WO2014156042A1 - 流量モニタ付流量制御装置 - Google Patents

流量モニタ付流量制御装置 Download PDF

Info

Publication number
WO2014156042A1
WO2014156042A1 PCT/JP2014/001504 JP2014001504W WO2014156042A1 WO 2014156042 A1 WO2014156042 A1 WO 2014156042A1 JP 2014001504 W JP2014001504 W JP 2014001504W WO 2014156042 A1 WO2014156042 A1 WO 2014156042A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
pressure
build
monitor
control unit
Prior art date
Application number
PCT/JP2014/001504
Other languages
English (en)
French (fr)
Inventor
正明 永瀬
敦志 日高
西野 功二
池田 信一
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US14/778,398 priority Critical patent/US9791867B2/en
Priority to KR1020157026228A priority patent/KR101707877B1/ko
Priority to CN201480003757.4A priority patent/CN105247433B/zh
Publication of WO2014156042A1 publication Critical patent/WO2014156042A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the present invention relates to an improvement of a flow rate control device with a flow rate monitor, and more specifically, the control flow rate by the flow rate control device is controlled by organically combining a flow rate control device having a pressure resistance variation characteristic and a build-down type flow rate monitor.
  • the present invention relates to a flow rate control device with a flow rate monitor that can be monitored in real time and can automatically adjust a flow rate set value on the flow rate control device side when a difference between a control flow rate and a monitored flow rate exceeds a set value.
  • thermal flow control devices MFC and pressure flow control devices FCS have been widely used in gas supply devices for semiconductor control devices.
  • the latter pressure type flow rate control device FCS has a control valve CV, a temperature detector T, a pressure detector P, an orifice OL, a temperature correction / flow rate calculation circuit CDa, a comparison circuit CDb, and an input / output circuit.
  • the detection values from the pressure detector P and the temperature detector T are converted into digital values and then input to the temperature correction / flow rate calculation circuit CDa.
  • temperature correction of the detected pressure and flow rate calculation are performed, and the flow rate calculation value Qt is input to the comparison circuit CDb.
  • An input signal Q S corresponding to the set flow rate is input from the terminal In, converted into a digital value by the input / output circuit CDc, and then input to the comparison circuit CDb, where the flow rate from the temperature correction / flow rate calculation circuit CDa is input. It is compared with the calculated value Qt.
  • the pressure type flow control device FCS itself is publicly known, detailed description thereof is omitted here.
  • the change in the hole diameter of the orifice OL is detected as early as possible, and the control flow value by the pressure type flow control device FCS and the orifice are actually set. Measures are taken to prevent the occurrence of a difference between the actual flow value of the gas Go and the so-called build-up method or build-down method is used to detect the hole diameter change of this type of orifice OL.
  • a gas flow rate measuring method using is widely used.
  • the gas flow measurement since it is necessary to temporarily stop the supply of the actual gas, the gas flow measurement may cause a decrease in the operating rate of the semiconductor manufacturing apparatus, the quality of the manufactured semiconductor, etc. There is a problem that it has a big influence on.
  • FIG. 20 shows an example.
  • the flow rate control device 20 with a flow rate monitor includes a flow path 23, a first pressure sensor 27a that detects an inlet side pressure, an open / close control valve 24, and a thermal mass.
  • the flow sensor 25 the second pressure sensor 27b, a throttle (sonic nozzle) 26, a calculation controller 28a, an input / output circuit 28b, and the like.
  • the thermal mass flow sensor 25 includes a rectifier 25a, a branch flow path 25b that branches a flow rate of a predetermined ratio F / A from the flow path 23, and a sensor body 25c provided in the branch flow path 25b. Then, the flow rate signal Sf indicating the total flow rate F is output to the arithmetic control unit 28a. Further, the throttle portion 26 is a sonic nozzle that allows a fluid having a flow rate proportional to the upstream pressure to flow when the pressure difference between the upstream side and the downstream side is equal to or greater than a predetermined value (that is, when the fluid flows under a critical condition). is there.
  • SPa and SPb are pressure signals
  • Pa and Pb are pressures
  • F is a total flow rate
  • Sf is a flow rate signal
  • Cp is a valve opening control signal.
