WO2015064594A1 - 癌用唾液バイオマーカー、その測定方法、装置、及び、癌用唾液バイオマーカーの特定方法 - Google Patents
癌用唾液バイオマーカー、その測定方法、装置、及び、癌用唾液バイオマーカーの特定方法 Download PDFInfo
- Publication number
- WO2015064594A1 WO2015064594A1 PCT/JP2014/078671 JP2014078671W WO2015064594A1 WO 2015064594 A1 WO2015064594 A1 WO 2015064594A1 JP 2014078671 W JP2014078671 W JP 2014078671W WO 2015064594 A1 WO2015064594 A1 WO 2015064594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- cancer
- saliva
- acetylspermidine
- alpha
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57488—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57415—Specifically defined cancers of breast
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57438—Specifically defined cancers of liver, pancreas or kidney
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
Definitions
- the present invention relates to a saliva biomarker for cancer, a method and apparatus for measuring the same, and a method for identifying a saliva biomarker for cancer, and in particular, early detection of pancreatic cancer, intraductal papillary mucinous neoplasm (IPMN), breast cancer and oral cancer
- the present invention relates to a cancer salivary biomarker, a method of measuring the same, an apparatus thereof, and a method of specifying a cancer salivary biomarker.
- pancreatic cancer which is intractable cancer
- the median survival of non-surgical resected cases such as chemotherapy and radiation therapy for pancreatic cancer has not reached one year. That is, in order to improve the treatment results of these intractable cancers, it is important to diagnose cancer at an early stage where surgical resection is possible. Therefore, we will conduct high-frequency tests using non-invasive, minimally invasive, easily collected biological samples (such as body fluids), and develop a method that can detect cancer at an early stage, or at a later stage that can be resected and treated at the latest. There is a need.
- Patent Document 1 One of the inventors proposed a serum marker for kidney disease determination in Patent Document 1 and proposed a liver disease marker in Patent Documents 2 and 3.
- Non-patent Documents 4 and 5 CA19-9 (carbohydrate antigen 19-9) is used in clinical practice as a protein marker in the blood for digestive system cancer, and it is useful for detection of pancreatic cancer and biliary tract cancer and for evaluating the effect of chemotherapy
- it is difficult to diagnose cancer at an early stage, and the accuracy of screening for cancer is insufficient Non-patent Document 1).
- DUPAN-2 pancreatic cancer associated glycoprotein antigen, pancreatic cancer associated antigen
- CEA Carcinoembryonic Antigen
- polyamines such as spermine (Spermine), and acetylated polyamines such as N8-acetylspermidine (N8-Acetylspermidine), N1-acetylspermidine (N1-Acetylspermidine), N1-acetylspermine (N1-Acetylspermine)
- spermine Spermine
- acetylated polyamines such as N8-acetylspermidine (N8-Acetylspermidine), N1-acetylspermidine (N1-Acetylspermidine), N1-acetylspermine (N1-Acetylspermine)
- N8-Acetylspermidine N1-acetylspermidine
- N1-acetylspermine N1-Acetylspermine
- Non-patent Document 1 spermidine in the blood is known to increase in concentration in breast cancer, prostate cancer and testicular tumor.
- Non-patent Document 3 spermine and spermidine levels in blood decrease in acute pancreatitis
- Patent Document 6 proposes a saliva biomarker for detecting lung cancer.
- pancreatic cancer is said to be difficult to detect at an early stage, and it is important to detect the possibility of cancer quickly by more frequent examination than blood examination.
- pancreatic cancer can be diagnosed by saliva
- Non-Patent Document 4 pancreatic cancer can be diagnosed by mRNA in saliva.
- pancreatic cancer diagnosis is possible with blood metabolites.
- the present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to use saliva to enable early detection of cancers such as pancreatic cancer, breast cancer and oral cancer.
- CE capillary electrophoresis apparatus
- MS mass spectrometer
- saliva is collected in a uniform collection method, excluding circadian variation and food effects, but it still can not exclude variation in concentration, so a marker is also sought to estimate the sum of metabolite concentrations, and pancreatic cancer
- a marker is also sought to estimate the sum of metabolite concentrations, and pancreatic cancer
- markers were found for breast cancer and oral cancer in the same manner.
- the present invention is made based on the above-mentioned research results, and solves the above-mentioned problems by the cancer saliva biomarker characterized in that it is any one of low molecular weight compounds which are metabolites of saliva samples, or a combination thereof. It is
- the cancer can be any of pancreatic cancer, intraductal papillary mucinous neoplasm (IPMN), breast cancer, and oral cancer.
- IPMN intraductal papillary mucinous neoplasm
- breast cancer breast cancer
- oral cancer any of pancreatic cancer, intraductal papillary mucinous neoplasm (IPMN), breast cancer, and oral cancer.
- the absolute concentration in saliva of the following substances, or a combination thereof can be used as the cancer saliva biomarker for detecting pancreatic diseases.
- N-Acetylputrescine N-Acetylputrescine
- Adenosine Adenosine
- 3-Phospho-D-glyceric acid 3PG
- Urea Urea
- o-Acetylcarnitine o-Acetylcarnitine
- Citric acid Citric acid (Citrate), glycyl- Glycine (Gly-Gly), 5-Aminovaleric acid (5-Aminovalerate), Methyl 2-oxopentanoate (2-Oxoisopentanoate), Malate (Malate), Benzoate (Benzoate), Fumaric acid (Fumarate), N -Acetylaspartate (N-Acetylaspartate), Inosine (Inosine), 3-Methylhistidine (3-Methylhistidine), N
- N8-Acetylspermidine N8-Acetylspermidine
- Creatinine Creatinine
- Spermine Spermine
- N1-Acetylspermidine N1-Acetylspermidine
- N1-Acetylspermine N1-Acetylspermine
- Cytidine Cytidine (Cytidine) , Alpha-amino adipate (alpha-Aminoadipate), cytosine (Cytosine), betaine (Betaine), urea (Urea), homovani phosphate (Homovanillate), N-acetylneuraminate (N-Acetylneuraminate), cystine ( Cystine), urocanic acid salt (Urocanate), fumaric acid salt (Fumarate), 1,3-diaminobromone (1,3-diaminobromone (1,3-diaminobromone (1,3-diaminobromon
- a combination of creatinine, N1-acetylspermidine, alpha-aminoadipic acid salt, N-acetylneuraminic acid salt, 1,3-diaminoblopane can make highly accurate predictions. However, the prediction can be made by changing other combinations and combination methodologies.
- the absolute concentration in saliva of the following substances, or a combination thereof can be used as the cancer saliva biomarker for detecting breast cancer.
- Choline Choline
- 2-hydroxybutyrate (2-Hydroxybutyrate)
- beta-alanine beta-alanine
- 3-methylhistidine 3-Methylhistidine
- alpha-aminobutyric acid (2AB)
- N-acetylbetaalanine N-Acetyl) -beta-alanine
- isethionate Isethionate
- N-Acetylphenylalanine N-Acetylphenylalanine
- trimethyllysine N6, N6, N6-Trimethyllysine
- alpha-aminoadipic acid alpha-Aminoadipate
- creatine Creatine
- Gamma-butyrobetaine gamma-Butyrobetaine
- sarcosine Sarcosine
- pyruvate Pyru
- a combination of beta-alanine, N-acetyl phenylalanine, and citrulline can be used as an example of the combination of the cancer saliva biomarkers for detecting breast cancer.
- the prediction can be made by changing other combinations and combination methodologies.
- Choline Choline
- N-acetyl phenylalanine N-acetyl spermidine
- creatine can be used as an example of the combination of the cancer saliva biomarkers for detecting breast cancer.
- the prediction can be made by changing other combinations and combination methodologies.
- the concentration in saliva of the following substances, or a combination thereof can be used as the above-mentioned cancer saliva biomarker for detecting oral cancer.
- Glycyl-glycine (Gly-Gly), citrulline (Citruline), gamma-butyrobetaine (gamma-Butyrobetaine), 3-phenyl lactate (3-Phenyllactate), butyric acid (Butanoate), hexanoic acid (Hexanoate), methionine (Met), Hypoxanthine (Hypoxanthine), spermidine (Spermidine), tryptophan (Trp), aspartate (Asp), isopropanolamine (Isopropanolamine), alanine-alanine (Ala-Ala), N, N-dimethylglycine (N, N-Dimethylglycine) N-Acetylspermidine (N1-Acetylspermidine), N1-, N8-Diacet
- the above-mentioned substances are substances which are not known in Table 9 listed later.
- the present invention also provides a method of measuring a salivary saliva biomarker for cancer, comprising the steps of collecting a saliva sample and detecting the cancer salivary biomarker in the collected saliva sample. is there.
- the present invention also provides a device for measuring a salivary biomarker for cancer, comprising means for collecting a saliva sample and means for detecting the cancer salivary biomarker in the collected saliva sample. It is.
- the present invention is also based on the procedure of ultrafiltration of a saliva sample, means for comprehensively measuring ionic metabolites in the saliva sample after ultrafiltration, and health based on the concentration of the measured metabolite. It is intended to provide a method for identifying a cancer saliva biomarker, which comprises a procedure for selecting a substance having a high ability to distinguish between a person and a person having pancreatic disease.
- the correlation value between the measured metabolites can be calculated, and the concentration of each substance can be normalized with the concentration of the substance correlated with the largest number of substances.
- a mathematical model can also be used to determine the combination of the cancer saliva biomarkers.
