WO2015065093A1 - 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 - Google Patents

리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2015065093A1
WO2015065093A1 PCT/KR2014/010350 KR2014010350W WO2015065093A1 WO 2015065093 A1 WO2015065093 A1 WO 2015065093A1 KR 2014010350 W KR2014010350 W KR 2014010350W WO 2015065093 A1 WO2015065093 A1 WO 2015065093A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
lithium
secondary battery
electrolyte
phosphate
Prior art date
Application number
PCT/KR2014/010350
Other languages
English (en)
French (fr)
Inventor
김광연
이철행
양두경
임영민
김슬기
안유하
박진현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140149502A external-priority patent/KR101620214B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/418,683 priority Critical patent/US9614253B2/en
Priority to BR112015002817A priority patent/BR112015002817B8/pt
Priority to JP2015545403A priority patent/JP6094843B2/ja
Priority to CN201480002062.4A priority patent/CN104823319B/zh
Priority to EP14827146.3A priority patent/EP2887441B1/en
Publication of WO2015065093A1 publication Critical patent/WO2015065093A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte additive comprising four compounds, a non-aqueous electrolyte comprising the electrolyte additive, and a lithium secondary battery comprising the same.
  • lithium secondary batteries having high energy density and voltage among these secondary batteries are commercially used and widely used.
  • Lithium metal oxide is used as a positive electrode active material of a lithium secondary battery, and lithium metal, a lithium alloy, crystalline or amorphous carbon or a carbon composite material is used as a negative electrode active material.
  • the active material is applied to a current collector with a suitable thickness and length, or the active material itself is coated in a film shape to be wound or laminated with a separator, which is an insulator, to form an electrode group, and then placed in a can or a similar container, and then injected with an electrolyte solution.
  • a secondary battery is manufactured.
  • lithium secondary battery In such a lithium secondary battery, charging and discharging progress while repeating a process of intercalating and deintercalating lithium ions from a lithium metal oxide of a positive electrode to a graphite electrode of a negative electrode. At this time, lithium is highly reactive and reacts with the carbon electrode to produce Li 2 CO 3 , LiO, LiOH and the like to form a film on the surface of the negative electrode. Such a film is called a solid electrolyte interface (SEI) film.
  • SEI solid electrolyte interface
  • the SEI film formed at the beginning of charging prevents the reaction of lithium ions with a carbon anode or other material during charging and discharging. It also acts as an ion tunnel, allowing only lithium ions to pass through.
  • the ion tunnel serves to prevent the organic solvents of a large molecular weight electrolyte which solvates lithium ions and move together and are co-intercalated with the carbon anode to decay the structure of the carbon anode.
  • a solid SEI film must be formed on the negative electrode of the lithium secondary battery. Once formed, the SEI membrane prevents the reaction between lithium ions and the negative electrode or other materials during repeated charge / discharge cycles, and serves as an ion tunnel that passes only lithium ions between the electrolyte and the negative electrode. Will be performed.
  • the present invention aims to solve the technical problem that has been requested from the past as described above.
  • the inventors of the present application confirmed that the output characteristics are improved when four kinds of additives are included in the electrolyte solution for a lithium secondary battery, and completed the present invention.
  • the present invention is lithium difluoro oxalate phosphate (LiDFOP), trimethylsilylpropyl phosphate (TMSPa), 1,3-propene sultone (non-aqueous organic solvent, imide lithium salt and electrolyte additive) PRS) and ethylene sulfate (Esa) provides a non-aqueous electrolyte comprising at least one additive selected from the group consisting of.
  • the imide lithium salt may be Li (SO 2 F) 2 N (lithium bisfluoro sulfonyl imide (LiFSI)), and the non-aqueous organic solvent may be dimethyl carbonate (DMC) or ethyl.
  • DMC dimethyl carbonate
  • Methyl carbonate (EMC) ethylene carbonate (EC) and propylene carbonate (PC)
  • the additives being lithium difluoro oxalate phosphate (LiDFOP), trimethylsilylpropyl phosphate (TMSPa), 1,3-propene sultone (PRS) and ethylene sulfate (Esa).
  • the lithium salt may further include LiPF 6 .
  • the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and the non-aqueous electrolyte.
  • the electrolyte additive for a lithium secondary battery of the present invention it is possible to suppress the decomposition of PF 6 ⁇ on the surface of the positive electrode that may occur during the high temperature cycle operation of the lithium secondary battery including the same, and to prevent the oxidation reaction of the electrolyte, thereby outputting at high and low temperatures. Improvement of characteristics and swelling phenomenon can be suppressed
  • Example 1 is a graph showing the output characteristics after high temperature storage of 1 to 2 in Example 1 and comparison.
