitor also affects the influence of noise components (for example, channel charge injection and clock feedthrough) generated when the transistor elements constituting the switch transition from on to off.
  • noise components for example, channel charge injection and clock feedthrough
  • the present invention has been made in view of these points, and removes the influence of the input offset voltage of the comparator with a simple circuit configuration, suppresses the influence of errors due to the off-leak current of the switch and noise components, and achieves high accuracy.
  • An object of the present invention is to provide a comparison circuit that can obtain a result of comparison and determination.
  • the comparison circuit of the present invention has the following configuration.
  • a comparator having a first input terminal to which a first input voltage is input via a first capacitor, a second input terminal to which a second input voltage is input via a second capacitor, and an output terminal; One end is connected to the first input terminal and turned on in the sample phase to turn the voltage of the first input terminal to the output terminal voltage, and one end is connected to the second input terminal and turned on in the sample phase
  • a comparison circuit comprising: a second switch that sets the voltage at the second input terminal as a reference voltage; and a third switch that is turned on in the comparison phase and equalizes the voltages at the other end of the first switch and the other end of the second switch.
  • the comparison circuit of the present invention by effectively utilizing the switch, the capacitor, and the comparator, an error caused by the offset component, the off-leak current component of the switch, and the noise component of the switch can be simplified. This makes it possible to perform a highly accurate comparison over a wide temperature range.
  • FIG. 1 is a circuit diagram of a comparison circuit according to the first embodiment.
  • the comparison circuit of the first embodiment includes a comparator 11, capacitors C1 and C2, and switches S11, S12, S13, and S21.
  • the comparator 11 has four input terminals and one output terminal. Specifically, the first input terminal N3 of the first differential input pair, the second input terminal N4 of the first differential input pair, The first input terminal N5 of the second differential input pair, the second input terminal N6 of the second differential input pair, and the output terminal OUT are included.
  • the capacitor C1 has two terminals, one terminal is connected to the first input terminal N3 of the first differential input pair of the comparator 11, and the other terminal is connected to the input terminal N1.
  • the capacitor C2 has two terminals, one terminal is connected to the second input terminal N4 of the first differential input pair of the comparator 11, and the other terminal is connected to the input terminal N2.
  • the switch S11 has two terminals, one terminal is connected to the first input terminal N3 of the first differential input pair of the comparator 11, and the other terminal is connected to the output terminal OUT of the comparator 11. .
  • the switch S12 has two terminals, and one terminal is connected to the second input terminal N4 of the first differential input pair of the comparator 11.
  • the switch S13 has two terminals, and one terminal is connected to the reference voltage input terminal Nref0.
  • the switch S21 has two terminals, and one terminal is connected to the output terminal OUT of the comparator 11.
  • the other terminals of the switches S12, S13, S21 are connected in common.
  • the switches S11, S12, S13, and S21 are controlled to be turned on or off by a switch control signal (not shown in the circuit diagram).
  • the first reference voltage input terminal Nref1 is connected to the first input terminal N5 of the second differential input pair of the comparator 11, and the second reference terminal is connected to the second input terminal N6 of the second differential input pair of the comparator 11.
  • the voltage input terminal Nref2 is connected.
  • the comparator 11 has a function of outputting the sum of a value obtained by amplifying the difference between a pair of input voltages and a value obtained by amplifying the difference between the other pair of input voltages.
  • a diagram conceptually showing this amplification function is shown in FIG.
  • FIG. 3 is a conceptual diagram showing the function of the comparator 11.
  • the comparator 11 shown in FIG. 3 includes differential amplifiers 111 and 112 and an adder 113 and is configured as follows.
  • the first input terminal N3 of the first differential input pair of the comparator 11 is connected to the inverting input terminal of the differential amplifier 111, and the second input terminal N4 of the first differential input pair is the non-inverting input of the differential amplifier 111.
  • the first input terminal N5 of the second differential input pair is connected to the inverting input terminal of the differential amplifier 112, and the second input terminal N6 of the second differential input pair is the non-inverting terminal of the differential amplifier 112.
  • the output of the differential amplifier 111 and the output of the differential amplifier 112 are respectively connected to the input of the adder 113, and the output of the adder 113 is connected to the output terminal OUT of the comparator 11.
  • the comparator 11 is connected as described above, and operates as follows.
  • the differential amplifier 111 amplifies the difference between the voltages at the two input terminals N3 and N4 and inputs the difference to the adder 113
  • the differential amplifier 112 amplifies the difference between the voltages at the two input terminals N5 and N6 and adds to the adder 113.
  • the adder 113 outputs the sum of the outputs of the differential amplifier 111 and the differential amplifier 112.
  • A1 and A2 are amplification factors of the differential amplifiers 111 and 112, respectively.
  • the voltages at the terminals N3 to N6 and OUT are set to V3 to V6 and Vo, respectively.
  • Vo V4 + (A2 / A1) ⁇ (V6-V5) (3) That is, in the state in which the switch S11 is on, the output terminal OUT of the comparator 11 and the first input terminal N3 of the first differential input pair, that is, the inverting input terminal of the differential amplifier 111 are electrically connected. A feedback loop is formed, and the output voltage Vo not only follows the input voltage V4, but also outputs a sum of voltages obtained by amplifying the difference between the voltages of the inputs V6 and V5 by the ratio of the amplification factors A2 and A1. Acts like a voltage follower.
  • a high level signal generally a positive power supply voltage level
  • a low level signal generally a negative power supply voltage level or a GND level
  • the comparison takes account of the input offset voltage.
  • the expressions representing the operation of the device 11 are as follows from the expressions (3) and (4), respectively, when the switch S11 is on and when it is off.
  • FIG. 2 is a diagram illustrating the operation of each switch.
  • One cycle of the comparison operation consists of two phases, a sample phase ⁇ 1 and a comparison phase ⁇ 2.
  • the switches S11, S12, S13, and S21 are controlled by the switch control signal in FIG.
  • the switches S11, S12, and S13 are turned on in the sample phase ⁇ 1 and turned off in the comparison phase ⁇ 2.
  • the switch S21 is turned off in the sample phase ⁇ 1 and turned on in the comparison phase ⁇ 2.
  • the sample phase ⁇ 1 includes the voltage V1 at the input terminal N1, the voltage V2 at the input terminal N2, the voltage Vref1 at the first reference voltage input terminal Nref1, the voltage Vref2 at the second reference voltage input terminal Nref2, and the offset voltage of the comparator 11. This is a phase for storing in the capacitors C1 and C2.
  • the comparison phase ⁇ 2 cancels the offset component of the comparator 11 in the sample phase ⁇ 1, while the voltage difference between the input terminal N1 and the input terminal N2 and the voltage difference between the first reference voltage Vref1 and the second reference voltage Vref2 This is a phase in which comparisons are made.
  • the sample phase ⁇ 1 and the comparison phase ⁇ 2 will be described in detail.
  • the switches S11, S12, S13 are on and the switch S21 is off. Accordingly, the following voltage is supplied to each input terminal of the comparator 11.
  • the voltage Vo of the output terminal OUT is supplied to the first input terminal N3 of the first differential input pair of the comparator 11
  • the reference voltage Vref0 is supplied to the second input terminal N4 of the first differential input pair
  • a first reference voltage Vref1 is applied to the first input terminal N5 of the two differential input pairs
  • a second reference voltage Vref2 is applied to the second input terminal N6 of the second differential input pair.
  • V3 ⁇ 1 Vref0 ⁇ 1 + Voa1 ⁇ 1 + (A2 / A1) ⁇ (Vref2 ⁇ 1 + Voa2 ⁇ 1-Vref1 ⁇ 1) (7) ⁇ 1 at the end of each voltage indicates a voltage in the sample phase ⁇ 1.
  • other voltages and the comparison phase ⁇ 2 are similarly expressed.
  • ⁇ VC1 ⁇ 1 ⁇ V1 ⁇ 1 + Vref0 ⁇ 1 + Voa1 ⁇ 1 + (A2 / A1) ⁇ (Vref2 ⁇ 1 + Voa2 ⁇ 1-Vref1 ⁇ 1) (9)
  • the capacitor C2 is charged with the difference ⁇ VC2 ⁇ 1 between the voltage V4 and the voltage V2.
  • ⁇ VC2 ⁇ 1 V4 ⁇ 1-V2 ⁇ 1 (10) Since the reference voltage Vref0 is given to the second input terminal N4 of the first differential input pair, the following expression is obtained from Expression (10).
  • ⁇ VC2 ⁇ 1 Vref0 ⁇ 1-V2 ⁇ 1 (11)
  • the switches S11, S12, S13 are off and the switch S21 is on. Since the switch S11 is turned off and ⁇ VC1 ⁇ 1 is charged in the capacitor C1, the voltage V3 is determined by the voltages V1 and ⁇ VC1 ⁇ 1, and is expressed by the following equation.
  • V3 ⁇ 2 V1 ⁇ 2 + ⁇ VC1 ⁇ 1 (12)
  • equation (9) representing ⁇ VC1 ⁇ 1 charged in the capacitor C1 into the above equation the following is obtained.
  • V4 ⁇ 2 V2 ⁇ 2-V2 ⁇ 1 + Vref0 ⁇ 1 (15) Further, when the switch S11 is off, the comparator 11 operates as shown in the equation (6), and therefore the voltage Vo at the output terminal OUT of the comparator 11 is expressed as follows.
  • Vo ⁇ 2 A1 ⁇ ⁇ (V4 ⁇ 2 + Voa1 ⁇ 2-V3 ⁇ 2) + (A2 / A1) ⁇ (Vref2 ⁇ 2 + Voa2 ⁇ 2-Vref1 ⁇ 2) ⁇ (16) Substituting V3 ⁇ 2 represented by equation (13) and V4 ⁇ 2 represented by equation (15) into the above equation, the following equation is obtained.
  • Vo ⁇ 2 A1 ⁇ [ ⁇ (V2 ⁇ 2-V1 ⁇ 2) ⁇ (V2 ⁇ 1-V1 ⁇ 1) + (Voa1 ⁇ 2-Voa1 ⁇ 1) ⁇ ⁇ (A2 / A1) ⁇ ⁇ (Vref2 ⁇ 1-Vref1 ⁇ 1) ⁇ (Vref2 ⁇ 2-Vref1 ⁇ 2) ⁇ (Voa2 ⁇ 2-o) ⁇ ] ... (17)
  • the voltage component supplied from the input terminal N1 and the input terminal N2 is set as ⁇ Vin
  • equation (17) can be expressed as follows.
  • the input offset voltages Voa1 and Voa2 of the comparator 11 show a change with time and a change in temperature (temperature drift), and thus are not constant values, but the time of the sample phase ⁇ 1 and the comparison phase ⁇ 2 If the time is sufficiently short with respect to the time-dependent change of the offset voltage and the temperature change, the value of the input offset voltage can be regarded as being substantially equal in the sample phase ⁇ 1 and the comparison phase ⁇ 2. Therefore, in Expression (18), Voa1 ⁇ 2-Voa1 ⁇ 1 and Voa2 ⁇ 2-Voa2 ⁇ 1 are substantially zero, and the offset component of the comparator 11 is removed during the comparison operation in the comparator 11 in the comparison phase ⁇ 2. Therefore, Formula (18) can be expressed as follows.
  • Vo ⁇ 2 A1 ⁇ ⁇ Vin ⁇ (A2 / A1) ⁇ ⁇ Vref ⁇ (21) Therefore, the result of comparing the voltage component ⁇ Vin supplied from the input terminal N1 and the input terminal N2 with the voltage component ⁇ Vref supplied from the first reference voltage input terminal Nref1 and the second reference voltage input terminal Nref2 is a sufficiently large amplification.
  • the signal is amplified at a rate A1, and finally output as a high level signal or a low level signal from the output terminal OUT of the comparator 11.
  • Vref1′ ⁇ Vref2 ′ a comparison result between the input voltage component 2 ⁇ (V2′ ⁇ V1 ′) and the reference voltage component (Vref1′ ⁇ Vref2 ′) is obtained.
  • this equation does not include the term Vref0.
  • Vref0 ⁇ 1 is included in both the voltage ⁇ VC1 ⁇ 1 charged in the capacitor C1 and the voltage ⁇ VC2 ⁇ 1 charged in the capacitor C2, and the term of Vref0 is canceled in the process of deriving Vo ⁇ 2. .
  • the comparison result does not depend on the voltage of Vref0 regardless of the value of the voltage applied to the reference voltage input terminal Nref0.
  • the range of voltages that can be input to the comparator 11 is limited to the common-mode input voltage range. If the voltage range deviates, there is a possibility that high-precision comparison cannot be performed normally. .
  • the comparison circuit magnetic sensor device of the present embodiment uses the voltage at the reference voltage input terminal Nref0. Is selected so as to be within the common-mode input voltage range of the comparator 11, there is an advantage that high-precision comparison is possible. In other words, it can be said that the common-mode input voltage range required for the comparator 11 can be remarkably relaxed.