- pancreatic cancer it is possible to detect not only pancreatic cancer but also pancreatic diseases including IPMN and chronic pancreatitis, breast cancer, oral cancer and the like at an early stage using saliva that can be collected non-invasively and easily.
- pancreatic diseases including IPMN and chronic pancreatitis, breast cancer, oral cancer and the like
- saliva that can be collected non-invasively and easily.
- polyamines with other novel substances enables highly accurate predictions.
- FIG. 1 Flow chart showing the determination procedure of the biomarker in the example of the present invention
- Figure showing the correlation network of metabolites in saliva as well
- Figure showing a model of decision tree that distinguishes pancreatic cancer from healthy people
- the figure also shows the receiver operating characteristic (ROC) curve of a mathematical model that distinguishes pancreatic cancer from healthy subjects when metabolite concentrations normalized with concentration markers are used.
- ROC receiver operating characteristic
- a model that classifies healthy subjects (C) and pancreatic cancer (PC) and plots the risk of pancreatic cancer including healthy subjects and pancreatic cancer and chronic pancreatitis (CP) and IPMN.
- the figure shows the case where the variable increase / decrease method is used for variable selection in the MLR model that distinguishes normal cancer from pancreatic cancer when the absolute concentration of the concentration marker is used as it is Similarly, when using the variable increase method for variable selection in the MLR model that distinguishes pancreatic cancer from healthy persons when the absolute concentration of the concentration marker is used as it is Figure showing an example of total concentration of amino acids in saliva as well The figure which shows the ROC curve when variables are beta alanine, N-acetyl phenylalanine, citrulline in the MLR model for distinguishing breast cancer patients from healthy people.
- the ROC curve when the variables are N-acetylphenylalanine, N1-acetylspermidine and creatine A network diagram between metabolites to determine the concentration corrector of biomarkers for breast cancer Figure showing substances belonging to polyamines among substances that were significantly different between healthy people and breast cancer patients Figure showing examples of substances other than polyamines among substances that were significantly different between healthy people and breast cancer patients Figure showing the top five substances with small p-values and ROC curves for substances that had significant differences between healthy individuals and breast cancer patients with or without concentration correction
- Correlation network diagram showing the basis of using Gly as a correction marker Figure showing the concentrations of metabolites in cancerous tissue samples obtained at the time of surgery for oral cancer and healthy tissue samples in the vicinity Figure showing difference in concentration with saliva of healthy people when changing saliva collection method for oral cancer patients
- Saliva donors A total of 199 samples of saliva samples with different stages of pancreatic cancer and healthy subjects, saliva samples of intraductal papillary mucinous neoplasm (IPMN) and chronic pancreatitis patients for evaluation of specificity are collected did. The number of cases in each group, the constitution of men and women, and the age are shown in Table 1. All pre-treatment cases with no history of chemotherapy treatment were included. The number of defects in Table 1 is the number of cases of unknown value.
- IPMN intraductal papillary mucinous neoplasm
- Saliva Collection Method (Step 100 in FIG. 1) ⁇ About the date of collection Do as much as possible except on the day of surgery ⁇ With regard to meals Do not drink except water from 21:00 the previous day Do not take breakfast on the day ⁇ Please be aware of saliva collection on the day that saliva is collected before breakfast AM8: Toothpaste with no toothpaste at least one hour before saliva collection Do not perform intense exercise one hour before saliva collection Do not take care of the oral cavity (such as using a toothpick) Cigarettes Do not breathe Do not drink except water ⁇ Method of saliva collection Rinse the mouth with water before collecting saliva and collect non-irritant mixed saliva. The saliva does not come out intentionally, but only those that naturally drip are collected (spitting method).
- Pretreatment method for measuring metabolites of saliva Take 400 ⁇ L of a saliva sample, place it on an ultrafiltration filter (molecular weight cut off 5,000 Da), and centrifuge it at 4 ° C. and 9,100 g for 3.5 hours.
- CE-TOFMS capillary electrophoresis-time-of-flight mass spectrometer
- Nebulizer gas pressure 7 psig Sheath solution: 50% MeOH / 0.1 ⁇ M Hexakis (2,2-difluoroethoxy) phosphazenes Water flow rate: 10 L / min Reference m / z: 2 MeOH 13 C isotope [M + H] + m / z 66.063061, Hexakis (2,2-difluoroethoxy) phosphazene [M + H] + m / z 622.028963 2) Anionic metabolite measurement mode ⁇ HPCE capillary: COSMO (+), inner diameter 50 ⁇ m ⁇ length 10, 6 cm Buffer: 50 mM ammonium acetate, pH 8.5 Voltage: negative, 30kV Temperature: 20 ° C Injection: Pressurized injection 50 mbar, 30 seconds, (about 30 nL) Washing before measurement: Washing with 50 mM ammonium acetate, pH 3.4 for 2 minutes, washing with 50 mM, pH
- Nebulizer gas pressure 7 psig Sheath solution: 50% MeOH / 0.1 ⁇ M Hexakis (2, 2-difluoroethoxy) phosphazenes containing 5 mM ammonium acetate Water flow rate: 10 ⁇ L / min Reference m / z: 2 [CH 3 COOH] 13 C isotope [MH]-m / z 120.038339, Hexakis (2, 2- difluoroethoxy) phosphazene + CH 3 COOH [MH]-680.035451 ESI needle: platinum
- the anionic metabolite measurement may be performed before the cationic metabolite measurement.
- Remove noise (step 130 in FIG. 1) Remove substances with large fluctuations in value depending on the measurement date, and signals that are not derived from metabolites.
- Step 140 in Figure 1 Only substances for which a peak could be detected in 30% or more cases (eg, 3 out of 10) in each group were selected.
- Step 150 in Figure 1 After performing a normal test (this time the Mann-Whitney test), the False Discovery Rate (FDR) is used to correct the P value and calculate the Q value, and the Q value is significantly different from Q ⁇ 0.05. The material was sorted out.
- FDR False Discovery Rate
- Substances are selected for concentration correction by estimating the concentration of total metabolites in saliva (step 142 in FIG. 1)
- the quantified value of the quantified metabolite was used to calculate the correlation value between the metabolites in a round-robin manner.
- a combination of substances satisfying R ⁇ 0.8 in Pearson correlation coefficient (R) is listed. From the group of metabolites in which the largest number of substances correlate with each other, the substances with the highest number of substances in correlation were selected.
- FIG. 1 An example of the correlation network diagram of the metabolite in saliva is shown in FIG.
- Step 152 in Fig. 1 After performing the usual test (this time is the Mann-Whitney test) with the value of the concentration of each substance corrected by the concentration of the substance sorted in Step 142, the P value is corrected using False Discovery Rate (FDR). The Q value was calculated, and substances having a Q value significantly different from Q ⁇ 0.05 were selected.
- FDR False Discovery Rate
- a multiple logistic regression model which is a mathematical model was developed from the state without variables in step 200.
- This multiple logistic regression (MLR) Analysis for the ratio P is an object variable, k-number of explanatory variables x 1, x 2, x 3 , ⁇ , using x k,
- step 210 combinations of independent and smallest variables not correlated with each other are selected using, for example, the variable increasing / decreasing method of stepwise variable selection.
- the variable x i was selected with a P value of 0.05 when adding a variable and a P value of 0.05 when removing a variable.
- step 220 the data is divided into one for learning and one for evaluation, and then in step 230, a model is created from the data for learning and evaluated using the data for evaluation. Steps 220 and 230 were repeated in the cross validation consisting of loop 1 in FIG.
- step 250 the most accurate model is selected from the cross validation results.
- stepwise method there are also three types of variable increase, variable increase and decrease, variable decrease, etc. in the stepwise method, and there is also adjustment of the threshold, such as adding a variable with a threshold of P ⁇ 0.05. You can make the model many times with the big loop 2 in Fig. 3 and choose the one with the best accuracy.
- pancreatic cancer (PC) risk values were also calculated for breast cancer, oral cancer (CP) and saliva of IPMN.
- C healthy subjects
- C healthy subjects
- IPMN IPMN
- AUC values capable of identifying pancreatic cancer from this group were calculated.
- the data is divided into 10 at random, a model is created using 90% of the data, the model is evaluated with the remaining 10%, this is repeated 10 times, and all cases are always evaluated once Cross validation (CV) was also performed to select the side, collect evaluation data and calculate AUC values.
- CV Cross validation
- the substances having high correlation with each other at step 142 are shown in FIG.
- a line is connected between substances in which R ⁇ 0.8.
- Eight clusters (population of metabolites) are found, but the top left cluster in the figure contains the most substance.
- alanine (Ala) is most frequently networked with other substances, this substance is used as a metabolite for normalizing the concentration of whole saliva.
- the metabolite used for normalization is not limited to the substance most networked with other substances.
- variable selection and mathematical model are not limited to stepwise method and MLR.
- Table 2 shows substances having high ability to distinguish pancreatic cancer from healthy persons in step 152 of FIG.
- the detection rate indicates the ratio of the number of cases in which the peak could be detected among all the cases in the group of healthy subjects and pancreatic cancer respectively.
- the 95% CI indicates the value of the 95% confidence interval.
- ROC Receiver Operating Characteristic
- the area under the ROC curve in FIG. 5 was 0.8763 (95% CI: 0.8209-0.9317, p ⁇ 0.0001).
- the sensitivity of the optimal cutoff value was 0.8348, and the (1-specificity) was 0.2169.
- Figure 6 shows the calculated values of pancreatic cancer risk for patients with breast cancer, oral cancer (CP) and IPMN as well as healthy people (C) and pancreatic cancer (PC) using the MLR model that can distinguish between healthy people and pancreatic cancer. Shown in.
