WO2015064050A1 - 流量計及びそれを備えた流量制御装置 - Google Patents

流量計及びそれを備えた流量制御装置 Download PDF

Info

Publication number
WO2015064050A1
WO2015064050A1 PCT/JP2014/005322 JP2014005322W WO2015064050A1 WO 2015064050 A1 WO2015064050 A1 WO 2015064050A1 JP 2014005322 W JP2014005322 W JP 2014005322W WO 2015064050 A1 WO2015064050 A1 WO 2015064050A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
build
flow
monitor
switching valve
Prior art date
Application number
PCT/JP2014/005322
Other languages
English (en)
French (fr)
Inventor
正明 永瀬
池田 信一
西野 功二
土肥 亮介
敦志 日高
勝幸 杉田
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US15/028,127 priority Critical patent/US10073469B2/en
Priority to CN201480049538.XA priority patent/CN105659178B/zh
Priority to KR1020167006626A priority patent/KR101843378B1/ko
Priority to KR1020187000288A priority patent/KR101930304B1/ko
Publication of WO2015064050A1 publication Critical patent/WO2015064050A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6847Structural arrangements; Mounting of elements, e.g. in relation to fluid flow where sensing or heating elements are not disturbing the fluid flow, e.g. elements mounted outside the flow duct
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/002Means for regulating or setting the meter for a predetermined quantity for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0647Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series