  • the switch S13 remains on in the comparison phase ⁇ 2 as in the sample phase ⁇ 1 and the switch S21 remains off in the comparison phase ⁇ 2 as in the sample phase ⁇ 1, in other words, the switches S13 and S21 do not exist,
  • the other terminal of the switch S12 is directly connected to the reference voltage input terminal Nref0.
  • the other voltage of the switch S11 becomes equal to the voltage Vo of the output terminal OUT of the comparator 11, and a high level signal (generally a positive power supply voltage level) or a low level is selected according to the comparison result. It becomes a voltage of a signal (generally a negative power supply voltage level or a GND level).
  • the other voltage of the switch S12 is equal to the voltage of the reference voltage input terminal Nref0.
  • the voltage of the reference voltage input terminal Nref0 is preferably selected so as to be within the common-mode input voltage range of the comparator 11.
  • the positive power supply voltage level and the negative power supply voltage level (or GND) Level) for example, an intermediate voltage. Therefore, in the comparison phase ⁇ 2, the voltage at the other terminal of the switch S11 and the voltage at the other terminal of the switch S21 are very different.
  • the voltages at one terminal of the switches S11 and S12 are voltages expressed by the equations (13) and (15), respectively, and are not necessarily equal voltages, but both are sample phases ⁇ 1 of the reference voltage input terminal Nref0.
  • the voltage in the vicinity of the boundary condition where the comparison judgment result of the comparator 11 switches, the voltage is substantially close (at least one is a positive or negative power supply voltage and the other is positive and negative). The voltage difference is not so high that it becomes an intermediate voltage of the power supply voltage). From the above, the voltage difference between both terminals of the switch S11 in the off state and the voltage difference between both terminals of the switch S12 are greatly different.
  • the ideal characteristic of an off-state switch is that no current flows between the terminals regardless of the voltage difference between the two terminals, but in an actual circuit, leakage current flows between the switch terminals. In addition, the leakage current changes due to the voltage difference between both terminals. For this reason, there are many configurations of switch circuits that reduce the leakage current, but the leakage current does not become zero but takes a finite value.
  • the voltage at one terminal is a voltage based on Vref0 ⁇ 1 expressed by Expression (15), and the voltage at the other terminal is a voltage of Vref0 ⁇ 1, so that a leakage current flows, but is relatively small. Leakage current.
  • the voltage at one terminal is a voltage based on Vref0 ⁇ 1 expressed by the equation (13), the voltage at the other terminal is equal to the voltage Vo at the output terminal OUT of the comparator 11, and the high level signal Since it is a voltage of (generally a positive power supply voltage level) or low level signal (generally a negative power supply voltage level or GND level), a leakage current larger than the leakage current of the switch S12 flows. Accordingly, the leak currents flowing into the capacitors C1 and C2 are different, and the amount of fluctuation in the voltage at the first input terminal N3 of the first differential input pair and the amount of fluctuation in the voltage at the second input terminal N4 of the first differential input pair. Are different, resulting in an error in the comparison result. In general, since the leakage current tends to increase as the temperature increases, the error of the comparison circuit increases as the temperature increases.
  • the switch S13 in the comparison phase ⁇ 2, the switch S13 is turned off and the switch S21 is turned on, whereby the voltage at the other terminal of the switch S12 is changed to the output terminal OUT of the comparator 11. Therefore, the voltage difference between the two terminals of the switch S11 and the voltage difference between the two terminals of the switch S12 is improved so that the difference in leakage current is reduced. And the difference between the leakage currents flowing into the capacitors C1 and C2 is improved, and as a result, errors occurring in the comparison result can be reduced. Therefore, the switches S13 and S21 can suppress the influence of an error caused by the leakage current of the switch and obtain a highly accurate comparison determination result.
  • non-ideal components of the switch include noise components generated when the transistor elements constituting the switch transition from on to off, such as channel charge injection and clock feedthrough.
  • FIG. 4 is an example of a circuit configuration of the comparator 11.
  • the comparator 11 includes a constant current circuit I1, NMOS transistors M13, M14A, M14B, M15A, M16A, M15B, and M16B, and PMOS transistors M11 and M12, which are connected as follows.
  • One of the constant current circuits I1 is connected to the power supply voltage terminal VDD, and the other is connected to the drain and gate of the NMOS transistor M13. Let this connection point be Nb.
  • Nb is connected to the gate of the NMOS transistor M14A and the gate of the NMOS transistor M14B.
  • the sources of the NMOS transistors M13, M14A, and M14B are connected to the ground terminal VSS.
  • the sources of NMOS transistors M15A and M16A are connected to the drain of M14A, and the sources of NMOS transistors M15B and M16B are connected to the drain of M14B.
  • the drains of the NMOS transistors M15A and M15B are connected to the drain of the PMOS transistor M11. Let this connection point be Na.
  • the drains of the NMOS transistors M16A and M16B are connected to the drain of the PMOS transistor M12. This connection point is connected to the output terminal OUT of the comparator 11.
  • the gates of the PMOS transistors M11 and M12 are connected to the connection point Na, and the sources are connected to the power supply voltage terminal VDD.
  • the gates of the NMOS transistors M15A and M16A are respectively connected to the second input terminal N4 and the first input terminal N3 of the first differential input pair, and the gates of the NMOS transistors M15B and M16B are respectively the second differential input pair of the second differential input pair.
  • the second input terminal N6 and the first input terminal N5 are connected.
  • the comparator 11 is connected as described above, and operates as follows.
  • the constant current circuit I1 generates a constant current and supplies it to the NMOS transistor M13.
  • the NMOS transistors M13, M14A and M14B constitute a current mirror circuit, and a current based on the current flowing between the drain and source of M13 flows between the drain and source of the NMOS transistors M14A and M14B.
  • the five transistors including the NMOS transistors M14A, M15A, M16A, and the PMOS transistors M11, M12 constitute a differential amplifier, that is, the difference between the gate voltages of the NMOS transistors M15A, M16A constituting the first differential input pair, that is, The voltage difference between the second input terminal N4 of the first differential input pair and the first input terminal N3 of the first differential input pair is amplified and output to the output terminal OUT.
  • This amplification factor is assumed to be A1.
  • the operations of the current mirror circuit configuration and the differential amplifier configuration are described in detail in the literature of CMOS analog circuits and the like, and detailed description thereof is omitted here.
  • NMOS transistors M14B, M15B, M16B, and PMOS transistors M11, M12 also form a differential amplifier, and a difference in gate voltage between the NMOS transistors M15B, M16B constituting the second differential input pair. That is, the voltage difference between the second input terminal N6 of the second differential input pair and the first input terminal N5 of the second differential input pair is amplified and output to the output terminal OUT.
  • This amplification factor is A2.
  • the drain of the NMOS transistor M15A constituting the first differential input pair and the drain of the NMOS transistor M15B constituting the second differential input pair are connected to the drain of the PMOS transistor M11 at the connection point Na, and The drain of the NMOS transistor M16A constituting the input pair and the drain of the NMOS transistor M16B constituting the second differential input pair are connected to the drain of the PMOS transistor M12 at the output terminal OUT.
  • the terminal OUT operates so that voltages amplified by the differential input pairs of the first differential input pair and the second differential input pair are added.
  • the operation of the comparison circuit of the first embodiment is described, and the influence of the input offset voltage of the comparator is eliminated with a simple circuit configuration, and the influence of the error due to the off-leakage current of the switch and the noise component is suppressed. It was shown that it is possible to obtain accurate comparison judgment results.
  • switching noise generated when the switch S12 is turned off propagates from the second input terminal N4 of the first differential input pair to the first input terminal N3 of the first differential input pair, and the capacitance C1. May cause a non-negligible error in the charging voltage.
  • an example of an input voltage applied to the input terminal N1 and the input terminal N2 and an example of a voltage applied to the first reference voltage input terminal Nref1 and the second reference voltage input terminal Nref2 are given. It is not necessarily limited to this example.
  • examples of input voltage components are as follows: become.
  • V1 ⁇ 1 Vcm ⁇ 1 + Vsig ⁇ 1 + Voff ⁇ 1
  • V2 ⁇ 1 Vcm ⁇ 1-Vsig ⁇ 1-Voff ⁇ 1
  • V1 ⁇ 2 Vcm ⁇ 2-Vsig ⁇ 2 + Voff ⁇ 2
  • V2 ⁇ 2 Vcm ⁇ 2 + Vsig ⁇ 2-Voff ⁇ 2
  • the offset voltage component of the sensor element is canceled because it shows approximately the same value in the sample phase ⁇ 1 and the comparison phase ⁇ 2. Therefore, only the signal voltage component of the sensor element is input to the comparator 11 as the input voltage component. Even in the case of such an input voltage component, the influence of the input offset voltage of the comparator, which is the gist of the present invention, is removed, and the influence of errors due to the off-leak current of the switch and the noise component is suppressed, so that high-precision comparison determination It does not depart from the point of obtaining results.
  • FIG. 5 is a circuit diagram of the comparison circuit of the second embodiment.
  • the difference from the first embodiment shown in FIG. 1 is that the switches S13 and S21 are deleted and the switches S14 and S22 are added.
  • the added elements are configured and connected as follows. Further, the next connection differs from that of the first embodiment depending on the deleted element.
  • the other terminal of the switch S12 is connected to the reference voltage input terminal Nref0.
  • the switch S14 has two terminals, one terminal is connected to the output terminal OUT of the comparator 11, and the other terminal is connected to the other terminal of the switch S11.
  • the switch S22 has two terminals, one terminal is connected to the other terminal of the switch S11, and the other terminal is connected to the other terminal of the switch S12. Other connections and configurations are the same as those in the first embodiment.
  • the switches S14 and S22 are controlled to be turned on or off by a switch control signal (not shown in the circuit diagram) similarly to the switches S11 and S12.
  • FIG. 6 is a diagram illustrating the operation of each switch in the comparison circuit of the second embodiment.
  • the switches S11, S12, and S14 are controlled to be turned on in the sample phase ⁇ 1 and turned off in the comparison phase ⁇ 2.
  • the switch S22 is controlled to be turned off in the sample phase ⁇ 1 and turned on in the comparison phase ⁇ 2.
  • the switches S11, S12, S14 are on and the switch S22 is off. Accordingly, the following voltage is supplied to each input terminal of the comparator 11.
  • the voltage Vo of the output terminal OUT is applied to the first input terminal N3 of the first differential input pair of the comparator 11, and the voltage of the reference voltage input terminal Nref0 is applied to the second input terminal N4 of the first differential input pair.
  • the voltage of the first reference voltage input terminal Nref1 is applied to the first input terminal N5 of the second differential input pair, and the second reference voltage input terminal is applied to the second input terminal N6 of the second differential input pair.
  • a voltage of Nref2 is given. That is, since it is the same as the comparison circuit of the first embodiment, the operation is the same as that of the comparison circuit of the first embodiment.