- FIG. 6 is a model for separating a healthy person (C) and a pancreatic cancer (PC), which is a plot of the risk of pancreatic cancer including C, PC and breast cancer, oral cancer (CP) and IPMN, and a box plot. Shows the values of 10%, 25%, 50%, 75% and 90% from the top, and the values outside 10% and 90% are indicated by plots.
- Table 4 shows AUC values that evaluated the specificity and versatility of the MLR model.
- CV is the case of cross validation.
- FIG. 7 shows an ROC curve when an MLR model is created using absolute density without performing density correction.
- selected markers and coefficients are shown in Table 5.
- the area under the ROC curve is 0.8264 (95% CI: 0.7619-0.8874, p ⁇ 0.0001), and although the accuracy is slightly lower than when the concentration correction is not performed, it is still high. It was possible to predict with prediction accuracy.
- the P value when adding variables was 0.05, and the P value when removing variables was 0.05 using the variable increase / decrease method of stepwise variable selection.
- An ROC curve is shown in FIG. 8 when the P value at the time of adding a variable is 0.05, using the variable increasing method as a method of variable selection.
- selected markers and coefficients are shown in Table 6.
- the area under the ROC curve is 0.8373 (95% CI: 0.7792-0.8954, p ⁇ 0.0001), which is the same despite the fact that markers and coefficients different from the model in FIG. 7 are used. It was possible to get the level of prediction accuracy.
- the concentration of ionic metabolites contained in saliva was measured at the same time, and markers with high ability to distinguish between healthy persons and pancreatic cancer were selected. Furthermore, with this combination of markers, it was possible to develop a model with higher accuracy (sensitivity and specificity) than a single substance.
- FIG. 9 shows the difference in the total concentration of amino acids in saliva for each disease.
- the meaning of box whiskers is the same as in FIG.
- Pancreatic cancer has a significantly higher concentration than healthy people (C), and the fact that the total concentration in saliva is high may also be useful as an indicator of pancreatic cancer risk.
- C healthy people
- the accuracy is poor even if these are simply treated as risks (data shown in FIG. 8 between C and PC)
- the concentration is high in C and the concentration is low in PC
- the entire concentration can be taken into consideration. Must be reduced. Therefore, according to the method shown in FIG. 2, the marker substance was searched after the variation of the total concentration was canceled by normalizing the substance with high correlation to the metabolite concentration in saliva and detectable in all samples. In addition, it is also possible to omit normalization.
- polyamines such as spermine
- acetylated substances of polyamines such as N8-acetylspermidine, N1-acetylspermidine, N1-acetylspermine, etc.
- concentration correction is performed only with creatinine, and the accuracy comparable to measuring a tumor marker by blood test is Not achieved.
- polyamines are taken up by erythrocytes in blood (Fu NN, Zhang HS, MaM, Wang H.
- the diagnostic method detected in the present invention is performed with saliva that can detect the marker substance at a high concentration, and to reduce variations generated for each measurement because the processing steps performed for the measurement are simple. It is a distinctive point that high precision prediction is achieved by the contribution of three points using a mathematical model by combining markers. Also, it is a known fact that mRNA in saliva is different between pancreatic cancer patients and healthy individuals (Non-patent Document 4), but the molecular groups targeted by the present invention are metabolites, which are completely different.
- Non-patent Document 5 a substance not included in known documents is used as a marker, and the concentration fluctuation peculiar to saliva is canceled. And, the combination of these substances enabled us to develop a highly sensitive and specific pancreatic cancer identification mathematical model.
- pancreatic cancer predicted by the MLR model shows that this model exhibits high specificity for pancreatic cancer in four groups of healthy subjects, chronic pancreatitis, IPMN, and pancreatic cancer (FIG. 6).
- the results of cross validation (Table 4) and the results of tests that divide pancreatic cancer and non-pancreatic cancer also show that this model has high sensitivity and specificity that can not be achieved by conventional methods.
- capillary electrophoresis-mass spectrometry was used to measure metabolites in saliva, but high performance liquid chromatography (LC), gas chromatography (GC), chip LC, etc.
- Cases include healthy persons (20 cases), breast cancer patients before the start of treatment (37 cases), breast cancer patients (90 cases) including those who received treatment such as chemotherapy and hormone therapy, and only 1 male case of breast cancer All the rest adopted female cases. Before the start of treatment, 8 patients with breast cancer have DCIS and 29 cases with invasive ductal carcinoma.
- the method of collecting saliva, the method of measuring metabolites, etc. were the same as those for pancreatic cancer.
- variable addition and addition methods are added with P ⁇ 0.05, added with P ⁇ 0.05, and deleted as beta-alanine (Beta-Ala), N-acetylphenylalanine (N-Acetylphenylalanie), citrulline (Citruline) was used.
- Beta-Ala beta-alanine
- N-acetyl phenylalanine is a method including N1-acetylspirimidin (N1-Acetylspermidine) known as a known marker, and performing addition (increase) with P ⁇ 0.05 by the variable increase / decrease method.
- ROC values of the individual substances are 0.8373 for beta-alanine, 0.7122 for N-acetyl phenylalanine, and 0.698 for citrulline, and these are used as an MLR model to obtain 0.9622.
- MLR MLR model
- N-acetylphenylalanine was 0.7122
- N-acetylspermidine was 0.7811
- creatine was 0.7824, but when they are combined in the MLR model, 0 It has been confirmed that it improves to .9365.
- the substances described as 7 and 8 in the items described as known are the substances known from Non-Patent Documents 7 and 8.
- Fig. 10 create a network diagram in which the breast cancer patients (37 cases) before treatment start shown in Fig. 10 are metabolites of normal persons (20 cases), and a line is drawn between the metabolites showing correlation at R 2 > 0.92 Among them, glutamine (Gln), which is a substance having many binding lines with other substances and can be detected in all samples, was selected as a concentration correction substance. It is indicated by ⁇ in the figure.
- FIG. 14 shows the top five rankings from the one with the smallest P value.
- FIG. 16 A network diagram was created (shown in FIG. 16) using all cases of all samples (C, 20 cases and BC, 90 cases), and a concentration correction substance Gly (glycine, shown by .smallcircle. In the figure) was determined. If concentration correction is not performed using this concentration correction marker, 73 substances show a significant difference, and when concentration correction (dividing the concentration of target metabolite by the concentration of Gly), 35 substances show a significant difference, among which 11 showed significant difference with or without concentration correction. Among them, the top five substances with lower P values are shown. The ROC curve is shown on the lower right when an MLR model is created using two substances, Spermine and 6-Hydroxyhexanoate.
- Tables 9-1 and 9-2 are substances that show differences in absolute concentration with respect to saliva of oral cancer and healthy people. 20 healthy subjects and 20 breast cancer patients (20 cases). Healthy subjects collected saliva 1.5 hours after a meal, and cancer patients performed sampling twice before the meal (from the night before and after fasting) and 1.5 hours after a meal. The P value was calculated by the Mann-Whitney test in either of these comparisons, and the Q value was further calculated at False Discovery Rate (FDR), and substances with Q ⁇ 0.05 were listed.
- FDR False Discovery Rate
- oral cancer patients include stages I to IVa, including oral squamous cell carcinoma (17 cases), malignant melanoma (2 cases), and adenoid cystic carcinoma (1 case).
- spermine, spermidine, or their acetylated substances are highly consistent even in comparison of oral cancer specimens obtained at the time of surgery and nearby healthy regions.
- choline in this is a known substance in documents 7 and 9, and the concentration increase of the substance in saliva is confirmed, but in the same way as pancreatic cancer and breast cancer.
- a mathematical model combining multiple novel markers can identify oral cancer with higher accuracy.
- this substance is elevated in oral cancer but not in breast cancer, it can be used as a variable in a mathematical model to express the specificity of the cancer type.
- FIG. 17 shows the concentrations of metabolites in the cancerous tissue sample obtained at the time of surgery for oral cancer and healthy tissue samples in the vicinity (here, ⁇ M / g corrected with tissue weight).
- the left part of the figure is a healthy tissue, and the right part is a cancer tissue.
- I, II, III, Via indicate the progression (grade) of cancer. It is a part of the substance that has a significant difference between the healthy part and the cancer part.
- FIG. 1 the difference in concentration with the saliva of a healthy subject (C) when the method of collecting saliva for oral cancer is changed is shown in FIG.
- healthy people also use Choline (choline) with the lowest P value as an example. Healthy subjects (C) were collected at 1.5 hours after eating, oral cancer was collected from the same patient from P1 at 1.5 hours after eating, P2 at 3.5 hours after eating, and P3 at fasting (before breakfast).
- Table 10 shows saliva collected from 17 healthy subjects, 21 pancreatic cancer, 16 breast cancer and 20 oral cancer all at fasting time (from 9:00 am on the night before and no meals on the day of collection), liquid chromatography The results of measurement of absolute concentrations of polyamines and hypoxanthine using a mass spectrometer (LC-MS). P-values for evaluating differences in mean values are calculated by Student'st-test, which is a parametric test because the number of cases is small.
- hypoxanthine As a polyamine and a metabolite other than a polyamine are shown in Table 10.
- N1, N12-Diacetylspermine N1, N12-diacetylspermidine
- LC-qTOFMS LC-qTOFMS
- LC-MS The measurement conditions of LC-MS are as follows.