Definitions

  • the present invention relates to an improvement of a flow rate control device with a flow rate monitor.
  • a flow rate control device having a pressure resistance variation characteristic and a build-down type flow rate monitor
  • the control flow rate by the flow rate control device is increased.
  • the build-down capacity of the build-down flow monitor can be switched appropriately according to the flow area of the fluid to be controlled, enabling high-accuracy flow monitoring over a wide flow area.
  • the present invention relates to a flow rate switching device with a flow range switching type build-down type flow meter and a flow rate range switching type flow rate monitor.
  • thermal flow control devices MFC and pressure flow control devices FCS have been widely used in gas supply devices for semiconductor manufacturing equipment.
  • the latter pressure type flow rate control device FCS has a control valve CV, a temperature detector T, a pressure detector P, an orifice OR, a temperature correction / flow rate calculation circuit CDa, and a comparison circuit CDb.
  • the detected values from the pressure detector P and the temperature detector T are input to the temperature correction / flow rate calculation circuit CDa, where temperature correction and flow rate calculation of the detected pressure are performed.
  • the flow rate calculation value Qt is input to the comparison circuit CDb.
  • An input signal Q S corresponding to the set flow rate is input from the terminal In and input to the comparison circuit CDb via the input / output circuit CDc, where it is compared with the flow rate calculation value Qt from the temperature correction / flow rate calculation circuit CDa. Is done.
  • the control signal Pd is output to the drive portion of the control valve CV.
  • the control valve CV is driven in the closing direction, and is driven in the closing direction until the difference (Qs ⁇ Qt) between the set flow rate input signal Qs and the calculated flow rate value Qt becomes zero.
  • FIG. 21 shows an example of a conventional flow rate monitor
  • the flow rate control device with flow rate monitor 20 is a combination of a thermal mass flow rate sensor 25 and a pressure type flow rate control device.
  • the first pressure sensor 27a, the open / close control valve 24, the thermal mass flow sensor 25, the second pressure sensor 27b, the throttle unit (sonic nozzle) 26, and the calculation control unit 28a are used to detect the inlet side pressure. And an input / output circuit 28b and the like.
  • the thermal mass flow sensor 25 includes a rectifier 25a, a branch flow path 25b that branches a flow rate of a predetermined ratio F / A from the flow path 23, and a sensor body 25c provided in the branch flow path 25b.
  • a flow rate signal Sf indicating the flow rate F is output to the arithmetic control unit 28a.
  • the restrictor 26 is a sonic nozzle that allows a fluid having a flow rate proportional to the upstream pressure to flow when the pressure difference between the upstream side and the downstream side is equal to or greater than a predetermined value (that is, under critical conditions). Is a pressure signal, Pa and Pb are pressures, F is a total flow rate, Sf is a flow rate signal, and Cp is a valve opening control signal.
  • the arithmetic control unit 28a feedback-controls the on-off valve 24 by feeding back the pressure signals Spa and Spb from the pressure sensors 27a and 27b and the flow rate signal Sf from the flow rate sensor 25 and outputting the valve opening degree control signal Cp. . That is, the flow rate setting signal Fs is input from the input / output circuit 28b to the arithmetic control unit 28a, and the flow rate F of the fluid flowing through the mass flow rate control device 20 is adjusted to become the flow rate setting signal Fs. More specifically, the calculation control unit 28a controls the flow rate F of the fluid flowing through the sonic nozzle 26 by performing feedback control of the opening / closing control valve 24 using the output (pressure signal Spb) of the second pressure sensor 27b. At the same time, the actual flow rate F is measured using the output (flow rate signal Sf) of the thermal flow rate sensor 25 at this time, and the operation of the mass flow rate control device 20 is confirmed.
  • the flow rate control device 20 with a flow rate monitor in FIG. 21 performs pressure type flow rate control for adjusting the opening degree of the open / close control valve 24 using the pressure signal Spb of the second pressure sensor 27b and monitoring of the actual flow rate. Since both the flow rate measurement using the thermal flow sensor 25 to be performed is incorporated in the arithmetic control unit 28a, it is determined whether or not the control flow rate gas corresponding to the set flow rate Fs is actually flowing, that is, the control flow rate and the actual flow rate. It is possible to easily and surely monitor whether there is a difference between and in real time, and to achieve a high practical utility.
  • the first problem is that when a difference occurs between the monitor flow rate value (actual flow rate value) and the control flow rate value, the occurrence of the difference can be detected by an alarm or the like, but automatically. Since the control flow rate value cannot be corrected, that is, the set flow rate value Fs cannot be adjusted, if the correction of the control flow rate value is delayed due to any cause, such as the absence of operating personnel, the gas with a flow rate different from the set flow rate value ( The supply of the actual flow rate gas) will be continued, and various inconveniences will occur in semiconductor manufacturing.
  • the second problem is that there are two different measurement methods: pressure flow measurement using the second pressure sensor 27b for flow control and flow measurement using the thermal flow sensor 25 for flow monitoring. Since it is incorporated, the structure of the flow rate control device 20 with a flow rate monitor becomes complicated, and the size of the device cannot be reduced and the manufacturing cost cannot be reduced.
  • the third problem is that the arithmetic control unit 28a controls the opening / closing control valve 24 using both the output Spb of the second pressure sensor 27b and the flow output Sf of the thermal flow sensor 25, and the first pressure sensor.
  • the flow rate output Sf of the thermal flow sensor 25 is corrected using the output Spa of the 27a.
  • the two pressure signals of the first pressure sensor 27a and the second pressure sensor 27b and the flow rate signal from the thermal flow sensor 25 are The opening / closing control of the opening / closing control valve 24 is performed using these three signals. For this reason, there is a problem that not only the configuration of the arithmetic control unit 28a is complicated, but also the stable flow rate control characteristics and excellent high responsiveness as the pressure type flow rate control device FCS are reduced.
  • the present inventors integrally combined the pressure type flow control device FCS and the build-down type flow measurement unit provided on the upstream side of the pressure type flow control device FCS. Operate the build-down type flow rate measuring unit within the pressure fluctuation range allowed for the side pressure (input side pressure), and build-down type flow rate measurement at least once within 1 second (preferably multiple times per second) By sending a flow rate monitor signal from the control unit, the flow rate control by the pressure type flow rate control device can be performed simultaneously with the flow rate monitor substantially similar to the real monitor by the build-down type flow rate measurement unit.
  • the flow rate setting value on the pressure flow control device is automatically adjusted, and the flow control value by the pressure flow control device is measured as a build-down flow measurement.
  • this newly developed pressure-type flow control device with build-down type flow rate monitor makes full use of the flow-rate characteristics of the pressure-type flow control device that the flow control characteristics are hardly affected by pressure fluctuations on the input side.
  • flow monitoring by the build-down flow monitoring unit can be performed in a near real-time situation (at least once per second), and the calculation control unit is simplified and the device main unit is greatly reduced in size. This makes it possible to improve gas replacement properties.
  • FIG. 5 is a schematic configuration diagram of a test apparatus for measuring the flow monitor characteristics of a pressure-type flow control apparatus with a build-down type flow monitor, and the present inventors have used the test apparatus to produce a pressure-type flow control apparatus.
  • a basic test for builddown flow rate measurement was performed in which the flow rate was calculated from the slope of the pressure drop between the FCS and the primary side open / close switching valve (upstream side valve) AV.
  • N 2 is a gas supply source
  • RG is a pressure regulator
  • ECV is an electromagnetic drive unit
  • AV is a primary side opening / closing switching valve (upstream valve)
  • FCS is a pressure flow control device
  • VP Vacuum pump
  • BC is a build-down capacity
  • T is a temperature sensor
  • P is a pressure sensor provided on the primary side of a control valve in the pressure type flow control device
  • FCS P 0 is a pressure sensor output
  • E is a power supply unit
  • E 1 the pressure type flow rate control apparatus for a power supply
  • E 2 is the power supply operation control unit
  • E 3 is the power supply for the primary side switching valve (upstream valve)
  • S is the signal generator
  • CP is the arithmetic control unit
  • CPa the pressure type A flow rate calculation control unit
  • CPb is a builddown monitor flow rate calculation control unit
  • PC is a calculation display unit
  • NR is a data logger.
  • the build-down capacity BC corresponds to the volume of the duct space between the outlet side of the primary side open / close switching valve (upstream side valve) AV and the inlet side of the control valve (not shown) of the pressure type flow control device FCS.
  • the internal volume V of the build-down capacity BC is 1.78 cc by adjusting the length and inner diameter of the pipe line, or adjusting the internal volume of a build-down chamber (not shown) interposed in the pipe line.
  • the volume can be adjusted to 9.91 cc, 4.6 to 11.6 cc, and 1.58 to 15.31 cc.
  • the inner diameter of the flow path between the outlet of the primary on-off switching valve (upstream valve) AV and the inlet of the control valve CV is 1.8 mm, and the contents of the build-down capacity BC
  • the product V is selected from 1.58 to 15.31 cc.
  • the monitor flow rate is calculated using the pressure drop rate in the build-down capacity BC as will be described later, and the pressure-type flow rate calculation control unit CPa is further calculated. Then, similar to the control calculation unit of the conventional pressure type flow rate control device FCS, calculation of the flow rate through the orifice (not shown), opening / closing control of the control valve (not shown), and the like are performed.
  • the pressure type flow control device FCS the primary side opening / closing switching valve (upstream side valve) AV, the pressure regulator RG, and other devices are all known ones, and the description thereof is omitted here.
  • a piezo-driven metal diaphragm valve is used, but a direct acting solenoid valve or a pilot solenoid valve is used. It may be an air operated valve provided.
  • the reason why the build-down type flow rate measuring unit can be arranged on the upstream side of the pressure type flow rate control device FCS is that the pressure type flow rate control device FCS using the orifice is not easily affected by fluctuations in the gas supply pressure as described above. Further, it is well known that the flow rate can be measured with high accuracy by the build-down method.
  • the flow rate Q flowing through the build-down capacity BC with the internal volume V (l) can be calculated by the following equation (1).
  • V is the internal volume (l) of the build-down capacity BC
  • ⁇ P / ⁇ t is the pressure drop rate in the build-down capacity V
  • T is the gas temperature (° C.).
  • the pressure flow control device FCS has an upstream pressure of 400 kPa abs, a pressure drop (pressure difference ⁇ P) of 50 kPa ⁇ abs or more, and an internal volume V of the build-down capacity BC of 4.6 to The flow rate was measured by a build-down method at 11.6 cc.
  • FIG. 6 shows the pressure drop state at this time.
  • the output of the measured flow rate becomes discontinuous because of the pressure recovery time (a), and one cycle is shown. It took a few seconds to complete.
  • the primary side opening / closing switching valve (upstream valve) AV is opened, the time until the pressure reaches a specified value or more is the pressure recovery time (a), and the primary side opening / closing switching valve (upstream valve).
  • the time during which the pressure is lowered to a specified value or less with AV closed is the flow rate output possible time (b)
  • the proportion of the time during which the flow rate can be output is determined by the proportions of (a) and (b).
  • the idea is to make the internal volume V of the capacity smaller to shorten the time required for gas refilling (pressure recovery time (a)), and based on this idea, the internal volume V of the build-down capacity BC and In addition to studying whether real-time performance can be ensured by reducing the pressure difference ⁇ P during flow rate measurement, various tests were conducted on the accuracy of the flow rate monitor and its reproducibility.
  • FCS with rated flow rates F20, F200, and F600 are prepared as the pressure type flow rate control device FCS of the test apparatus of FIG. 5, and the internal volume V of the build-down capacity BC is about 1
  • FCS pressure type flow rate control device
  • V of the build-down capacity BC is about 1
  • the 9.91 cc build-down capacity BC was adjusted by adjusting the pipe length and the pipe inner diameter.
  • the detectable time (b) of the flow rate output was set to 0.5 sec (0.25 ms ⁇ 2000 points), and the test environment temperature was set to 23 ° C. ⁇ 1 ° C.
  • FIG. 7 shows the measurement results of the pressure recovery characteristics
  • FIG. 8 is an enlarged view thereof
  • FIG. 9 shows the pressure drop characteristics at that time.
  • the refill time at the N 2 flow rate of 100 SCCM is reduced by reducing the internal volume V of the build-down capacity BC to 1.78 cc and the pressure drop range ⁇ P to 20 kPa abs. It was confirmed that the pressure recovery time (a)) can be significantly shortened, and the measured flow rate can be output at intervals of at least 1 second, as shown in FIG.
  • the opening / closing speed of the primary side opening / closing switching valve (upstream side valve) AV has a great influence in reducing the pressure recovery time (a) with respect to the flow rate output possible time (b). For this reason, it has been found that a piezo-driven metal diaphragm valve or an electromagnetic direct valve is desirable as the primary opening / closing switching valve (upstream valve) AV. Furthermore, shortening of the pressure recovery time (a) due to the decrease in the pressure drop range ⁇ P and the internal volume V of the build-down capacity BC leads to shortening of the pressure drop time (flow output possible time (b)). It has been found that the relationship between the measured flow rate, the internal volume V of the build-down capacity BC, and the pressure drop time (b) is particularly important.
  • Table 1 shows the relationship between the measured flow rate (SCCM) and the pressure drop time (sec) when the internal volume V of the builddown capacity BC is 1.78 cc.
  • the internal volume V of the builddown capacity BC is In the case of 1.78 cc, it can be seen that if the flow rate is not less than 50 SCCM, it is difficult to output the flow rate once or more within one second, and it is difficult to monitor the flow rate corresponding to real time.
  • the pressure drop characteristic during the flow rate output possible time (b) needs to have linearity from the viewpoint of measurement error, and the pressure drop rate is constant (that is, linearity is within the range in which the flow rate can be calculated). It was found to be limited to the range of the portion having
  • FIG. 10 to FIG. 12 show the results of investigating the form of the pressure drop characteristic when the measured flow rate is 100, 50 and 10 SCCM.
  • the pressure drop characteristic is immediately after the builddown. Loss of linearity.
  • the build-down capacity BC is 1.78 cc
  • the fluid is N 2 gas.
  • the flow measurement error due to the deviation from the linearity of the pressure drop characteristic curve was measured by measuring 5 points every 0.25 seconds when the flow measurement possible time (b) was within 1 second. That is, the internal volume V of the build-down capacity BC is 1.78 cc and 9.91 cc, the pressure drop range ⁇ P is 20 kPa abs, and the time from the closing of the primary side switching valve (upstream side valve) AV to the stabilization of the flow rate is 1 Second, the flow rate was calculated every 0.25 sec, and the error of the calculated flow rate with respect to the control flow rate was examined.
  • FIG. 13 and FIG. 14 show the results.
  • the error can be greatly reduced by 0.25 sec or more after the primary side open / close switching valve (upstream side valve) AV is closed. understood. That is, it was confirmed that the error decreases as the pressure drop characteristic curve approaches a straight line.
  • Table 2 shows the relationship between the internal volume V of the build-down capacity BC, the measured flow rate, and the pressure drop time (b).
  • the internal volume V of the build-down capacity BC 1.78 cc
  • the flow rate can be output at intervals of about 1 second. It can also be seen that when the internal volume V of the build-down capacity BC is 9.91 cc, the flow rate can be output at intervals of about 1 second when the flow rate is 100 to 200 SCCM.
  • FIG. 15 is a system diagram showing a basic configuration of a pressure-type flow control device with a flow rate monitor developed by the present inventors based on the results of the above tests.
  • the build-down unit BDM, the pressure type flow rate control unit FCS, and a signal transmission circuit (digital communication circuit) CT connecting the two are configured.
  • PV 1 is an inlet side switching valve
  • PV 2 is an outlet side switching valve
  • BC is a build-down capacity
  • P 3 is a pressure sensor
  • CPb is a monitor flow rate calculation control unit
  • VB 1 is a monitor inlet side. block
  • VB 2 is a monitor outlet side block.
  • CV is a control valve
  • CPa is a flow rate calculation control unit
  • OR 1 is a small diameter orifice
  • OR 2 is a large diameter orifice
  • P 1 is a first pressure sensor
  • P 2 is a second pressure sensor
  • VB. 3 is a flow control unit inlet side block
  • VB 4 is a flow control unit outlet side block
  • VB 5 is a connecting block
  • SK is a gasket of the connecting unit.
  • the pressure type flow rate control unit FCS is provided with a set flow rate adjusting mechanism QRS, and a preset flow rate value Qs inputted through the signal transmission circuit CT and a comparator (not shown).
  • the set flow rate value Qs is automatically corrected to Qs ′ so that the flow rate control value of the pressure type flow rate control unit FCS matches the build-down flow rate Q. Adjusted. That is, the actual flow rate is adjusted to match the builddown flow rate Q.
  • the temperature detection sensor T, the filter F and the like are omitted, and the pressure type flow rate control unit FCS may be of any type, for example, one orifice. It is. Further, since the basic configuration itself of the pressure type flow rate control unit FCS and the builddown type flow rate monitoring unit BDM is known, detailed description thereof is omitted here.
  • the gas having a pressure of 500 to 320 kPa abs flowing from the gas inlet 1 into the builddown type flow rate monitoring unit BDM is supplied with an inlet side piezo switching valve PV 1 , a chamber type builddown capacity BC, and an outlet side piezo switching valve PV. 2
  • the monitor flow rate calculation control unit CPb calculates the monitor flow rate Q, and this is input to the set flow rate adjustment mechanism QSR of the pressure type flow rate control unit FCS.
  • the gas flowing out from the build-down type flow rate monitoring unit BDM flows out from the gas outlet 2 through the control valve CV, the small diameter orifice OR 1 and / or the large diameter orifice OR 2 .
  • the flow rate calculation control unit CPa calculates the orifice circulation gas flow rate, and controls the opening / closing control of the control valve CV and the opening / closing control of the orifice switching valve OLV. Further, in the set flow rate adjustment mechanism QSR of the flow rate calculation control unit CPa, the monitor flow rate Q from the build-down type flow rate monitor unit BDM and the orifice flow rate (that is, the control flow rate in the flow rate calculation control unit CPa) are compared. When the difference between the two exceeds a predetermined set value, the set flow rate Qs is adjusted so that the control flow rate of the pressure type flow rate control unit FCS matches the monitor flow rate Q, and this is automatically corrected to Qs ′.
  • build-down type flow monitor controller CPb to form the main part of the present invention, opening and closing control of the inlet side (upstream side) piezoelectric switching valve PV 1 and a pressure sensor P 3, omitted in the temperature sensor T (FIG. 15 ) And the volume V of the build-down capacity BC between the switching valves PV 1 and PV 2 , etc., and the build-down flow rate Q is calculated and output to the flow rate calculation control unit CPa.
  • the pressure drop rate ⁇ P / ⁇ t is measured and the monitor flow rate Q is calculated by the builddown type flow rate monitor unit BDM, and the monitor flow rate calculation control unit CPb
  • the monitor flow rate is monitored and displayed at a rate of at least once per second, and the control flow rate value of the pressure type flow rate control unit FCS is displayed. Correction and correction are automatically performed.
  • the difference between the monitor flow rate output Q (flow rate output from the monitor flow rate calculation control unit CPb) and the flow rate output of the pressure type flow rate control unit FCS (flow rate output from the pressure type flow rate calculation control unit CPa) is greater than the set value. If a problem occurs, a flow rate abnormality alarm is issued, or if necessary, the flow rate self-diagnosis of the so-called pressure-type flow control device FCS can be performed to identify the cause of the flow rate abnormality and its location. In addition, when a flow rate difference equal to or greater than a set value occurs, it is possible to automatically perform zero point adjustment or the like of the pressure type flow rate control unit FCS itself.
  • the inlet side switching valve or the like is a piezo drive valve, but these may be a direct acting electromagnetic drive valve.
  • the internal volume V of the build-down capacity BC is selected in the range of 1.78 to 9.91 cc.
  • the pressure drop range ⁇ P is selected to be 20 kPa abs (350 to 320 kPa abs), and the monitor flow rate is output at least once per second.
  • the temperature detection sensor T (not shown) is an externally attached resistance temperature sensor, but a thermostat thermometer inserted into the monitor block VB 1 or VB 2 can also be used. .
  • a chamber with a pressure sensor is used as the build-down capacity BC as will be described later, but the build-down capacity BC is formed by the internal volume of the gas flow path, It is good also as a structure which obtains the builddown capacity
  • FIG. 16 is a schematic cross-sectional view of the pressure type flow control device with a build-down type flow rate monitor of FIG.
  • a chamber CH with a pressure sensor is used as the build-down capacity BC, and the inner diameters of the gas passages L 1 , L 3 , L 5 of the build-down type flow rate monitoring unit BDM are 1.8 mm.
  • a second pressure sensor P 2 separately on the downstream side of the orifice OR 1, OR 2.
  • a pressure sensor P 3 in the chamber CH is provided.
  • a small pressure chamber CH between the inlet-side switching valve PV 1 and the outlet side switching valve PV 2 by adjusting the internal volume of the pressure chamber CH, the build-down capacity It is set as the structure which adjusts the internal volume V of BC.
  • a piezo drive metal diaphragm type normal close valve is used in order to increase the opening / closing speed of both switching valves PVV 1 and PV 2 .
  • the piezo drive metal diaphragm type normally closed valve itself is publicly known, description thereof is omitted.
  • the pressure chamber CH is formed in a double cylinder of an outer cylinder CHa and an inner cylinder CHb, and a gap G between the inner and outer cylinders CHa and CHb is selected to be 1.8 mm in this embodiment.