  • Example 2 is a graph showing the change in thickness after high temperature storage of 1 to 2 in Example 1 and comparison.
  • LiDFOP lithium difluoro oxalate phosphate
  • TMSPa trimethylsilylpropyl phosphate
  • PRS 1,3-propene sultone
  • Esa ethylene sulfate
  • the imide lithium salts include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Li (CF 3 SO 2 ) (C 2 F 5 SO 2 ) N, and Li (SO 2 F) 2 It may be at least one selected from the group consisting of N, in one embodiment of the present invention, the imide-based lithium salt may be Li (SO 2 F) 2 N (LiFSI).
  • Lithium salt that may be included in the non-aqueous electrolyte according to an embodiment of the present invention may further include LiPF 6 .
  • LiPF 6 can be improved by adding LiFSI capable of maintaining a low viscosity even at low temperatures so that LiPF 6 has a high viscosity at low temperature, the mobility of lithium ions is lowered, and the output of the battery is lowered.
  • the LiFSI and LiPF 6 may be mixed in a ratio of 10:90 to 50:50 as a molar ratio of LiPF 6 based on LiFSI. If the amount of LiPF 6 in the above range is small, the capacity of the secondary battery to be produced may be lowered. If the amount of LiPF 6 is excessive, the viscosity at low temperature may be increased to lower the mobility of lithium ions, and the output of the battery may not be improved. .
  • the additive may be selected from one or more selected from lithium difluoro oxalate phosphate (LiDFOP), trimethylsilylpropyl phosphate (TMSPa), 1,3-propene sultone (PRS), and ethylene sulfate (Esa).
  • the additive is four kinds including lithium difluoro oxalate phosphate (LiDFOP), trimethylsilylpropyl phosphate (TMSPa), 1,3-propene sultone (PRS) and ethylene sulfate (Esa) Can be.
  • LiPF 6 which is a lithium salt
  • the electrolyte lacking thermal safety easily decomposes in the cell to form LiF and PF 5 .
  • the LiF salt reduces the conductivity and the number of free Li + ions, thereby increasing the resistance of the cell and consequently reducing the capacity of the cell.
  • phosphate functional groups of trimethylsilylpropyl phosphate (TMSPa) or sulphate functional groups of ethylene sulfate (Esa) act as anion receptor stably in the above decomposition of PF 6 -ion on the anode surface which may occur during high temperature cycle operation.
  • the lithium difluoro oxalate phosphate (LiDFOP) additive forms a stable SEI film on the surface of the negative electrode after the battery activation process, so that the negative electrode surface and the electrolyte react inside the battery to suppress the gas generated by decomposition of the electrolyte.
  • the life characteristics of the lithium secondary battery can be improved.
  • the lithium difluoro oxalate phosphate (LiDFOP), 1,3-propene sultone (PRS) and ethylene sulfate (Esa) additives may be independently included in the amount of 0.5 wt% to 1.5 wt%, respectively, based on the total amount of the electrolyte. , Preferably 0.5% to 1.0% by weight.
  • the content of the lithium difluoro oxalate phosphate (LiDFOP), 1,3-propene sultone (PRS) and ethylene sulfate (Esa) additives is less than 0.5% by weight, respectively, the effect of inhibiting degradation as anion receptor in the high temperature cycle is insignificant.
  • LiDFOP LiDFOP
  • PRS 1,3-propene sultone
  • trimethylsilylpropyl phosphate may be included in an amount of 0.1% to 0.5% by weight based on the total amount of the electrolyte, if the trimethylsilylpropyl phosphate (TMSPa) additive is less than 0.1% by weight, the amount is small to decompose LiPF 6 If it is not suppressed, and exceeds 0.5% by weight, lithium ion permeability is lowered to increase impedance, and sufficient capacity and charge and discharge efficiency may not be obtained.
  • the non-aqueous electrolyte according to an embodiment of the present invention may include the electrolyte additive, the non-aqueous organic solvent and the lithium salt.
  • non-aqueous organic solvent that may be included in the non-aqueous electrolyte
  • decomposition may be minimized by an oxidation reaction or the like during charging and discharging of the battery, and there is no limitation as long as it can exhibit desired properties with an additive.
  • it may be a carbonate-based and propionate-based. These may be used alone, or two or more thereof may be used in combination.
  • carbonate-based organic solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), and ethylmethyl carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • ethylmethyl carbonate ethylmethyl carbonate
  • EMC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • EMC ethylene carbonate
  • EMC propylene carbonate
  • EP propylene carbonate
  • PP propyl propionate
  • n-propyl propionate iso-propyl propionate
  • n-butyl propionate iso-butyl propionate and tert-butyl propionate
  • It may be any one selected or a mixture of two or more thereof.
  • the non-aqueous organic solvent may be an electrolyte including dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC).
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • the four electrolytes may be used in the EC / PC / EMC / DMC is 1.0 to 1.5 parts: 1.0 to 1.5 parts: 4.0 to 4.5 parts: 4.0 to 4.5 parts by weight parts.
  • EC / PC / EMC / DMC may be about 1: 1: 4: 4 by weight.
  • DMC dimethyl carbonate
  • PRS 1,3 propene sultone