- LC system Agilent Technologies 1290 infinity Mobile phase: Solvent A; Water containing 1% Formic acid : Solvent B; Acetonitril containing 0.1% formic acid Flow rate: 0.5 mL / min Gradient [min.
- the influence of concentration can be reduced by correcting (normalizing) the concentration of saliva by data analysis of a correlation network, and even in the case of saliva with large concentration fluctuation, pancreatic cancer can be distinguished from healthy persons.
- the method also enables prediction of chronic pancreatitis, IPMN, breast cancer and oral cancer.
- the range where the test with the marker of the present invention can be performed is determined by the value of the concentration correction marker that reflects saliva concentration, saliva outside the range is excluded from the test target, and absolute concentration or correction is performed only for those in the range. It is also possible to distinguish between a healthy person and each cancer disease person by a mathematical model of combinations of relative concentration markers.
- pancreatic cancer Even in the case of saliva with large concentration variation, early detection of pancreatic cancer, breast cancer, oral cancer and the like from healthy persons becomes possible.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Oncology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Hospice & Palliative Care (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
膵癌患者の病期ステージの異なる唾液サンプルと、健常者、また、特異性の評価のため、膵管内乳頭粘液性腫瘍(IPMN)、および慢性膵炎患者の唾液検体、合計199検体を収集した。各群の症例数、男女の構成、年齢を表1に示す。すべて治療前の症例で化学療法の治療履歴のない症例を対象とした。表1中の欠損数は、値がわからない症例数である。
○採取日に関して
できるだけ手術の当日以外に採取を行う
○食事に関して
前日21:00以降、水以外飲まない
当日朝食を取らない
○当日、唾液採取までに気をつけること
唾液採取は朝食前でAM8:30~11:00の間に行う
唾液採取の1時間以上前に、歯磨き粉なしで歯磨きする
唾液採取の1時間前は激しい運動を行わない
口腔内の手入れ(爪楊枝の使用など)を行わない
煙草も吸わない
水以外飲まない
○唾液採取の方法
唾液採取前に水で口内をゆすぎ、非刺激性の混合唾液を採取する。
唾液は意図的に出さず、自然に垂れてくるものだけを採取する(吐唾法)。あるいは、口内に唾液がある程度たまった時点(時間の目安は3分程度)でストローをくわえ、チューブに唾液を流しだす(Passive Drool法)。顔を下に向け、ストローを垂直にして口内の唾液を押し出せば、自然と垂れ流れ易いが、ストローの中間で唾液が付着して下に落ち切らない場合、息で押し出す(口をチューブに開けっぱなしにするより、ある程度口の中に唾液をためてから、一度にチューブに落としたほうが集めやすい)。
(できれば)200μL以上採取する。
唾液採取時、できるだけチューブは氷上に置き低温を保つ、15分以内に採取を終える(15分で200μL集まらない場合でも、切り上げる)。
5分以内に氷上から-80度あるいはドライアイスで凍結保存する。
ポリプロピレン素材のチューブとストローで唾液を採取する。
なお、唾液の採取方法は、上記に限定されず、他の方法で採取することも可能である。
唾液サンプルを400μLとり、これを、限外ろ過フィルター(分画分子量5,000Da)にとり4℃,9,100gで3.5時間遠心分離を行う。ろ液の45μLとメチオニンスルホン(Methionine sulfone)、2-モルホリノエタンスルホン酸・一水和物(2-Morpholinoethanesulfonic acid, monohydrate)、CSA(D-Camphor-10-sulfonic acid)、ナトリウム塩、3-アミノピロリジン(3-Aminopyrrolidine)、トリメシン酸塩(Trimesate)が各2mMとなる水溶液5μLを混合して50μLのサンプルとし、次の方法により測定した。
CE-MSを用いたメタボローム解析によって、唾液からイオン性代謝物を同定・定量した。
・HPCE
キャピラリー:フューズドシリカ、内径50μm×長さ100cm
バッファ:1M蟻酸(Formate)
電圧:ポジティブ、30kV
温度:20℃
注入:加圧注入 50mbar、5秒(約3nL)
測定前の洗浄:30mM、pH9.0の蟻酸アンモニウム(Ammonium Formate)で5分、Milli-Q水で5分、バッファーで5分
・TOFMS
極性:ポジティブ
キャピラリー電圧:4,000V
フラグメンター電圧:75V
スキマー電圧:50V
OCT RFV:125V
ドライガス:窒素(N2)、10L/分
ドライガス温度:300℃
ネブライザーガス圧力:7psig
シース液:50% MeOH / 0.1μM Hexakis (2,2-difluoroethoxy) phosphazene含有水
流速:10L/分
リファレンスm/z:2MeOH 13C同位体 [M+H]+m/z66.063061,
Hexakis(2,2-difluoroethoxy)phosphazene [M+H]+m/z622.028963
2)陰イオン性代謝物質測定モード
・HPCEキャピラリー:COSMO(+)、内径50μm×長さ10、6cm
バッファ:50mM酢酸アンモニウム、pH8.5
電圧:ネガティブ、30kV
温度:20℃
注入:加圧注入50mbar、30秒、(約30nL)
測定前の洗浄:50mM酢酸アンモニウム、pH3.4で2分間洗浄、50mM、pH8.5の酢酸アンモニウムで5分間洗浄
・TOFMS
極性:負
キャピラリー電圧:3,500V
フラグメンター電圧:100V
スキマー電圧:50V
OCT RFV:200V
ドライングガス:窒素(N2)、10L/分
ドライングガス温度:300℃
ネブライザーガス圧力:7psig
シース液:5mM酢酸アンモニウム入り50%MeOH / 0.1μM Hexakis (2,2-difluoroethoxy) phosphazene含有水
流速:10μL/分
リファレンスm/z:2[CH3COOH] 13C同位体[M-H]-m/z120.038339,
Hexakis(2,2-difluoroethoxy) phosphazene +CH3COOH [M-H]- 680.035541
ESIニードル:白金
測定日によって値の変動の大きな物質や、代謝物由来ではない信号などを除去する。
各群で30%以上の症例(例えば、10人中3人)でピークが検出できた物質だけを選別した。
通常の検定(今回はMann-Whitney検定)を実施した後、False Discovery Rate(FDR)を用いて、P値を補正しQ値を計算し、Q値でQ<0.05と有意差のある物質を選別した。
測定した全検体(健常、乳癌、口腔癌、IPMN、膵癌を含む)にて、定量した代謝物の定量値を用いて代謝物間の相関値を総当たりで計算した。ピアソン相関係数(R)でR≧0.8を満たす物質の組合せを列挙する。最も多くの物質がお互いに相関する代謝物群の中から、更に最も多くの物質と相関する物質を選出した。
各物質の濃度をステップ142で選別した物質の濃度で補正した値により、通常の検定(今回はMann-Whitney検定)を実施した後、False Discovery Rate(FDR)を用いて、P値を補正しQ値を計算し、Q値でQ<0.05と有意差のある物質を選別した。
In(P/1-P)=b0+b1x1+b2x2+b3x3+・・・+bkxk
…(1)というPの回帰式を求める。
本発明では、唾液に含まれるイオン性代謝物の濃度を一斉に測定し、健常者と膵癌を識別できる能力の高いマーカーを選出した。更にこのマーカーの組合せにて、単一の物質よりもより精度(感度と特異度)の高いモデルを開発することができた。
LC system : Agilent Technologies 1290 infinity
Mobile phase : Solvent A;Water containing 1% Formic acid
: Solvent B; Acetonitrile containing 0.1% formic acid
Flow rate : 0.5 mL/min
Gradient [min. (%B)] : 0(98)-1(98)-3(55)-5(5)
Stop time: 7 min
Post time: 3 min
Column : CAPCELL CORE PC (Shiseido: 2.1mm×50mm, 2.7mm)
Column temp. : 50 ℃
Injection volume : 1 ・L
MS : Agilent Technologies G6230A
Gas temp :350 ℃
Gas flow :13 L/min
Neblizer Gas :55 psig
Fragmentor :150
Skimmer :90
OCT1 RF Vpp :200
VCap :3500
Reference :121.050873, 922.009798
Mode : Positive
Claims (15)
- 唾液試料の代謝物である低分子化合物のいずれか、又は、その組合せであることを特徴とする癌用唾液バイオマーカー。
- 前記癌が、膵癌、膵管内乳頭粘液性腫瘍(IPMN)、乳癌、口腔癌のいずれかであることを特徴とする請求項1に記載の癌用唾液バイオマーカー。
- N-アセチルプトレシン(N-Acetylputrescine)、アデノシン(Adenosine)、3-ホスホ-D-グリセリン酸(3PG)、尿素(Urea)、o-アセチルカルニチン(o-Acetylcarnitine)、クエン酸(Citrate)、グリシル-グリシン(Gly-Gly)、5-アミノ吉草酸(5-Aminovalerate)、2-オキソペンタン酸メチル(2-Oxoisopentanoate)、リンゴ酸(Malate)、安息香酸エステル(Benzoate)、フマル酸(Fumarate)、N-アセチルアスパラギン酸(N-Acetylaspartate)、イノシン(Inosine)、3-メチルヒスチジン(3-Methylhistidine)、N1-アセチルスペルミン(N1-Acetylspermine)、クレアチン(Creatine)、アルファ-アミノアジピン酸(alpha-Aminoadipate)、ホスホリルコリン(Phosphorylcholine)、2-ヒドロキシペンタアート(2-Hydroxypentanoate)、キサンチン(Xanthine)、コハク酸(Succinate)、6-ホスホグルコン酸(6-Phosphogluconate)、ブタン酸(Butanoate)、ホモバニリン酸(Homovanillate)、O-ホスホセリン(O-Phosphoserine)、トリメチルアミン-N-オキシド(Trimethylamine N-oxide)、ピペリジン(Piperidine)、シスチン(Cystine)、2-イソプロピルリンゴ酸(2-Isopropylmalate)、N8-アセチルスペルミジン(N8-Acetylspermidine)、N1-アセチルスペルミジン(N1-Acetylspermidine)、N-アセチルノイラミン酸(N-Acetylneuraminate)、グルコサミン(Glucosamine)、スペルミン(Spermine)、アグマチン(Agmatine)、N-アセチルヒスタミン(N-Acetylhistamine)、メチオニン(Met)、p-4-ヒドロキシフェニル酢酸(p-4-Hydroxyphenylacetate)、N,N-ジメチルグリシン(N,N-Dimethylglycine)、ヒポタウリン(Hypotaurine)、グルタミン酸-グルタミン酸(Glu-Glu) 、N1,N12-ジアセチルスペルミン(N1,N12-Diacetylspermine)のいずれか、又は、その組合せであることを特徴とする膵疾患検出用の請求項1又は2に記載の癌用唾液バイオマーカー。