  • the internal volume of the pressure chamber CH is selected to be approximately 1.3 ⁇ 12 cc, it has a configuration that attaching a pressure sensor P 3 thereto.
  • the volume of the pressure chamber CH can be freely selected, and the gas flow passages L 1 , L 2 , L 4, etc. are all made the same small diameter (for example, 1.8 mm ⁇ ). Therefore, the internal volume of the build-down capacity BC can be set to a predetermined volume value accurately and easily.
  • test chambers CH five chambers of the sizes shown in Table 3 with the gap G of 1.8 mm and 3.6 mm were prepared as test chambers CH, and these were applied to the test apparatus of FIG.
  • the flow sensor T was stuck and fixed to the outer surface of the chamber CH.
  • the volumes of the gas flow paths L 3 and L 5 other than the chamber CH are 0.226 cc.
  • FIG. 17 shows the relationship between the gas flow rate (SCCM) and the slope of pressure drop (kPa / sec) when the pressure drop time (b) in FIG.
  • SCCM gas flow rate
  • kPa / sec slope of pressure drop
  • each flow rate can be measured at 25.2 sccm in chamber A, 106.6 sccm in chamber B, and 169.0 sccm in chamber E. I understand that.
  • the flow rate setting value adjusting mechanism QSR that adjusts the set flow rate Qs of the pressure type flow rate control unit FCS by the monitor flow rate Q from the builddown type flow rate monitor unit BDM, and the monitor flow rate of the builddown type flow rate monitor unit BDM
  • the set flow rate value of the pressure type flow rate control unit FCS is automatically adjusted.
  • a build-down type flow rate monitoring unit BDM is installed upstream of the pressure type flow rate control unit FCS, and the high response to the input side pressure fluctuation of the pressure type flow rate control unit is utilized to input the pressure type flow rate control unit FCS.
  • a pressure drop ⁇ P corresponding to a gas pressure difference within a range in which side pressure fluctuation is allowed is generated at a rate of once or more per second in the build-down capacity BC, and the pressure drop rate ⁇ P / ⁇ t and the build
  • the pressure drop value (pressure difference ⁇ P), the pressure drop time ( ⁇ t), and the pressure drop time so that the monitor flow rate can be calculated and output at least once per second from the internal volume V of the down capacity BC and the gas temperature K.
  • the internal capacity V of the build-down capacity BC is set.
  • the pressure drop value (pressure difference) ⁇ P is set to approximately 20 to 30 kPa abs
  • the pressure drop time ⁇ t is set to 0.5 to 0.8 sec
  • the internal volume V of the builddown capacity BC is set to 1.8 to 18 cc.
  • the pressure flow control device with flow monitor can be greatly simplified, downsized, and the manufacturing cost can be reduced. The added value of is significantly improved.
  • the device cannot automatically correct the set value of the control flow even if the actual flow rate is found to be abnormal, causing various inconveniences due to the delay in the flow rate correction, simplifying the structure of the flow control device itself, If downsizing becomes difficult, and in addition, the excellent response characteristics and stable flow control characteristics of the pressure-type flow control device are diminished, and (c) build-down when the control flow changes significantly.
  • a build-down type flow rate measuring unit provided on the upstream side is integrally combined, and the build-down type flow rate measuring unit is within the pressure fluctuation range allowed for the upstream side pressure (input side pressure) of the flow control device.
  • the flow rate can be monitored easily and with high accuracy in the large flow area and small flow area.
  • the flow rate setting value on the pressure type flow control device side is automatically adjusted, and the flow rate control value by the pressure type flow control device is measured by the build-down type flow rate measurement.
  • a flow control device with a flow rate range switching type flow rate monitor was set to modify the flow value.
  • the flow rate monitor by the build-down type flow rate monitor unit is almost real time (at least once). / 1 second), and it has made it possible to simplify the calculation control unit, expand the control flow rate range, greatly reduce the size of the device main unit, and improve gas replacement properties. It is intended to provide a flow range switching type build-down type flow meter and a flow range switching type flow control device with a flow monitor.
  • a flow meter according to the present invention was created based on the results of the above tests, and the invention of claim 1 is directed to an inlet-side opening / closing switching valve PV disposed on a flow path. 1 and an outlet side opening / closing switching valve PV 2 arranged downstream of the inlet side switching valve PV 1 and a control valve CV arranged downstream of the outlet side switching valve PV 2.
  • the control valve CV may be a control valve CV inside the flow rate control unit FCS. Further, a plurality of flow paths having an internal volume divided by the open / close switching valve are arranged.
  • the flow control device includes, as a first means, a build-down type flow monitor BDM provided on the upstream side and a flow control unit FCS provided on the downstream side of the build-down type flow monitor.
  • the build-down type flow monitor BDM is an inlet-side opening and closing the switching valve PV 1
  • build-down capacitance BC which is provided on the downstream side of the inlet-side opening and closing the switching valve
  • the build-down capacitance BC A temperature sensor Th provided in the downstream gas passage, an outlet side on / off switching valve PV 2 provided on the downstream side of the builddown capacity BC, a pressure sensor P 3 provided on the downstream side of the outlet side on / off switching valve, and a monitor flow rate calculation control unit CPb
  • the detection value of the temperature sensor Th and a pressure sensor P 3 is input by the monitoring flow rate calculation control unit CPb, the outlet side of the inlet-side opening and closing the switching valve PV 1 and flow controller FC
  • the flow rate control device is the first means, wherein the build-down type flow rate monitoring unit BDM is connected to the flow rate control unit FCS by the signal transmission circuit CT, and the monitor flow rate Q of the build-down type flow rate monitoring unit BDM is connected.
  • the flow rate control unit FCS is provided with a flow rate setting value adjustment mechanism QSR that adjusts the set flow rate Qs of the flow rate control unit FCS with the monitor flow rate Q from the build-down type flow rate monitor unit BDM. May be.
  • the flow control device includes, as a second means, a build-down flow monitor BDM provided on the upstream side, and a flow control FCS provided downstream of the build-down flow monitor.
  • a signal transmission circuit CT that connects the builddown type flow rate monitoring unit BDM and the flow rate control unit FCS, and transmits the monitor flow rate Q of the builddown type flow rate monitoring unit BDM to the flow rate control unit FCS, and the flow rate control unit FCS.
  • a flow rate control device comprising a flow rate set value adjustment mechanism QSR that adjusts the set flow rate Qs of the flow rate control unit FCS by the monitor flow rate Q from the build-down type flow rate monitor unit BDM,
  • the inlet side on / off switching valve PV 1 for opening and closing the flow of gas from the gas supply source, and a predetermined internal capacity connected to the outlet side of the inlet side on / off switching valve PV 1
  • the flow rate control device includes a flow rate set value adjusting mechanism GSR, a comparator of the monitor flow rate Q and the set flow rate Qs, and the monitor flow rate Q and the set flow rate Qs. If the difference exceeds the set value, the flow rate set value adjustment mechanism may be configured to automatically correct the set flow rate Qs to the monitor flow rate Q.
  • the flow control device sets the builddown volume V to 0.5 to 20 cc, sets the upper limit pressure value to 400 to 100 kPa abs, and sets the lower limit pressure value to 350 kPa abs. Further, the predetermined time t may be set within 0.5 to 5 seconds at ⁇ 50 kPa abs.
  • the large flow rate monitor flow rate range may be 40 to 600 SCCM, and the low flow rate monitor flow rate range may be 1 to 50 SCCM.
  • the inlet-side opening and closing the switching valve PV 1 with a piezo-driven metal diaphragm valve or an electromagnetic linear type electric valve, the inlet by fast opening and closing of the valve
  • the recovery time of the gas pressure from the set lower limit pressure value to the set upper limit pressure value by opening the side open / close switching valve PV 1 is reduced, and the gas pressure drop from the set upper limit pressure value to the set lower limit pressure value by closing the inlet side open / close switching valve AV
  • the time may be significantly shorter than the time.
  • the flow rate control device integrally forms the flow rate calculation control unit CPa of the flow rate control unit FCS and the monitor flow rate calculation control unit CPb of the build-down type flow rate monitoring unit BDW. It is good also as a structure.
  • the flow control device has a structure in which the build-down capacitor BC is a chamber, and the chamber has a structure in which an inner cylinder and an outer cylinder are concentrically arranged and fixed.
  • the gap between the inner and outer cylinders to be formed may be a gas flow path.
  • the flow control device is configured such that the build-down capacitor BC is a plurality of chambers arranged in parallel, and the chamber is concentric with the inner cylinder and the outer cylinder. It is also possible to adopt a structure in which the gas flow passages of the chambers are connected in series with the gap between the inner and outer cylinders of the chambers as gas flow passages.
  • the flowmeter of the present invention is a large flow rate measuring unit configured to calculate the flow rate as the build-down volume V 1 from the outlet side of the inlet side opening / closing switching valve PV 1 to the inlet side of the control valve CV, Since the flow volume is calculated with the volume in the flow path from the outlet side of the outlet side switching valve PV 2 to the inlet side of the control valve CV as the build-down volume V 2 , the flow rate is calculated.
  • the basic flow meter it is possible to measure a flow rate of a gas flow having a wide flow width.
  • the flow control device of the present invention connects a build-down type flow monitoring unit BDM provided on the upstream side, a flow control unit FCS provided on the downstream side, a build-down type flow monitoring unit BDM and a flow control unit FCS.
  • a signal transmission circuit CT for transmitting the monitor flow rate Q of the build-down type flow rate monitor unit BDM to the flow rate control unit FCS, and a flow rate control by the monitor flow rate Q from the build-down type flow rate monitor unit BDM.
  • the flow rate setting value adjusting mechanism QSR for adjusting the set flow rate Qs of the unit FCS is configured to automatically adjust the set flow rate value of the flow rate control unit FCS by the monitor flow rate of the build-down type flow rate monitor unit BDM.
  • a build-down type flow rate monitoring unit BDM is provided upstream of the flow rate control unit FCS, and the high response to the input side pressure fluctuation of the flow rate control unit is utilized to allow the input side pressure fluctuation of the flow rate control unit FCS.
  • a pressure drop ⁇ P corresponding to a gas pressure difference within a range is generated at a rate of at least once per second in the build-down capacity BC, and the pressure drop rate ⁇ P / ⁇ t and the internal volume of the build-down capacity BC.
  • the pressure drop value (pressure difference ⁇ P), the pressure drop time ( ⁇ t), and the contents of the build-down capacity BC so that the monitor flow rate can be calculated and output at least once per second from V and the gas temperature K.
  • the amount V is set.
  • the monitor flow rate is calculated with high accuracy at a rate of at least once per second, It is possible to output, and it is possible to monitor the flow rate with high accuracy close to real time regardless of the use of the build-down method.
  • a predetermined internal volume V connected to the build-down type flow rate monitoring unit BDM on the inlet side on / off switching valve PV 1 for opening and closing the gas flow from the gas supply source and on the outlet side of the inlet side on / off switching valve PV 1
  • a build-down capacity BC an outlet-side opening / closing switching valve PV 2 connected to the outlet side of the build-down capacity BC, and a pressure sensor P 3 for detecting the pressure of gas flowing through the downstream passage of the outlet-side opening / closing switching valve PV 2
  • a temperature sensor for detecting the temperature of the gas flowing through the downstream passage of the outlet opening and closing switching valve PV 2 together with the time of large flow rate, holds the outlet opening switching valve PV 2 to the open state
  • the inlet on-off switching valve with the outlet side of the inlet-side opening and closing the switching valve PV 1 a gas passage volume between control valve CV of the flow control unit FCS and build-down capacitor, thereby opening and closing the inlet-side opening and closing the switching valve PV 1
  • monitoring the flow rate to Q 1 large flow rate range is calculated and outputted by the formula, in addition, when a small flow rate, while holding the inlet side switching switching valve PV 1 in the open state, the outlet-side opening and closing switching valve PV 2 the internal volume of the gas passage between the control valve CV of the outlet-side flow controller FCS and build-down capacity, build-down by opening the outlet open switching valve PV 2 causes opening and closing the outlet opening switching valve PV 2 build by lowering closed after the outlet opening switching valve PV 2 in which the gas pressure in the set upper limit value of the pressure in the volume, the gas pressure to the set lower limit pressure value after a predetermined time t seconds
  • a monitor flow rate calculation control unit CPb for calculating and outputting a monitor flow rate Q 2 of the small flow rate range by down-type, so that consist.
  • the flow control device with a flow monitor can be greatly simplified, downsized, and manufacturing costs can be reduced compared to the conventional combination with a thermal flow sensor. Value is significantly improved.
  • FIG. 1 is a system diagram showing a basic configuration of a flow rate control device with a flow rate switching type flow rate monitor according to the present invention. It is a longitudinal cross-sectional schematic diagram of the flow control apparatus with a builddown type flow range switching type flow rate monitor concerning the present invention. It is a longitudinal cross-sectional schematic diagram of the pressure type flow control apparatus with a builddown type flow range switching type flow rate monitor which concerns on 2nd Embodiment of this invention. It is a schematic block diagram of the test apparatus for measuring the flow monitor characteristic of a flow control device with a build-down flow monitor. It is explanatory drawing of the pressure drop state of a builddown type
  • FIG. 5 is a diagram showing the relationship between the gas flow rate SCCM and the pressure drop gradient kPa / sec when the measurable time is 1 second or less in the chambers A to E of the apparatus developed earlier.
  • the pressure drop characteristics are shown when the slope of the pressure drop in each of the chambers A to E is 20 kPa / sec. It is a diagram showing the relationship between the elapsed time from the closing of the inlet side (primary side) opening / closing switching valve AV of each chamber A to E and the flow rate stability. It is a basic lineblock diagram of the conventional pressure type flow control device. It is a basic block diagram of a conventional pressure type flow control device with a flow rate monitor.
  • FIG. 1 is a block diagram illustrating the basic concept of the present invention
  • FIG. 2 is a system diagram showing the basic structure of a pressure type flow rate control apparatus with a flow range switching type flow rate monitor according to the present invention
  • FIG. It is a longitudinal cross-sectional schematic diagram of the pressure type flow rate control apparatus with a flow range switching type flow rate monitor concerning.
  • the apparatus according to the present invention is characterized in that the flow rate control with a large flow rate gas monitor and the flow rate control with a small flow rate gas monitor can be appropriately switched, and the flow rate monitor according to the present invention.
  • the pressure-type flow rate control device includes a build-down unit BDM, a pressure-type flow rate control unit FCS, and a signal transmission circuit (digital communication circuit) CT that connects the two.
  • 1 is a gas inlet
  • 2 is a gas outlet
  • PV 1 is an inlet side switching valve
  • PV 2 is an outlet side switching valve
  • BC is a build-down capacity
  • P 3 is a pressure sensor
  • ⁇ P 1 is the pressure detection value for the large flow rate monitor
  • ⁇ P 2 is the pressure detection value for the small flow rate monitor
  • Q 1 is the monitor flow rate detection value for the large flow rate gas
  • Q 2 is the monitor flow rate for the small flow rate gas.
  • the detected value, CPb is a monitor flow rate calculation control unit
  • VB 1 is a monitor inlet side block
  • VB 2 is a monitor outlet side block.
  • CV is a control valve
  • CPa is a flow rate calculation control unit
  • OR 1 is a small diameter orifice
  • OR 2 is a large diameter orifice
  • P 1 is a first pressure sensor
  • P 2 is a second pressure.
  • a sensor VB 3 is a flow control unit inlet side block
  • VB 4 is a flow control unit outlet side block
  • VB 5 is a connection block
  • SK is a gasket of the connection unit.
  • the pressure type flow rate control unit FCS is provided with a set flow rate adjusting mechanism QSR, and a preset flow rate value Qs and build-down flow rates Q 1 and Q 2 inputted via the signal transmission circuit CT and a comparator.
  • the set flow rate value Qs is automatically corrected to Qs ′, and the flow rate control value of the pressure type flow rate control unit FCS becomes the build-down flow rate Q 1.
  • Q 2 is adjusted to match. That is, the actual flow rate is adjusted so as to match the build-down flow rates Q 1 and Q 2 .
  • FIG. 3 is different from the previously developed pressure type flow rate control device with flow rate monitor of FIG. 15 and FIG. 16 in that the monitor flow rate calculation control unit CPb has a builddown flow rate Q 1 in a large flow rate range. and that outputs to be switched build-down flow rate Q 2 of the small flow rate range, and such that the pressure sensor P 3 shown in FIG. 3, and only in that provided in the connecting block VB 5, the other configurations FIG. 15 and FIG. 16 are substantially the same as the pressure type flow rate control device with a flow rate monitor. 2 and 3, the temperature detection sensor T, the filter F, and the like are omitted.
  • the pressure type flow control unit FCS may be of any type, for example, one or more orifices.
  • the basic configuration of the pressure type flow rate control unit FCS and the build-down type flow rate monitoring unit BDM is known per se, and detailed description thereof is omitted here.
  • the present invention is configured to switch between a large flow rate gas flow rate monitor and a small flow rate range gas flow rate monitor in accordance with the gas control flow rate.
  • 1 is a large flow rate Q 1 (for example, 40 to 600 SCCM)
  • the pressure sensor P is maintained by opening and closing the inlet side switching valve PV 1 while keeping the outlet side switching valve PV 2 open.
  • 3 is used to detect the pressure detection value ⁇ P 1
  • the volume in the pipe line from the inlet side switching valve PV 1 to the control valve CV of the pressure type flow control unit FCS is set as a build-down volume
  • the pressure detection value ⁇ P 1 and the pressure detection value ⁇ P 1 The monitor flow rate Q 1 in the large flow rate region is calculated using Formula 1 from the build-down volume and the like.
  • the inlet side switching valve PV 1 When the gas flow rate flowing from the gas inlet 1 is a small flow rate Q 2 (for example, 2.5 to 40 (SCCM)), the inlet side switching valve PV 1 is kept open and the outlet side switching valve PV 2 is opened.
  • the pressure detection value ⁇ P 2 is detected by the pressure sensor P 3 by opening and closing the valve, and the volume in the pipe line from the outlet side switching valve PV 2 to the control valve CV of the pressure type flow rate control unit FCS is defined as the build-down volume.
  • a monitor flow rate Q 2 in a small flow rate region is calculated using Formula 1 from the pressure detection value ⁇ P 2 and the builddown volume.
  • the monitor flow rate Q 1 (or Q 2 ) calculated by the monitor flow rate calculation control unit CPb is input to the set flow rate adjustment mechanism QSR of the flow rate control unit FCS, and the gas that has flowed out of the build-down type flow rate monitor unit BDM Flows out from the gas outlet 2 via the control valve CV, the small-diameter orifice OR 1 and / or the large-diameter orifice OR 2 , the orifice flow gas flow rate is calculated by the flow rate calculation control unit CPa, and the control valve CV open / close control and the orifice switching valve
  • the opening / closing control of the OLV, the set flow rate adjustment mechanism QSR of the flow rate calculation control unit CPa compares the monitor flow rate Q 1 (or Q 2 ) from the build-down flow rate monitor unit BDM with the orifice flow rate, When the difference exceeds a predetermined set value, the control flow rate of the flow rate control unit FCS is set to match the monitor flow rate Q. That person an amount Qs is adjusted
  • the output of the monitor flow rate is at least once per second, and the temperature detection sensor T (not shown) is a thermostat type thermometer inserted into the monitor block VB 1 or VB 1 . Further, the build-down capacity for the large flow rate region is formed by the volume in the chamber and the volume in the pipe line, and the capacity for the small flow rate region is formed only by the volume in the pipe line.
  • FIG. 4A and 4B show a second embodiment of the present invention, in which FIG. 4A is a schematic longitudinal sectional view, FIG. 4B is a plan view, and FIG. 4C is a right side view.
  • the pressure type flow rate control device with a flow rate range switching type flow rate monitor according to the second embodiment has four small-diameter chambers CH 1 , CH 2 , CH 3 in which build-down capacitors BC are arranged in parallel in a vertical orientation. , CH 4, and the structure of each small-diameter chamber is the same as that of the build-down capacity BC of the first embodiment, and the gap between the outer cylinder and the inner cylinder is a gas flow path. It has become.
  • the four small-diameter chambers CH 1 to CH 4 are connected in a state where the gas flow passages between the inner and outer cylinders are connected in series, and the build-down capacity BC having a small inner volume V is provided. Is formed.
  • the flow rate control device with a flow rate switching type flow rate monitor has a thickness L set to about 10 to 13 mm.
  • the pressure sensor P 3 provided on the downstream side of the valve PV 2 is also a small one having an outer diameter of about 10 to 13 mm.
  • the present invention can be widely applied not only to gas supply equipment for semiconductor manufacturing equipment but also to gas supply equipment for chemical manufacturing equipment as long as it is a pressure type flow rate control device using an orifice or a critical nozzle.
  • FCS Flow controller (pressure flow controller) AV Primary open / close switching valve (upstream valve) BC Build-down capacity V Build-down volume RG Pressure regulator N 2 N 2 supply source T Temperature sensor (resistance temperature detector) P 1 , P 2 Pressure sensor P 3 Pressure sensor ⁇ P 1 , ⁇ P 2 Pressure detection value CV Control valve OR Orifice OR 1 Small bore orifice OR 2 Large bore orifice OIP External I / O circuit OLV Orifice switching valve VB 1 Monitor inlet side block VB 2 Monitor outlet side block VB 3 Flow rate control part inlet side block VB 4 Flow rate control part outlet side block VB 5 Connection part gasket CT Signal transmission circuit (digital communication circuit) CP calculation control unit CPa flow rate calculation control unit CPb monitor flow rate calculation control unit E 1 power source for flow rate control device E 2 power source for calculation control unit E 3 power source for solenoid valve ECV electric drive unit NR data logger S signal generator PC calculation display unit PV 1 Inlet side switching valve (Inlet side),