  • the switches S11, S12, S14 are off, and the switch S22 is on. Since the switches S11 and S12 are off, the voltage V3 is determined by the voltage V1 and ⁇ VC1 ⁇ 1, and the voltage V4 is determined by the voltages V2 and ⁇ VC2 ⁇ 1. That is, since it is the same as the comparison circuit of the first embodiment, the operation is the same as that of the comparison circuit of the first embodiment.
  • the comparison phase ⁇ 2 since the switch S14 is turned off and the switch S22 is turned on, the voltage at the other terminal of the switches S11 and S12 becomes equal to the voltage at the reference voltage input terminal Nref0.
  • the voltage at the other terminal of the switches S11 and S12 is equal to the voltage Vo at the output terminal OUT of the comparator 11, and this point is different from the first embodiment.
  • the voltage at one terminal of the switch S12 becomes a voltage based on Vref0 ⁇ 1 expressed by the equation (15).
  • the leakage current flows, but the leakage current is relatively small.
  • the voltage at one terminal is a voltage based on Vref0 ⁇ 1 represented by the equation (13), and the voltage at the other terminal is the voltage of Vref0 ⁇ 1, so that a leakage current flows as in the switch S12.
  • the leakage current is relatively small. Therefore, the difference between the voltage difference between the two terminals of the switch S11 and the voltage difference between the two terminals of the switch S12 is improved, and as a result, as in the case of the comparison circuit of the first embodiment. It is possible to reduce an error occurring in the comparison determination result. Therefore, by using the switches S14 and S22, it is possible to suppress the influence of the error caused by the switch leakage current and obtain a highly accurate comparison determination result.
  • non-ideal components of the switch include noise components generated when the transistor elements constituting the switch transition from on to off, such as channel charge injection and clock feedthrough.
  • the operation of the comparison circuit of the second embodiment is described, and the influence of the input offset voltage of the comparator is removed with a simple circuit configuration as in the case of the first embodiment, and the off-leak current and noise of the switch are removed. It was shown that it is possible to suppress the influence of the error due to the components and obtain a highly accurate comparison judgment result.
  • FIG. 7 is a circuit diagram of the comparison circuit of the third embodiment.
  • the difference from the first embodiment shown in FIG. 1 is that the comparator 11 is replaced with a comparator 12, and the first reference voltage input terminal Nref1 connected to the input of the comparator 11 and the second reference voltage input. The point is that the terminal Nref2 is deleted.
  • the replaced element is configured and connected as follows.
  • the comparator 12 has two input terminals and one output terminal. Specifically, the first input terminal N3 of the differential input pair, the second input terminal N4 of the differential input pair, and the output terminal OUT are connected to each other. Have. The first input terminal N3 of the differential input pair of the comparator 12 is connected to one terminal of the capacitor C1, the second input terminal N4 of the differential input pair is connected to one terminal of the capacitor C2, and the output terminal OUT is Connected to the other terminal of the switch S11. Other connections and configurations are the same as those in the first embodiment.
  • the switches S11, S12, S13, and S21 are controlled to be turned on or off by a switch control signal (not shown in the circuit diagram) as in the comparison circuit of the first embodiment.
  • A3 is the amplification factor of the comparator 12.
  • Vo V4 (27) That is, when the switch S11 is on, the output terminal OUT of the comparator 12 and the first input terminal N3 of the differential input pair are electrically connected to form a feedback loop, and the output voltage Vo is input. A voltage follower operation is performed following the voltage V4.
  • the comparator 11 since the feedback loop is not formed in the comparator 12 when the switch S11 is OFF, the comparator 11 operates as the comparator (comparator) itself.
  • a comparison operation for outputting a power supply voltage level) or a low level signal (generally a negative power supply voltage level or a GND level) is performed.
  • the operation of the switch is also controlled in the same manner as in the first embodiment, and is operated according to the diagram showing the operation of each switch in FIG.
  • the outline of the operation of the comparison circuit of FIG. 7 in each phase will be described.
  • the sample phase ⁇ 1 the terminal voltages of the input terminal N1 and the input terminal N2 and the offset voltage of the comparator 12 are stored in the capacitors C1 and C2.
  • the comparison phase ⁇ 2 is a phase in which the voltage difference between the input terminal N1 and the input terminal N2 is compared while canceling out the offset component of the comparator 12 in the sample phase ⁇ 1. Details will be described below.
  • the switches S11, S12, S13 are on and the switch S21 is off. Accordingly, the voltage Vo of the output terminal OUT is given to the first input terminal N3 of the differential input pair of the comparator 12, and the voltage of the reference voltage input terminal Nref0 is given to the second input terminal N4 of the differential input pair. .
  • the comparator 12 operates as shown in the equation (29), and therefore the voltage at the first input terminal N3 of the differential input pair is expressed as follows.
  • V3 ⁇ 1 Vref0 ⁇ 1 + Voa3 ⁇ 1 (31)
  • the capacitor C1 is charged with the difference ⁇ VC1 ⁇ 1 between the voltage V3 and the voltage V1.
  • ⁇ VC1 ⁇ 1 V3 ⁇ 1-V1 ⁇ 1 (32)
  • ⁇ VC1 ⁇ 1 ⁇ V1 ⁇ 1 + Vref0 ⁇ 1 + Voa3 ⁇ 1 (33)
  • ⁇ VC2 ⁇ 1 V4 ⁇ 1-V2 ⁇ 1 (34) Since the voltage of the reference voltage input terminal Nref0 is given to the second input terminal N4 of the differential input pair, the following expression is obtained from Expression (34).
  • ⁇ VC2 ⁇ 1 Vref0 ⁇ 1-V2 ⁇ 1 (35)
  • the switches S11, S12, S13 are off and the switch S21 is on. Since the switch S11 is turned off and ⁇ VC1 ⁇ 1 is charged in the capacitor C1, the voltage V3 is determined by the voltages V1 and ⁇ VC1 ⁇ 1, and is expressed by the following equation.
  • V3 ⁇ 2 V1 ⁇ 2 + ⁇ VC1 ⁇ 1 (36)
  • equation (33) representing ⁇ VC1 ⁇ 1 charged in the capacitor C1 into the above equation the following is obtained.
  • V3 ⁇ 2 V1 ⁇ 2-V1 ⁇ 1 + Vref0 ⁇ 1 + Voa3 ⁇ 1 (37)
  • the voltage V4 is determined by the voltage V2 and ⁇ VC2 ⁇ 1, and is expressed by the following equation.
  • V4 ⁇ 2 V2 ⁇ 2 + ⁇ VC2 ⁇ 1 (38)
  • equation (35) representing ⁇ VC2 ⁇ 1 charged in the capacitor C2 the following is obtained.
  • V4 ⁇ 2 V2 ⁇ 2 + Vref0 ⁇ 1-V2 ⁇ 1 (39)
  • the comparator 12 operates as shown in the equation (30), so the voltage Vo at the output terminal OUT of the comparator 12 is expressed as follows.
  • Vo ⁇ 2 A3 ⁇ ⁇ (V4 ⁇ 2 + Voa3 ⁇ 2-V3 ⁇ 2) ⁇ (40) Substituting V3 ⁇ 2 represented by equation (37) and V4 ⁇ 2 represented by equation (39) into the above equation, the following equation is obtained.
  • Vo ⁇ 2 A3 ⁇ ⁇ (V2 ⁇ 2-V2 ⁇ 1) ⁇ (V1 ⁇ 2-V1 ⁇ 1) + (Voa3 ⁇ 2-Voa3 ⁇ 1) ⁇ (41)
  • the input offset voltage Voa3 of the comparator 12 is such that the time of the sample phase ⁇ 1 and the comparison phase ⁇ 2 is sufficiently short with respect to the time-dependent change and temperature change of the input offset voltage. If there is, it can be considered that the sample phase ⁇ 1 and the comparison phase ⁇ 2 have substantially the same value. Therefore, in the equation (41), Voa3 ⁇ 2-Voa3 ⁇ 1 becomes a value of almost zero, and the offset component of the comparator 12 is removed during the comparison operation in the comparator 12 in the comparison phase ⁇ 2. Therefore, Formula (41) can be expressed as follows.
  • Vo ⁇ 2 A3 ⁇ ⁇ (V2 ⁇ 2-V2 ⁇ 1) ⁇ (V1 ⁇ 2-V1 ⁇ 1) ⁇ (42) Therefore, the result of comparing the voltage input to the input terminal N1 and the voltage input to the input terminal N2 is amplified with a sufficiently large amplification factor A3, and finally becomes a high level from the output terminal OUT of the comparator 12. It is output as a signal or a low level signal.
  • Equation (42) does not include the term Vref0.
  • the switches S13 and S21 turn off the switch S13 and turn on the switch S21, so that the voltage at the other terminal of the switches S11 and S12 is changed to the voltage Vo at the output terminal OUT of the comparator 11. Operates to be equal. Therefore, as in the first embodiment, the switches S13 and S21 can suppress the influence of an error caused by the leakage current of the switch and obtain a highly accurate comparison determination result.
  • a highly accurate comparison and determination is performed by suppressing the influence of an error caused by a noise component generated when the switch transitions from an on state to an off state. The result can be obtained.
  • the operation of the comparison circuit of the third embodiment is described, and the influence of the input offset voltage of the comparator is removed with a simple circuit configuration, and the influence of the error due to the off-leakage current and noise component of the switch is suppressed. It was shown that it is possible to obtain accurate comparison judgment results.
  • FIG. 8 is a circuit diagram of the comparison circuit of the fourth embodiment.
  • the difference from the third embodiment shown in FIG. 7 is that the switches S13 and S21 are deleted and the switches S14 and S22 are added.
  • the added elements are configured and connected as follows. Further, the next connection differs from that of the third embodiment depending on the deleted element.
  • the other terminal of the switch S12 is connected to the reference voltage input terminal Nref0.
  • the switch S14 has two terminals, one terminal is connected to the output terminal OUT of the comparator 12, and the other terminal is connected to the other terminal of the switch S11.
  • the switch S22 has two terminals, one terminal is connected to the other terminal of the switch S11, and the other terminal is connected to the other terminal of the switch S12. Other connections and configurations are the same as those of the third embodiment.
  • the difference between this embodiment and the second embodiment shown in FIG. 5 is similar to the difference between the third embodiment shown in FIG. 7 and the first embodiment shown in FIG.
  • the comparator 11 is replaced with the comparator 12, and the first reference voltage input terminal Nref1 and the second reference voltage input terminal Nref2 connected to the input of the comparator 11 are deleted.
  • the switches S14 and S22 are controlled to be turned on or off by a switch control signal (not shown in the circuit diagram) similarly to the switches S11 and S12.
  • the operation of the switch is controlled in the same manner as in the second embodiment, and operates according to the diagram showing the operation of each switch in FIG.
  • the switches S11, S12, S14 are on and the switch S22 is off. Therefore, the following voltage is supplied to each input terminal of the comparator 12.
  • the voltage Vo of the output terminal OUT is given to the first input terminal N3 of the differential input pair of the comparator 12, and the voltage of the reference voltage input terminal Nref0 is given to the second input terminal N4 of the differential input pair. That is, since it is the same as the comparison circuit of the third embodiment, the operation is the same as that of the comparison circuit of the third embodiment.
  • the switches S11, S12, S14 are off, and the switch S22 is on. Since the switches S11 and S12 are off, the voltage V3 is determined by the voltage V1 and ⁇ VC1 ⁇ 1, and the voltage V4 is determined by the voltages V2 and ⁇ VC2 ⁇ 1. That is, since it is the same as the comparison circuit of the third embodiment, the operation is the same as that of the comparison circuit of the third embodiment, the offset component of the comparator 12 is removed, and the common-mode input required for the comparator 12 is removed.
  • the comparator circuit has an advantage that the voltage range can be remarkably relaxed, and can obtain a highly accurate comparison / determination result.
  • the comparison circuit can suppress the influence of errors due to the leakage currents of the switches S11 and S12 and obtain a highly accurate comparison determination result.
  • the operation of the comparison circuit of the fourth embodiment will be described, and the influence of the input offset voltage of the comparator is removed with a simple circuit configuration as in the case of the third embodiment, and the off-leak current and noise components of the switch are removed. It was shown that it is possible to suppress the influence of errors due to and to obtain highly accurate comparison and determination results.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