- N8-アセチルスペルミジン(N8-Acetylspermidine)、クレアチニン(Creatinine)、スペルミン(Spermine)、アスパラギン酸(Asp)、N1-アセチルスペルミジン(N1-Acetylspermidine)、N1-アセチルスペルミン(N1-Acetylspermine)、シチジン(Cytidine)、アルファ-アミノアジピン酸塩(alpha-Aminoadipate)、シトシン(Cytosine)、ベタイン(Betaine)、尿素(Urea)、ホモバニリン酸塩(Homovanillate)、N-アセチルノイラミン酸塩(N-Acetylneuraminate)、シスチン(Cystine)、ウロカニン酸塩(Urocanate)、フマル酸塩(Fumarate)、1,3-ジアミノブロパン(1,3-Diaminopropane)、ヒポタウリン(Hypotaurine)、ニコチン酸塩(Nicotinate)、アグマチン(Agmatie)、バリン(Val)、2-ヒドロキシ-4-メチルペンタン酸塩(2-Hydroxy-4-methylpentanoate)、アラニル-アラニン(Ala-Ala)、クエン酸塩(Citrate)、グルコサミン(Glucosamine)、カルノシン(Carnosine)、グリシル-グリシン(Gly-Gly)、2-アミノ酪酸(2AB)、アルギニン(Arg)、N-アセチルグルタミン酸塩(N-Acetylglutamate)、グリセロリン酸塩(Glycerophosphate)、ホスホエノールピルビン酸(PEP)、イソロイシン(Ile)、アデノシン(Adenosine)、グアニン(Guanine)、ジヒドロキシアセトンリン酸(DHAP)、カダベリン(Cadaverine)のいずれか、又は、その組合せであることを特徴とする膵疾患検出用の請求項1又は2に記載の癌用唾液バイオマーカー。
- クレアチニン、N1-アセチルスペルミジン、アルファ-アミノアジピン酸塩、N-アセチルノイラミン酸塩、1,3-ジアミノブロパンの組合せであることを特徴とする膵疾患検出用の請求項4に記載の癌用唾液バイオマーカー。
- コリン(Choline)、2-ヒドロキシ酪酸(2-Hydroxybutyrate)、ベータ-アラニン(beta-Ala)、3-メチルヒスジン(3-Methylhistidine)、アルファ-アミノ酪酸(2AB)、N-アセチルベータアラニン(N-Acetyl-beta-alanine)、イセチオン酸(Isethionate)、N-アセチルフェニルアラニン(N-Acetylphenylalanine)、トリメチルリシン(N6,N6,N6-Trimethyllysine)、アルファ-アミノアジピン酸(alpha-Aminoadipate)、クレアチン(Creatine)、ガンマ-ブチロベタイン(gamma-Butyrobetaine)、サルコシン(Sarcosine)、ピルビン酸(Pyruvate)、ウロカニン酸(Urocanate)、ピペリジン(Piperidine)、セリン(Ser)、ホモバリニン酸(Homovanillate)、5-オキソプロリン(5-Oxoproline)、ギャバ(GABA)、5-アミノ吉草酸(5-Aminovalerate)、トリメチルアミン-N-オキシド(Trimethylamine N-oxide)、2-ヒドロキシ吉草酸(2-Hydroxypentanoate)、カルニチン(Carnitine)、イソプロパノールアミン(Isopropanolamine)、ヒポタウリン(Hypotaurine)、乳酸(Lactate)、2-ヒドロキシ-4-メチルペンタン酸(2-Hydroxy-4-methylpentanoate)、ヒドロキシプロリン(Hydroxyproline)、酪酸(Butanoate)、アデニン(Adenine)、N6-アセチルリシン(N-epsilon-Acetyllysine)、6-ヒドロキシヘキサン酸(6-Hydroxyhexanoate)、プロピオン酸(Propionate)、ベタイン(Betaine)、N-アセチルプトレシン(N-Acetylputrescine)、ヒポキサンチン(Hypoxanthine)、クロトン酸(Crotonate)、トリプトファン(Trp)、シトルリン(Citrulline)、グルタミン(Gln)、プロリン(Pro)、2-オキソイソペンタン酸(2-Oxoisopentanoate)、4-安息香酸メチル(4-Methylbenzoate)、3-(4-ヒドロキシフェニル)プロピオン酸(3-(4-Hydroxyphenyl)propionate)、システイン酸(Cysteate)、アゼライン酸(Azelate)、リブロース-5-リン酸(Ru5P)、ピペコリン酸(Pipecolate)、フェニルアラニン(Phe)、O-ホスホセリン(O-Phosphoserine)、マロン酸(Malonate)、ヘキサン酸(Hexanoate)、p-ヒドロキシフェニル酢酸(p-Hydroxyphenylacetate)のいずれか、又は、その組合せであることを特徴とする乳癌検出用の請求項2に記載の癌用唾液バイオマーカー。
- べータアラニン、N-アセチルフェニルアラニン、シトルリンの組合せであることを特徴とする乳癌検出用の請求項2に記載の癌用唾液バイオマーカー。
- コリン(Choline)、ベータ-アラニン(beta-Ala)、3-メチルヒスジン(3-Methylhistidine)、アルファ-アミノ酪酸(2AB)、N-アセチルベータアラニン(N-Acetyl-beta-alanine)、イセチオン酸(Isethionate)、N-アセチルフェニルアラニン(N-Acetylphenylalanine)、トリメチルリシン(N6,N6,N6-Trimethyllysine)、ウロカニン酸(Urocanate)、ピペリジン(Piperidine)、5-アミノ吉草酸(5-Aminovalerate)、トリメチルアミン-N-オキシド(Trimethylamine N-oxide)、イソプロパノールアミン(Isopropanolamine)、ヒポタウリン(Hypotaurine)、ヒドロキシプロリン(Hydroxyproline)、N6-アセチルリシン(N-epsilon-Acetyllysine)、6-ヒドロキシヘキサン酸(6-Hydroxyhexanoate)、N-アセチルプトレシン(N-Acetylputrescine)、アゼライン酸(Azelate)、ジヒドロキシアセトンリン酸(DHAP)、グリコール酸(Glycolate)、4-メチル-2-オキソペンタノン酸(4-Methyl-2-oxopentanoate)、N-アセチルアスペラギン酸(N-Acetylaspartate)、グリセロリン酸(Glycerophosphate)、3-ヒドロキシブチル酸(3-Hydroxybutyrate)、安息香酸(Benzoate)、アジペート(Adipate)、2-イソプロピルマレート(2-Isopropylmalate)、ホスホリルクロリン(Phosphorylcholine)、N-アセチルノイラミネート(N-Acetylneuraminate)、ヒスタミン(His)、o-アセチルカルニチン(o-Acetylcarnitine)、N-アセチルグルコサミン1-リン酸(N-Acetylglucosamine 1-phosphate)、クレアチニン(Creatinine)、アルギニン(Arg)、シリング酸(Syringate)のいずれか、又は、その組合せであることを特徴とする乳癌検出用の請求項2に記載の癌用唾液バイオマーカー。
- N-アセチルフェニルアラニン、N-アセチルスペルミジン、クレアチンの組合せであることを特徴とする乳癌検出用の請求項2に記載の癌用唾液バイオマーカー。
- グリシル-グリシン(Gly-Gly)、シトルリン(Citrulline)、ガンマ-ブチロベタイン(gamma-Butyrobetaine)、3‐フェニルラクタート(3-Phenyllactate)、酪酸(Butanoate)、ヘキサン酸(Hexanoate)、メチオニン(Met)、ヒポキサンチン(Hypoxanthine)、スペルミジン(Spermidine)、トリプトファン(Trp)、アスパラギン酸(Asp)、イソプロパノールアミン(Isopropanolamine)、アラニル-アラニン(Ala-Ala)、N,N-ジメチルグリシン(N,N-Dimethylglycine)、N1-アセチルスペルミジン(N1-Acetylspermidine)、N1-,N8-ジアセチルスペルミジン(N1,N8-Diacetylspermidine)、N8-アセチルスペルミジン(N8-Acetylspermidine)、アルファ-アミノ酪酸(2AB)、トリメチルアミン-N-オキシド(Trimethylamine N-oxide)、N-アセチルアスパラギン酸(N-Acetylaspartate)、アデニン(Adenine)、2-ヒドロキシ吉草酸(2-Hydroxypentanoate)、プトレシン (Putrescine(1,4-Butanediamine))、3-ホスホグリセリン酸バリウム(3PG)、3-フェニルプロピオン酸(3-Phenylpropionate)、セリン(Ser)、1-メチルニコチンアミド(1-Methylnicotinamide)、3-ヒドロキシ-3-メチルグルタル酸(3-Hydroxy-3-methylglutarate)、グアニン(Guanine)、3-(4-ヒドロキシフェニル)プロピオン酸(3-(4-Hydroxyphenyl)propionate)、4-安息香酸メチル(4-Methylbenzoate)、リブロース-5-リン酸(Ru5P)、アルファ-アミノアジピン酸(alpha-Aminoadipate)、 N6-アセチルリシン(N-epsilon-Acetyllysine)、 グルコサミン(Glucosamine)、 シスチン(Cystine)、カルノシン(Carnosine)、ウロカニン酸(Urocanate)、フェニルアラニン(Phe)、2-デオキシリボース-1-リン酸(2-Deoxyribose 1-phosphate)、シチジン5'-一りん酸二ナトリウム(CMP)、p-ヒドロキシフェニル酢酸(p-Hydroxyphenylacetate)、ポリヒドロキシ酪酸(3-Hydroxybutyrate)、N-アセチルプトレシン(N-Acetylputrescine)、7-メチルグアニン(7-Methylguanine)、イノシン(Inosine)、リシン(Lys)、ジヒドロキシアセトンりん酸(DHAP)、3-メチルヒスジン(3-Methylhistidine)、カルバモイルアスパラギン酸(Carbamoylaspartate)、クレアチニン(Creatinine)、N-メチル-2-ピロリドン(1-Methyl-2-pyrrolidinone)、ピルビン酸(Pyruvate)、プロピオン酸(Propionate)、5-アミノ吉草酸(5-Aminovalerate)、N-アセチルオルニチン(N-Acetylornithine)、5-オキソプロリン(5-Oxoproline)、クレアチン(Creatine)、ホモセリン(Homoserine)、フマル酸(Fumarate)、グリシン(Gly) 、N1,N12-ジアセチルスペルミン(N1,N12-Diacetylspermine)のいずれか、又は、その組合せであることを特徴とする口腔癌検出用の請求項2に記載の癌用唾液バイオマーカー。
- 唾液試料を採取する工程と、
採取した唾液試料中の請求項1乃至10のいずれかに記載の癌用唾液バイオマーカーを検出する工程と、
を含むことを特徴とする癌用唾液バイオマーカーの測定方法。 - 唾液試料を採取する手段と、
採取した唾液試料中の請求項1乃至10のいずれかに記載の癌用唾液バイオマーカーを検出する手段と、
を備えたことを特徴とする癌用唾液バイオマーカーの測定装置。 - 唾液試料を限外ろ過する手順と、
限外ろ過後の唾液試料中のイオン性代謝物を網羅的に測定する手段と、
測定された代謝物の濃度に基づいて、健常者と膵疾患者を見分ける能力の高い物質を選定する手順と、
を含むことを特徴とする癌用唾液バイオマーカーの特定方法。 - 前記癌用唾液バイオマーカーの選定に際して、測定された代謝物間の相関値を計算し、最も多くの物質と相関する物質の濃度で各物質の濃度を正規化することを特徴とする請求項13に記載の癌用唾液バイオマーカーの特定方法。
- 数理モデルを用いて、前記癌用唾液バイオマーカーの組合せを決定することを特徴とする請求項13又は14に記載の癌用唾液バイオマーカーの特定方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/032,715 US20160282351A1 (en) | 2013-10-28 | 2014-10-28 | Salivary biomarkers for cancers, methods and devices for assaying the same, and methods for determining salivary biomarkers for cancers |
JP2015545246A JP6443937B2 (ja) | 2013-10-28 | 2014-10-28 | 膵癌用唾液バイオマーカー、及び、これを用いた膵癌患者を健常者から識別する方法 |
EP19183662.6A EP3578984A3 (en) | 2013-10-28 | 2014-10-28 | Salivary biomarkers for oral cancer |
EP19183658.4A EP3575795A3 (en) | 2013-10-28 | 2014-10-28 | Salivary biomarkers for breast cancer |