  • the lithium secondary battery according to an embodiment of the present invention may include a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and the non-aqueous electrolyte.
  • the positive electrode and the negative electrode may include a positive electrode active material and a negative electrode active material, respectively.
  • the positive electrode active material may include a manganese spinel active material, a lithium metal oxide, or a mixture thereof.
  • the lithium metal oxide may be selected from the group consisting of lithium cobalt oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium manganese cobalt oxide, and lithium nickel manganese cobalt oxide.
  • a carbon-based negative electrode active material such as carbon-based, natural graphite, artificial graphite, such as crystalline carbon, amorphous carbon or carbon composites may be used alone or two or more kinds thereof are mixed.
  • the separator is a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer This may be a single or two or more laminated.
  • a porous nonwoven fabrics such as high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used, but are not limited thereto.
  • the lithium secondary battery may be manufactured by a conventional method related to the present invention, and preferably may be a pouch type secondary battery.
  • Ethylene carbonate (EC): Propyl carbonate (PC): Ethylmethyl carbonate (EMC): Dimethyl carbonate (DMC) 1.32: 1.20: 4.08: 4.28 (parts by weight) Mixed non-aqueous organic solvent and 0.5 M LiPF 6 And after mixing 0.5M LiFSI, 1% by weight of lithium difluoro oxalate phosphate (LiDFOP), 0.2% by weight of trimethylsilylpropyl phosphate (TMSPa), 1,3-propene relative to 100 parts by weight of the non-aqueous electrolyte An electrolyte solution was prepared by adding 1% by weight of sultone (PRS) and 1% by weight of ethylene sulfate (Esa).
  • PRS sultone
  • Esa ethylene sulfate
  • 92 wt% of LiCoO 2 as a positive electrode active material, 4 wt% of carbon black as a conductive agent, and 4 wt% of polyvinylidene fluoride (PVdF) as a binder were added to N-methyl-2-pyrrolidone (NMP) as a solvent.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • Al aluminum
  • an anode mixture slurry was prepared by adding artificial graphite as a negative electrode active material, PVdF as a binder, and carbon black as a conductive agent at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a thin copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10, and dried to prepare a negative electrode, followed by a roll press to prepare a negative electrode.
  • Cu thin copper
  • the positive electrode and the negative electrode prepared as described above were manufactured with a polymer battery by a conventional method with a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), followed by pouring the prepared non-aqueous electrolyte solution into a lithium secondary battery. The manufacture of the battery was completed.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 1.0 M was used alone as LiPF 6 as the lithium salt.
  • a lithium secondary battery was prepared in the same manner as in Example 1.
  • each of the secondary batteries of Weeks 1, 2, 3, 4, 8, and 12 was subjected to 5C at 23 ° C.
  • the output was calculated using the voltage difference generated when charging and discharging for 10 seconds. Based on the initial output amount (W, Week 0), the output amount after high-temperature storage of the secondary battery corresponding to each parking lot is calculated as a percentage (the output of that parking (W) / initial output (W) * 100 (%)) The measured result is shown in FIG. The test was performed at 50% SOC (state of charge).
  • the secondary battery of Example 1 was found to have excellent output characteristics even after high temperature storage at 60 ° C.
  • each of the secondary batteries of Week 1, Week 2, Week 3, Week 4, Week 8, and Week 12 was the first battery (0).
  • Thickness increase rate (%) was measured based on the thickness of the parking). The results are shown in Figure 2 below.
  • the rate of increase in thickness after high temperature storage of the secondary battery of Example 1 was found to be the F sound (20% at 12 weeks).
  • the secondary battery of Comparative Example 2 was found to show a rapid increase in thickness from the beginning of high temperature storage
  • the secondary battery of Comparative Example 1 also increased in thickness after 4 weeks of Example 1 according to an embodiment of the present invention It was confirmed that it is inefficient than the secondary battery.
  • the output was calculated using the voltage difference generated when the secondary batteries prepared in Example 1 and Comparative Examples 1 and 2 were charged and discharged at ⁇ 30 ° C. at 0.5C for 10 seconds. The results are shown in FIG. The test was performed at 50% SOC (state of charge).
  • the secondary battery of Example 1 exhibited an excellent output of 1.5 W or more than the secondary batteries of Comparative Examples 1 to 2 at low temperature output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 비수성 유기 용매, 이미드계 리튬염 및 전해액 첨가제로서 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 트리메틸실릴프로필 포스페이트(TMSPa), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa)로 이루어진 군에서 선택되는 1종 이상의 첨가제를 포함하는 비수성 전해액을 제공한다. 본 발명의 리튬 이차 전지용 전해액 첨가제에 의하면, 이를 포함하는 리튬 이차 전지의 고온 사이클 작동시 발생할 수 있는 양극 표면의 PF6-의 분해를 억제하고 전해액의 산화 반응을 방지하여, 고온 및 저온에서의 출력 특성 개선 및 스웰링 현상을 억제할 수 있다.