比較回路における比較器のオフセット電圧の影響を取り除き、高温においても高精度な比較判定結果を得ることが可能な比較回路を提供する。 第一入力電圧が第一容量を介して入力される第一入力端子と、第二入力電圧が第二容量を介して入力される第二入力端子と、出力端子とを備えた比較器と、一端が第一入力端子に接続され、サンプルフェーズでオンして第一入力端子の電圧を出力端子の電圧にする第一スイッチと、一端が第二入力端子に接続され、サンプルフェーズでオンして第二入力端子の電圧を基準電圧にする第二スイッチと、比較フェーズでオンして第一スイッチの他端と第二スイッチの他端の電圧を等しくする第三スイッチを備えた。

Description

比較回路
 本発明は、電圧の大小を比較する比較回路に関し、特に高温時の回路素子のリーク電流やノイズによる影響を抑え、高精度な電圧比較を行う回路に関する。
 電子回路一般において、複数の電圧を比較し、その大小を判定する回路として比較回路が用いられている(例えば、特許文献1参照)。
 従来の比較回路の一例の回路図を図9に示す。従来の比較回路は、比較器(コンパレータ)を用い、2つの入力電圧の差分の電圧が所定の電圧よりも大きいかまたは小さいかを判定している。この比較において、比較器が持つオフセット電圧(入力オフセット電圧)やノイズが誤差の要因となり、精度が低下するという問題がある。上記の入力オフセット電圧は、一例としては比較器の入力回路を構成する素子の特性ばらつきにより発生する。また上記のノイズは、回路を構成する単体トランジスタが持つフリッカ雑音や、単体トランジスタや抵抗素子が持つ熱雑音により発生する。
 前述の比較器が持つオフセット電圧の影響を低減するため、図9に示した比較回路は以下の構成となっている。比較器5と、比較器5の反転入力端子N3と出力端子との間に接続されるスイッチS3と、比較器5の反転入力端子N3と入力端子N1との間に接続される容量3と、比較器5の非反転入力端子N4と比較電圧入力端子Nrefとの間に接続されるスイッチS4と、比較器5の非反転入力端子N4と接続点N41との間に接続されるスイッチS1と、入力端子N2と接続点N41との間に接続される容量4と、接続点N41と比較電圧入力端子N0との間に接続されるスイッチS2とを有する。ここで、比較電圧入力端子N0の電圧をV0、比較電圧入力端子Nrefの電圧をVref、入力端子N1の電圧をV1、入力端子N2の電圧をV2、比較器5の反転入力端子N3の電圧をV3、比較器5の非反転入力端子N4の電圧をV4、比較器5の出力端子の電圧をVoとする。また、比較器5の入力オフセット電圧をVoaとする。
 図9の比較回路は、図10に示すようにスイッチS1~S4が制御されて動作する。動作の一周期は、サンプルフェーズφ1と比較フェーズφ2からなる。サンプルフェーズφ1では、スイッチS1がオフ、スイッチS2~S4がオンする。比較フェーズφ2では、スイッチS1がオン、スイッチS2~S4がオフする。また、各接続点や端子の電圧の末尾に付するφ1またはφ2は、それぞれサンプルフェーズφ1または比較フェーズφ2における電圧を表すものとする。
 サンプルフェーズφ1では、スイッチS1がオフ、スイッチS2がオンし、容量4にΔVC4φ1=V0-V2φ1が充電される。スイッチS4がオンしているのでV4φ1=Vrefとなる。比較器5は、スイッチS3がオンしているので、ボルテージフォロワ回路として動作し、入力オフセット電圧Voaを有するためVoφ1=V4φ1+Voaとなる。また、スイッチS3がオンしているのでV3φ1=Voφ1であり、すなわちV3φ1=Vref+Voaとなり、容量3にΔVC3φ1=V3φ1-V1φ1=Vref+Voa-V1φ1が充電される。サンプルフェーズφ1での容量3と容量4に蓄積される電荷をまとめると次のようになる。
 ΔVC3φ1=Vref+Voa-V1φ1・・・(43)
 ΔVC4φ1=V0-V2φ1・・・(44)
 比較フェーズφ2では、スイッチS2~S4がオフし、スイッチS1がオンする。容量3には式(43)で示すΔVC3φ1が保持されているので、電圧V3は次のようになる。
 V3φ2=V1φ2+ΔVC3φ1・・・(45)
一方、容量4には式(44)で示すΔVC4φ1が保持されているので、電圧V4は次のようになる。
 V4φ2=V2φ2+ΔVC4φ1・・・(46)
 最終的に、式(45)で表される電圧V3と式(46)で表される電圧V4が比較器5において比較され、出力端子からハイレベルまたはローレベルが出力される。
比較器5の入力オフセット電圧Voaを考慮すると、比較器5で比較される電圧は次のようになる。
 (V4φ2+Voa)-V3φ2={(V2φ2-V1φ2)-(V2φ1-V1φ1)}-(Vref-V0)・・・(47)
式(47)には、比較器5の入力オフセット電圧Voaが含まれておらず、オフセット電圧が相殺されていることが示されている。従って、比較フェーズφ2で比較器5において、入力電圧成分{(V2φ2-V1φ2)-(V2φ1-V1φ1)}と基準電圧成分(Vref-V0)が比較される。以上により、誤差要因となる比較器のオフセット電圧成分の影響が取り除かれ、誤差の少ない高精度な出力の比較回路を実現することができる。
特開2008-236737号公報
 しかしながら、自動車等に搭載される回路においては、近年、より高温での動作が求められ、また更なる高精度化が求められる傾向にある。前述したような従来の比較回路では、比較フェーズにおいて、高温時に顕著になるスイッチのオフリーク電流により容量に電荷が注入され、比較の結果に誤差を生じるという課題があった。具体的には、図9の比較回路においては、比較フェーズφ2にて、容量3にはスイッチS3のみのリーク電流が流れ込むのに対して、容量4にはスイッチS2およびS4のリーク電流が流れ込むため、比較器の入力における電圧の変動量が反転入力端子N3側と非反転入力端子N4側で異なり、比較結果に誤差を生じていた。一般的に、スイッチを構成するトランジスタのリーク電流は高温になるに従い増加するため、誤差は高温になるほど顕著になる。また、トランジスタがMOSトランジスタの場合、チャネル間のリーク電流はドレイン-ソース間の電圧差に依存するため、オフしているスイッチにおいて容量に接続されていない側の電圧により、スイッチのリーク電流の流れる向きや大きさが異なり、比較結果に誤差を生じていた。
 また、従来の比較回路では、スイッチを構成するトランジスタ素子がオンからオフに遷移する際に発生するノイズ成分(例えば、チャネルチャージインジェクションやクロックフィードスルー)の影響についても、各容量へのスイッチの接続が非対称であるために、スイッチのノイズ成分による比較器の入力における電圧の変動量が反転入力端子N3側と非反転入力端子N4側で異なっており、誤差発生の要因であるという課題があった。
 本発明はこのような点に鑑みてなされたものであり、簡便な回路構成で比較器の入力オフセット電圧の影響を取り除くと共に、スイッチのオフリーク電流やノイズ成分による誤差の影響を抑制し、高精度な比較判定結果を得ることが可能な比較回路を提供することを目的とする。
 従来のこのような問題点を解決するために、本発明の比較回路は以下のような構成とした。
 第一入力電圧が第一容量を介して入力される第一入力端子と、第二入力電圧が第二容量を介して入力される第二入力端子と、出力端子とを備えた比較器と、一端が第一入力端子に接続され、サンプルフェーズでオンして第一入力端子の電圧を出力端子の電圧にする第一スイッチと、一端が第二入力端子に接続され、サンプルフェーズでオンして第二入力端子の電圧を基準電圧にする第二スイッチと、比較フェーズでオンして第一スイッチの他端と第二スイッチの他端の電圧を等しくする第三スイッチを備えた比較回路。
 本発明の比較回路によれば、スイッチと容量と比較器を有効的に活用することにより、比較器において発生するオフセット成分やスイッチのオフリーク電流成分やスイッチのノイズ成分によって生じる誤差を簡便な回路構成で取り除き、広範な温度領域にわたって高精度な比較を行うことが可能となる。
第1の実施形態の比較回路の回路図である。 第1の実施形態の各スイッチの動作を示す図である。 本発明の比較回路に用いる比較器の一例を示す回路図である。 本発明の比較回路に用いる比較器の他の例を示す回路図である。 第2の実施形態の比較回路の回路図である。 第2の実施形態の各スイッチの動作を示す図である。 第3の実施形態の比較回路の回路図である。 第4の実施形態の比較回路の回路図である。 従来の比較回路の回路図である。 従来の比較回路の各スイッチの動作を示す図である。
 本発明の比較回路は、半導体回路における高精度な比較回路として幅広く利用されうる。以下、本発明の比較回路について図面を参照して説明する。
<第1の実施形態>
 図1は、第1の実施形態の比較回路の回路図である。第1の実施形態の比較回路は、比較器11と、容量C1、C2と、スイッチS11、S12、S13、S21を備える。
 比較器11は、4つの入力端子と1つの出力端子とを有し、詳しくは、第一差動入力対の第一入力端子N3と、第一差動入力対の第二入力端子N4と、第二差動入力対の第一入力端子N5と、第二差動入力対の第二入力端子N6と出力端子OUTを有する。容量C1は、2つの端子を有し、一方の端子は比較器11の第一差動入力対の第一入力端子N3に接続され、他方の端子は入力端子N1に接続される。容量C2は、2つの端子を有し、一方の端子は比較器11の第一差動入力対の第二入力端子N4に接続され、他方の端子は入力端子N2に接続される。スイッチS11は、2つの端子を有し、一方の端子は比較器11の第一差動入力対の第一入力端子N3に接続され、他方の端子は比較器11の出力端子OUTに接続される。スイッチS12は、2つの端子を有し、一方の端子は比較器11の第一差動入力対の第二入力端子N4に接続される。スイッチS13は、2つの端子を有し、一方の端子は基準電圧入力端子Nref0に接続される。スイッチS21は、2つの端子を有し、一方の端子は比較器11の出力端子OUTに接続される。スイッチS12、S13、S21のそれぞれの他方の端子は共通に接続される。スイッチS11、S12、S13、S21は、スイッチ制御信号(回路図には図示しない)により、オンまたはオフが制御される。比較器11の第二差動入力対の第一入力端子N5には第一基準電圧入力端子Nref1が接続され、比較器11の第二差動入力対の第二入力端子N6には第二基準電圧入力端子Nref2が接続される。
 次に、第1の実施形態の比較回路の動作を説明する。
 まず、比較器11の動作を説明する。比較器11は、一対の入力電圧の差を増幅した値と、もう一対の入力電圧の差を増幅した値と、の和を出力する機能を有する。この増幅機能を概念的に表した図を図3に示す。
 図3は、比較器11の機能を表す概念図である。
 図3の比較器11は、差動増幅器111、112と加算器113を有し、以下のように接続されて構成される。比較器11の第一差動入力対の第一入力端子N3が差動増幅器111の反転入力端子に接続され、第一差動入力対の第二入力端子N4が差動増幅器111の非反転入力端子に接続され、第二差動入力対の第一入力端子N5が差動増幅器112の反転入力端子に接続され、第二差動入力対の第二入力端子N6が差動増幅器112の非反転入力端子に接続される。差動増幅器111の出力と差動増幅器112の出力は加算器113の入力にそれぞれ接続され、加算器113の出力が比較器11の出力端子OUTに接続される。
 比較器11は以上のように接続されており、次のように動作する。
 差動増幅器111は2つの入力端子N3とN4の電圧の差を増幅して加算器113に入力し、差動増幅器112は2つの入力端子N5とN6の電圧の差を増幅して加算器113に入力する。加算器113は差動増幅器111と差動増幅器112の出力の和を出力する。この増幅機能を式で表すと、
 Vo=A1×(V4-V3)+A2×(V6-V5)・・・(1)
となる。ここにA1およびA2はそれぞれ差動増幅器111および112の増幅率である。また、各端子N3~N6およびOUTの電圧をそれぞれV3~V6およびVoとした。
 図1の比較回路では、図3に示した比較器11の第一差動入力対の第一入力端子N3と出力端子OUTはスイッチS11の両端に接続されている。スイッチS11がオンしている状態では、VoとV3は概等しい電圧になるから、Voは式(1)から次のように表される。
 Vo=A1/(1+A1)×V4+A2/(1+A1)×(V6-V5)・・・(2)説明の便宜上、増幅率A1およびA2は十分に大きいとすると、次式を得る。
 Vo=V4+(A2/A1)×(V6-V5)・・・(3)
 すなわちスイッチS11がオンしている状態では、比較器11の出力端子OUTと、第一差動入力対の第一入力端子N3すなわち差動増幅器111の反転入力端子が電気的に接続されており、フィードバックループが形成され、出力電圧Voは入力電圧V4に追従するだけでなく、入力V6とV5の電圧の差分を増幅率A2とA1の比で増幅した電圧との和をも出力する、一種のボルテージフォロワのような動作をする。