CN201480059534.XA CN105765383B (zh) | 2013-10-28 | 2014-10-28 | 胰腺癌用唾液生物标记物以及使用了胰腺癌用唾液生物标记物的胰腺癌的诊断方法 |
EP14858507.8A EP3064940B1 (en) | 2013-10-28 | 2014-10-28 | Salivary biomarker for pancreatic cancer |
US16/393,712 US20190250164A1 (en) | 2013-10-28 | 2019-04-24 | Salivary biomarkers for cancers, methods and devices for assaying the same, and methods for determining salivary biomarkers for cancers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-223738 | 2013-10-28 | ||
JP2013223738 | 2013-10-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/032,715 A-371-Of-International US20160282351A1 (en) | 2013-10-28 | 2014-10-28 | Salivary biomarkers for cancers, methods and devices for assaying the same, and methods for determining salivary biomarkers for cancers |
US16/393,712 Division US20190250164A1 (en) | 2013-10-28 | 2019-04-24 | Salivary biomarkers for cancers, methods and devices for assaying the same, and methods for determining salivary biomarkers for cancers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015064594A1 true WO2015064594A1 (ja) | 2015-05-07 |
Family
ID=53004195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078671 WO2015064594A1 (ja) | 2013-10-28 | 2014-10-28 | 癌用唾液バイオマーカー、その測定方法、装置、及び、癌用唾液バイオマーカーの特定方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20160282351A1 (ja) |
EP (3) | EP3064940B1 (ja) |
JP (4) | JP6443937B2 (ja) |
CN (1) | CN105765383B (ja) |
HK (1) | HK1226482B (ja) |
WO (1) | WO2015064594A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017020979A (ja) * | 2015-07-14 | 2017-01-26 | 静岡県公立大学法人 | 乳がんの検査方法 |
JP2018009986A (ja) * | 2016-07-05 | 2018-01-18 | ライオン株式会社 | 睡眠評価用マーカー及びその用途 |
JP2018072103A (ja) * | 2016-10-27 | 2018-05-10 | 学校法人順天堂 | パーキンソン病の重症度判定方法 |
JP2019152671A (ja) * | 2019-04-03 | 2019-09-12 | 京都府公立大学法人 | 大腸がんの検出方法 |
JPWO2018221544A1 (ja) * | 2017-05-31 | 2020-04-02 | 日立化成ダイアグノスティックス・システムズ株式会社 | 線維芽細胞増殖因子−23の測定方法、測定試薬及び測定キット |
JP2020514689A (ja) * | 2016-12-15 | 2020-05-21 | ボード オブ レジェンツ, ザ ユニバーシティ オブ テキサス システムBoard Of Regents, The University Of Texas System | 膵管腺癌の検出および処置のための方法 |
KR102177280B1 (ko) * | 2019-05-09 | 2020-11-10 | 고려대학교 세종산학협력단 | 호모시스테인 설핀산 또는 시스테인산을 포함하는 급성심근경색 진단용 바이오마커 조성물 |
WO2022233994A1 (en) | 2021-05-06 | 2022-11-10 | Rigshospitalet | Diagnosing and treating critically ill subjects |
JP7233665B1 (ja) | 2022-09-02 | 2023-03-07 | 株式会社サリバテック | 疾患リスク判定システム及び疾患リスク判定方法 |
KR102668786B1 (ko) * | 2023-03-15 | 2024-05-27 | 주식회사 오비젠 | 클라우드 기반의 구강암 및 구강 전암병소 진단 및 예측 시스템 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106442770B (zh) * | 2016-09-05 | 2019-01-18 | 南京医科大学 | 与特发性男性不育相关的精浆代谢小分子标志物及其检测方法和应用 |
US20200150125A1 (en) * | 2017-03-12 | 2020-05-14 | Yeda Research And Development Co., Ltd. | Methods of diagnosing and prognosing cancer |
JP7285218B2 (ja) * | 2017-04-20 | 2023-06-01 | メタボロン,インコーポレイテッド | 有機酸代謝物を検出かつ定量する質量分析法 |
EP3830300A1 (en) | 2018-07-31 | 2021-06-09 | Debreceni Egyetem | Treatment and diagnosis of breast cancer |
CN109651503A (zh) * | 2018-11-28 | 2019-04-19 | 天津国际生物医药联合研究院 | 一种人工抗原的制备方法及应用 |
EP3671213A1 (en) * | 2018-12-20 | 2020-06-24 | Kromat Muszerforgalmazó Kft. | In vitro method for the diagnosis of malignant conditions |
WO2020128546A1 (en) * | 2018-12-20 | 2020-06-25 | Kromat Műszerforgalmazó Kft. | A simple, non-invasive method for diagnosing oral cancer |
WO2021100891A1 (ko) * | 2019-11-19 | 2021-05-27 | 경상대학교병원 | 구강암 예후 진단용 조성물 및 키트 |
US11840720B2 (en) | 2019-12-23 | 2023-12-12 | Metabolomic Technologies Inc. | Urinary metabolomic biomarkers for detecting colorectal cancer and polyps |
CN113834927A (zh) * | 2020-06-08 | 2021-12-24 | 南京市口腔医院 | 预测口腔粘膜癌前病变患者发生癌变的唾液代谢标志物及其应用 |
CN113655143A (zh) * | 2021-08-09 | 2021-11-16 | 大连医科大学附属第一医院 | 一种早期预警重症急性胰腺炎的血清有机酸分子预测模型与应用 |
WO2023049741A1 (en) * | 2021-09-21 | 2023-03-30 | The Regents Of The University Of Michigan | Metabolite biomarkers for differential diagnosis of pancreatic cysts |
CN114113573B (zh) * | 2021-11-08 | 2022-11-11 | 中国医学科学院阜外医院 | 糖尿病患者早期预测心血管疾病(cvd)的生物标志物及其用途 |
KR20230155770A (ko) | 2022-05-04 | 2023-11-13 | 한국식품연구원 | 대칭 디메틸아르기닌(Symmetric dimethylarginine) 또는 아팔라닌(Afalanine)을 포함하는 지질 대사 개선용 조성물 |
WO2024059549A2 (en) * | 2022-09-12 | 2024-03-21 | Board Of Regents, The University Of Texas System | Methods for the detection and treatment of pancreatic ductal adenocarcinoma |
CN118671346A (zh) * | 2024-08-22 | 2024-09-20 | 浙江省肿瘤医院 | 用于胃癌诊断的代谢标志物及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009508493A (ja) | 2005-09-19 | 2009-03-05 | ベリデックス・エルエルシー | すい臓がんを診断するための方法 |
JP2011058863A (ja) | 2009-09-08 | 2011-03-24 | Keio Gijuku | 慢性腎臓病判定用血清マーカー、及び、その検出方法、装置 |
JP2011232164A (ja) | 2010-04-27 | 2011-11-17 | Keio Gijuku | 肝臓疾患マーカー、その測定方法、装置及び医薬品の検定方法 |
JP2011247869A (ja) | 2010-04-27 | 2011-12-08 | Kobe Univ | メタボローム解析手法を用いた特定疾患の検査方法 |
WO2011158590A1 (ja) | 2010-06-18 | 2011-12-22 | 学校法人 慶應義塾 | 肝臓疾患マーカー、その測定方法、装置及び医薬品の検定方法 |
JP2013521763A (ja) | 2010-02-10 | 2013-06-13 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 肺癌検出用唾液バイオマーカー |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2500232A1 (en) * | 2002-09-26 | 2004-04-08 | Rigshospitalet | A method for detecting, screening and/or monitoring a cancer in an individual |
AU2005216095B2 (en) * | 2004-02-20 | 2009-09-17 | The Regents Of The University Of California | Salivary mRNA profiling, biomarkers, and related methods and kits of parts |
US20070259377A1 (en) * | 2005-10-11 | 2007-11-08 | Mickey Urdea | Diabetes-associated markers and methods of use thereof |
US20100210023A1 (en) * | 2008-09-22 | 2010-08-19 | The Regents Of The University Of California | Salivary metabolic biomarkers for human oral cancer detection |
JP2013505428A (ja) * | 2009-09-18 | 2013-02-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | ヒト口腔癌検出のための唾液の代謝バイオマーカー |
EP2488666A4 (en) * | 2009-10-13 | 2013-05-29 | Purdue Research Foundation | BIOMARKERS AND METHODS OF IDENTIFICATION FOR EARLY DETECTION AND PREDICTION OF BREAST CANCER RECOVERY USING NMR (NUCLEAR MAGNETIC RESONANCE) |
WO2011119772A1 (en) * | 2010-03-23 | 2011-09-29 | Purdue Research Foundation | Early detection of recurrent breast cancer using metabolite profiling |