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本発明は、モニタ流量範囲の拡大とモニタ精度や流量制御の精度の向上を可能にした流量計および流量制御装置を提供することを目的とする。 本発明の流量計および流量制御装置は、入口側開閉切替弁(PV1)の出口側からコントロール弁(CV)の入口側までの流路内容積をビルドダウン容積として流量演算するようにした大流量用測定部と、出口側切替弁(PV2)の出口側からコントロール弁(CV)の入口側までの流路内容積をビルドダウン容積として流量を演算するようにした小流量用測定部とを備える。

Description

流量計及びそれを備えた流量制御装置
 本発明は、流量モニタ付流量制御装置の改良に関するものであり、耐圧力変動特性を備えた流量制御装置とビルドダウン式流量モニタとを有機的に組合せすることにより、流量制御装置による制御流量をリアルタイムでモニタできると共に、制御すべき流体の流量域に応じて、ビルドダウン式流量モニタのビルドダウン容量を適宜に切換えすることにより、広い流量域に亘って高精度な流量モニタを行えるようにした流量レンジ切換型ビルドダウン式流量計及び流量レンジ切換型流量モニタ付の流量制御装置に関するものである。
 従前から、半導体製造装置用ガス供給装置に於いては、熱式流量制御装置MFCや圧力式流量制御装置FCSが広く利用されている。特に、後者の圧力式流量制御装置FCSは、図20に示すように、コントロール弁CVや温度検出器T、圧力検出器P、オリフィスOR、温度補正・流量演算回路CDaと比較回路CDbと入出力回路CDcと出力回路CDd等から成る演算制御部CD等から構成されており、一次側供給圧が大きく変動しても安定した流量制御が行えるという優れた流量特性を具備している。
 即ち、図20の圧力式流量制御装置FCSでは、圧力検出器P及び温度検出器Tからの検出値が温度補正・流量演算回路CDaへ入力され、ここで検出圧力の温度補正と流量演算が行われ、流量演算値Qtが比較回路CDbへ入力される。また、設定流量に対応する入力信号QSが端子Inから入力され、入出力回路CDcを介して比較回路CDbへ入力され、ここで前記温度補正・流量演算回路CDaからの流量演算値Qtと比較される。比較の結果、設定流量入力信号Qsが流量演算値Qtより大きい場合には、コントロール弁CVの駆動部へ制御信号Pdが出力される。これによりコントロール弁CVが閉鎖方向へ駆動され、設定流量入力信号Qsと演算流量値Qtとの差(Qs-Qt)が零となるまで閉弁方向へ駆動される。
 当該圧力式流量制御装置FCSでは、オリフィスORの下流側圧力Pと上流側圧力Pとの間にP/P≧約2の所謂臨界膨張条件が保持されていると、オリフィスORを流通するガス流量QがQ=KP(但しKは定数)となり、また、臨界膨張条件が満たされていないと、オリフィスORを流通するガス流量QがQ=KP (P-P(但しK、m、nは定数)となる。従って、圧力Pを制御することにより流量Qを高精度で制御することができ、しかも、コントロール弁CVの上流側ガスGoの圧力が大きく変化しても、制御流量値が殆ど変化しないという優れた特性を発揮することができる。
 尚、圧力式流量制御装置FCSそのものは公知であるため、ここではその詳細な説明を省略する(特開2003-195948号等)。
 しかし、この種の圧力式流量制御装置FCSでは、微小な穴径のオリフィスORを使用しているため、オリフィスORの穴径の経年変化が不可避である。そして、穴径が変化すると、圧力式流量制御装置FCSの設定流量(即ち制御流量値)と、現実にオリフィスORを流通するガスGoの実流量値との間に差異を生ずることになる。また、この差異を検出するためには、流量制御中に流量モニタを頻繁に行う必要があり、半導体製造装置の稼動性や製造した半導体の品質等に大きな影響を与えるという問題がある。
 そのため、圧力式流量制御装置の分野に於いては、従来から、オリフィスORの穴径の変化を可能な限り早期に検出して、圧力式流量制御装置FCSによる制御流量値と、現実にオリフィスを流通するガスGoの実流量値との間の差異の発生を防止するための対策が採られており、この種のオリフィス穴径変化等の検出には、所謂ビルドアップ方式(ROR:RATE OF RISE)やビルドダウン方式(ROD:RATE OF DECAY)を用いたガスの流量モニタが多く用いられている。
 一方、前記ビルドアップ方式やビルドダウン方式によるガスの流量モニタでは、流量制御しつつ供給している実ガスを一時的に停止してモニタ用のガス流量測定を行なう必要があるため、半導体製造装置の稼動率が下がったり、製造した半導体の品質等にばらつきが生じる等の問題がある。
 そのため、近年、この種の流量制御装置に於いては、実ガスの供給を一時的に停止することなしに、供給ガスの流量制御が適正に行われているか否かをリアルタイムで簡単且つ正確にモニタできるようにした流量モニタ付流量制御装置の開発が進められている。
 図21は、従前の流量モニタの一例を示すものであり、当該流量モニタ付流量制御装置20は、熱式質量流量センサ25と圧力式流量制御装置とを組合せしたものであり、流路23と、入口側圧力を検出するのに第1圧力センサ27aと、開閉制御弁24と、熱式質量流量センサ25と、第2圧力センサ27bと、絞り部(音速ノズル)26と、演算制御部28aと、入出力回路28b等から構成されている。
 即ち、熱式質量流量センサ25は、整流体25aと、流路23から所定の割合F/Aの流量を分岐する分岐流路25bと、分岐流路25bに設けたセンサ本体25cを備え、総流量Fを示す流量信号Sfを演算制御部28aへ出力する。また、絞り部26は、その上流側と下流側の圧力差が所定値以上(即ち、臨界条件下)のときに、上流側圧力に比例した流量の流体を流す音速ノズルであり、SPa、SPbは圧力信号、Pa、Pbは圧力、Fは総流量、Sfは流量信号、Cpは弁開度制御信号である。
 演算制御部28aは、圧力センサ27a、27bからの圧力信号Spa、Spbおよび流量センサ25からの流量信号Sfをフィードバックして弁開度制御信号Cpを出力することで、開閉弁24をフィードバック制御する。
 即ち、演算制御部28aへは入出力回路28bから流量設定信号Fsが入力され、質量流量制御装置20に流れる流体の流量Fが流量設定信号Fsとなるように調整される。より具体的には、演算制御部28aが第2圧力センサ27bの出力(圧力信号Spb)を用いて開閉制御弁24の開閉をフィードバック制御することにより、音速ノズル26を流れる流体の流量Fを制御すると共に、このときの熱式流量センサ25の出力(流量信号Sf)を用いて、実際に流れている流量Fの測定を行い、質量流量制御装置20の動作を確認する。
 上述のように、図21の流量モニタ付流量制御装置20は、第2圧力センサ27bの圧力信号Spbを用いて開閉制御弁24の開度を調整する圧力式流量制御と、実流量の監視を行う熱式流量センサ25を用いた流量測定との両方を演算制御部28aに組み込んでいるため、設定流量Fsに対応する制御流量のガスが実際に流れているか否か、即ち制御流量と実流量と間に差があるか否かを簡単且つ確実にリアルタイムでモニタすることができ、高い実用的効用を奏するものである。
 しかし、上記図21の流量モニタ付流量制御装置20にも解決すべき問題が多く残されている。先ず、第1の問題は、モニタ流量値(実流量値)と制御流量値との間に差異が生じた場合に、差異の発生を警報等により感知することは可能であるものの、自動的に制御流量値の修正、即ち設定流量値Fsの調整ができないため、何等かの原因例えば運転要員の不在等で制御流量値の修正が遅れた場合には、設定流量値と異なった流量のガス(実流量ガス)の供給が継続されることになり、半導体製造上さまざまな不都合が生ずることになる。
 第2の問題は、流量制御を行うための第2圧力センサ27bを用いた圧力式流量測定と、流量監視を行うための熱式流量センサ25を用いた流量測定という二種の異なる測定方式を組み込みしているため、流量モニタ付流量制御装置20の構造が複雑となり、装置の小型化及び製造コストの引下げが図れない点である。
 第3の問題は、演算制御部28aが、第2圧力センサ27bの出力Spbと熱式流量センサ25の流量出力Sfの両信号を用いて開閉制御弁24を開閉制御すると共に、第1圧力センサ27aの出力Spaを用いて熱式流量センサ25の流量出力Sfを補正する構成としており、第1圧力センサ27a及び第2圧力センサ27bの二つの圧力信号と熱式流量センサ25からの流量信号との三つの信号を用いて、開閉制御弁24の開閉制御を行うようにしている。そのため、演算制御部28aの構成が複雑になるだけでなく、圧力式流量制御装置FCSとしての安定した流量制御特性や優れた高応答性が逆に低減されてしまうと云う問題がある。
 一方、上述の如き各問題を解決するため、本発明者等は、圧力式流量制御装置FCSとその上流側に設けたビルドダウン式の流量測定部とを一体に組合せし、流量制御装置の上流側圧力(入力側圧力)に許容される圧力変動範囲内で前記ビルドダウン式の流量測定部を作動させ、少なくとも1秒以内に1回(望ましくは、一秒間に複数回)ビルドダウン式流量測定部から流量モニタ信号を発信することにより、圧力式流量制御装置による流量制御と同時並行的にビルドダウン式流量測定部による実質的にリアルモニタに近い流量モニタが行えると共に、モニタ流量値と制御流量値の差異が所定流量値を越えた場合には自動的に圧力式流量制御装置側の流量設定値を調整して、圧力式流量制御装置による流量制御値をビルドダウン式流量測定部による流量値に修正する様にした流量モニタ付圧力式流量制御装置を開発している。
 即ち、この新たに開発されたビルドダウン式流量モニタ付圧力式流量制御装置は、入力側の圧力変動により流量制御特性が殆ど影響を受ないと云う圧力式流量制御装置の流量特性をフルに活用して、ビルドダウン式流量モニタ部による流量モニタを略リアルタイム(少なくとも1秒間に1回以上のモニタ)に近い状況下で行え、しかも、演算制御部の簡素化、機器本体部の大幅な小型化、ガス置換性の向上等を可能にしたものである。
 先ず、本発明の基礎を成す前記図21に記載のビルドダウン式流量モニタ付圧力式流量制御装置を、図5乃至図19に基づいて説明する。
 図5は、ビルドダウン式流量モニタ付圧力式流量制御装置の流量モニタ特性を測定するための試験装置の概要構成図であり、本発明者等は当該試験装置を用いて、圧力式流量制御装置FCSと一次側開閉切換弁(上流側弁)AV間の圧力降下の傾きから流量算出を行う、ビルドダウン流量測定に関する基礎的試験を行った。
 尚、図5に於いて、Nはガス供給源、RGは圧力調整器、ECVは電磁駆動部、AVは一次側開閉切換弁(上流側弁)、FCSは圧力式流量制御装置、VPは真空ポンプ、BCはビルドダウン容量、Tは温度センサ、Pは圧力式流量制御装置FCS内のコントロール弁の1次側に設けた圧力センサ、Pは圧力センサ出力、Eは電源部、Eは圧力式流量制御装置用電源、Eは演算制御部用電源、Eは一次側開閉切換弁(上流側弁)用電源、Sは信号発生器、CPは演算制御部、CPaは圧力式流量演算制御部、CPbはビルドダウンモニタ流量演算制御部、PCは演算表示部、NRはデータロガである。
 前記ビルドダウン容量BCは、一次側開閉切換弁(上流側弁)AVの出口側と圧力式流量制御装置FCSのコントロール弁(図示省略)の入口側との間の管路空間容積に相当するものであり、配管路の長さや内径等の調整、或いは当該配管路に介設したビルドダウン用チャンバ(図示省略)の内容積の調整により、当該ビルドダウン容量BCの内容積Vは1.78ccと9.91cc、4.6~11.6cc及び1.58~15.31ccの各容積に切換え調整できるようになっている。
 また、ビルドダウン用チャンバを用いた場合には、一次側開閉切換弁(上流側弁)AVの出口とコントロール弁CVの入口間の流路内径を1.8mmとし、且つビルドダウン容量BCの内容積Vを1.58~15.31ccに選定している。
 前記演算制御部CP内のビルドダウンモニタ流量演算制御CPbでは、後述するようにビルドダウン容量BCに於ける圧力降下率を用いてモニタ流量の演算が行われ、更に、圧力式流量演算制御部CPaでは、従前の圧力式流量制御装置FCSの制御演算部と同様に、オリフィス(図示省略)を流通する流量の演算及びコントロール弁(図示省略)の開閉制御等が行われる。
 尚、圧力式流量制御装置FCS、一次側開閉切換弁(上流側弁)AV、圧力調整器RG及びその他の機器類は全て公知のものであるため、ここではその説明を省略する。また、前記一次側開閉切換弁(上流側弁)AVは、開閉を短時間内で行う必要があるため、ピエゾ駆動式メタルダイヤフラム弁を使用しているが、直動型電磁弁やパイロット電磁弁を設けたエアー作動弁であっても良い。
 ビルドダウン式流量測定部が圧力式流量制御装置FCSの上流側に配置できるのは、前述の通りオリフィスを用いた圧力式流量制御装置FCSがガス供給圧変動の影響を受け難いからである。また、ビルドダウン方式により高精度な流量測定が可能なことは公知のことである。
 即ち、ビルドダウン方式に於いては、内容積V(l)のビルドダウン容量BC内を流通する流量Qは、下記の(1)式により算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ただし、ここでVはビルドダウン容量BCの内容積(l)、ΔP/Δtはビルドダウン容量Vに於ける圧力降下率、Tはガス温度(℃)である。
 先ず、図5の試験装置を用いて、圧力式流量制御装置FCSの上流側圧力を400kPa abs、降下圧力(圧力差ΔP)を50kPa abs以上、ビルドダウン容量BCの内容積Vを4.6~11.6ccとし、ビルドダウン方式による流量測定を行った。
 図6は、この時の圧力降下状態を示すものであり、流量そのものは比較的精度よく測定できるものの、圧力回復時間(a)が必要なために測定流量の出力が不連続となり、且つ1サイクルに要する時間が数秒以上となることが判った。
 即ち、一次側開閉切換弁(上流側弁)AVを開とし、圧力が規定値以上の圧力になるまでの時間を圧力回復時間(a)とし、また、一次側開閉切換弁(上流側弁)AVを閉として圧力が規定値以下にまで下降する時間を流量出力可能時間(b)とすると、上記(a)と(b)の割合によって、流量出力ができる時間の割合が決まることになる。また、この流量出力可能時間(b)は、FCSの制御流量、ビルドダウン容量の内容積V、圧力下降範囲ΔPによって決まるため、FCSの制御流量、ビルドダウン容量の内容積V及び圧力下降範囲ΔPをより厳密に検討して、夫々を適宜な値にしなければ、ビルドダウン方式による流量測定をリアルタイム流量モニタに近づけることができないことが判明した。
 勿論、リアルタイム流量モニタであるためには、理想的には連続的な流量出力が必須となるが、現実の半導体製造装置等の運転に於いては、1秒間に少なくとも1回以上の流量出力を得ることが出来れば、ほぼリアルタイムに近い流量モニタが可能となる。
 そこで、本発明者等は、ビルドダウン式による流量測定に於いて、1秒間に少なくとも1回以上の流量出力を得てリアルタイムに近い流量モニタを可能とするために、前記圧力差ΔP及びビルドダウン容量の内容積Vをより小さくしてガス再充填に必要な時間(圧力回復時間(a))を短くすることを着想し、また、当該着想に基づいて、ビルドダウン容量BCの内容積V及び流量測定時の圧力差ΔPの減少によってリアルタイム性の確保が可能か否かを検討すると共に、流量モニタ精度やその再現性等について各種の試験を行った。
 最初に、図5の試験装置の圧力式流量制御装置FCSとして、定格流量がF20、F200及びF600(SCCM)の三種類のFCSを準備し,また、ビルドダウン容量BCの内容積Vを約1.78ccと、約9.91ccの二種類に設定した。尚、9.91ccのビルドダウン容量BCは、配管長さ及び配管内径を調整することにより容量の調整を行った。更に、流量出力の検出可能時間(b)は0.5sec(0.25ms×2000点)を目標とし、且つ試験環境温度は23℃±1℃とした。
 次に、FCS上流側圧力を370kPa absとし、圧力差ΔP=20kPa abs、流量N=100SCCMに設定(FCS側で設定)し、ビルドダウン流量測定の際の圧力回復特性(圧力回復時間(a))を測定した。
 図7は、圧力回復特性の測定結果を示すものであり、図8はその拡大図、図9はその時の圧力降下特性を示すものである。図7及び図8からも明らかなように、ビルドダウン容量BCの内容積Vを1.78cc及び圧力下降範囲ΔPを20kPa absと小さくすることにより、N流量100SCCMに於いても再充填時間(圧力回復時間(a))を大幅に短くすることができ、図9に示すように、少なくとも1秒以内の間隔で測定流量を出力できることが、確認できた。
 また、一次側開閉切換弁(上流側弁)AVの開閉速度が、圧力回復時間(a)を流量出力可能時間(b)に対して小さくする点で大きな影響を持つことが判明した。そのため、一次側開閉切換弁(上流側弁)AVとしては、ピエゾ駆動式メタルダイヤフラム弁や電磁直付型弁が望ましいことが判明した。
 更に、圧力下降範囲ΔP及びビルドダウン容量BCの内容積Vの減少による圧力回復時間(a)の短縮化は、圧力降下時間(流量出力可能時間(b))の短縮化を招くことになるため、測定流量とビルドダウン容量BCの内容積Vと圧力降下時間(b)の関係が、特に重要となることが判明した。
Figure JPOXMLDOC01-appb-T000001
 表1は、ビルドダウン容量BCの内容積Vを1.78ccとした場合の測定流量(SCCM)と圧力降下時間(sec)との関係を示すものであり、ビルドダウン容量BCの内容積Vが1.78ccの場合には、50SCCM以下の流量でないと1秒間以内に1回以上の流量出力を行うことが困難となり、リアルタイムに相当する流量モニタを行うことが困難となることが判る。
 また、流量出力可能時間(b)に於ける圧力降下特性は、直線性を有することが測定誤差の点から必要であり、流量算出が可能な範囲は、圧力降下率が一定(即ち、直線性を有する部分)の範囲に限定されることが判った。
 図10乃至図12は、測定流量が100,50及び10SCCMの場合の圧力降下特性の形態を調査した結果を示すものであり、何れの場合に於いても、ビルドダウン直後には圧力降下特性が直線性を喪失したものとなる。尚、この場合のビルドダウン容量BCは1.78ccであり、流体はNガスである。
 上記図10至図12に示されているビルドダウン直後に於ける直線性からのずれは、圧力変化に伴うガスの断熱膨張によるガス内部温度変化に起因して生ずるものと想定される。そして、測定流量が小さいほど、この直線性からのずれは大きくなる傾向にあり、これにより流量算出の可能な時間幅が狭められることが判る。