 一方、スイッチS11がオフしている状態では比較器11にフィードバックループが形成されないことから、比較器11は比較器(コンパレータ)そのものとして動作する。式(1)から
 Vo=A1×{(V4-V3)+(A2/A1)×(V6-V5)}・・・(4)
であるから、すなわち比較器11は、スイッチS11がオフしている状態では、V4とV3の差分の電圧と、V6とV5の差分を増幅率A2とA1の比で増幅した電圧と、の和の電圧を、十分に大きな増幅率A1で増幅して、出力端子OUTからハイレベル信号(一般に正の電源電圧レベル)またはローレベル信号(一般に負の電源電圧レベル、またはGNDレベル)を出力する比較動作を行う。
 ここで、比較器11の入力オフセット電圧を第一差動入力対の第二入力端子N4においてVoa1、第二差動入力対の第二入力端子N6においてVoa2とすると、入力オフセット電圧を考慮した比較器11の動作を表す式は、スイッチS11がオンしているときとオフしているときで、それぞれ式(3)、式(4)から次のようになる。
 スイッチS11がオンしているとき
 Vo=(V4+Voa1)+(A2/A1)×(V6+Voa2-V5)・・・(5)
 スイッチS11がオフしているとき
 Vo=A1×{(V4+Voa1-V3)+(A2/A1)×(V6+Voa2-V5)}・・・(6)
 以上が図3に示した比較器11の動作説明である。
 図2は各スイッチの動作を示す図である。
 比較動作の一周期は、サンプルフェーズφ1と比較フェーズφ2の2つのフェーズからなる。スイッチS11、S12、S13、S21は、図2のスイッチ制御信号により制御される。スイッチS11、S12、S13は、サンプルフェーズφ1でオンし、比較フェーズφ2でオフする。また、スイッチS21は、サンプルフェーズφ1でオフし、比較フェーズφ2でオンする。
 図1の比較回路の各フェーズでの動作の概略を説明する。サンプルフェーズφ1は、入力端子N1の電圧V1、入力端子N2の電圧V2、第一基準電圧入力端子Nref1の電圧Vref1、第二基準電圧入力端子Nref2の電圧Vref2と、比較器11のオフセット電圧とを容量C1およびC2に記憶するフェーズである。比較フェーズφ2は、サンプルフェーズφ1における比較器11のオフセット成分を相殺しつつ、入力端子N1と入力端子N2の間の電圧差と、第一基準電圧Vref1と第二基準電圧Vref2の間の電圧差の比較を行うフェーズである。
 以下に、サンプルフェーズφ1と比較フェーズφ2について、詳細に説明する。
 サンプルフェーズφ1では、スイッチS11、S12、S13はオンしており、スイッチS21はオフする。従って、比較器11の各入力端子には、次の電圧が供給される。比較器11の第一差動入力対の第一入力端子N3には出力端子OUTの電圧Voが与えられ、第一差動入力対の第二入力端子N4には基準電圧Vref0が与えられ、第二差動入力対の第一入力端子N5には第一基準電圧Vref1が与えられ、第二差動入力対の第二入力端子N6には第二基準電圧Vref2が与えられる。スイッチS11がオンしているとき、比較器11は式(5)で示したように動作するから、第一差動入力対の第一入力端子N3の電圧は次のように表される。
 V3φ1=Vref0φ1+Voa1φ1+(A2/A1)×(Vref2φ1+Voa2φ1-Vref1φ1)・・・(7)
 各電圧の末尾のφ1は、サンプルフェーズφ1における電圧である事を示す。これ以降では、他の電圧、また比較フェーズφ2についても同様に表記する。
 容量C1には電圧V3と電圧V1の差分ΔVC1φ1が充電される
 ΔVC1φ1=V3φ1-V1φ1・・・(8)
上式に式(7)を代入すると、次式を得る。
 ΔVC1φ1=-V1φ1+Vref0φ1+Voa1φ1+(A2/A1)×(Vref2φ1+Voa2φ1-Vref1φ1)・・・(9)
 一方、容量C2には電圧V4と電圧V2の差分ΔVC2φ1が充電される
 ΔVC2φ1=V4φ1-V2φ1・・・(10)
第一差動入力対の第二入力端子N4には基準電圧Vref0が与えられているから、式(10)から次式を得る。
 ΔVC2φ1=Vref0φ1-V2φ1・・・(11)
 一方、比較フェーズφ2では、スイッチS11、S12、S13はオフしており、スイッチS21はオンする。スイッチS11がオフし、容量C1にはΔVC1φ1が充電されているので、電圧V3は電圧V1とΔVC1φ1で定まり、次式で表される。
V3φ2=V1φ2+ΔVC1φ1・・・(12)
上式に容量C1に充電されたΔVC1φ1を表す式(9)を代入すると次のようになる。
 V3φ2=V1φ2-V1φ1+Vref0φ1+Voa1φ1+(A2/A1)×(Vref2φ1+Voa2φ1-Vref1φ1)・・・(13)
また、スイッチS12がオフし、容量C2にはΔVC2φ1が充電されているので、電圧V4は電圧V2とΔVC2φ1で定まり、次式で表される。
 V4φ2=V2φ2+ΔVC2φ1・・・(14)
上式に容量C2に充電されたΔVC2φ1を表す式(11)を代入すると次のようになる。
 V4φ2=V2φ2-V2φ1+Vref0φ1・・・(15)
また、スイッチS11がオフしているとき、比較器11は式(6)で示したように動作するから、比較器11の出力端子OUTの電圧Voは次のように表される。
 Voφ2=A1×{(V4φ2+Voa1φ2-V3φ2)+(A2/A1)×(Vref2φ2+Voa2φ2-Vref1φ2)}・・・(16)
上式に式(13)で表されるV3φ2、式(15)で表されるV4φ2を代入すると次式を得る。
 Voφ2=A1×[{(V2φ2-V1φ2)-(V2φ1-V1φ1)+(Voa1φ2-Voa1φ1)}-(A2/A1)×{(Vref2φ1-Vref1φ1)-(Vref2φ2-Vref1φ2)-(Voa2φ2-Voa2φ1)}]・・・(17)
 式(17)を分かりやすくするために、入力端子N1および入力端子N2から供給される電圧成分をΔVinとおき、第一基準電圧入力端子Nref1および第二基準電圧入力端子Nref2から供給される電圧成分をΔVrefとおくと、式(17)は次のように表せる。
 Voφ2=A1×[{ΔVin+(Voa1φ2-Voa1φ1)}-(A2/A1)×{ΔVref-(Voa2φ2-Voa2φ1)}]・・・(18)
ここに、
 ΔVin=(V2φ2-V1φ2)-(V2φ1-V1φ1)・・・(19)
 ΔVref=(Vref2φ1-Vref1φ1)-(Vref2φ2-Vref1φ2)・・・(20)
である。
 ここで、比較器11の入力オフセット電圧Voa1、Voa2は、厳密には経時変化や温度変化(温度ドリフト)を示すため、一定の値ではないが、サンプルフェーズφ1および比較フェーズφ2の時間が、入力オフセット電圧の経時変化や温度変化に対して十分に短い時間であれば、入力オフセット電圧の値は、サンプルフェーズφ1と比較フェーズφ2で概等しい値であるとみなす事ができる。従って、式(18)において、Voa1φ2-Voa1φ1、Voa2φ2-Voa2φ1は、ほぼゼロの値となり、比較フェーズφ2の比較器11における比較動作時に、比較器11のオフセット成分は取り除かれる。よって式(18)は次のように表せる。
 Voφ2=A1×{ΔVin-(A2/A1)×ΔVref}・・・(21)
従って、入力端子N1および入力端子N2から供給される電圧成分ΔVinと、第一基準電圧入力端子Nref1および第二基準電圧入力端子Nref2から供給される電圧成分ΔVrefを比較した結果が、十分に大きな増幅率A1で増幅され、最終的に比較器11の出力端子OUTからハイレベル信号またはローレベル信号として出力されることになる。例として、ΔVinを決める入力端子N1および入力端子N2に印加する電圧を挙げると、例えば、V1φ2=V2φ1=V1’、V1φ1=V2φ2=V2’となるように外部から電圧を入力した場合には、式(19)からΔVin=2×(V2’-V1’)となり、V1’とV2’の差を2倍した電圧が入力電圧成分として比較器11に入力されることになる。また一方で、ΔVrefを決める第一基準電圧Vref1および第二基準電圧Vref2は、例えば、Vref2φ1=Vref1φ1=Vref2φ2=Vref2’、Vref1φ2=Vref1’となるように外部から基準電圧を印加した場合には、式(20)からΔVref=Vref1’-Vref2’となり、Vref1’とVref2’の差の電圧が比較器11に基準電圧成分として入力されることになる。間便のため、A1=A2となるように差動増幅器111、112を設計したとすると、この例の場合には式(21)は、
 Voφ2=A1×{2×(V2’-V1’)-(Vref1’-Vref2’)}・・・(22)
となり、入力電圧成分2×(V2’-V1’)と基準電圧成分(Vref1’-Vref2’)の比較結果が得られることになる。
 ここで、式(17)に注目すると、この式には、Vref0の項は含まれていない。これは、容量C1に充電されている電圧ΔVC1φ1と、容量C2に充電されている電圧ΔVC2φ1の両方にVref0φ1の項が含まれており、Voφ2を導出する過程においてVref0の項が相殺されたためである。このことは、本実施形態の比較回路では、基準電圧入力端子Nref0に与えられる電圧が如何なる値でも、比較結果はVref0の電圧によらないことを示している。実際の回路においては、比較器11に入力可能な電圧の範囲には同相入力電圧範囲という制約があり、この電圧範囲を逸脱した場合には、高精度な比較を正常に行えない可能性がある。比較対象である入力端子N1および入力端子N2の電圧が、比較器11の同相入力電圧範囲外の電圧であったとしても、本実施形態の比較回路磁気センサ装置では、基準電圧入力端子Nref0の電圧を比較器11の同相入力電圧範囲内になるように選択することで、高精度な比較が可能であるという利点を有する。別の表現をすると、比較器11に要求される同相入力電圧範囲を著しく緩和できるという利点を有しているといえる。
 次に、スイッチS13とS21による効果を説明する。比較フェーズφ2では、スイッチS13がオフし、スイッチS21がオンすることで、スイッチS12の他方の端子の電圧を比較器11の出力端子OUTの電圧Voに等しくするように動作させている。従って、オフ状態にあるスイッチS11とS12のそれぞれの他方の端子の電圧は比較器11の出力端子OUTの電圧Voに等しくなる。
 仮に、スイッチS13が比較フェーズφ2でサンプルフェーズφ1と同じくオンのままであり、スイッチS21が比較フェーズφ2でサンプルフェーズφ1と同じくオフのままである場合、言い換えるとスイッチS13とS21が存在せず、スイッチS12の他方の端子が基準電圧入力端子Nref0に直接接続されている場合、を考える。この場合には、比較フェーズφ2では、スイッチS11の他方の電圧は比較器11の出力端子OUTの電圧Voに等しくなり、比較結果に応じてハイレベル信号(一般に正の電源電圧レベル)またはローレベル信号(一般に負の電源電圧レベル、またはGNDレベル)の電圧になる。一方、スイッチS12の他方の電圧は基準電圧入力端子Nref0の電圧に等しくなる。前述のとおり、基準電圧入力端子Nref0の電圧は、比較器11の同相入力電圧範囲内になるように選択することが好ましく、一般的には正の電源電圧レベルと負の電源電圧レベル(またはGNDレベル)の間の電圧、例としては、中間の電圧に設定される。従って、比較フェーズφ2では、スイッチS11の他方の端子の電圧とスイッチS21の他方の端子の電圧は、非常に差の大きい電圧となる。一方、スイッチS11とS12の一方の端子の電圧は、それぞれ式(13)および式(15)で表される電圧であり、必ずしも等しい電圧ではないが、いずれも基準電圧入力端子Nref0のサンプルフェーズφ1における電圧を基準とした電圧となり、特に比較器11の比較判定結果が切り替わる境界条件近傍において、概ね近い電圧となる(少なくとも、片方が正または負の電源電圧になり、もう片方が正と負の電源電圧の中間電圧となるほどの電圧差は生じない)。以上から、オフ状態にあるスイッチS11の両端子間の電圧差と、スイッチS12の両端子間の電圧差は大きく異なることになる。オフ状態のスイッチの理想的な特性としては、両端子間の電圧差によらず端子間に電流が流れないことが挙げられるが、実際の回路においては、スイッチの端子間にはリーク電流が流れ、また両端子間の電圧差によりリーク電流が変化する。このためにリーク電流を低減させるスイッチ回路の構成が多々挙げられているが、リーク電流はゼロにはならず有限の値をとる。スイッチS12においては、一方の端子の電圧は式(15)で表されるVref0φ1を基準とした電圧であり、他方の端子の電圧はVref0φ1の電圧であるため、リーク電流が流れるものの、比較的小さいリーク電流となる。スイッチS11においては、一方の端子の電圧は式(13)で表されるVref0φ1を基準とした電圧であり、他方の端子の電圧は比較器11の出力端子OUTの電圧Voに等しく、ハイレベル信号(一般に正の電源電圧レベル)またはローレベル信号(一般に負の電源電圧レベル、またはGNDレベル)の電圧であるため、スイッチS12のリーク電流よりも大きいリーク電流が流れることになる。従って、容量C1と容量C2に流れ込むリーク電流が異なり、第一差動入力対の第一入力端子N3の電圧の変動量と、第一差動入力対の第二入力端子N4の電圧の変動量が異なり、結果として比較結果に誤差を生じる要因となる。一般に、リーク電流は高温であるほど増加する傾向にあるため、高温になるほど比較回路の誤差は増大する。