WO2011136343A1 (ja) * | 2010-04-28 | 2011-11-03 | 財団法人東京都医学総合研究所 | がんの検出方法 |
US9255142B2 (en) * | 2010-09-09 | 2016-02-09 | Beijing Cotimes Biotech Co., Ltd. | Blood markers for diagnosing epithelium derived cancers and monoclonal antibodies thereof |
EP2948775B1 (en) * | 2013-01-23 | 2018-10-03 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions and methods for detecting neoplasia |
WO2018112428A1 (en) * | 2016-12-15 | 2018-06-21 | Board Of Regents, The University Of Texas System | Methods for the detection and treatment of pancreatic ductal adenocarcinoma |
-
2014
- 2014-10-28 CN CN201480059534.XA patent/CN105765383B/zh active Active
- 2014-10-28 EP EP14858507.8A patent/EP3064940B1/en active Active
- 2014-10-28 JP JP2015545246A patent/JP6443937B2/ja active Active
- 2014-10-28 EP EP19183662.6A patent/EP3578984A3/en not_active Withdrawn
- 2014-10-28 WO PCT/JP2014/078671 patent/WO2015064594A1/ja active Application Filing
- 2014-10-28 US US15/032,715 patent/US20160282351A1/en not_active Abandoned
- 2014-10-28 EP EP19183658.4A patent/EP3575795A3/en active Pending
-
2016
- 2016-12-23 HK HK16114658A patent/HK1226482B/zh unknown
-
2018
- 2018-11-21 JP JP2018218719A patent/JP6659808B2/ja active Active
- 2018-11-21 JP JP2018218720A patent/JP6659809B2/ja active Active
-
2019
- 2019-04-24 US US16/393,712 patent/US20190250164A1/en not_active Abandoned
-
2020
- 2020-02-05 JP JP2020018380A patent/JP6851096B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009508493A (ja) | 2005-09-19 | 2009-03-05 | ベリデックス・エルエルシー | すい臓がんを診断するための方法 |
JP2011058863A (ja) | 2009-09-08 | 2011-03-24 | Keio Gijuku | 慢性腎臓病判定用血清マーカー、及び、その検出方法、装置 |
JP2013521763A (ja) | 2010-02-10 | 2013-06-13 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 肺癌検出用唾液バイオマーカー |
JP2011232164A (ja) | 2010-04-27 | 2011-11-17 | Keio Gijuku | 肝臓疾患マーカー、その測定方法、装置及び医薬品の検定方法 |
JP2011247869A (ja) | 2010-04-27 | 2011-12-08 | Kobe Univ | メタボローム解析手法を用いた特定疾患の検査方法 |
WO2011158590A1 (ja) | 2010-06-18 | 2011-12-22 | 学校法人 慶應義塾 | 肝臓疾患マーカー、その測定方法、装置及び医薬品の検定方法 |
Non-Patent Citations (30)
Title |
---|
BERGER, JAMES O: "Springer Series in Statistics", 1985, SPRINGER-VERLAG, article "Statistical Decision Theory and Bayesian Analysis" |
BREIMAN, LEO: "Bagging predictors", MACHINE, LEARNING, vol. 24, no. 2, 1996, pages 123 - 140, XP019213305 |
BREIMAN, LEO: "Random Forests", MACHINE LEARNING, vol. 45, no. 1, 2001, pages 5 - 32, XP019213368, DOI: doi:10.1023/A:1010933404324 |
BYUN JA; LEE SH; JUNG BH; CHOI MH; MOON MH; CHUNG BC.: "Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography-tandem mass spectrometry.", BIOMED CHROMATOGR., vol. 22, no. 1, 2008, pages 73 - 80, XP002675200, DOI: doi:10.1002/bmc.898 |
D. E. RUMELHART; G. E. HINTON; R. J. WILLIAMS: "Learning representaions by back-propagating errors", NATURE, vol. 323-9, 1986, pages 533 - 536, XP000561969, DOI: doi:10.1038/323533a0 |
EIBE FRANK; IAN H. WITTEN: "Generating Accurate Rule Sets Without Global Optimization", FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, 1998, pages 144 - 151 |
FREUND, Y.; MASON, L: "The alternating decision tree learning algorithm", PROCEEDING OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, 1999, pages 124 - 133 |
FU NN; ZHANG HS; MAM; WANG H.: "Quantification of polyamines in human erythrocytes using a new near-infrared cyanine 1-(epsilon-succinimidyl-hexanoate)-l'-methyl-3,3,3',3'-tetramethyl-indocarbocyanine-5,5'-dis ulfonate potassium with CE-LIF detection.", ELECTROPHORESIS, vol. 28, no. 5, 2007, pages 822 - 9 |
GUYON, J. WESTON; S. BARNHILL; V. VAPNIK: "Gene selection for cancer classification using support vector machines.", MACHINE LEARNING, vol. 46, no. 1-3, 2002, pages 389 - 422 |
HAMADA S; SHIMOSEGAWA T.: "Biomarkers of pancreatic cancer", PANCREATOLOGY, vol. 11, 2011, pages 14 - 9, XP055409720, DOI: doi:10.1159/000323479 |
HOTELLING, H.: "Analysis of a complex of statistical variables into principal components", JOURNAL OF EDUCATIONAL PSYCHOLOGY, vol. 24, 1933, pages 417 - 441, XP000646424 |
J. PLATT: "Advances in Kernel Methods-Support Vector Learning", 1998, article "Fast Training of Support Vector Machines using Sequential Minimal Optimization" |
JIN HT; LAMSA T; MERENTIE M; HYVONEN MT; SAND J; RATY S; HERZIG KH; ALHONEN L; NORDBACK I: "Polyamine levels in the pancreas and the blood change according to the severity of pancreatitis", PANCREATOLOGY, vol. 8, no. 1, 2008, pages 15 - 24 |
LINDGREN, F; GELADI, P; WOLD, S: "The kernel algorithm for PLS", J. CHEMOMETRICS, vol. 7, 1993, pages 45 - 59 |
M. A. HALL, CORRELATION-BASED FEATURE SUBSET SELECTION FOR MACHINE LEARNING. HAMILTON, 1998 |
MARKO ROBNIK-SIKONJA; IGOR KONONENKO: "International Conference on Machine Learning", 1997, article "An adaptation of Relief for attribute estimation in regression", pages: 296 - 304 |
MASAHIRO SUGIMOTO ET AL.: "Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles", METABOLOMICS, vol. 6, 2010, pages 78 - 95, XP019796459 * |
ROSS QUINLAN: "C4.5: Programs for Machine Learning", 1993, MORGAN KAUFMANN PUBLISHERS |
SODA K: "The mechanisms by which polyamines accelerate tumor spread", JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, vol. 30, no. 1, 2011, pages 95, XP021114762, DOI: doi:10.1186/1756-9966-30-95 |
SOGA, T.; BARAN, R.; SUEMATSU M.; UENO, Y.; IKEDA, S.; SAKURAKAWA T.; KAKAZU, Y.; ISHIKAWA, T.; ROBERT, M.; NISHIOKA, T.: "Differential methabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione sonsumption.", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 281, no. 24, 2006, pages 16768 - 16776 |
STOREY, J. D: "Statistical significance for genomewide studies", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 100, 2003, pages 9440 - 9445, XP055459068, DOI: doi:10.1073/pnas.1530509100 |
SUGIMOTO ET AL.: "Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles", METABOLOMICS, vol. 6, 2010, pages 78 - 95, XP019796459 |
SUGIMOTO M; WONG DT; HIRAYAMA A; SOGA T; TOMITA M: "Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles", METABOLOMICS, vol. 6, 2010, pages 78 - 95, XP019796459 |