 次に、圧力降下特性曲線の直線性からのずれによる流量測定誤差を、流量測定可能時間(b)が1秒以内の場合について、0.25秒毎に5点測定することにより計測した。
 即ち、ビルドダウン容量BCの内容積Vを1.78cc及び9.91ccとし、圧力下降範囲ΔPを20kPa abs、一次側開閉切換弁(上流側弁)AVの閉からの流量安定までの時間を1秒として、0.25sec毎に流量を算出し、制御流量に対する算出流量の誤差を検討した。
 図13及び図14は、その結果を示すものであり、何れの場合も一次側開閉切換弁(上流側弁)AVの閉鎖より0.25sec以上経過することにより、誤差が大幅に減少することが判った。即ち、圧力降下特性曲線が直線に近づくに従って、誤差が減少することが確認された。
 尚、表2は、ビルドダウン容量BCの内容積Vと、測定流量と、圧力降下時間(b)の関係を示すものであり、ビルドダウン容量BCの内容積V=1.78ccの場合には、流量20~50SCCMの時に、約1秒以内の間隔で流量出力が行えることになる。
 また、ビルドダウン容量BCの内容積V=9.91ccの場合には、流量100~200SCCMの時に約1秒以内の間隔で流量出力が可能であることが判る。
Figure JPOXMLDOC01-appb-T000002
 図15は、上記各試験の結果に基づいて本発明者等が先に開発をした流量モニタ付圧力式流量制御装置の基本構成を示す系統図であり、当該流量モニタ付圧力式流量制御装置は、ビルドダウン部BDMと圧力式流量制御部FCSと両者間を連結する信号伝送回路(ディジタル通信回路)CTとから構成されている。
 尚、図15に於いて、PVは入口側切換弁、PVは出口側切換弁、BCはビルドダウン容量、P3は圧力センサ、CPbはモニタ流量演算制御部、VB1はモニタ入口側ブロック、VBはモニタ出口側ブロックである。
 また、図15に於いて、CVはコントロール弁、CPaは流量演算制御部、ORは小径オリフィス、ORは大径オリフィス、P1は第1圧力センサ、Pは第2圧力センサ、VB3は流量制御部入口側ブロック、VBは流量制御部出口側ブロック、VBは連結用ブロック、SKは連結部のガスケットである。
 前記圧力式流量制御部FCSには、設定流量調整機構QRSが設けられており、予め設定された流量値Qsが信号伝送回路CTを介して入力されたビルドダウン流量Qと比較器(図示省略)により比較され、両者の差異が規定以上の流量値になると、自動的に設定流量値QsがQs’に修正され、圧力式流量制御部FCSの流量制御値がビルドダウン流量Qに合致するように調整される。即ち、実流量がビルドダウン流量Qに合致するように調整される。
 尚、図15においては、温度検出センサT, フィルタF等は省略されており、また、圧力式流量制御部FCSは如何なる形式のもの、例えばオリフィスが1基のものであっても良いことは勿論である。また、圧力式流量制御部FCSやビルドダウン式流量モニタ部BDMの基本構成そのものは公知であるため、ここではその詳細な説明を省略する。
 具体的には、ガス入口1からビルドダウン式流量モニタ部BDMへ流入した圧力500~320kPa absのガスは、入口側ピエゾ切換弁PV1、チャンバ式のビルドダウン容量BC、 出口側ピエゾ切換弁PVの順に流通し、モニタ流量演算制御部CPbでモニタ流量Qが演算され、これが圧力式流量制御部FCSの設定流量調整機構QSRへ入力される。
 また、ビルドダウン式流量モニタ部BDMから流出したガスは、コントロール弁CV、小径オリフィスOR 1及び又は大径オリフィスORを通り、ガス出口2から流出する。その間に、前記流量演算制御部CPaがオリフィス流通ガス流量を演算すると共に、コントロール弁CVの開閉制御やオリフィス切換弁OLVの開閉制御をする。
 更に、前記流量演算制御部CPaの設定流量調整機構QSRでは、ビルドダウン式流量モニタ部BDMからのモニタ流量Qとオリフィス流通流量(即ち、流量演算制御部CPaでの制御流量)とが比較され、両者の差異が予め定めた設定値を超えると、圧力式流量制御部FCSの制御流量を前記モニタ流量Qに合致させるよう設定流量Qsの方を調整し、これをQs’に自動修正する。
 即ち、本発明の要部を形成するビルドダウン式流量モニタ制御部CPbは、入口側(上流側)ピエゾ切換弁PVの開閉制御や、圧力センサP、温度検出センサT(図15では省略)及び両切換弁PV、PV間のビルドダウン容量BCの容積V等から、ビルドダウン流量Qを演算し、これを流量演算制御部CPaへ出力する。
 上述の如く、本発明に係る流量モニタ付圧力式流量制御装置では、ビルドダウン式流量モニタ部BDMで圧力降下率ΔP/Δtの測定やモニタ流量Qの演算が行なわれ、モニタ流量演算制御部CPbへ外部入出力回路PIOを介して指令信号及び又は設定信号を入力することにより、モニタ流量が少なくとも1秒間に1回の割合でモニタ表示されると共に、上記圧力式流量制御部FCSの制御流量値の修正、補正が自動的に行われる。
 また、モニタ流量出力Q(モニタ流量演算制御部CPbからの流量出力)と圧力式流量制御部FCSの流量出力(圧力式流量演算制御部CPaからの流量出力)との間に設定値以上の差異が生じた場合に、流量異常の警報を発信、或いは必要な場合には、所謂圧力式流量制御装置FCSの流量自己診断を実施して流量異常の原因やその発生場所を特定することも可能であり、更に、設定値以上の流量差異が生じた場合には、圧力式流量制御部FCS自体の零点調整等を自動的に実施すること等も可能である。
 尚、図15の装置に於いては、入口側切換弁等をピエゾ駆動式弁としているが、これらを直動型の電磁駆動弁としてもよい。また、ビルドダウン容量BCの内容積Vは1.78~9.91ccの範囲に選定している。更に、圧力降下範囲ΔPは20kPa abs(350~320kPa abs)に選定されており、少なくとも1秒間に1回以上のモニタ流量を出力する構成としている。加えて、前記温度検出センサT(図示省略)は外面貼付型の測温抵抗式温度センサとしているが、モニタブロックVB1又はVBの内部へ挿入するサーモスタット型温度計を用いることも可能である。
 また、図15の装置では、ビルドダウン容量BCとして後述するように圧力センサ付チャンバを用いているが、当該ビルドダウン容量BCをガス流路の内容積でもって形成し、ガス流路の内径及び流路長さを適宜に選定することにより、所望の内容積Vのビルドダウン容量BCを得る構成としても良い。
 図16は、図15のビルドダウン式流量モニタ付圧力式流量制御装置の従断面概要図である。当該実施例では、ビルドダウン容量BCとして圧力センサ付チャンバCHを用い、ビルドダウン式流量モニタ部BDMの各ガス通路L、L、Lの内径を1.8mmの細径としている。また、オリフィスOR 1、OR 2の下流側に第2圧力センサPを別途に設けている。更に、チャンバCHに圧力センサPを設けている。
 即ち、図16に於いては、入口側切換弁PVと出口側切換弁PVの間に小型の圧力チャンバCHを設け、この圧力チャンバCHの内容積を調整することにより、前記ビルドダウン容量BCの内容積Vを調整する構成としている。また、両切換弁PVV、PVの開閉速度を上げるために、ピエゾ駆動メタルダイヤフラム型ノーマルクローズ弁を利用している。尚、ピエゾ駆動メタルダイヤフラム型ノーマルクローズ弁そのものは公知であるため、説明は省略する。
 前記圧力チャンバCHは外筒CHaと内筒CHbとの2重筒に形成されており、且つ内外筒CHa、CHb間のギャップGが本実施形態に於いては1.8mmに選定されている。そして、圧力チャンバCHの内容積は1.3~12cc程度に選定されており、これに圧力センサPを付設した構成としている。
 尚、図16の装置に於いては、圧力チャンバCHの容積を自由に選定できると共に、ガス流通路L、L2、L等を全て同一の細径(例えば1.8mmΦ)に揃えることができ、ビルドダウン容量BCの内容積 を正確且つ容易に所定の容積値に設定することができる。
 具体的には、供試用のチャンバCHとして、前記ギャップGを1.8mm及び3.6mmとした表3の如きサイズの5種のチャンバを作成し、これ等を図5の試験装置に適用してガス流量(SCCM)と圧力降下の傾き(kPa/sec)と圧力降下時間(sec)等との関係等を調査した。
 尚、図5の試験装置を用いた調査に於いて、流量センサTはチャンバCHの外表面に貼付け固定した。また、チャンバCH以外のガス流路L、Lの容積は0.226ccである。
Figure JPOXMLDOC01-appb-T000003
 図17は、図6に於ける圧力降下時間(b)を1秒以内とした場合のガス流量(SCCM)と圧力降下の傾き(kPa/sec)の関係を、各チャンバA~Eについて測定した結果を示すものであり、試験装置に組付けした状態に於ける現実の各ビルドダウン容量は2.31cc~15.45ccであった。
 図17からも明らかなように、圧力降下範囲ΔPを20kPa/secとした時には、チャンバAの場合には25.2sccm、チャンバBで106.6sccm、チャンバEで169.0sccmの各流量測定の可能なことが判る。
 上記図15及び図16の流量モニタ付圧力式流量制御装置においては、上流側に設けたビルドダウン式流量モニタ部BDMと、その下流側に設けた圧力式流量制御部FCSと、ビルドダウン式流量モニタ部BDM と圧力式流量制御部FCSとを連結してビルドダウン式流量モニタ部BDMのモニタ流量Qを圧力式流量制御部FCSへ伝送する信号伝送回路CTと、圧力式流量制御部FCSに設けられ、前記ビルドダウン式流量モニタ部BDMからのモニタ流量Qにより圧力式流量制御部FCSの設定流量Qsを調整する流量設定値調整機構QSRとから構成し、ビルドダウン式流量モニタ部BDMのモニタ流量により圧力式流量制御部FCSの設定流量値を自動的に調整するようにしている。
 その結果、モニタ流量値(オリフィスを流通する実流量値)と、圧力式流量制御部FCSの設定流量値(制御流量値)とが大きく異なった状態が長期に亘って継続されるようなことが皆無となり、半導体製品の品質向上等の点で多くの効用が得られる。
 また、圧力式流量制御部FCSの上流側にビルドダウン式流量モニタ部BDMを設け、圧力式流量制御装部の入力側圧力変動に対する高応答性を活用して、圧力式流量制御部FCSの入力側圧力変動が許容される範囲内のガス圧力差に対応する圧力降下ΔPを、前記ビルドダウン容量BC内に1秒間に1回以上の割合で起生させ、当該圧力降下率ΔP/Δtとビルドダウン容量BCの内容積Vとガス温度Kとから、1秒間に少なくとも1回以上のモニタ流量を演算して出力できるように、上記圧力降下値(圧力差ΔP)、圧力降下時間(Δt)及びビルドダウン容量BCの内容量Vを設定する構成としている。
 その結果、前記圧力降下値(圧力差)ΔPを略20~30kPa absに、圧力降下時間Δtを0.5~0.8secに、及びビルドダウン容量BCの内容積Vを1.8~18ccに設定することにより、少なくとも1秒間当りに1回以上の割合でモニタ流量を高精度で演算し、出力することが可能となり、ビルドダウン方式の利用にも拘わらず略リアルタイムに近い高精度な流量モニタが可能となる。
 また、従前の熱式流量センサを組合せる方式に比較して、流量モニタ付圧力式流量制御装置の大幅な構造の簡素化、小型化と製造費の引下げが可能となり、流量モニタ付流量制御装置の付加価値が著しく向上する。
 しかし、本発明者等が先に開発した図15及び図16の流量モニタ付圧力式流量制御にも、いまだ多くの問題点が残されている。
 特に、制御流量が大幅に変化した場合に、圧力降下値(圧力差)ΔPを略20~30kPa absとすると共に圧力降下時間Δtを0.5~0.8secとし、少なくとも1秒間当りに1回以上の割合でモニタ流量を高精度で演算して出力するためには、ビルドダウン容量BCの内容積Vを迅速且つ正確に適宜の値に調整する必要がある。その結果、ビルドダウン容量の調整機構が著しく複雑化し、流量モニタ付圧力式流量制御の大型化や製造コストの高騰を来たすと云う問題がある。
特許第2635929号 特許第2982003号 特許第4308350号 特許第4137666号 特開2003-195948号
 本発明は、(a)従前のビルドダウンやビルドアップ式の流量測定方法を用いた流量モニタ付流量制御装置の場合には、流量モニタに際して実ガスの供給を一時的に停止しなければならず、半導体製造装置の稼動率の低下や製造した半導体の品質変動等を生ずること、(b)従前の図21のような熱式流量計と圧力式流量制御装置を組み合せ構造の流量モニタ付流量制御装置では、実流量の異常が判明しても自動的に制御流量の設定値の修正が行えず、流量修正の遅れによってさまざまな不都合が生じるうえ、流量制御装置自体の構造の簡素化及び装置の小型化が困難となり、加えて圧力式流量制御装置の優れた応答特性や安定した流量制御特性が減殺されること、及び、(c)制御流量が大幅に変化するような場合には、ビルドダウン容量を適宜の値に調整する必要があり、複雑なビルドダウン容量調整機構を必要とするうえ、容量調整に手数か掛かること等の問題を解決せんとするものであり、圧力式流量制御装置FCSとその上流側に設けたビルドダウン式の流量測定部とを一体に組合せし、流量制御装置の上流側圧力(入力側圧力)に許容される圧力変動範囲内で前記ビルドダウン式の流量測定部を作動させ、ビルドダウン容量をバルブ操作によって簡単に大流量用容量と小流量用容量に切換することにより、大流量域と小流量域の流量モニタを簡単且つ高精度で行え、更に、モニタ流量値と制御流量値の差異が所定流量値を越えた場合には、自動的に圧力式流量制御装置側の流量設定値を調整して、圧力式流量制御装置による流量制御値をビルドダウン式流量測定部による流量値に修正する様にした流量レンジ切換型流量モニタ付流量制御装置を提供するものである。
 即ち、入力側の圧力変動により流量制御特性が殆ど影響を受ないと云う圧力式流量制御装置の流量特性をフルに活用して、ビルドダウン式流量モニタ部による流量モニタを略リアルタイム(少なくとも1回/1秒)に近い状況下で行うことができ、しかも、演算制御部の簡素化、制御流量域の拡大、機器本体部の大幅な小型化、及び、ガス置換性の向上等を可能にした流量レンジ切換型ビルドダウン式流量計及び流量レンジ切換型流量モニタ付流量制御装置を提供せんとするものである。
 上記課題を解決するため、本発明に係る流量計は、上記各試験の結果を基礎にして創作されたものであり、請求項1の発明は、流路上に配置された入口側開閉切替弁PV1と、入口側開閉切替弁PV1の下流に配置された出口側開閉切替弁PV2と、出口側開閉切替弁PV2の下流に配置されたコントロール弁CVとを備え、各弁同士は内容積をもつ流路で連結し、コントロール弁CVより上流に圧力センサPを配置したビルドダウン式流量計であって、入口側開閉切替弁PV1の出口側からコントロール弁CVの入口側までの流路内容積をビルドダウン容積V1として流量演算する様にした大流量用測定部と、出口側切替弁PV2の出口側からコントロール弁CVの入口側までの流路内容積をビルドダウン容積V2として流量を演算する様にした小流量用測定部とを備えることを、発明の基本構成とするものである。
 前記コントロール弁CVは、流量制御部FCSの内部のコントロール弁CVとしてもよい。
 また、開閉切換弁で区切られた内容積を持つ流路を複数配置することとしたものである。
 又、本発明に係る流量制御装置は、第1の手段として、上流側に設けたビルドダウン式流量モニタ部BDMと、該ビルドダウン式流量モニタ部の下流側に設けた流量制御部FCSとを備える流量制御装置であって、前記ビルドダウン式流量モニタ部BDMが、入口側開閉切換弁PV1と、該入口側開閉切換弁の下流側に設けたビルドダウン容量BCと、ビルドダウン容量BCの下流側のガス通路に設けた温度センサThと、ビルドダウン容量BCの下流側に設けた出口側開閉切換弁PVと、該出口側開閉切換弁の下流側に設けた圧力センサPと、前記温度センサTh及び圧力センサPの検出値が入力されるモニタ流量演算制御部CPbとを備え、該モニタ流量演算制御部CPbにより、入口側開閉切換弁PV1の出口側と流量制御部FCSのコントロール弁CVとの間のガス通路内容積をビルドダウン容積Vとして大流量のモニタ流量Qを演算すると共に、出口側開閉切換弁PVの出口側と流量制御部FCSのコントロール弁CVとの間のガス通路内容積をビルドダウン容積Vとして小流量のモニタ流量Qを演算する構成とされていることを発明の基本構成とするものである。
 本発明に係る上記流量制御装置は、上記第1の手段において、信号伝送回路CTによりビルドダウン式流量モニタ部BDM と流量制御部FCSとを連結し、ビルドダウン式流量モニタ部BDMのモニタ流量Qを流量制御部FCSへ伝送すると共に、流量制御部FCSに、前記ビルドダウン式流量モニタ部BDMからのモニタ流量Qにより流量制御部FCSの設定流量Qsを調整する流量設定値調整機構QSRを設ける構成してもよい。
 また、本発明に係る上記流量制御装置は、第2の手段として、上流側に設けたビルドダウン式流量モニタ部BDMと、該ビルドダウン式流量モニタ部の下流側に設けた流量制御部FCSと、ビルドダウン式流量モニタ部BDMと流量制御部FCSとを連結し、ビルドダウン式流量モニタ部BDMのモニタ流量Qを流量制御部FCSへ伝送する信号伝送回路CTと、流量制御部FCSに設けられ、前記ビルドダウン式流量モニタ部BDMからのモニタ流量Qにより流量制御部FCSの設定流量Qsを調整する流量設定値調整機構QSRとを備える流量制御装置であって、ビルドダウン式流量モニタ部BDMを、ガス供給源からのガスの流通を開閉する入口側開閉切換弁PV1と、入口側開閉切換弁PV1の出口側に接続した所定の内容量を有するビルドダウン容量BCと、ビルドダウン容量BCの出口側に接続した出口側開閉切換弁PVと、出口側開閉切換弁PVの下流側通路を流通するガスの圧力を検出する圧力センサPと、出口側開閉切換弁PVの下流側通路を流通するガスの温度を検出する温度センサと、大流量の際には、前記出口側開閉切換弁PVを開放状態に保持すると共に、前記入口側開閉切換弁PV1の出口側と前記流量制御部FCSのコントロール弁CVとの間のガス通路内容積をビルドダウン容積Vとし、前記入口側開閉切換弁PV1を開閉作動させると共に入口側開閉切換弁PV1の開放により前記ビルドダウン容積V内のガス圧力を設定上限圧力値にしたあと入口側開閉切換弁PV1を閉鎖し、所定時間t秒後にガス圧力を設定下限圧力値まで下降させることによりビルドダウン式により大モニタ流量Qを演算及び出力し、また、小流量の際には、前記入口側開閉切換弁PV1を開放状態に保持すると共に、前記出口側開閉切換弁PVの出口側と前記流量制御部FCSのコントロール弁CVとの間のガス通路内容積をビルドダウン容積Vとし、前記出口側開閉切換弁PVを開閉作動させると共に出口側開閉切換弁PVの開放によりビルドダウン容量V内のガス圧力を設定上限圧力値にしたあと出口側開閉切換弁PVを閉鎖し、所定時間t秒後にガス圧力を設定下限圧力値まで下降させることによりビルドダウン式により小モニタ流量Qを演算及び出力するモニタ流量演算制御部CPbとを備え、前記モニタ流量Qを