  • the arithmetic control unit 28a feeds back the opening / closing control valve 24 by feeding back the pressure signals Spa, Spb from the pressure sensors 27a, 27b and the flow rate signal Sf from the flow rate sensor 25 and outputting the valve opening degree control signal Cp. Control. That is, the flow rate setting signal Fs is input from the input / output circuit 28b to the arithmetic control unit 28a, and the flow rate F of the fluid flowing through the mass flow rate control device 20 is adjusted to become the flow rate setting signal Fs.
  • the arithmetic control unit 28a feedback-controls the opening / closing of the opening / closing control valve 24 using the output (pressure signal Spb) of the second pressure sensor 27b, thereby controlling the flow rate F of the fluid flowing through the sonic nozzle 26.
  • the actual flow rate F is measured using the output (flow rate signal Sf) of the thermal flow sensor 25 at this time, and the operation of the mass flow rate control device 20 is confirmed.
  • the pressure type flow rate control for adjusting the opening degree of the open / close control valve 24 using the pressure signal Spb of the second pressure sensor 27b, and the actual flow rate are incorporated in the arithmetic control unit 8a, whether or not the fluid of the control flow rate corresponding to the set flow rate Fs is actually flowing, That is, it is possible to easily and surely monitor in real time whether there is a difference between the control flow rate and the actual flow rate, thereby achieving high practical utility.
  • the first problem is that when a difference occurs between the monitor flow rate value (actual flow rate value) and the control flow rate value, the occurrence of the difference can be detected by an alarm or the like, but automatically.
  • the control flow rate value cannot be corrected, that is, the set flow rate value Fs cannot be adjusted. Therefore, if the correction of the control flow rate is delayed due to some cause such as the absence of operating personnel, the supply of gas (actual flow gas) with a flow rate different from the set flow rate value will be continued.
  • Various inconveniences occur in semiconductor manufacturing.
  • the second problem is that there are two different measurement methods: pressure flow measurement using the second pressure sensor 27b for flow control and flow measurement using the thermal flow sensor 25 for flow monitoring. Since it is incorporated, the structure of the flow rate control device 20 with a flow rate monitor becomes complicated, and the size of the device cannot be reduced and the manufacturing cost cannot be reduced.
  • the third problem is that the arithmetic control unit 28a controls the opening / closing control valve 24 using both the output Spb of the second pressure sensor 27b and the flow output Sf of the thermal flow sensor 25, and the first pressure sensor.
  • the flow rate output Sf of the thermal flow sensor 25 is corrected using the output Spa of the 27a.
  • the two pressure signals of the first pressure sensor 27a and the second pressure sensor 27b and the flow rate signal from the thermal flow sensor 25 are The opening / closing control of the opening / closing control valve 24 is performed using these three signals. For this reason, there is a problem that not only the configuration of the arithmetic control unit 28a is complicated, but also the stable flow rate control characteristics and excellent high responsiveness as the pressure type flow rate control device FCS are reduced.
  • the present invention In the case of a flow rate control device with a flow rate monitor using a conventional build-down or build-up type flow rate measurement method, the present invention must temporarily stop the supply of actual gas when monitoring the flow rate.
  • the flow rate control device with a flow rate monitor having a structure that combines a thermal flow meter and a pressure flow rate control device as shown in FIG. Therefore, even if the actual flow rate is found to be abnormal, the set value of the control flow rate cannot be corrected automatically, causing various inconveniences due to delays in flow rate correction, simplifying the structure of the flow rate control device itself, and reducing the size of the device
  • the main object of the invention is to solve problems such as reduction of excellent response characteristics and stable flow control characteristics of the pressure flow control device.
  • the present invention integrates a pressure type flow rate control device FCS and a builddown type flow rate measuring unit provided on the upstream side thereof, so that the upstream side pressure (input side pressure) of the flow rate control device.
  • the build-down type flow rate measuring unit is operated within the allowable pressure fluctuation range, and at least once within 1 second (preferably multiple times per second), a flow rate monitoring signal is transmitted from the build-down type flow rate measuring unit.
  • the flow rate control by the pressure type flow control device can be performed in parallel with the build-down type flow measurement unit, and the flow rate monitor substantially similar to the real monitor can be performed, and the difference between the monitor flow rate value and the control flow rate value is a predetermined flow rate value.
  • the flow rate setting value on the pressure-type flow control device is automatically adjusted, and the flow control value by the pressure-type flow control device is corrected to the flow value by the build-down flow measurement unit.