TAKAO ITOI ET AL.: "Daeki Metabolome Kaiseki o Mochiita Suigan Shindanho no Kaihatsu", JOURNAL OF THE JAPAN PANCREAS SOCIETY, vol. 27, no. 3, 30 May 2012 (2012-05-30), pages 397, XP008183662 * |
TAKAO ITOI ET AL.: "Metabolome Kaiseki ni yoru Suigan Kenshin eno Aratana Kanosei", JAPANESE ASSOCIATION FOR CANCER DETECTION AND DIAGNOSIS, vol. 20, no. 1, 14 July 2012 (2012-07-14), pages 50, XP008183837 * |
TRYGG, J.; WOLD, S.: "Orthogonal projections to latent structures (O-PLS).", JOURNAL OF CHEMOMETRICS, vol. 16, no. 3, 2002, pages 119 - 128, XP055260635, DOI: doi:10.1002/cem.695 |
TSUTSUI ET AL.: "High-throughput LC-MS/MS based simultaneous determination of polyamines including N-acetylated forms in human saliva and the diagnostic approach to breast cancer patients", ANAL CHEM, vol. 85, 2013, pages 11835 - 42 |
WANG Q ET AL.: "Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma.", CLIN CHIM ACTA., vol. 427, 2014, pages 79 - 85, XP028791491, DOI: doi:10.1016/j.cca.2013.10.004 |
YOAV FREUND; LLEW MASON: "The Alternating Decision Tree Algorithm", PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, 1999, pages 124 - 133 |
ZHANG L; FARRELL JJ; ZHOU H; ELASHOFF D; AKIN D; PARK NH; CHIA D; WONG DT.: "Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer", GASTROENTEROLOGY, vol. 138, no. 3, 2010, pages 949 - 57, XP026927452, DOI: doi:10.1053/j.gastro.2009.11.010 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017020979A (ja) * | 2015-07-14 | 2017-01-26 | 静岡県公立大学法人 | 乳がんの検査方法 |
JP2018009986A (ja) * | 2016-07-05 | 2018-01-18 | ライオン株式会社 | 睡眠評価用マーカー及びその用途 |
JP2018072103A (ja) * | 2016-10-27 | 2018-05-10 | 学校法人順天堂 | パーキンソン病の重症度判定方法 |
JP2020514689A (ja) * | 2016-12-15 | 2020-05-21 | ボード オブ レジェンツ, ザ ユニバーシティ オブ テキサス システムBoard Of Regents, The University Of Texas System | 膵管腺癌の検出および処置のための方法 |
JPWO2018221544A1 (ja) * | 2017-05-31 | 2020-04-02 | 日立化成ダイアグノスティックス・システムズ株式会社 | 線維芽細胞増殖因子−23の測定方法、測定試薬及び測定キット |
JP7296875B2 (ja) | 2017-05-31 | 2023-06-23 | ミナリスメディカル株式会社 | 線維芽細胞増殖因子-23の測定方法、測定試薬及び測定キット |
JP7032764B2 (ja) | 2019-04-03 | 2022-03-09 | 京都府公立大学法人 | 大腸がんの検出方法 |
JP2019152671A (ja) * | 2019-04-03 | 2019-09-12 | 京都府公立大学法人 | 大腸がんの検出方法 |
KR102177280B1 (ko) * | 2019-05-09 | 2020-11-10 | 고려대학교 세종산학협력단 | 호모시스테인 설핀산 또는 시스테인산을 포함하는 급성심근경색 진단용 바이오마커 조성물 |
WO2020226309A1 (ko) * | 2019-05-09 | 2020-11-12 | 고려대학교 세종산학협력단 | 호모시스테인 설핀산 또는 시스테인산을 포함하는 급성심근경색 진단용 바이오마커 조성물 |
WO2022233994A1 (en) | 2021-05-06 | 2022-11-10 | Rigshospitalet | Diagnosing and treating critically ill subjects |
JP7233665B1 (ja) | 2022-09-02 | 2023-03-07 | 株式会社サリバテック | 疾患リスク判定システム及び疾患リスク判定方法 |
JP2024035256A (ja) * | 2022-09-02 | 2024-03-14 | 株式会社サリバテック | 疾患リスク判定システム及び疾患リスク判定方法 |
KR102668786B1 (ko) * | 2023-03-15 | 2024-05-27 | 주식회사 오비젠 | 클라우드 기반의 구강암 및 구강 전암병소 진단 및 예측 시스템 |
Also Published As
Publication number | Publication date |
---|---|
EP3064940A4 (en) | 2017-10-11 |
CN105765383A (zh) | 2016-07-13 |
EP3578984A2 (en) | 2019-12-11 |
JPWO2015064594A1 (ja) | 2017-03-09 |
EP3575795A2 (en) | 2019-12-04 |
EP3064940B1 (en) | 2019-07-03 |
EP3578984A3 (en) | 2020-03-04 |
US20190250164A1 (en) | 2019-08-15 |
JP6851096B2 (ja) | 2021-03-31 |
CN105765383B (zh) | 2018-04-10 |
JP6659808B2 (ja) | 2020-03-04 |
JP2020101552A (ja) | 2020-07-02 |
JP6443937B2 (ja) | 2018-12-26 |
EP3575795A3 (en) | 2020-04-01 |
HK1226482B (zh) | 2017-09-29 |
JP6659809B2 (ja) | 2020-03-04 |
JP2019035768A (ja) | 2019-03-07 |
US20160282351A1 (en) | 2016-09-29 |
JP2019035767A (ja) | 2019-03-07 |
EP3064940A1 (en) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6659808B2 (ja) | 乳癌検出用唾液バイオマーカー、及び、これを用いた乳癌患者を健常者から識別する方法 | |
Simińska et al. | Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer | |
US10823744B2 (en) | Methods and systems for metabolite and/or lipid-based detection of colorectal cancer and/or adenomatous polyps | |
ES2768974T3 (es) | Biomarcadores para evaluar el cáncer de mama | |
US10274496B2 (en) | Biomarkers for detecting and monitoring colon cancer | |
Song et al. | iTRAQ experimental design for plasma biomarker discovery | |
Kim et al. | The performance of a novel amino acid multivariate index for detecting lung cancer: A case control study in Korea | |
JP6021187B2 (ja) | 自閉症の代謝バイオマーカー | |
US20100173346A1 (en) | Methods for detecting coronary artery disease | |
WO2018184112A1 (en) | Methods of high-throughput mass spectrometry based urine test for colorectal states | |
EP3555628A1 (en) | Methods for the detection and treatment of pancreatic ductal adenocarcinoma | |
Synakiewicz et al. | Amino acid profiles as potential biomarkers for pediatric cancers: a preliminary communication | |
Kajiwara et al. | Salivary metabolomic biomarkers for non‐invasive lung cancer detection | |
Chen et al. | UHPLC-HRMS-based serum untargeted lipidomics: phosphatidylcholines and sphingomyelins are the main disturbed lipid markers to distinguish colorectal advanced adenoma from cancer | |
ES2891530T3 (es) | Método para determinar mutaciones de BRAF y proteína BRAF de tipo natural mediante espectrometría de masas | |
Pacholczyk‐Sienicka et al. | Prediction of survival for patients with advanced colorectal cancer using 1H high‐resolution magic angle spinning nuclear MR spectroscopy | |
WO2023233945A1 (ja) | 胆道がん検査方法 | |
Sousa | MALDI-TOF MS-based urinary proteomic/peptidomic signature of breast cancer as innovative diagnostic approach | |
Marzabani et al. | Amino acids targeted based metabolomics study in non-segmental Vitiligo: a pilot study | |
Yu et al. | Progress of tumor metabolites detection in urine | |
Villaseñor Solis et al. | Urinary Metabolic Phenotyping the slc26a6 (Chloride-Oxalate Exchanger): null mouse model. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14858507 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015545246 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15032715 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014858507 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014858507 Country of ref document: EP |