 (但し、Tはガス温度(℃)、Vはビルドダウン容積(l)、ΔPは圧力降下範囲(設定上限圧力値-設定下限圧力値)(Torr)、Δtは入口側開閉切換弁AVの閉鎖から開放までの時間(sec)である。)により演算することを、発明の基本構成とするものである。
 本発明に係る上記流量制御装置は、上記第2の手段に於いて、流量設定値調整機構GSRを、モニタ流量Qと設定流量Qsとの比較器を備え、モニタ流量Qと設定流量Qsとの差異が設定値を超えると、設定流量Qsをモニタ流量Qに自動修正する構成の流量設定値調整機構としてもよい。
 本発明に係る上記流量制御装置は、上記第2の手段に於いて、流量制御部FCSを、コントロール弁CVとオリフィスOR又は臨界ノズルと圧力計P及び又は圧力計Pと流量演算制御装置CPaとを備える、耐圧力変動性を備えた圧力式流量制御装置FCSとしてもよい。
 本発明に係る上記流量制御装置は、上記第2の手段に於いて、ビルドダウン容積Vを0.5~20ccとすると共に、設定上限圧力値を400~100kPa abs及び設定下限圧力値を350kPa abs~50kPa absに、また、所定時間tを0.5~5秒以内とするようにしてもよい。
 本発明に係る上記流量制御装置は、上記第2の手段に於いて、入口側開閉切換弁PV1の出口側と流量制御部FCSのコントロール弁CV間のガス通路の内容積Vを13~15ccとし、大流量のモニタ流量域を40~600SCCMとすると共に、小流量のモニタ流量域を1~50SCCMとするようにしてもよい。
 本発明に係る上記流量制御装置は、上記第2の手段に於いて、入口側開閉切換弁PV 1 をピエゾ駆動式メタルダイヤフラム弁又は電磁直動型電動弁とすると共に、弁の高速開閉により入口側開閉切換弁PV 1 の開による設定下限圧力値から設定上限圧力値へのガス圧力の回復時間を、入口側開閉切換弁AVの閉による設定上限圧力値から設定下限圧力値までのガス圧力下降時間よりも大幅に短くするようにしてもよい。
 本発明に係る上記流量制御装置は、上記第2の手段に於いて、流量制御部FCSの流量演算制御装置CPaとビルドダウン式流量モニタ部BDWのモニタ流量演算制御装置CPbとを一体に形成する構成としてもよい。
 本発明に係る上記流量制御装置は、上記第2の手段に於いて、ビルドダウン容量BCをチャンバとすると共に、当該チャンバを内筒と外筒を同心状に配設固定した構造とし、チャンバを形成する内・外筒間の間隙をガス流通路とする構成としてもよい。
 本発明に係る上記流量制御装置は、上記第2の手段に於いて、ビルドダウン容量BCを、並列状に配置した複数本のチャンバとすると共に、当該チャンバを内筒と外筒を同心状に配設固定した構造とし、各チャンバの内・外筒間の間隙をガス流通路として各チャンバの前記ガス流通路を直列状に接続する構成としてもよい。
 本発明の流量計は、入口側開閉切替弁PV1の出口側からコントロール弁CVの入口側までの流路内容積をビルドダウン容積V1として流量演算する様にした大流量用測定部と、出口側切替弁PV2の出口側からコントロール弁CVの入口側までの流路内容積をビルドダウン容積V2として流量を演算する様にした小流量用測定部を備えた構成としているため、一基の流量計で以って、広い流量幅のガス流量の流量計測が可能となる。
 本発明の流量制御装置は、上流側に設けたビルドダウン式流量モニタ部BDMと、その下流側に設けた流量制御部FCSと、ビルドダウン式流量モニタ部BDM と流量制御部FCSとを連結し、ビルドダウン式流量モニタ部BDMのモニタ流量Qを流量制御部FCSへ伝送する信号伝送回路CTと、流量制御部FCSに設けられ、前記ビルドダウン式流量モニタ部BDMからのモニタ流量Qにより流量制御部FCSの設定流量Qsを調整する流量設定値調整機構QSRとから構成し、ビルドダウン式流量モニタ部BDMのモニタ流量により流量制御部FCSの設定流量値を自動的に調整するようにしている。
 その結果、モニタ流量値(オリフィスを流通する実流量値)と、流量制御部FCSの設定流量値(制御流量値)とが大きく異なった状態が長期に亘って継続されるようなことが皆無となり、半導体製品の品質向上等の点で多くの効用が得られる。
 また、流量制御部FCSの上流側にビルドダウン式流量モニタ部BDMを設け、流量制御装部の入力側圧力変動に対する高応答性を活用して、流量制御部FCSの入力側圧力変動が許容される範囲内のガス圧力差に対応する圧力降下ΔPを、前記ビルドダウン容量BC内に1秒間に1回以上の割合で起生させ、当該圧力降下率ΔP/Δtとビルドダウン容量BCの内容積Vとガス温度Kとから、1秒間に少なくとも1回以上のモニタ流量を演算して出力できるように、上記圧力降下値(圧力差ΔP)、圧力降下時間(Δt)及びビルドダウン容量BCの内容量Vを設定する構成としている。
 その結果、前記圧力降下値(圧力差)ΔP、圧力降下時間Δt及びビルドダウン容量Vを適宜に設定することにより、少なくとも1秒間当りに1回以上の割合でモニタ流量を高精度で演算し、出力することが可能となり、ビルドダウン方式の利用にも拘わらず略リアルタイムに近い高精度な流量モニタが可能となる。
 更に、ビルドダウン式流量モニタ部BDMを、ガス供給源からのガスの流通を開閉する入口側開閉切換弁PV1と、入口側開閉切換弁PV1の出口側に接続した所定の内容積Vを有するビルドダウン容量BCと、ビルドダウン容量BCの出口側に接続した出口側開閉切換弁PVと、出口側開閉切換弁PVの下流側通路を流通するガスの圧力を検出する圧力センサPと、出口側開閉切換弁PVの下流側通路を流通するガスの温度を検出する温度センサと、大流量の際には、前記出口側開閉切換弁PVを開放状態に保持すると共に、前記入口側開閉切換弁PV1の出口側と前記流量制御部FCSのコントロール弁CV間のガス通路内容積をビルドダウン容量とし、前記入口側開閉切換弁PV1を開閉作動させると共に入口側開閉切換弁PV1の開放によりビルドダウン容量内のガス圧力を設定上限圧力値にしたあと入口側開閉切換弁PV1を閉鎖し、所定時間t秒後にガス圧力を設定下限圧力値まで下降させることによりビルドダウン式により大流量域のモニタ流量Qを演算及び出力し、また、小流量の際には、前記入口側開閉切換弁PV1を開放状態に保持すると共に、前記出口側開閉切換弁PVの出口側と前記流量制御部FCSのコントロール弁CV間のガス通路の内容積をビルドダウン容量とし、前記出口側開閉切換弁PVを開閉作動させると共に出口側開閉切換弁PVの開放によりビルドダウン容量内のガス圧力を設定上限圧力値にしたあと出口側開閉切換弁PVを閉鎖し、所定時間t秒後にガス圧力を設定下限圧力値まで下降させることによりビルドダウン式により小流量域のモニタ流量Qを演算及び出力するモニタ流量演算制御部CPbと、から構成するようにしている。
 その結果、入口側開閉切換弁PV1と流量制御部FCSのコントロール弁CV間のガス通路内容積及び出口側開閉切換弁PVとコントロール弁CV間のガス通路内容積を適宜に選定して、入口側開閉切換弁PV1と出口側開閉切換弁PVとを適宜に開閉操作することにより、大流量域と小流量域の両方に亘って略リアルタイムに近い高精度な流量モニタを行うことができる。
 そのうえ、従前の熱式流量センサを組合せる方式に比較して、流量モニタ付流量制御装置の大幅な構造の簡素化、小型化と製造費の引下げが可能となり、流量モニタ付流量制御装置の付加価値が著しく向上する。
本発明の基本概念を示すブロック説明する構成図である。 本発明に係る流量レンジ切換型流量モニタ付流量制御装置の基本構成を示す系統図である。 本発明に係るビルドダウン式の流量レンジ切換型流量モニタ付流量制御装置の縦断面概要図である。 本発明の第2実施形態に係るビルドダウン式の流量レンジ切換型流量モニタ付圧力式流量制御装置の縦断面概要図である。 ビルドダウン式流量モニタ付流量制御装置の流量モニタ特性を測定するための試験装置の概要構成図である。 ビルドダウン式流量モニタの圧力降下状態の説明図である。 ビルドダウン流量測定時の圧力回復特性曲線の一例を示すものである。 図5の部分拡大図である。 試験1に於ける圧力回復特性曲線を示すものである。 圧力降下特性の形態を示すものである(制御流量=100SCCM)。 圧力降下特性の形態を示すものである(制御流量=50SCCM)。 圧力降下特性の形態を示すものである(制御流量=10SCCM)。 一次側開閉切換弁(上流側弁)AVの閉鎖からの経過時間と流量安定性との関係を示す線図である(ビルドダウン容量BC=1.78cc)。 一次側開閉切換弁(上流側弁)弁AVの閉鎖からの経過時間と流量安定性との関係を示す線図である(ビルドダウン容量BC=9.91cc)。 先に開発をした流量モニタ付流量制御装置の基本構成を示す系統図である。 先に開発をしたビルドダウン式の流量モニタ付流量制御装置の縦断面概要図である。 先に開発をした装置のチャンバA~Eに於いて、測定可能時間を1秒以下とした場合のガス流量SCCMと圧力降下の傾きkPa/secとの関係を示す線図である。 先に開発をした装置に於いて、各チャンバA~Eの圧力降下の傾きが20kPa/secに於ける圧力降下特性の形態を示すものである。 各チャンバA~Eの入口側(一次側)開閉切換弁AVの閉鎖からの経過時間と流量安定性との関係を示す線図である。 従前の圧力式流量制御装置の基本構成図である。 従前の流量モニタ付圧力式流量制御装置の基本構成図である。
 以下、図面に基づいて本発明の実施形態を説明する。
 図1は本発明の基本概念を示すブロック説明する構成図であり、図2は本発明に係る流量レンジ切換型流量モニタ付圧力式流量制御装置の基本構成を示す系統図、図3は本発明に係る流量レンジ切換型流量モニタ付圧力式流量制御装置の縦断面概要図である。
 本発明に係る装置は、大流量域ガスのモニタ付流量制御と小流量域ガスのモニタ付流量制御を適宜に切換え可能な構成としたことを特徴とするものであり、本発明に係る流量モニタ付圧力式流量制御装置は、ビルドダウン部BDMと圧力式流量制御部FCSと両者間を連結する信号伝送回路(デジタル通信回路)CTとから構成されている。
 尚、図1乃至図3に於いて、1はガス入口、2はガス出口、PVは入口側切換弁、PVは出口側切換弁、BCはビルドダウン容量、P3は圧力センサ、ΔP1は大流量域モニタの場合の圧力検出値、ΔPは小流量域モニタの場合の圧力検出値、Q1は大流量域ガスのモニタ流量検出値、Qは小流量域ガスのモニタ流量検出値、CPbはモニタ流量演算制御部、VB1はモニタ入口側ブロック、VBはモニタ出口側ブロックである。
 また、図1乃至図3に於いて、CVはコントロール弁、CPaは流量演算制御部、ORは小径オリフィス、ORは大径オリフィス、P1は第1圧力センサ、Pは第2圧力センサ、VB3は流量制御部入口側ブロック、VBは流量制御部出口側ブロック、VBは連結用ブロック、SKは連結部のガスケットである。
 更に、圧力式流量制御部FCSには設定流量調整機構QSRが設けられており、予め設定された流量値Qsが信号伝送回路CTを介して入力されたビルドダウン流量Q1,Q2と比較器(図示省略)により比較され、両者の差異が規定以上の流量値になると、自動的に設定流量値QsがQs’に修正され、圧力式流量制御部FCSの流量制御値がビルドダウン流量Q1,Q2に合致するように調整される。即ち、実流量がビルドダウン流量Q1,Q2に合致するように調整される。
 尚、図1乃至図3に於いて、先に開発した図15及び図16の流量モニタ付圧力式流量制御装置と異なる点は、モニタ流量演算制御部CPbが大流量域のビルドダウン流量Q1と小流量域のビルドダウン流量Qを切換え可能に出力する点、及び圧力センサP3が図3に示すように、連結用ブロックVBに設けられている点のみであり、その他の構成は、図15及び図16の流量モニタ付圧力式流量制御装置と略同一である。
 また、図2及び図3では、温度検出センサTや フィルタF等は省略されている。更に、圧力式流量制御部FCSは如何なる形式のもの、例えばオリフィスが1基或いは3基以上のものであっても良いことは勿論である。尚、圧力式流量制御部FCSやビルドダウン式流量モニタ部BDMの基本構成そのものは公知であるため、ここではその詳細な説明を省略する。
 図1を参照して、本発明に於いては、ガスの制御流量に対応して、大流量域ガスの流量モニタと小流量域ガスの流量モニタとを切換えするよう構成されており、ガス入口1から流入するガス流量が大流量Q1(例えば、40~600SCCM)の場合には、出口側切換弁PVを開放状態に保持し、入口側切換弁PV1を開閉することにより圧力センサP3によって圧力検出値ΔPを検出すると共に、当入口側切換弁PV1から圧力式流量制御部FCSのコントロール弁CVまでの管路内容積をビルドダウン容積とし、前記圧力検出値ΔP及び前記ビルドダウン容積等から数式1を用いて大流量域のモニタ流量Q1が演算される。
 また、ガス入口1から流入するガス流量が小流量Q(例えば、2.5~40(SCCM)の場合には、入口側切換弁PVを開放状態に保持し、出口側切換弁PVを開閉することにより圧力センサP3によって圧力検出値ΔPを検出すると共に、出口側切換弁PVから圧力式流量制御部FCSのコントロール弁CVまでの管路内容積をビルドダウン容積とし、前記圧力検出値ΔP及び前記ビルドダウン容積等から数式1を用いて小流量域のモニタ流量Qが演算される。
 尚、上記モニタ流量演算制御部CPbで演算されたモニタ流量Q(或いはQ2)が流量制御部FCSの設定流量調整機構QSRへ入力されること、ビルドダウン式流量モニタ部BDMから流出したガスがコントロール弁CV、小径オリフィスOR 1及び又は大径オリフィスORを経てガス出口2から流出すること、流量演算制御部CPaでオリフィス流通ガス流量が演算され、コントロール弁CVの開閉制御やオリフィス切換弁OLVの開閉制御されること、流量演算制御部CPaの設定流量調整機構QSRでは、ビルドダウン式流量モニタ部BDMからのモニタ流量Q(又はQ2)とオリフィス流通流量とが比較され、両者の差異が予め定めた設定値を超えると、流量制御部FCSの制御流量を前記モニタ流量Qに合致させるよう設定流量Qsの方が調整されること、等は先に開発したし流量モニタ付圧力式流量制御装置と同じである。
Figure JPOXMLDOC01-appb-T000004
 表4は、入口側切換弁PV1及び出口側切換弁PVをピエゾ駆動式弁とし、小流量域のビルドダウン容量Q2=1cc及び大流量域のビルドダウン容量Q=14ccとし、且つ圧力降下率ΔP2/sec=5Kpa/sec及びΔP/sec=80Kpa/secとした時のビルドダウンモニタ流量の検出結果を示すものであり、小流量域のモニタ流量Q2はQ2=2.73~43・7SCCM、及び、大流量域のモニタ流量QはQ=38.2~611.7SCCMと成る。
 尚、モニタ流量の出力は、少なくとも1秒間に1回以上とし、温度検出センサT(図示省略)はモニタブロックVB1又はVB1の内部へ挿入するサーモスタット型温度計としている。また、大流量域用ビルドダウン容量はチャンバ内容積と配管路内容積により、小流量域用容量は配管路内容積のみにより、それぞれ形成している。
 図4は、本発明の第2実施形態を示すものであり、(a)は縦断面概要図、(b)は平面図、(c)は右側面図である。
 当該第2実施例に係る流量レンジ切換型流量モニタ付圧力式流量制御装置は、ビルドダウン容量BCが、縦向き姿勢で並列状に配置した4本の細径チャンバCH,CH,CH,CHから構成されており、また、各細径チャンバの構造は第1実施形態のビルドダウン容量BCの場合と同一であり、外筒と内筒との間の隙間が、ガスの流通路となっている。
 更に、上記4本の細径チャンバCH~CHは、夫々の内・外筒間のガス流通路を直列状に連通させた状態で連結されており、内容積Vの小さなビルドダウン容量BCに形成されている。
 当該第2実施例に係る流量レンジ切換型流量モニタ付流量制御装置は、図4に示すように、その厚さ寸法Lが約10~13mm程度に設定されており、その結果、出口側開閉切換弁PVの下流側に設けた圧力センサPも、外径が約10~13mmの細径のものが使用されている。
 尚、第2実施形態に係る装置そのものの構造や機能は、第1実施形態の場合と同一であるため、ここではその詳細な説明を省略する。
 本発明は半導体製造装置用ガス供給設備のみならず、オリフィス又は臨界ノズルを用いた圧力式流量制御装置であれば、化学品製造装置用ガス供給設備へも広く適用できるものである。
BDM   ビルドダウン式流量モニタ部
FCS   流量制御部(圧力式流量制御装置)
AV    一次側開閉切換弁(上流側弁)
BC    ビルドダウン容量
V     ビルドダウン容積
RG    圧力調整器
     N供給源
T     温度センサ(測温抵抗体)
、P  圧力センサ
3      圧力センサ
ΔP1、ΔP  圧力検出値
CV    コントロール弁
OR    オリフィス
OR    小口径オリフィス
OR2      大口径オリフィス
OIP   外部入出力回路
OLV   オリフィス切換弁
VB1     モニタ入口側ブロック
VB2     モニタ出口側ブロック
VB3      流量制御部入口側ブロック
VB4      流量制御部出口側ブロック
VB5          連結部ガスケット
CT    信号伝送回路(ディジタル通信回路)
CP    演算制御部
CPa   流量演算制御部
CPb   モニタ流量演算制御部
     流量制御装置用電源
     演算制御部用電源
     電磁弁用電源
ECV   電気駆動部
NR    データロガ
S     信号発生器
PC    演算表示部
PV1     入口側切換弁(入口側ピエゾ切換弁)
PV2     出口側切換弁(出口側ピエゾ切換弁)
1       入口側切換弁のガス入口側通路
2     入口側切換弁のガス出口側通路
3        出口側切換弁のガス入口側通路
4        出口側切換弁のガス出口側通路
Cu    銅棒片
、Q  モニタ流量(ビルドダウン流量)
CH    チャンバ
CH~CH 細径チャンバ
CHa    外筒
CHb    内筒
L      装置の厚み寸法
R    流量設定値調整機構
      設定流量
‘     調整流量
1      ガス入口
2      ガス出口
CH~CH 細径チャンバ