Description

리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
본 발명은 4 종의 화합물을 포함하는 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있고, 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차 전지가 상용화되어 널리 사용되고 있다.
리튬 이차 전지의 양극 활물질로는 리튬 금속 산화물이 사용되고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소 또는 탄소 복합체가 사용되고 있다. 상기 활물질을 적당한 두께와 길이로 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포하여 절연체인 세퍼레이터와 함께 감거나 적층하여 전극군을 만든 다음, 캔 또는 이와 유사한 용기에 넣은 후, 전해액을 주입하여 이차 전지를 제조한다.
이러한 리튬 이차 전지는 양극의 리튬 금속 산화물로부터 리튬 이온이 음극의 흑연 전극으로 삽입(intercalation)되고 탈리(deintercalation)되는 과정을 반복하면서 충방전이 진행된다. 이때 리튬은 반응성이 강하므로 탄소 전극과 반응하여 Li2CO3,LiO,LiOH등을 생성시켜 음극의 표면에 피막을 형성한다. 이러한 피막을 고체 전해질(Solid Electrolyte Interface; SEI) 막이라고 한다.
충전 초기에 형성된 SEI 막은 충방전중 리튬 이온과 탄소 음극 또는 다른 물질과의 반응을 막아준다. 또한 이온 터널(Ion Tunnel)의 역할을 수행하여 리튬 이온만을 통과시킨다. 이 이온 터널은 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해액의 유기용매들이 탄소 음극에 함께 코인터컬레이션되어 탄소 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 한다.
따라서, 리튬 이차 전지의 고온 사이클 특성 및 저온 출력을 향상시키기 위해서는, 반드시 리튬 이차 전지의 음극에 견고한 SEI 막을 형성하여야만 한다. SEI 막은 최초 충전시 일단 형성되고 나면 이후 전지 사용에 의한 충방전 반복시 리튬 이온과 음극 또는 다른 물질과의 반응을 막아주며, 전해액과 음극 사이에서 리튬 이온만을 통과시키는 이온 터널(Ion Tunnel)로서의 역할을 수행하게 된다.
종래에는 전해액 첨가제를 포함하지 않거나 열악한 특성의 전해액 첨가제를 포함하는 전해액의 경우 불균일한 SEI 막의 형성으로 인해 저온 출력 특성의 향상을 기대하기 어려웠다. 더욱이, 전해액 첨가제를 포함하는 경우에도 그 투입량을 필요량으로 조절하지 못하는 경우, 상기 견고한 SEI 피막을 음극에 형성하지 못하여, 부반응으로서 음극이 전해액과 반응하여 부풀어오르는 스웰링 현상이 생기거나, 전해액의 분해로 인한 가스발생이 증가하고, 충방전율이 감소하는 문제가 있었다.
본 발명은 상기와 같이 과거로부터 요청되어 온 기술적 과제 해결을 목적으로 한다.
본 출원의 발명자들은 리튬 이차 전지용 전해액에 4종의 첨가제를 포함하는 경우, 출력 특성이 향상되는 것을 확인하고 본 발명을 완성하였다.
상기 과제를 해결하기 위하여, 본 발명은 비수성 유기 용매, 이미드계 리튬염 및 전해액 첨가제로서 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 트리메틸실릴프로필 포스페이트(TMSPa), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa)로 이루어진 군에서 선택되는 1종 이상의 첨가제를 포함하는 비수성 전해액을 제공한다.
상기 이미드계 리튬염은 상기 이미드계 리튬염은 Li(SO2F)2N(리튬 비스플루오로 설포닐 이미드(LiFSI))일 수 있으며, 상기 비수성 유기 용매는 디메틸 카보네이트(DMC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC) 및 프로필렌 카보네이트(PC)을 포함하고, 상기 첨가제는 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 트리메틸실릴프로필 포스페이트(TMSPa), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa)을 포함하는 것 일 수 있다. 또한 상기 리튬염은 LiPF6를 더 포함할 수 있다.
또한, 본 발명은 양극, 음극 및 상기 비수성 전해액을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 리튬 이차 전지용 전해액 첨가제에 의하면, 이를 포함하는 리튬 이차 전지의 고온 사이클 작동시 발생할 수 있는 양극 표면의 PF6-의 분해를 억제하고 전해액의 산화 반응을 방지하여, 고온 및 저온에서의 출력 특성 개선 및 스웰링 현상을 억제할 수 있다
도 1은 실시예 1 및 비교에 1 내지 2의 고온 저장 후의 출력 특성을 나타낸 그래프이다.
도 2는 실시예 1 및 비교에 1 내지 2의 고온 저장 후의 두께 변화를 나타낸 그래프이다.
도 3은 실시예 1 및 비교에 1 내지 2의 저온 출력 특성을 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 일 실시예는 비수성 유기 용매, 이미드계 리튬염 및 전해액 첨가제로서 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 트리메틸실릴프로필 포스페이트(TMSPa), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa)로 이루어진 군에서 선택되는 1종 이상의 첨가제를 포함하는 비수성 전해액을 제공한다.
상기 이미드계 리튬염은 LiN(CF3SO2)2, LiN(C2F5SO2)2, Li(CF3SO2)(C2F5SO2)N 및 Li(SO2F)2N으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 본 발명의 일 실시예의 경우 상기 이미드계 리튬염은 Li(SO2F)2N(LiFSI)일 수 있다.