  • the flow rate monitor by the build-down type flow rate monitor unit is almost real time (at least once). / 1 second) with built-in flow rate monitor that simplifies the calculation control unit, significantly reduces the size of the main unit, and improves gas replacement. It is intended to provide a flow control device.
  • the inventors configure a test apparatus as shown in FIG. 1 using a pressure type flow control device FCS using an orifice, and the pressure type flow control device FCS and a primary side opening / closing switching valve (upstream side valve) AV. Based on the slope of the pressure drop between them, various basic tests on flow measurement by the build-down method for calculating the flow rate were conducted.
  • N 2 is a gas supply source
  • RG is a pressure regulator
  • ECV is an electromagnetic drive unit
  • AV is a primary side opening / closing switching valve (upstream valve)
  • FCS is a pressure flow control device
  • VP Vacuum pump
  • BC is a build-down capacity
  • T is a temperature sensor
  • P is a pressure sensor provided on the primary side of the control valve in the pressure type flow control device
  • FCS is a pressure sensor output
  • E is a power supply unit
  • E 1 the pressure type flow rate control apparatus for a power supply
  • E 2 is the power supply operation control unit
  • E 3 is the power supply for the primary side switching valve (upstream valve)
  • S is the signal generator
  • CP is the arithmetic control unit
  • CPa the pressure type A flow rate calculation control unit
  • CPb is a builddown monitor flow rate calculation control unit
  • PC is a calculation display unit
  • NR is a data logger.
  • the build-down capacity BC corresponds to a pipe space volume between the outlet side of the primary side opening / closing switching valve (upstream side valve) AV and the inlet side of the control valve (not shown) of the pressure type flow control device FCS.
  • the internal volume V of the build-down capacity BC is 1.78 cc and 9.9 by adjusting the length and inner diameter of the pipe line, or adjusting the internal volume of a build-down chamber (not shown) interposed in the pipe line. It is configured so that it can be switched and adjusted to volumes of 91 cc, 4.6 to 11.6 cc, and 1.58 cc to 15.31 cc.
  • the flow path inner diameter between the outlet of the primary side opening / closing switching valve (upstream side valve) AV and the inlet of the control valve CV is 1.
  • the internal volume V of the build-down capacity BC is selected to be 1.58 cc to 15.31 cc.
  • the monitor flow rate is calculated using the pressure drop rate in the build-down capacity BC, as will be described later. Further, the pressure type flow rate calculation control unit In CPa, calculation of a flow rate flowing through an orifice (not shown), opening / closing control of a control valve (not shown), and the like are performed as in the control calculation unit of the conventional pressure type flow rate control device FCS.
  • the pressure type flow control device FCS the primary side opening / closing switching valve (upstream side valve) AV, the pressure regulator RG, and other devices are all well-known, and the description thereof is omitted here.
  • a piezo-driven metal diaphragm valve or a direct acting solenoid valve is used.
  • An air operated valve may be provided.
  • the reason why the build-down type flow rate measuring unit can be arranged on the upstream side of the pressure type flow rate control device FCS is that, as described above, the pressure type flow rate control device FCS using an orifice is not easily affected by fluctuations in the gas supply pressure. Further, it is well known that the flow rate can be measured with high accuracy by the build-down method.
  • the flow rate Q flowing through the build-down capacity BC with the internal volume V (l) can be calculated by the following equation (1).
  • V is the internal volume (l) of the build-down capacity BC
  • ⁇ P / ⁇ t is the pressure drop rate in the build-down capacity V
  • T is the gas temperature (° C.).
  • the upstream pressure of the pressure type flow controller FCS is set to 400 kPa abs
  • the pressure drop (pressure difference ⁇ P) is set to 50 kPa abs or more
  • the internal volume V of the build-down capacity BC is 4
  • the flow rate was measured by the build-down method at a range of 6 to 11.6 cc.
  • FIG. 2 shows the pressure drop state at this time.
  • the output of the measured flow rate is discontinuous because of the pressure recovery time (a) and one cycle is required. It took a few seconds to complete.
  • the primary side opening / closing switching valve (upstream valve) AV is opened, the time until the pressure reaches a specified value or more is the pressure recovery time (a), and the primary side opening / closing switching valve (upstream valve).
  • the time during which the pressure is lowered to a specified value or less with AV closed is the flow rate output possible time (b)
  • the proportion of the time during which the flow rate can be output is determined by the proportions of (a) and (b).