 上述した仮の場合に対して、本実施形態においては、比較フェーズφ2では、スイッチS13がオフし、スイッチS21がオンすることで、スイッチS12の他方の端子の電圧を比較器11の出力端子OUTの電圧Voに等しくするように制御しているため、スイッチS11の両端子間の電圧差と、スイッチS12の両端子間の電圧差と、の差が小さくなるように改善され、リーク電流の差が小さくなり、容量C1と容量C2に流れ込むリーク電流の差を小さくするよう改善され、結果として比較結果に生じる誤差を小さくすることが可能となる。従って、スイッチS13とS21により、スイッチのリーク電流によって発生する誤差の影響を抑制し、高精度な比較判定結果を得ることが可能となる。
 また、スイッチの非理想成分としては、上述のリーク電流の他に、スイッチを構成するトランジスタ素子がオンからオフに遷移する際に発生するノイズ成分、例えば、チャネルチャージインジェクションやクロックフィードスルーが挙げられる。本実施形態においては、容量C1の一方の端子と比較器11の第一差動入力対の第一入力端子N3の接続点、容量C2の一方の端子と比較器11の第一差動入力対の第二入力端子N4の接続点、にそれぞれ対称となるようにスイッチS11,S12を接続しているため、スイッチのノイズ成分によって発生する電荷は各接続点にほぼ等しく注入され、第一差動入力対の第一入力端子N3の電圧と第一差動入力対の第二入力端子N4の電圧はそれぞれ変動するものの、その変動量はほぼ等しくなるように動作する。従って、スイッチがオン状態からオフ状態に遷移する際に発生するノイズ成分による誤差の影響を抑制し、高精度な比較判定結果を得ることが可能となる。
 ここで、図1の磁気センサ装置を構成する要素である比較器11の回路構成の一例について示しておく。図3の概念図で示した比較器11の機能は、さらに具体的には、例えば図4に示すような回路構成で実現することができる。
 図4は、比較器11の回路構成の一例である。
 比較器11は、定電流回路I1と、NMOSトランジスタM13、M14A、M14B、M15A、M16A、M15B、M16Bと、PMOSトランジスタM11、M12を有し、次のように接続されて構成される。定電流回路I1の一方は電源電圧端子VDDに接続され、もう一方はNMOSトランジスタM13のドレインおよびゲートに接続される。この接続点をNbとする。NbはNMOSトランジスタM14AのゲートとNMOSトランジスタM14Bのゲートに接続される。NMOSトランジスタM13、M14A、M14Bのソースはグランド端子VSSに接続される。NMOSトランジスタM15AとM16AのソースはM14Aのドレインに接続され、NMOSトランジスタM15BとM16BのソースはM14Bのドレインに接続される。NMOSトランジスタM15AとM15BのドレインはPMOSトランジスタM11のドレインに接続される。この接続点をNaとする。NMOSトランジスタM16AとM16BのドレインはPMOSトランジスタM12のドレインに接続される。この接続点は、比較器11の出力端子OUTに接続される。PMOSトランジスタM11とM12のゲートは接続点Naに接続され、ソースは電源電圧端子VDDに接続される。NMOSトランジスタM15A、M16Aのゲートは、それぞれ第一差動入力対の第二入力端子N4、第一入力端子N3に接続され、NMOSトランジスタM15B、M16Bのゲートは、それぞれ第二差動入力対の第二入力端子N6、第一入力端子N5に接続される。
 比較器11は以上のように接続されており、次のように動作する。
 定電流回路I1は、定電流を発生しNMOSトランジスタM13に供給する。NMOSトランジスタM13、M14A、M14Bはカレントミラー回路を構成しており、NMOSトランジスタM14A、M14Bのドレイン‐ソース間には、M13のドレイン‐ソース間に流れる電流に基づいた電流が流れる。NMOSトランジスタM14A、M15A、M16A、PMOSトランジスタM11、M12からなる5つのトランジスタは、差動増幅器を構成しており、第一差動入力対を構成するNMOSトランジスタM15A、M16Aのゲート電圧の差、すなわち、第一差動入力対の第二入力端子N4と第一差動入力対の第一入力端子N3の電圧差を増幅して、出力端子OUTに出力するように動作する。この増幅率をA1とする。ここで、カレントミラー回路構成および差動増幅器構成の動作については、CMOSアナログ回路の文献等にて詳細に記載されており、ここでは詳細な説明は割愛する。また、NMOSトランジスタM14B、M15B、M16B、PMOSトランジスタM11、M12からなる5つのトランジスタも、差動増幅器を構成しており、第二差動入力対を構成するNMOSトランジスタM15B、M16Bのゲート電圧の差、すなわち、第二差動入力対の第二入力端子N6と第二差動入力対の第一入力端子N5の電圧差を増幅して、出力端子OUTに出力するように動作する。この増幅率をA2とする。また、第一差動入力対を構成するNMOSトランジスタM15Aのドレインと第二差動入力対を構成するNMOSトランジスタM15Bのドレインが接続点NaにてPMOSトランジスタM11のドレインに接続され、第一差動入力対を構成するNMOSトランジスタM16Aのドレインと第二差動入力対を構成するNMOSトランジスタM16Bのドレインが出力端子OUTにてPMOSトランジスタM12のドレインに接続されていることにより、この接続点Naおよび出力端子OUTにて、第一差動入力対と第二差動入力対の各差動入力対で増幅された電圧が加算されるように動作する。これらの動作を式で表すと、
 Vo=A1×(V4-V3)+A2×(V6-V5)・・・(23)
となる。すなわち、式(1)と同等の動作を行う。
 以上により、第1の実施形態の比較回路の動作を説明し、簡便な回路構成で比較器の入力オフセット電圧の影響を取り除くと共に、スイッチのオフリーク電流やノイズ成分による誤差の影響を抑制し、高精度な比較判定結果を得ることが可能であることを示した。
 本説明においては、比較器11についての具体的な回路構成およびスイッチ制御のタイミングチャートを示したが、本説明内で記載した動作を行う構成であれば、必ずしもこの構成に制限されるものではない。例えば、図2では、サンプルフェーズφ1から比較フェーズφ2への遷移時、または逆の遷移時にスイッチのオンまたはオフが切り替わるタイミングが同時になるように記載しているが、スイッチS11がオフしてからスイッチS12をオフし、さらにその後にS13をオフ、S21をオンするようにタイミングをずらして制御しても良い。比較器11の過渡応答特性が良い場合や、比較器11の第一差動入力対の第一入力端子N3と第一差動入力対の第二入力端子N4の間の寄生容量が無視できない大きさであるなどの場合では、スイッチS12をオフした際に生じるスイッチングノイズが第一差動入力対の第二入力端子N4から第一差動入力対の第一入力端子N3に伝播し、容量C1に充電する電圧に無視できない誤差を発生させる場合がある。このような場合には、スイッチS11がオフするタイミングに対してスイッチS12がオフするタイミングを遅らせると、より好適である。
 また本説明においては、入力端子N1と入力端子N2に印加される入力電圧の一例、および、第一基準電圧入力端子Nref1と第二基準電圧入力端子Nref2に印加する電圧の一例を挙げたが、必ずしも、この例に制限されるものではない。例えば、従来技術に示されるように、センサ素子に印加される物理量の強度に応じて論理出力を行う信号検出回路に本実施形態の比較回路を適用する場合、入力電圧成分の例は次のようになる。
 V1φ1=Vcmφ1+Vsigφ1+Voffφ1
 V2φ1=Vcmφ1-Vsigφ1-Voffφ1
 V1φ2=Vcmφ2-Vsigφ2+Voffφ2
 V2φ2=Vcmφ2+Vsigφ2-Voffφ2
ここで、Vcmはセンサ素子の信号電圧の同相電圧成分、Vsigはセンサ素子の信号電圧成分、Voffはセンサ素子のオフセット電圧成分(誤差要因)である。以上の各入力電圧を式(19)に代入すると、
ΔVin=2×(Vsigφ2+Vsigφ1)-2×(Voffφ2-Voffφ1)・・・(24)
となる。センサ素子のオフセット電圧成分はサンプルフェーズφ1と比較フェーズφ2で概等しい値を示すので相殺される。従って、センサ素子の信号電圧成分のみが入力電圧成分として比較器11に入力されることになる。このような入力電圧成分の場合においても、本発明の趣旨である、比較器の入力オフセット電圧の影響を取り除くと共に、スイッチのオフリーク電流やノイズ成分による誤差の影響を抑制し、高精度な比較判定結果を得るという点から逸脱するものではない。
<第2の実施形態>
 図5は、第2の実施形態の比較回路の回路図である。図1に示した第1の実施形態との違いは、スイッチS13とS21を削除し、スイッチS14とS22を追加した点である。追加した要素は次のように構成され接続される。また削除した要素により次の接続が第1の実施形態と異なる。
 スイッチS12の他方の端子は、基準電圧入力端子Nref0に接続される。スイッチS14は、2つの端子を有し、一方の端子は比較器11の出力端子OUTに接続され、他方の端子はスイッチS11の他方の端子に接続される。スイッチS22は、2つの端子を有し、一方の端子はスイッチS11の他方の端子に接続され、他方の端子はスイッチS12の他方の端子に接続される。この他の接続および構成については、第1の実施形態と同じである。
 次に、第2の実施形態の比較回路の動作を説明する。
 スイッチS14、S22は、スイッチS11、S12と同様にスイッチ制御信号(回路図には図示しない)により、オンまたはオフが制御される。
 図6は、第2の実施形態の比較回路における各スイッチの動作を示す図である。スイッチS11、S12、S14は、サンプルフェーズφ1でオンし、比較フェーズφ2でオフするように制御される。スイッチS22は、サンプルフェーズφ1でオフし、比較フェーズφ2でオンするように制御される。
 サンプルフェーズφ1では、スイッチS11、S12、S14はオンしており、スイッチS22はオフする。従って、比較器11の各入力端子には、次の電圧が供給される。比較器11の第一差動入力対の第一入力端子N3には出力端子OUTの電圧Voが与えられ、第一差動入力対の第二入力端子N4には基準電圧入力端子Nref0の電圧が与えられ、第二差動入力対の第一入力端子N5には第一基準電圧入力端子Nref1の電圧が与えられ、第二差動入力対の第二入力端子N6には第二基準電圧入力端子Nref2の電圧が与えられる。すなわち、第1の実施形態の比較回路と同様であるから、動作についても第1の実施形態の比較回路と同様になる。
 比較フェーズφ2では、スイッチS11、S12、S14はオフしており、スイッチS22はオンする。スイッチS11とS12がオフしているので、電圧V3は電圧V1とΔVC1φ1で定まり、また、電圧V4は電圧V2とΔVC2φ1で定まる。すなわち、第1の実施形態の比較回路と同様であるから、動作についても第1の実施形態の比較回路と同様になる。
 比較フェーズφ2ではスイッチS14がオフし、スイッチS22がオンしているので、スイッチS11とS12の他方の端子の電圧は、基準電圧入力端子Nref0の電圧に等しくなる。第1の実施形態の比較回路の場合には、スイッチS11とS12の他方の端子の電圧は、比較器11の出力端子OUTの電圧Voと等しいので、この点が第1の実施形態と異なる。本実施形態においては、比較フェーズφ2では、スイッチS14がオフし、スイッチS22がオンすることで、スイッチS12の一方の端子の電圧は式(15)で表されるVref0φ1を基準とした電圧となり、他方の端子の電圧はVref0φ1の電圧となるため、リーク電流が流れるものの、比較的小さいリーク電流となる。スイッチS11については、一方の端子の電圧は式(13)で表されるVref0φ1を基準とした電圧となり、他方の端子の電圧はVref0φ1の電圧となるため、スイッチS12と同様にリーク電流が流れるものの、比較的小さいリーク電流となる。従って、スイッチS11の両端子間の電圧差と、スイッチS12の両端子間の電圧差と、の差が小さくなるように改善され、第1の実施形態の比較回路の場合と同様に、結果として比較判定結果に生じる誤差を小さくすることが可能となる。従って、スイッチS14とS22により、スイッチのリーク電流によって発生する誤差の影響を抑制し高精度な比較判定結果を得ることが可能となる。