본 발명의 일 실시예에 따른 비수성 전해액에 포함될 수 있는 상기 리튬염으로는 LiPF6을 더 포함할 수 있다.
상기 LiFSI와 LiPF6가 조합됨으로써, LiPF6가 저온에서 높은 점도를 가져 리튬 이온의 이동도가 낮아져 전지의 출력이 저하하는 것을 저온에서도 낮은 점도를 유지할 수 있는 LiFSI를 부가함으로써, 개선할 수 있다.
상기 LiFSI와 LiPF6는 LiFSI를 기준으로 LiPF6가 몰비로서, 10:90~50:50의 비율로 혼합될 수 있다. 상기의 범위에서 LiPF6가 미량이면, 생성되는 이차전지의 용량이 낮아질 수 있으며, LiPF6가 과량이면, 저온에서의 점도가 높아져 리튬 이온의 이동도가 낮아지며 생성되는 전지의 출력 개선을 이룰 수 없다.
상기 첨가제는 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 트리메틸실릴프로필 포스페이트(TMSPa), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa)에서 선택되는 1종 이상에서 선택할 수 있으나, 본 발명에 따른 일 실시예에서는 상기 첨가제는 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 트리메틸실릴프로필 포스페이트(TMSPa), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa)을 포함하는 4종 일 수 있다.
리튬염인 LiPF6의 경우, 열적 안전성이 부족한 전해액은 전지 내에서 쉽게 분해되어 LiF와 PF5를 형성한다. 이때, LiF 염은 전도도와 자유 Li+ 이온의 수를 줄여 전지의 저항을 증가시키고 결과적으로 전지의 용량을 감소시킨다. 즉, 고온 사이클 작동시 발생할 수 있는 양극 표면에서의 PF6-이온의 상기와 같은 분해를 트리메틸실릴프로필 포스페이트(TMSPa)의 포스페이트 작용기나 에틸렌 설페이트(Esa) 의 설페이트 작용기가 음이온 receptor로 작용하여 안정적으로 PF6-를 형성할 수 있도록 유도하며, Li+와 PF6-의 이온쌍 분리를 증가시키고, 이로 인해 전해액 내부에서의 LiF의 가용성을 개선시켜, 계면 저항을 낮출 수 있다.
또한 상기 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP) 첨가제는 전지 활성화 공정 이후 음극 표면에 안정한 SEI피막을 형성함으로써, 전지 내부에서 음극표면과 전해액이 반응하여 전해액의 분해로 인하여 발생하는 가스를 억제시키킬 수 있어서 리튬 이차전지의 수명 특성을 개선할 수 있다.
여기서, 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa) 첨가제는 전해액 총량을 기준으로 각각 독립적으로 0.5중량% 내지 1.5 중량%로 포함될 수 있으며, 바람직하게는 0.5 중량% 내지 1.0 중량%일 수 있다. 상기 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa) 첨가제의 함량이 각각 0.5 중량% 보다 적으면 고온 사이클 에서 음이온 receptor로서의 분해 억제 효과가 미미하고, LiDFOP의 경우에는 음극표면에 안정한 피막 형성을 이루지 못하며, 1,3-프로펜 설톤(PRS)의 경우에는 전해액에서 발생하는 가스를 효과적으로 억제하지 못하며, 상기 첨가제의 함량이 각각 1.5 중량%를 초과하면 보호 피막의 리튬 이온 투과성을 저하하여 임피던스를 증대시키고, 충분한 용량 및 충방전 효율을 얻지 못할 수 있다. 또한 트리메틸실릴프로필 포스페이트(TMSPa)는 전해액 총량 기준으로 0.1 중량% 내지 0.5중량%로 포함될 수 있으며, 상기 트리메틸실릴프로필 포스페이트(TMSPa) 첨가제가 0.1중량% 미만이면, 그 양이 미소하여 LiPF6의 분해를 억제하지 못하며, 0.5 중량%를 초과하는 경우에는 리튬 이온 투과성을 저하하여 임피던스를 증대시키고, 충분한 용량 및 충방전 효율을 얻지 못할 수 있다.
한편, 본 발명의 일 실시예에 따르는 비수성 전해액은 상기 전해액 첨가제, 비수성 유기 용매 및 리튬염을 포함할 수 있다.
또한, 상기 비수성 전해액에 포함될 수 있는 비수성 유기 용매로는, 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없으나, 예를 들어 카보네이트계 및 프로피오네이트계 등일 수 있다. 이들은 단독으로 사용될 수 있고, 2종 이상이 조합되어 사용될 수 있다.
상기 비수성 유기 용매들 중 카보네이트계 유기 용매로서는, 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있고, 프로피오 네이트계 화합물로서는 에틸 프로피오네이트(EP), 프로필 프로피오네이트(PP), n-프로필 프로피오네이트, iso-프로필 프로피오네이트, n-부틸 프로피오네이트, iso-부틸 프로피오네이트 및 tert-부틸 프로피오네이트로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
본 발명의 일 실시예의 경우 카보네이트계 용매를 조합하여 이용할 수 있다. 예를 들면, 상기 비수성 유기 용매는 디메틸 카보네이트(DMC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC) 및 프로필렌 카보네이트(PC)을 포함하는 전해액을 이용할 수 있다.
상기 4종의 전해액은 중량부로 EC/PC/EMC/DMC가 각각 1.0~1.5부: 1.0~1.5부: 4.0~4.5부: 4.0~4.5부로 이용될 수 있다. 본 발명의 일 실시예의 경우에는 EC/PC/EMC/DMC가 중량부로 약 1:1:4:4일 수 있다.
상기 중량비 내로 카보네이트 화합물 조합하여 비수성 유기 용매로서 이용되는 경우, 특히 디메틸 카보네이트(DMC)는 이차전지의 출력을 개선시킬 수 있으나, 이차전지의 고온 사이클 과정에서 발생될 수 있다. 이에 상기 첨가제 중 1,3 프로펜 설톤(PRS)는 DMC에서 발생하는 가스를 효과적으로 억제하여, 이차전지의 수명 특성을 개선시킬 수 있다.