  • the idea is to make the internal volume V of the capacity smaller to shorten the time required for gas refilling (pressure recovery time (a)), and based on this idea, the internal volume V of the build-down capacity BC and In addition to studying whether real-time performance can be ensured by reducing the pressure difference ⁇ P during flow rate measurement, various tests were conducted on the accuracy of the flow rate monitor and its reproducibility.
  • FCSs with rated flow rates F20, F200, and F600 (sccm) were prepared as pressure type flow rate control devices FCS. Further, the internal volume V of the build-down capacity BC was set to two types of about 1.78 cc and about 9.91 cc. The 9.91 cc build-down capacity BC was adjusted by adjusting the pipe length and the pipe inner diameter. Further, the detectable time (b) of the flow rate output was set to 0.5 sec (0.25 ms ⁇ 2000 points), and the test environment temperature was set to 23 ° C. ⁇ 1 ° C.
  • FCS upstream pressure is set to 370 kPa abs.
  • FIG. 3 shows the measurement result of the pressure recovery characteristic
  • FIG. 4 is an enlarged view thereof.
  • FIG. 5 shows the pressure drop characteristics at that time.
  • the refilling time is achieved even at an N 2 flow rate of 100 sccm. (Pressure recovery time (a)) can be significantly shortened, and as shown in FIG. 5, it was confirmed that the measured flow rate output can be performed at intervals of at least one second.
  • the opening / closing speed of the primary side opening / closing switching valve (upstream side valve) AV may have a great effect in reducing the pressure recovery time (a) relative to the flow rate output possible time (b). found. For this reason, it has been found that a piezo-driven metal diaphragm valve or an electromagnetic direct valve is desirable as the primary opening / closing switching valve (upstream valve) AV.
  • shortening of the pressure recovery time (a) due to the decrease in the pressure drop range ⁇ P and the internal volume V of the build-down capacity BC leads to shortening of the pressure drop time (flow output possible time (b)). It has been found that the relationship between the measured flow rate, the internal volume V of the build-down capacity BC, and the pressure drop time (b) is particularly important.
  • Table 1 shows the relationship between the measured flow rate (sccm) and the pressure drop time (sec) when the internal volume V of the builddown capacity BC is 1.78 cc.
  • the internal volume V of the builddown capacity BC is In the case of 1.78 cc, it can be seen that if the flow rate is not 50 sccm or less, it is difficult to output the flow rate once or more within one second, and it is difficult to monitor the flow rate corresponding to real time.
  • the pressure drop characteristic during the flow rate output possible time (b) needs to have linearity from the viewpoint of measurement error, and the pressure drop rate is constant (that is, linearity is within the range in which the flow rate can be calculated). It is limited to the range of the portion having.
  • the flow measurement error due to the deviation from the linearity of the pressure drop characteristic curve was measured by measuring 5 points every 0.25 seconds when the flow measurement possible time (b) was within 1 second. That is, the internal volume V of the build-down capacity BC is 1.78 cc and 9.91 cc, the pressure drop range ⁇ P is 20 kPa abs, and the time from the closing of the primary side switching valve (upstream side valve) AV to the stabilization of the flow rate is 1 Second, the flow rate was calculated every 0.25 sec, and the error of the calculated flow rate with respect to the control flow rate was examined.
  • FIGS. 9 and 10 show the results. In either case, the error can be greatly reduced by 0.25 sec or more after the primary side on-off switching valve (upstream side valve) AV is closed. understood. That is, it was confirmed that the error decreases as the pressure drop characteristic curve approaches a straight line.
  • Table 2 shows the relationship between the internal volume V of the build-down capacity BC, the measured flow rate, and the pressure drop time (b).
  • the internal volume V of the build-down capacity BC 1.78 cc
  • the flow rate can be output at intervals within about 1 second. It can also be seen that when the internal volume V of the build-down capacity BC is 9.91 cc, the flow rate can be output at intervals of about 1 second when the flow rate is 100 to 200 sccm.
  • FIG. 11 shows measurement data of flow rate accuracy when repeated measurement (10 times) is performed.
  • the pressure drop time (b) is 0.5 seconds or less, the pressure drop is as shown in FIG. Since the flow rate calculation is performed within the non-linear region of the characteristic curve, it can be seen that the flow rate error tends to appear in the positive direction as shown in FIG.