Claims (16)

  1.  流路上に配置された入口側開閉切替弁と、該入口側開閉切替弁の下流に配置された出口側開閉切替弁と、該出口側開閉切替弁の下流に配置されたコントロール弁とを備え、前記各弁同士は内容積をもつ流路で連結され、前記コントロール弁より上流に圧力センサを配置した流量計であって、
     前記入口側開閉切替弁の出口側から前記コントロール弁の入口側までの流路内容積をビルドダウン容積として流量演算する様にした大流量用測定部と、前記出口側切替弁の出口側から前記コントロール弁の入口側までの流路内容積をビルドダウン容積として流量を演算する様にした小流量用測定部とを備えることを特徴とする流量計。
  2.  前記コントロール弁を、流量制御部の内部のコントロール弁とした請求項1に記載の流量計。
  3.  開閉切換弁で区切られた内容積を持つ流路を複数配置することとした請求項1に記載の流量計。
  4.  上流側に設けたビルドダウン式流量モニタ部と、該ビルドダウン式流量モニタ部の下流側に設けた流量制御部とを備える流量制御装置であって、
     前記ビルドダウン式流量モニタ部は、入口側開閉切換弁と、前記入口側開閉切換弁の下流側に設けたビルドダウン容量と、ビルドダウン容量の下流側に設けた出口側開閉切換弁と、前記該ビルドダウン容量の下流側のガス通路に設けた温度センサと、前記ビルドダウン容量の下流側に設けた出口側開閉切換弁と、該出口側開閉切換弁の下流側に設けた圧力センサと、前記温度センサ及び前記圧力センサの検出値が入力されるモニタ流量演算制御部とを備え、該モニタ流量演算制御部により、前記入口側開閉切換弁の出口側と前記流量制御部のコントロール弁との間のガス通路内容積をビルドダウン容積として大流量のモニタ流量を演算すると共に、前記出口側開閉切換弁の出口側と前記流量制御部のコントロール弁との間のガス通路内容積をビルドダウン容積として小流量のモニタ流量を演算する構成とされていることを特徴とする流量制御装置。
  5.  信号伝送回路により前記ビルドダウン式流量モニタ部と前記流量制御部とを連結し、前記ビルドダウン式流量モニタ部のモニタ流量を前記流量制御部へ伝送すると共に、該流量制御部に、前記ビルドダウン式流量モニタ部からのモニタ流量により該流量制御部の設定流量を調整する流量設定値調整機構を設ける構成した請求項1に記載の流量制御装置。
  6.  上流側に設けたビルドダウン式流量モニタ部と、該ビルドダウン式流量モニタ部の下流側に設けた流量制御部と、前記ビルドダウン式流量モニタ部と前記流量制御部とを連結し、前記ビルドダウン式流量モニタ部のモニタ流量を前記流量制御部へ伝送する信号伝送回路と、前記流量制御部に設けられ、前記ビルドダウン式流量モニタ部からのモニタ流量により前記流量制御部の設定流量を調整する流量設定値調整機構とを備える流量制御装置であって、前記ビルドダウン式流量モニタ部が、ガス供給源からのガスの流通を開閉する入口側開閉切換弁と、該入口側開閉切換弁の出口側に接続した所定の内容量を有するビルドダウン容量と、該ビルドダウン容量の出口側に接続した出口側開閉切換弁と、該出口側開閉切換弁の下流側通路を流通するガスの圧力を検出する圧力センサと、流通するガスの温度を検出する温度センサと、大流量の際には、前記出口側開閉切換弁を開放状態に保持すると共に、前記入口側開閉切換弁の出口側と前記流量制御部のコントロール弁との間のガス通路内容積をビルドダウン容積とし、前記入口側開閉切換弁を開閉作動させると共に該入口側開閉切換弁の開放により前記ビルドダウン容積内のガス圧力を設定上限圧力値にしたあと前記入口側開閉切換弁を閉鎖し、所定時間経過後にガス圧力を設定下限圧力値まで下降させることによりビルドダウン式により大流量のモニタ流量を演算及び出力し、また、小流量の際には、前記入口側開閉切換弁を開放状態に保持すると共に、前記出口側開閉切換弁の出口側と前記流量制御部のコントロール弁との間のガス通路内容積をビルドダウン容積とし、前記出口側開閉切換弁を開閉作動させると共に該出口側開閉切換弁の開放によりビルドダウン容積内のガス圧力を設定上限圧力値にしたあと該出口側開閉切換弁を閉鎖し、所定時間経過後にガス圧力を設定下限圧力値まで下降させることにより小流量のモニタ流量を演算及び出力するモニタ流量演算制御部とを備え、大流量及び小流量の前記各モニタ流量を、下記式により演算する構成とした流量制御装置。
    Figure JPOXMLDOC01-appb-M000003
     但し、Qはモニタ流量、Tはガス温度(℃)、Vはビルドダウン容積(l)、ΔPは圧力降下範囲(設定上限圧力値-設定下限圧力値)(Torr)、Δtは入口側開閉切換弁の閉鎖から開放までの時間(sec)である。 
  7.  前記流量設定値調整機構が、モニタ流量と設定流量との比較器を備え、モニタ流量と設定流量との差異が設定値を超えると、設定流量をモニタ流量に自動修正する構成の流量設定値調整機構である、請求項6に記載の流量制御装置。
  8.  前記流量制御部が、コントロール弁と、オリフィス又は臨界ノズルと、前記オリフィス又は臨界ノズルの上流側の圧力計、流量演算制御装置とを備える、耐圧力変動性を備えた圧力式流量制御装置である、請求項6に記載の流量制御装置。
  9.  前記流量制御部が、コントロール弁と、オリフィス又は臨界ノズルと、前記オリフィス又は臨界ノズルの上流側の圧力計と、前記オリフィス又は臨界ノズルの下流側の圧力計と、流量演算制御装置とを備える、耐圧力変動性を備えた圧力式流量制御装置である、請求項6に記載の流量制御装置。
  10.  ビルドダウン容積を0.5~20ccとすると共に、設定上限圧力値を400~100kPa abs及び設定下限圧力値を350kPa abs~50kPa absに、また、所定時間を0.5~5秒以内とするようにした請求項6に記載の流量制御装置。
  11.  前記入口側開閉切換の出口側と前記流量制御部のコントロール弁との間のガス通路内容積を13~15ccとし、大流量のモニタ流量域を40~600SCCMとすると共に、小流量のモニタ流量域を1~50SCCMとするようにした請求項6に記載の流量制御装置。
  12.  前記入口側開閉切換弁をピエゾ駆動式メタルダイヤフラム弁又は電磁直動型電動弁とすると共に、弁の高速開閉により前記入口側開閉切換弁の開による設定下限圧力値から設定上限圧力値へのガス圧力の回復時間を、該入口側開閉切換弁の閉による設定上限圧力値から設定下限圧力値までのガス圧力下降時間よりも短くするようにした請求項6に記載の流量制御装置。
  13.  前記流量制御部の流量演算制御装置と前記ビルドダウン式流量モニタ部のモニタ流量演算制御装置とを一体に形成する構成とした請求項8に記載の流量制御装置。
  14.  前記流量制御部の流量演算制御装置と前記ビルドダウン式流量モニタ部のモニタ流量演算制御装置とを一体に形成する構成とした請求項9に記載の流量制御装置。
  15.  前記ビルドダウン容量をチャンバとすると共に、当該チャンバを内筒と外筒を同心状に配設固定した構造とし、当該チャンバを形成する内・外筒間の間隙をガス流通路とする構成とした請求項6に記載の流量制御装置。
  16.  前記ビルドダウン容量を、並列状に配置した複数本のチャンバとすると共に、当該チャンバを内筒と外筒を同心状に配設固定した構造とし、各チャンバの内・外筒間の間隙をガス流通路として各チャンバの前記ガス流通路を直列状に接続する構成とした請求項6に記載の流量制御装置。
PCT/JP2014/005322 2013-10-28 2014-10-21 流量計及びそれを備えた流量制御装置 WO2015064050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/028,127 US10073469B2 (en) 2013-10-28 2014-10-21 Flow meter and flow control device provided therewith
CN201480049538.XA CN105659178B (zh) 2013-10-28 2014-10-21 流量计及具备该流量计的流量控制装置
KR1020167006626A KR101843378B1 (ko) 2013-10-28 2014-10-21 유량계 및 그것을 구비한 유량 제어 장치
KR1020187000288A KR101930304B1 (ko) 2013-10-28 2014-10-21 유량계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013223018A JP5797246B2 (ja) 2013-10-28 2013-10-28 流量計及びそれを備えた流量制御装置
JP2013-223018 2013-10-28