한편, 본 발명의 일 실시예에 따르는 리튬 이차 전지는 양극, 음극, 상기 양극과 상기 음극 사이에 개재된 세퍼레이터 및 상기 비수성 전해액을 포함할 수 있다. 상기 양극 및 음극은 각각 양극 활물질 및 음극 활물질을 포함할 수 있다.
여기서, 상기 양극 활물질은 망간계 스피넬(spinel) 활물질, 리튬 금속 산화물 또는 이들의 혼합물을 포함할 수 있다. 나아가, 상기 리튬 금속 산화물은 리튬-코발트계 산화물, 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간-코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물로 이루어진 군에서 선택될 수 있으며, 보다 구체적으로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(여기에서, 0∠a∠1, 0∠b∠1, 0∠c∠1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2(여기에서, 0≤Y∠1), Li(NiaCobMnc)O4(0∠a∠2, 0∠b∠2, 0∠c∠2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0∠Z∠2) 일 수 있다.
한편, 상기 음극 활물질로는 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계, 천연 흑연, 인조 흑연과 같은 흑연계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.
또한, 상기 세퍼레이터는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름이 단독으로 또는 2종 이상이 적층된 것일 수 있다. 이 외에 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으며, 이에 한정되는 것은 아니다.
상기 리튬 이차 전지는 본 발명에 관련된 통상의 방법으로 제조될 수 있으며, 바람직하게는 파우치형 이차전지일 수 있다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
실시예 1
[전해액의 제조]
에틸렌 카보네이트(EC): 프로필 카보네이트(PC): 에틸메틸 카보네이트(EMC): 디메틸 카보네이트(DMC) =1.32:1.20:4.08:4.28(중량부)의 조성을 갖는 혼합 비수성 유기 용매 및 0.5M의 LiPF6및 0.5M의 LiFSI를 혼합 한 후, 비수 전해액 100 중량부 대비, 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP)를 1중량%, 트리메틸실릴프로필 포스페이트(TMSPa)를 0.2중량%, 1,3-프로펜 설톤(PRS)를 1중량% 및 에틸렌 설페이트(Esa) 1중량%를 첨가한 전해액을 제조하였다.
[리튬 이차 전지의 제조]
양극 활물질로서 LiCoO2 92 중량%, 도전제로 카본 블랙(carbon black) 4 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 인조 흑연, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.
비교예 1
상기 리튬염을 LiPF6로서1.0M을 단독으로 이용한 것을 제외하고는 실시예 1과 마찬가지로 하여 리튬 이차 전지를 제조하였다.
비교예 2
상기 첨가제를 비수 전해액 총 중량을 기준으로 비닐렌 카보네이트(VC) 3 중량 %, 1,3-프로판 설톤(PS) 0.5 중량% 및 에틸렌 설페이트(Esa)를 1중량% 첨가한 것을 제외하고는 실시예 1과 마찬가지로 하여 리튬 이차전지를 제조하였다.
<실험예>
<고온 저장 후 출력 특성>
실시예 1 및 비교예 1 내지 2에서 제조된 이차전지를 60℃에서 최대 12주 저장 하면서, 1주차, 2주차, 3주차, 4주차, 8주차, 12주차의 이차전지 각각을 23℃에서 5C으로 10초간 충전 및 방전하는 경우 발생하는 전압차를 이용하여 출력을 계산하였다. 최초 출력양(W, 0주차)을 기준으로 각 주차에 해당하는 이차전지의 고온 저장 후의 출력양을 백분율로 계산(해당 주차의 출력(W)/최초 출력(W)*100(%))하여 측정한 결과를 도 1에 나타내었다. 시험은 SOC(충전 상태, state of charge)가 50%에서 수행하였다.
도 1에 나타난 바와 같이 실시예 1의 이차전지는 60℃의 고온 저장 후에도 출력 특성이 우수함을 알 수 있었다. 특히 비교예 2의 이차전지의 경우 본 발명의 4종 첨가제를 이용하지 않으므로 인하여 60의 고온 저장 후에 출력 특성이 기존 보다 낮아짐(95%)을 알 수 있었다.
<전지 두께 측정>
실시예 1 및 비교예 1 내지 2에서 제조된 이차전지를 60℃에서 최대 12주 저장 하면서, 1주차, 2주차, 3주차, 4주차, 8주차, 12주차의 이차전지 각각을 최초 전지(0주차)의 두께를 기준으로 두께 증가율(%)을 측정하였다. 결과를 하기 도 2로 나타내었다.
도 2에 나타난 바와 같이 실시예 1의 이차전지의 고온 저장 후의 두께 증가율이 가장 F음(12주차 시 20%)을 알 수 있었다. 특히 비교예 2의 이차전지는 고온 저장 초반부터 급격한 두께 증가율을 보임을 알 수 있었고, 비교예 1의 이차전지도 4주차 이후부터 두께 증가율이 상승하여 본 발명의 일 실시예에 따른 실시예 1의 이차전지 보다 비효율적임을 확인할 수 있었다.
<저온 출력 특성>
실시예 1 및 비교예 1 내지 2에서 제조된 이차전지를 -30℃에서 0.5C으로 10초간 충전 및 방전하는 경우 발생하는 전압차를 이용하여 출력을 계산하였다. 결과를 도 3으로 나타내었다. 시험은 SOC(충전 상태, state of charge)가 50%에서 수행하였다.
도 3에 나타난 바와 같이 실시예 1의 이차전지는 저온 출력에 있어서 비교예 1 내지 2의 이차전지 보다 최대 1.5W 이상의 우수한 출력을 나타내는 것을 살펴볼 수 있었다.