  • Q K ⁇ (build-down capacity ⁇ pressure drop rate ⁇ 1 / temperature)
  • the present invention was created based on the results of each of the above tests, and includes a build-down type flow rate monitoring unit BDM provided on the upstream side, a pressure-type flow rate control unit FCS provided on the downstream side, and a build-down type.
  • Type flow rate monitoring unit BDM and pressure type flow rate control unit FCS are connected, signal transmission circuit CT for transmitting the monitor flow rate Q of builddown type flow rate monitor unit BDM to pressure type flow rate control unit FCS, and pressure type flow rate control unit FCS And a flow rate set value adjustment mechanism QSR that adjusts the set flow rate Qs of the pressure type flow rate control unit FCS by the monitor flow rate Q from the build-down type flow rate monitor unit BDM.
  • the pressure flow control unit FCS can be a flow control unit including a pressure sensor.
  • the flow rate setpoint adjustment mechanism QSR has a comparator between the monitor flow rate Q and the set flow rate Qs, and automatically corrects the set flow rate Qs to the monitor flow rate Q when the difference between the monitor flow rate Q and the set flow rate Qs exceeds the set value. It can be set as the flow volume setting value adjustment mechanism of a structure.
  • the build-down type flow rate monitoring unit BDM has a primary side opening / closing switching valve PV 1 that opens and closes the flow of gas from the gas supply source, and a build having a predetermined internal volume V connected to the outlet side of the primary side opening / closing switching valve PV 1 and the down capacitor BC, a temperature sensor for detecting the temperature of the gas flowing through the build-down capacity BC, the pressure sensor P 3 for detecting the pressure of gas flowing through the build-down capacity BC, the primary side switching switch valve PV It performs one opening and closing control by opening the primary opening and closing the switching valve PV 1 after the gas pressure in the build-down capacity BC to set the upper limit pressure value, after a predetermined time t s the closure of the primary side switching switch valve PV 1
  • a monitor flow rate calculation control unit CPb for calculating and outputting a monitor flow rate Q by a build-down method by lowering the gas pressure to a set lower limit pressure value, (Where T is the gas temperature (° C.), V is the internal volume (l) of the build-down
  • the pressure-type flow control unit FCS is a pressure-type flow control device FCS having a pressure resistance variability comprising a control valve CV, an orifice OL or a critical nozzle, a pressure gauge P 1 and / or a pressure gauge P 2 and a flow rate calculation control part CPa. It can be.
  • the internal volume V of the builddown capacity BC is set to 0.5 to 20 cc
  • the set upper limit pressure value is set to 400 to 100 kPa abs
  • the set lower limit pressure value is set to 350 kPa abs to 50 kPa abs
  • the predetermined time t is set to 0.5 to It can be within 5 seconds.
  • the primary side open / close switching valve AV is a piezo-driven metal diaphragm valve or an electromagnetic direct drive type electric valve, and the gas from the set lower limit pressure value to the set upper limit pressure value due to the opening of the primary side open / close switch valve AV due to high-speed opening / closing of the valve.
  • the pressure recovery time can be made significantly shorter than the gas pressure drop time from the set upper limit pressure value to the set lower limit pressure value due to the closing of the primary side opening / closing switching valve AV.
  • the flow rate calculation control unit CPa of the pressure type flow rate control unit FCS and the calculation control device CPb of the builddown type flow rate monitoring unit BDM may be integrally formed.
  • the build-down capacity BC is a chamber, and the chamber has a structure in which an inner cylinder and an outer cylinder are concentrically arranged and fixed, and a gap between the inner and outer cylinders forming the chamber is used as a gas flow path. It may be a configuration in which a pressure sensor P 3 in.
  • a flow rate control device with a flow rate monitor, a builddown type flow rate monitor unit BDM provided on the upstream side, a pressure type flow rate control unit FCS provided on the downstream side of the builddown type flow rate monitor unit BDM, Signal transmission circuit CT that connects the build-down flow monitor BDMB and the pressure flow controller FCS, and transmits the monitor flow Q of the build-down flow monitor BDM to the pressure flow controller FCS, and pressure flow control
  • the built-in flow rate monitor unit is composed of a flow rate setting value adjusting mechanism QSR that adjusts the set flow rate Qs of the pressure type flow rate control unit FCS by the monitor flow rate Q from the build-down type flow rate monitor unit BDM.