 また、スイッチの非理想成分としては、上述のリーク電流の他に、スイッチを構成するトランジスタ素子がオンからオフに遷移する際に発生するノイズ成分、例えば、チャネルチャージインジェクションやクロックフィードスルーが挙げられる。本実施形態においては、容量C1の一方の端子と比較器11の第一差動入力対の第一入力端子N3の接続点、容量C2の一方の端子と比較器11の第一差動入力対の第二入力端子N4の接続点、にそれぞれ対称となるようにスイッチS11,S12を接続しているため、スイッチのノイズ成分によって発生する電荷は各接続点にほぼ等しく注入され、第一差動入力対の第一入力端子N3の電圧と第一差動入力対の第二入力端子N4の電圧はそれぞれ変動するものの、その変動量はほぼ等しくなるように動作する。従って、スイッチがオン状態からオフ状態に遷移する際に発生するノイズ成分による誤差の影響を抑制し高精度な比較判定結果を得ることが可能となる。また、スイッチがオン状態からオフ状態に遷移する際に発生するノイズ成分による誤差の影響を抑制し高精度な比較判定結果を得ることが可能となる点においても、第1の実施形態の場合と同様である。
 以上により、第2の実施形態の比較回路の動作を説明し、第1の実施形態の場合と同様に簡便な回路構成で比較器の入力オフセット電圧の影響を取り除くと共に、スイッチのオフリーク電流やノイズ成分による誤差の影響を抑制し、高精度な比較判定結果を得ることが可能であることを示した。
<第3の実施形態>
 図7は、第3の実施形態の比較回路の回路図である。図1に示した第1の実施形態との違いは、比較器11を比較器12で置き換えた点、比較器11の入力に接続されていた第一基準電圧入力端子Nref1と第二基準電圧入力端子Nref2を削除した点である。置き換えた要素は次のように構成され接続される。
 比較器12は、2つの入力端子と1つの出力端子とを有し、詳しくは、差動入力対の第一入力端子N3と、差動入力対の第二入力端子N4と、出力端子OUTを有する。比較器12の差動入力対の第一入力端子N3は容量C1の一方の端子に接続され、差動入力対の第二入力端子N4は容量C2の一方の端子に接続され、出力端子OUTはスイッチS11の他方の端子に接続される。この他の接続および構成については、第1の実施形態と同じである。スイッチS11、S12、S13、S21は、第1の実施形態の比較回路と同様にスイッチ制御信号(回路図には図示しない)により、オンまたはオフが制御される。
 次に、第3の実施形態の比較回路の動作を説明する。
 まず、比較器12の動作を説明する。比較器12は、入力電圧の差を増幅した値を出力する機能を有する。この増幅機能を式で表すと、
 Vo=A3×(V4-V3)・・・(25)
となる。ここにA3は比較器12の増幅率である。
 図7の比較回路では、差動入力対の第一入力端子N3と出力端子OUTはスイッチS11の両端に接続されている。スイッチS11がオンしている状態では、VoとV3は概等しい電圧になるから、Voは式(25)から次のように表される。
 Vo=A3/(1+A3)×V4・・・(26)
説明の便宜上、増幅率A3は十分に大きいとすると、次式を得る。
 Vo=V4・・・(27)
 すなわちスイッチS11がオンしている状態では、比較器12の出力端子OUTと、差動入力対の第一入力端子N3が電気的に接続されており、フィードバックループが形成され、出力電圧Voは入力電圧V4に追従し、ボルテージフォロワ動作をする。
 一方、スイッチS11がオフしている状態では比較器12にフィードバックループが形成されないことから、比較器11は比較器(コンパレータ)そのものとして動作する。このときの動作は式(25)と等しく、
 Vo=A3×(V4-V3)・・・(28)
であるから、すなわち比較器12は、スイッチS11がオフしている状態では、V4とV3の差分の電圧を十分に大きな増幅率A3で増幅して、出力端子OUTからハイレベル信号(一般に正の電源電圧レベル)またはローレベル信号(一般に負の電源電圧レベル、またはGNDレベル)を出力する比較動作を行う。
 ここで、比較器12の入力オフセット電圧を差動入力対の第二入力端子N4においてVoa3とすると、入力オフセット電圧を考慮した比較器12の動作を表す式は、スイッチS11がオンしているときとオフしているときで、それぞれ式(27)、式(28)から次のようになる。
 スイッチS11がオンしているとき
 Vo=V4+Voa3・・・(29)
 スイッチS11がオフしているとき
 Vo=A3×{(V4+Voa3-V3)}・・・(30)
以上が図7に示した比較器12の動作説明である。
 スイッチの動作についても第1の実施形態と同様に制御され、図2の各スイッチの動作を示す図に従って動作される。各フェーズでの図7の比較回路の動作の概略を説明すると、サンプルフェーズφ1は、入力端子N1、入力端子N2の各端子電圧と、比較器12のオフセット電圧とを容量C1およびC2に記憶するフェーズであり、比較フェーズφ2は、サンプルフェーズφ1における比較器12のオフセット成分を相殺しつつ、入力端子N1と入力端子N2の間の電圧差の比較を行うフェーズである。以下に詳細を説明する。
 サンプルフェーズφ1では、スイッチS11、S12、S13はオンしており、スイッチS21はオフする。従って、比較器12の差動入力対の第一入力端子N3には出力端子OUTの電圧Voが与えられ、差動入力対の第二入力端子N4には基準電圧入力端子Nref0の電圧が与えられる。スイッチS11がオンしているとき、比較器12は式(29)で示したように動作するから、差動入力対の第一入力端子N3の電圧は次のように表される。
 V3φ1=Vref0φ1+Voa3φ1・・・(31)
 容量C1には電圧V3と電圧V1の差分ΔVC1φ1が充電される
 ΔVC1φ1=V3φ1-V1φ1・・・(32)
上式に式(31)を代入すると、次式を得る。
 ΔVC1φ1=-V1φ1+Vref0φ1+Voa3φ1・・・(33)
 一方、容量C2には電圧V4と電圧V2の差分ΔVC2φ1が充電される
 ΔVC2φ1=V4φ1-V2φ1・・・(34)
差動入力対の第二入力端子N4には基準電圧入力端子Nref0の電圧が与えられているから、式(34)から次式を得る。
 ΔVC2φ1=Vref0φ1-V2φ1・・・(35)
 一方、比較フェーズφ2では、スイッチS11、S12、S13はオフしており、スイッチS21はオンする。スイッチS11がオフし、容量C1にはΔVC1φ1が充電されているので、電圧V3は電圧V1とΔVC1φ1で定まり、次式で表される。
 V3φ2=V1φ2+ΔVC1φ1・・・(36)
上式に容量C1に充電されたΔVC1φ1を表す式(33)を代入すると次のようになる。
 V3φ2=V1φ2-V1φ1+Vref0φ1+Voa3φ1・・・(37)
また、スイッチS12がオフし、容量C2にはΔVC2φ1が充電されているので、電圧V4は電圧V2とΔVC2φ1で定まり、次式で表される。
 V4φ2=V2φ2+ΔVC2φ1・・・(38)
上式に容量C2に充電されたΔVC2φ1を表す式(35)を代入すると次のようになる。
 V4φ2=V2φ2+Vref0φ1-V2φ1・・・(39)
また、スイッチS11がオフしているとき、比較器12は式(30)で示したように動作するから、比較器12の出力端子OUTの電圧Voは次のように表される。
 Voφ2=A3×{(V4φ2+Voa3φ2-V3φ2)}・・・(40)
上式に式(37)で表されるV3φ2、式(39)で表されるV4φ2を代入すると次式を得る。
 Voφ2=A3×{(V2φ2-V2φ1)-(V1φ2-V1φ1)+(Voa3φ2-Voa3φ1)}・・・(41)
 ここで、比較器12の入力オフセット電圧Voa3は、第1の実施形態と同様に、サンプルフェーズφ1および比較フェーズφ2の時間が、入力オフセット電圧の経時変化や温度変化に対して十分に短い時間であれば、サンプルフェーズφ1と比較フェーズφ2で概等しい値であるとみなす事ができる。従って、式(41)において、Voa3φ2-Voa3φ1は、ほぼゼロの値となり、比較フェーズφ2の比較器12における比較動作時に、比較器12のオフセット成分は取り除かれる。よって式(41)は次のように表せる。
 Voφ2=A3×{(V2φ2-V2φ1)-(V1φ2-V1φ1)}・・・(42)
従って、入力端子N1に入力される電圧と、入力端子N2に入力される電圧とを比較した結果が、十分に大きな増幅率A3で増幅され、最終的に比較器12の出力端子OUTからハイレベル信号またはローレベル信号として出力されることになる。
 式(42)には、Vref0の項は含まれていない。このことは、第1の実施形態と同様に、入力端子N1および入力端子N2の電圧が比較器12の同相入力電圧範囲外であっても、基準電圧入力端子Nref0の電圧を比較器12の同相入力電圧範囲内になるように選択することで、高精度な比較が可能であるという利点を有する。別の表現をすると、比較器12に要求される同相入力電圧範囲を著しく緩和できるという利点を有しているといえる。
 また、スイッチS13とS21は、比較フェーズφ2では、スイッチS13がオフし、スイッチS21がオンすることで、スイッチS11およびスイッチS12の他方の端子の電圧を比較器11の出力端子OUTの電圧Voに等しくするように動作させている。従って、第1の実施形態と同様に、スイッチS13とS21により、スイッチのリーク電流によって発生する誤差の影響を抑制し高精度な比較判定結果を得ることが可能となる。
 また、スイッチS11、S12の非理想成分についても、第1の実施形態と同様に、スイッチがオン状態からオフ状態に遷移する際に発生するノイズ成分による誤差の影響を抑制し高精度な比較判定結果を得ることが可能となる。
 以上により、第3の実施形態の比較回路の動作を説明し、簡便な回路構成で比較器の入力オフセット電圧の影響を取り除くと共に、スイッチのオフリーク電流やノイズ成分による誤差の影響を抑制し、高精度な比較判定結果を得ることが可能であることを示した。
<第4の実施形態>
 図8は、第4の実施形態の比較回路の回路図である。図7に示した第3の実施形態との違いは、スイッチS13とS21を削除し、スイッチS14とS22を追加した点である。追加した要素は次のように構成され接続される。また削除した要素により次の接続が第3の実施形態と異なる。
 スイッチS12の他方の端子は、基準電圧入力端子Nref0に接続される。スイッチS14は、2つの端子を有し、一方の端子は比較器12の出力端子OUTに接続され、他方の端子はスイッチS11の他方の端子に接続される。スイッチS22は、2つの端子を有し、一方の端子はスイッチS11の他方の端子に接続され、他方の端子はスイッチS12の他方の端子に接続される。この他の接続および構成については、第3の実施形態と同じである。
 また、本実施形態と図5に示した第2の実施形態との違いは、図7に示した第3の実施形態と図1に示した第1の実施形態との違いと同様に、比較器11を比較器12で置き換えた点、比較器11の入力に接続されていた第一基準電圧入力端子Nref1と第二基準電圧入力端子Nref2を削除した点である。
 次に、第4の実施形態の比較回路の動作を説明する。
 スイッチS14、S22は、スイッチS11、S12と同様にスイッチ制御信号(回路図には図示しない)により、オンまたはオフが制御される。スイッチの動作については第2の実施形態と同様に制御され、図6の各スイッチの動作を示す図に従って動作する。
 サンプルフェーズφ1では、スイッチS11、S12、S14はオンしており、スイッチS22はオフする。従って、比較器12の各入力端子には、次の電圧が供給される。比較器12の差動入力対の第一入力端子N3には出力端子OUTの電圧Voが与えられ、差動入力対の第二入力端子N4には基準電圧入力端子Nref0の電圧が与えられる。すなわち、第3の実施形態の比較回路と同様であるから、動作についても第3の実施形態の比較回路と同様になる。
 比較フェーズφ2では、スイッチS11、S12、S14はオフしており、スイッチS22はオンする。スイッチS11とS12がオフしているので、電圧V3は電圧V1とΔVC1φ1で定まり、また、電圧V4は電圧V2とΔVC2φ1で定まる。すなわち、第3の実施形態の比較回路と同様であるから、動作についても第3の実施形態の比較回路と同様になり、比較器12のオフセット成分を取り除き、比較器12に要求される同相入力電圧範囲を著しく緩和できるという利点を有した、高精度な比較判定結果を得ることが可能な比較回路となる。
 また、比較フェーズφ2ではスイッチS14がオフし、スイッチS22がオンしているので、スイッチS11とS12の他方の端子の電圧は、基準電圧入力端子Nref0の電圧に等しくなる。すなわち、第2の実施形態の比較回路と同様であるから、スイッチS11とS12のリーク電流による誤差の影響を抑制し、高精度な比較判定結果を得ることが可能な比較回路となる。
 以上により、第4の実施形態の比較回路の動作を説明し、第3実施形態の場合と同様に簡便な回路構成で比較器の入力オフセット電圧の影響を取り除くと共に、スイッチのオフリーク電流やノイズ成分による誤差の影響を抑制し、高精度な比較判定結果を得ることが可能であることを示した。
 本説明においては、説明のために具体的な例を示して説明したが、必ずしもこの構成やスイッチ制御タイミングに制限されるものではない。これは第1,第2,第3の実施形態の比較回路の場合についても同様である。
11、12 比較器
111、112 差動増幅器
113 加算器
I1 定電流回路