Claims (14)

  1. 비수성 유기 용매;
    이미드계 리튬염; 및
    전해액 첨가제로서 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 트리메틸실릴프로필 포스페이트(TMSPa), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa)로 이루어진 군에서 선택되는 1종 이상의 첨가제; 를 포함하는 비수성 전해액.
  2. 제 1 항에 있어서,
    상기 이미드계 리튬염은 LiN(CF3SO2)2,LiN(C2F5SO2)2,Li(CF3SO2)(C2F5SO2)N및 Li(SO2F)2N으로 이루어진 군에서 선택되는 1종 이상인 것인 비수성 전해액.
  3. 제 1 항에 있어서,
    상기 이미드계 리튬염은 Li(SO2F)2N(LiFSI)인 것인 비수성 전해액.
  4. 제 1 항에 있어서,
    상기 상기 비수성 유기 용매는 카보네이트계 화합물은 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택되는 1종 이상인 것인 비수성 전해액.
  5. 제 1 항에 있어서,
    상기 비수성 유기 용매는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 에틸메틸 카보네이트(EMC), 및 디메틸 카보네이트(DMC)를 포함하는 것을 특징으로 하는 비수성 전해액.
  6. 제 5 항에 있어서,
    상기 비수성 유기 용매는 중량부로서 에틸렌 카보네이트(EC)/프로필렌 카보네이트(PC)/에틸메틸 카보네이트(EMC)/디메틸 카보네이트(DMC)가 각각 1.0~1.5부: 1.0~1.5부: 4.0~4.5부: 4.0~4.5부로 포함하는 것을 특징으로 하는 비수성 전해액.
  7. 제 1 항에 있어서,
    상기 첨가제는 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 트리메틸실릴프로필 포스페이트(TMSPa), 1,3-프로펜 설톤(PRS) 및 에틸렌 설페이트(Esa)를 포함하는 것인 비수성 전해액.
  8. 제 7 항에 있어서,
    상기 리튬 디플루오로 옥살레이트 포스페이트(LiDFOP), 상기 1,3-프로펜 설톤(PRS) 및 상기 에틸렌 설페이트(Esa)는 전해액 총량을 기준으로 각각 독립적으로 0.5중량% 내지 1.5 중량%로 포함되고, 상기 트리메틸실릴프로필 포스페이트(TMSPa)는 전해액 총량 기준으로 0.1 중량% 내지 0.5중량%로 포함하는 것을 특징으로 하는 비수성 전해액.
  9. 제 1 항에 있어서,
    상기 리튬염은 LiPF6를 더 포함하는 것인 비수성 전해액.
  10. 제 9 항에 있어서,
    상기 이미드계 리튬염과 LiPF6의 혼합비는 몰비로서 10:90~50:50인 것인 비수성 전해액.
  11. 양극; 음극; 세퍼레이터 및
    청구항 1 내지 10 중 어느 하나에 기재된 비수 전해액을 포함하는 것을 특징으로 하는 리튬 이차전지.
  12. 청구항 11에 있어서,
    상기 음극은 결정질 탄소, 비정질 탄소 및 인조, 천연 흑연으로 이루어진 군으로부터 선택되는 탄소계 음극 활물질인 것을 특징으로 하는 리튬 이차전지.
  13. 청구항 11에 있어서,
    상기 양극은 리튬 금속산화물인 것을 특징으로 하는 리튬 이차전지.
  14. 청구항 11에 있어서,
    상기 리튬 이차전지는 리튬 이온 이차전지 또는 리튬 폴리머 이차전지인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/010350 2013-10-31 2014-10-31 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지 WO2015065093A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/418,683 US9614253B2 (en) 2013-10-31 2014-10-31 Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
BR112015002817A BR112015002817B8 (pt) 2013-10-31 2014-10-31 Aditivo de solução eletrolítica para bateria secundária de lítio, e solução eletrolítica não aquosa e bateria secundária de lítio incluindo o aditivo
JP2015545403A JP6094843B2 (ja) 2013-10-31 2014-10-31 リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池
CN201480002062.4A CN104823319B (zh) 2013-10-31 2014-10-31 锂二次电池用电解液添加剂、包含所述电解液添加剂的非水电解液及锂二次电池
EP14827146.3A EP2887441B1 (en) 2013-10-31 2014-10-31 Electrolyte additive for lithium secondary battery, non-aqueous electrolyte comprising electrolyte additive, and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0131464 2013-10-31
KR20130131464 2013-10-31
KR1020140149502A KR101620214B1 (ko) 2013-10-31 2014-10-30 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR10-2014-0149502 2014-10-30

Publications (1)