Publications (1)

Publication Number Publication Date
WO2015064050A1 true WO2015064050A1 (ja) 2015-05-07

Family

ID=53003682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005322 WO2015064050A1 (ja) 2013-10-28 2014-10-21 流量計及びそれを備えた流量制御装置

Country Status (6)

Country Link
US (1) US10073469B2 (ja)
JP (1) JP5797246B2 (ja)
KR (2) KR101843378B1 (ja)
CN (1) CN105659178B (ja)
TW (1) TWI524054B (ja)
WO (1) WO2015064050A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326073B2 (ja) * 2016-01-19 2018-05-16 矢崎エナジーシステム株式会社 ガスメータ
WO2017150331A1 (ja) * 2016-02-29 2017-09-08 株式会社フジキン 流量制御装置
US10928813B2 (en) * 2016-03-29 2021-02-23 Fujikin Incorporated Pressure-type flow rate control device and flow rate self-diagnosis method using critical expansion condition
US10684159B2 (en) * 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
CN109891353A (zh) * 2016-09-19 2019-06-14 流体设备系统有限公司 用于流量测量的可变限制
KR102208101B1 (ko) * 2016-10-14 2021-01-27 가부시키가이샤 후지킨 유체 제어 장치
KR101910615B1 (ko) 2017-04-03 2018-10-24 주식회사 러셀 유량제어시스템 및 이를 이용한 공정모니터링시스템
JP6913498B2 (ja) * 2017-04-18 2021-08-04 東京エレクトロン株式会社 流量制御器の出力流量を求める方法及び被処理体を処理する方法
CN107422754B (zh) * 2017-09-01 2023-11-14 中国人民解放军军事科学院军事医学研究院 一种微量气体流速控制装置及控制方法
US11079774B2 (en) 2017-11-30 2021-08-03 Fujikin Incorporated Flow rate control device
US11105512B2 (en) 2018-03-30 2021-08-31 Midea Group Co., Ltd Method and system for controlling a flow curve of an electromechanical gas valve
US11269362B2 (en) 2018-04-27 2022-03-08 Fujikin Incorporated Flow rate control method and flow rate control device
US11216016B2 (en) * 2018-06-26 2022-01-04 Fujikin Incorporated Flow rate control method and flow rate control device
KR102087253B1 (ko) * 2018-07-20 2020-03-10 김영탁 액상 공정용 소재의 유량제어 시스템 및 이를 이용한 공정 모니터링 시스템
SG11202100784RA (en) * 2018-07-30 2021-02-25 Fujikin Kk Flow rate control system and flow rate measurement method
CN109012322A (zh) * 2018-08-21 2018-12-18 王维春 一种畜牧业用消毒液配制装置
RU2682540C9 (ru) * 2018-08-22 2019-07-08 Александр Александрович Калашников Способ настройки измерительного канала расхода среды с сужающим устройством
KR20210139347A (ko) * 2019-04-25 2021-11-22 가부시키가이샤 후지킨 유량 제어 장치
TWI774227B (zh) * 2020-02-21 2022-08-11 日商富士金股份有限公司 流量控制裝置、流量控制裝置的控制方法、流量控制裝置的控制程式
CN111579013B (zh) * 2020-05-26 2022-07-15 北京七星华创流量计有限公司 气体质量流量控制器及其流量标定方法
US11262069B2 (en) 2020-06-25 2022-03-01 Midea Group Co., Ltd. Method and system for auto-adjusting an active range of a gas cooking appliance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534570A (en) * 1975-12-30 1978-01-17 Mitsui Shipbuilding Eng Apparatus for measuring flow rate in wide range
JPH07281760A (ja) * 1994-04-12 1995-10-27 Ckd Corp マスフローコントローラ絶対流量検定システム
JP2004246825A (ja) * 2003-02-17 2004-09-02 Stec Inc マスフローコントローラ
JP2005056031A (ja) * 2003-07-31 2005-03-03 Fujikin Inc チャンバへのガス供給装置及びこれを用いたチャンバの内圧制御方法
JP2011510404A (ja) * 2008-01-18 2011-03-31 ピヴォタル システムズ コーポレーション ガスの流量を決定する方法、ガス・フロー・コントローラの動作を決定する方法、ガスフローコントロールシステムの一部の容量を決定する方法、及びガス搬送システム
WO2013179550A1 (ja) * 2012-05-31 2013-12-05 株式会社フジキン ビルドダウン方式流量モニタ付流量制御装置
WO2014156042A1 (ja) * 2013-03-25 2014-10-02 株式会社フジキン 流量モニタ付流量制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982003B2 (ja) 1992-07-28 1999-11-22 コマツ電子金属株式会社 気相成長装置および気相成長装置におけるマスフローコントローラの校正方法
JP3522544B2 (ja) * 1998-08-24 2004-04-26 忠弘 大見 流体可変型流量制御装置
JP4308356B2 (ja) 1999-01-25 2009-08-05 株式会社堀場エステック 圧力式流量コントローラのノズル診断機構および圧力式流量コントローラのノズル診断方法
US6363958B1 (en) * 1999-05-10 2002-04-02 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
JP4102564B2 (ja) * 2001-12-28 2008-06-18 忠弘 大見 改良型圧力式流量制御装置
JP4137666B2 (ja) 2003-02-17 2008-08-20 株式会社堀場エステック マスフローコントローラ
CN100483286C (zh) * 2004-06-21 2009-04-29 日立金属株式会社 流量控制装置及其调整方法
WO2006014508A2 (en) * 2004-07-07 2006-02-09 Parker Hannifin Corporation Flow control apparatus and method with internally isothermal control volume for flow verification
JP4856905B2 (ja) * 2005-06-27 2012-01-18 国立大学法人東北大学 流量レンジ可変型流量制御装置
JP4820698B2 (ja) * 2006-07-03 2011-11-24 株式会社フジキン 圧力式流量制御装置の絞り機構下流側バルブの作動異常検出方法
US7891228B2 (en) * 2008-11-18 2011-02-22 Mks Instruments, Inc. Dual-mode mass flow verification and mass flow delivery system and method
TWI435196B (zh) * 2009-10-15 2014-04-21 Pivotal Systems Corp 氣體流量控制方法及裝置
US8265888B2 (en) * 2009-12-09 2012-09-11 Pivotal Systems Corporation Method and apparatus for enhancing in-situ gas flow measurement performance
JP5538119B2 (ja) * 2010-07-30 2014-07-02 株式会社フジキン ガス供給装置用流量制御器の校正方法及び流量計測方法
CN105659177B (zh) * 2013-10-31 2018-07-10 株式会社富士金 压力式流量控制装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534570A (en) * 1975-12-30 1978-01-17 Mitsui Shipbuilding Eng Apparatus for measuring flow rate in wide range
JPH07281760A (ja) * 1994-04-12 1995-10-27 Ckd Corp マスフローコントローラ絶対流量検定システム
JP2004246825A (ja) * 2003-02-17 2004-09-02 Stec Inc マスフローコントローラ
JP2005056031A (ja) * 2003-07-31 2005-03-03 Fujikin Inc チャンバへのガス供給装置及びこれを用いたチャンバの内圧制御方法
JP2011510404A (ja) * 2008-01-18 2011-03-31 ピヴォタル システムズ コーポレーション ガスの流量を決定する方法、ガス・フロー・コントローラの動作を決定する方法、ガスフローコントロールシステムの一部の容量を決定する方法、及びガス搬送システム
WO2013179550A1 (ja) * 2012-05-31 2013-12-05 株式会社フジキン ビルドダウン方式流量モニタ付流量制御装置
WO2014156042A1 (ja) * 2013-03-25 2014-10-02 株式会社フジキン 流量モニタ付流量制御装置

Also Published As

Publication number Publication date
JP5797246B2 (ja) 2015-10-21
US10073469B2 (en) 2018-09-11
JP2015087110A (ja) 2015-05-07
KR101843378B1 (ko) 2018-03-29
CN105659178B (zh) 2017-12-22
CN105659178A (zh) 2016-06-08
TWI524054B (zh) 2016-03-01
TW201531668A (zh) 2015-08-16
KR101930304B1 (ko) 2018-12-18
KR20160043060A (ko) 2016-04-20
US20160239026A1 (en) 2016-08-18
KR20180004854A (ko) 2018-01-12

Similar Documents

Publication Publication Date Title
WO2015064050A1 (ja) 流量計及びそれを備えた流量制御装置
JP5847106B2 (ja) 流量モニタ付圧力式流量制御装置。
JP2015087110A5 (ja)
JP5768186B2 (ja) ビルドダウン方式流量モニタ付流量制御装置及びこれを用いたモニタ付流量制御方法。
JP2020098653A (ja) 質量流量制御装置の流量をリアルタイムで監視するシステムおよび方法
JP5727596B2 (ja) 流量モニタ付圧力式流量制御装置の実ガスモニタ流量初期値のメモリ方法及び実ガスモニタ流量の出力確認方法
TWI470187B (zh) Flow measurement device for flow control device for gas supply device and flow measurement method
TW201433897A (zh) 用於壓力式質流控制器之自驗證的方法及裝置
JP7244940B2 (ja) 流量制御システム及び流量測定方法
JP7249030B2 (ja) 流量測定装置内の容積測定方法および流量測定装置
JP2023163311A (ja) 流量測定装置、流量測定方法および流量制御装置の校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006626

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15028127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858650

Country of ref document: EP

Kind code of ref document: A1