Claims (4)

  1.  第一容量及び第二容量と、
     第一入力電圧が前記第一容量を介して入力される第一入力端子と、第二入力電圧が前記第二容量を介して入力される第二入力端子と、出力端子とを備えた比較器と、
     基準電圧が入力される基準電圧端子と、
     一端が前記第一入力端子に接続され、サンプルフェーズでオンして前記第一入力端子の電圧を前記出力端子の電圧にする第一スイッチと、
     一端が前記第二入力端子に接続され、前記サンプルフェーズでオンして前記第二入力端子の電圧を前記基準電圧にする第二スイッチと、
     前記第一スイッチの他端と前記第二スイッチの他端の間に設けられ、比較フェーズでオンして前記第一スイッチの他端と前記第二スイッチの他端の電圧を等しくする第三スイッチと、
    を備えたことを特徴とする比較回路。
  2.  前記第二スイッチの他端と前記基準電圧端子の間に設けられ、サンプルフェーズでオンする第四スイッチを備え、
     前記第三スイッチは、前記第一スイッチの他端と前記第二スイッチの他端の電圧を前記出力端子の電圧にする、
    ことを特徴とする請求項1に記載の比較回路。
  3.  前記第一スイッチの他端と前記出力端子の間に設けられ、サンプルフェーズでオンする第四スイッチを備え、
     前記第三スイッチは、前記第一スイッチの他端と前記第二スイッチの他端の電圧を前記基準電圧にする、
    ことを特徴とする請求項1に記載の比較回路。
  4.  前記比較器は、
     前記第一入力端子と前記第二入力端子に接続された第一増幅器と、
     第三入力端子と第四入力端子に接続された第二増幅器と、を備え、
     前記第三入力端子に第二の基準電圧が入力され、前記第四入力端子に第三の基準電圧が入力された、
    ことを特徴とする請求項1から3のいずれかに記載の比較回路。
PCT/JP2014/076908 2013-11-11 2014-10-08 比較回路 WO2015068517A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480061760.1A CN105960757B (zh) 2013-11-11 2014-10-08 比较电路
EP14860009.1A EP3070845B1 (en) 2013-11-11 2014-10-08 Comparison circuit
KR1020167012230A KR102153872B1 (ko) 2013-11-11 2014-10-08 비교 회로
US15/139,777 US9768758B2 (en) 2013-11-11 2016-04-27 Comparison circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013233408A JP6454065B2 (ja) 2013-11-11 2013-11-11 比較回路
JP2013-233408 2013-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/139,777 Continuation US9768758B2 (en) 2013-11-11 2016-04-27 Comparison circuit

Publications (1)

Publication Number Publication Date
WO2015068517A1 true WO2015068517A1 (ja) 2015-05-14

Family

ID=53041300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076908 WO2015068517A1 (ja) 2013-11-11 2014-10-08 比較回路

Country Status (7)

Country Link
US (1) US9768758B2 (ja)
EP (1) EP3070845B1 (ja)
JP (1) JP6454065B2 (ja)
KR (1) KR102153872B1 (ja)
CN (1) CN105960757B (ja)
TW (1) TWI637600B (ja)
WO (1) WO2015068517A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998741B2 (ja) * 2017-11-20 2022-01-18 エイブリック株式会社 センサ装置
JP2022146999A (ja) 2021-03-23 2022-10-06 エイブリック株式会社 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085503A1 (ja) * 2005-02-08 2006-08-17 Rohm Co., Ltd. 磁気センサ回路、及び、その磁気センサ回路を有する携帯端末
JP2008236737A (ja) 2007-02-19 2008-10-02 Toshiba Corp 信号検出回路
JP2010226234A (ja) * 2009-03-19 2010-10-07 Toshiba Corp 増幅回路及び磁気センサ
WO2013161571A1 (ja) * 2012-04-27 2013-10-31 セイコーインスツル株式会社 センサ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043520A (ja) * 1990-04-20 1992-01-08 Nec Corp 比較回路
JP3454689B2 (ja) * 1997-09-30 2003-10-06 三洋電機株式会社 電圧比較器、演算増幅器、アナログ−デジタル変換器およびアナログ−デジタル変換回路
JP5334366B2 (ja) * 2006-12-15 2013-11-06 三菱電機株式会社 半導体集積回路
US8242944B2 (en) * 2007-04-26 2012-08-14 Renesas Electronics Corporation Digital-to-analog converter circuit including adder drive circuit and display
CN101330284B (zh) * 2007-06-19 2011-05-04 智原科技股份有限公司 时间常数校正装置及其相关方法
CN101431233B (zh) * 2008-08-21 2012-05-23 艾默生网络能源有限公司 恒功率输出电源的检测保护电路
EP2343524B1 (en) * 2009-12-24 2013-02-13 Seiko Epson Corporation Infrared detection circuit, sensor device, and electronic instrument
TWI443969B (zh) * 2010-11-17 2014-07-01 Ind Tech Res Inst 以動態比較器為基礎的比較系統
CN102914734B (zh) * 2011-08-04 2015-04-08 台达电子企业管理(上海)有限公司 气体放电灯寿终检测电路及其所适用的安定器
JP5926081B2 (ja) * 2012-03-22 2016-05-25 エスアイアイ・セミコンダクタ株式会社 センサ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085503A1 (ja) * 2005-02-08 2006-08-17 Rohm Co., Ltd. 磁気センサ回路、及び、その磁気センサ回路を有する携帯端末
JP2008236737A (ja) 2007-02-19 2008-10-02 Toshiba Corp 信号検出回路
JP2010226234A (ja) * 2009-03-19 2010-10-07 Toshiba Corp 増幅回路及び磁気センサ
WO2013161571A1 (ja) * 2012-04-27 2013-10-31 セイコーインスツル株式会社 センサ装置

Also Published As

Publication number Publication date
TWI637600B (zh) 2018-10-01
US9768758B2 (en) 2017-09-19
EP3070845A1 (en) 2016-09-21
CN105960757A (zh) 2016-09-21
EP3070845A4 (en) 2017-11-22
EP3070845B1 (en) 2019-12-18
TW201539983A (zh) 2015-10-16
US20160241222A1 (en) 2016-08-18
JP6454065B2 (ja) 2019-01-16
KR102153872B1 (ko) 2020-09-09
JP2015095727A (ja) 2015-05-18
CN105960757B (zh) 2019-07-09
KR20160085262A (ko) 2016-07-15

Similar Documents

Publication Publication Date Title
JP4694323B2 (ja) 差動増幅回路および半導体装置
KR101918338B1 (ko) 센서 장치
US9590560B2 (en) Summing amplifier and method thereof
US9267818B2 (en) Magnetic sensor device
JP5551626B2 (ja) 演算増幅回路
KR20100079330A (ko) Op 앰프
Xu et al. Offset-corrected 5GHz CMOS dynamic comparator using bulk voltage trimming: Design and analysis
JP5281556B2 (ja) 物理量センサ
JP6454065B2 (ja) 比較回路
JP5765274B2 (ja) アナログスイッチ
TWI668964B (zh) 比較電路以及感測裝置
WO2009096192A1 (ja) バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置
JP2010050590A (ja) コンパレータ回路
US7710298B2 (en) Integrated circuit with auto-zeroing comparator stages that provide a continuous-time signal
JP6520062B2 (ja) 増幅装置およびオフセット電圧補正方法
JP2013207697A (ja) サンプル・ホールド回路
JP2010063072A (ja) 電圧電流変換回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167012230

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014860009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860009

Country of ref document: EP