Publication Number Publication Date
WO2015065093A1 true WO2015065093A1 (ko) 2015-05-07

Family

ID=53004599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010350 WO2015065093A1 (ko) 2013-10-31 2014-10-31 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지

Country Status (2)

Country Link
EP (1) EP2887441B1 (ko)
WO (1) WO2015065093A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755753A (zh) * 2020-07-09 2020-10-09 香河昆仑化学制品有限公司 一种锂离子电池电解液添加剂环碳酸硫酸乙烯酯及其制备方法
CN112038698A (zh) * 2020-09-15 2020-12-04 厦门首能科技有限公司 一种耐高压锂离子电池及其电解液
WO2021066174A1 (ja) 2019-10-04 2021-04-08 旭化成株式会社 非水系リチウム蓄電素子
CN112713307A (zh) * 2020-12-28 2021-04-27 远景动力技术(江苏)有限公司 高电压非水电解液及基于其的锂离子电池
CN113097566A (zh) * 2021-04-01 2021-07-09 山东海科新源材料科技股份有限公司 含磺化侧链的酰亚胺类添加剂、电解液及其锂离子电池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376454B2 (ja) * 2014-08-28 2018-08-22 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
CN105633465A (zh) * 2016-03-09 2016-06-01 华南师范大学 一种含硫酸乙烯酯添加剂的高压功能电解液及其制备与应用
CN105742703A (zh) * 2016-03-09 2016-07-06 华南师范大学 一种含二氟草酸硼酸锂添加剂的高压功能电解液及其制备与应用
JP7335035B2 (ja) 2016-06-13 2023-08-29 日本電気株式会社 リチウムイオン二次電池
CN109119685A (zh) * 2017-06-23 2019-01-01 宁德时代新能源科技股份有限公司 电解液及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106047A1 (en) * 2002-10-23 2004-06-03 Kumiko Mie Non-aqueous electrolyte secondary battery and electrolyte for the same
US20090017386A1 (en) * 2007-07-11 2009-01-15 Ferro Corporation Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising The Same
KR20090107436A (ko) * 2008-04-08 2009-10-13 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 구비한 리튬 이차전지
US20100304224A1 (en) * 2009-05-28 2010-12-02 Sony Corporation Nonaqueous electrolytic solution, positive electrode and nonaqueous electrolyte secondary battery
US20120258357A1 (en) * 2011-04-11 2012-10-11 Sb Limotive Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043624A1 (ja) * 2005-10-12 2007-04-19 Mitsui Chemicals, Inc. 非水電解液、それを用いたリチウム二次電池
KR101342509B1 (ko) * 2007-02-26 2013-12-17 삼성에스디아이 주식회사 리튬 이차 전지
JP5988134B2 (ja) * 2011-05-11 2016-09-07 株式会社Gsユアサ 蓄電素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106047A1 (en) * 2002-10-23 2004-06-03 Kumiko Mie Non-aqueous electrolyte secondary battery and electrolyte for the same
US20090017386A1 (en) * 2007-07-11 2009-01-15 Ferro Corporation Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising The Same
KR20090107436A (ko) * 2008-04-08 2009-10-13 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 구비한 리튬 이차전지
US20100304224A1 (en) * 2009-05-28 2010-12-02 Sony Corporation Nonaqueous electrolytic solution, positive electrode and nonaqueous electrolyte secondary battery
US20120258357A1 (en) * 2011-04-11 2012-10-11 Sb Limotive Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066174A1 (ja) 2019-10-04 2021-04-08 旭化成株式会社 非水系リチウム蓄電素子
KR20220044994A (ko) 2019-10-04 2022-04-12 아사히 가세이 가부시키가이샤 비수계 리튬 축전 소자
CN111755753A (zh) * 2020-07-09 2020-10-09 香河昆仑化学制品有限公司 一种锂离子电池电解液添加剂环碳酸硫酸乙烯酯及其制备方法
CN112038698A (zh) * 2020-09-15 2020-12-04 厦门首能科技有限公司 一种耐高压锂离子电池及其电解液
CN112713307A (zh) * 2020-12-28 2021-04-27 远景动力技术(江苏)有限公司 高电压非水电解液及基于其的锂离子电池
CN113097566A (zh) * 2021-04-01 2021-07-09 山东海科新源材料科技股份有限公司 含磺化侧链的酰亚胺类添加剂、电解液及其锂离子电池

Also Published As

Publication number Publication date
EP2887441A1 (en) 2015-06-24
EP2887441A4 (en) 2015-08-05
EP2887441B1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
US9614253B2 (en) Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
JP5932150B2 (ja) 非水性電解液及びこれを含むリチウム二次電池
US9620819B2 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
KR101639858B1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2015065093A1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2013165077A1 (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
EP2978059B1 (en) Non-aqueous electrolytic solution and lithium secondary battery comprising same
WO2016048106A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR101582043B1 (ko) 출력 및 사이클 특성이 우수한 리튬 이차 전지
KR20130134237A (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2016048093A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR20160037102A (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
KR101633961B1 (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR20150044004A (ko) 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR101640634B1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2016048094A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR20130122366A (ko) 전해액 첨가제, 상기 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
WO2016048078A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014827146

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014827146

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14418683

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015545403

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14827146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015002817

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015002817

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150209