  • the set flow value of the pressure flow control unit FCS is automatically adjusted by the BDM monitor flow rate.
  • a build-down type flow monitor BDM is installed upstream of the pressure type flow control unit FCS, and the high response to the input side pressure fluctuation of the pressure type flow control unit is used to input the pressure type flow control unit FCS.
  • a pressure drop ⁇ P corresponding to a gas pressure difference within a range in which side pressure fluctuation is allowed is generated at a rate of once or more per second in the build-down capacity BC, and the pressure drop rate ⁇ P / ⁇ t and the build.
  • the pressure drop value (pressure difference ⁇ P), the pressure drop time ( ⁇ t), and the pressure drop time so that the monitor flow rate can be calculated and output at least once per second from the internal volume V of the down capacity BC and the gas temperature K.
  • the internal capacity V of the build-down capacity BC is set.
  • the pressure drop value (pressure difference) ⁇ P is set to about 20 to 30 kPa abs
  • the pressure drop time ⁇ t is set to 0.5 to 0.8 sec
  • the internal volume V of the build-down capacity BC is set to 1.8 to 18 cc.
  • the pressure flow control device with flow monitor can be greatly simplified, downsized, and the manufacturing cost can be reduced. The added value of is significantly improved.
  • FIG. 1 It is a schematic block diagram of the test apparatus for measuring the flow monitor characteristic of a pressure type flow control apparatus with a build-down type flow monitor. It is explanatory drawing of the pressure drop state of a builddown type
  • FIG. 1 is a system diagram showing a basic configuration of a pressure type flow rate control device with a flow rate monitor according to the present invention. It is a longitudinal cross-sectional schematic diagram of the build-down type pressure type flow control apparatus with a flow monitor which concerns on this invention.
  • FIG. 1 is a system diagram showing a basic configuration of a pressure type flow rate control device with a flow rate monitor according to the present invention. It is a longitudinal cross-sectional schematic diagram of the build-down type pressure type flow control apparatus with a flow monitor which concerns on this invention.
  • FIG. 6 is a diagram showing the relationship between the gas flow rate sccm and the pressure drop slope kPa / sec when the measurable time is 1 second or less in each of the chambers A to E used in the examples.
  • This shows the form of the pressure drop characteristic when the slope of the pressure drop in each of the chambers A to E used in this example is 20 kPa / sec.
  • It is a diagram showing the relationship between the elapsed time from the closing of the primary side on / off switching valve (upstream side valve) AV of each chamber A to E used in this example and the flow rate stability.
  • Flow rate accuracy% S In repeated measurement of chamber A and chamber B used in this embodiment.
  • P It is a diagram which shows the relationship between flow rate sccm.
  • Flow rate accuracy% S In repeated measurement of chamber A and chamber B used in this embodiment.
  • P It is a diagram which shows the relationship between the inclination of pressure drop, and kPa / sec of pressure drop.
  • It is a basic lineblock diagram of the conventional pressure type flow control device.
  • It is a basic block diagram of a conventional pressure type flow control device with a flow rate monitor.
  • FIG. 12 is a system diagram showing a basic configuration of a flow rate control device with a flow rate monitor according to the present invention, and the flow rate control device with flow rate monitor connects a builddown unit BDM and a pressure type flow rate control unit FCS to each other. It is composed of a signal transmission circuit (digital communication circuit) CT.
  • PV 1 is an inlet side switching valve
  • PV 2 is an outlet side switching valve
  • BC is a build-down capacity
  • P 3 is a pressure sensor for detecting a differential pressure
  • CPb is a monitor flow rate calculation control unit
  • VB 2 is a monitor outlet side block.
  • CV is a control valve
  • CPa is a flow rate calculation control unit
  • OL 1 is a small diameter orifice
  • OL 2 is a large diameter orifice
  • P 1 is a first pressure sensor
  • P 2 is a second pressure sensor
  • VB. 3 is a flow control unit inlet side block
  • VB 4 is a flow control unit outlet side block
  • VB 5 is a connecting block
  • SK is a gasket of the connecting unit.
  • the pressure type flow rate control unit FCS is provided with a set flow rate adjustment mechanism QSR, and a preset flow rate value Qs is compared with a build-down flow rate Q input via the signal transmission circuit CT and a comparator (not shown). ), The set flow rate value Qs is automatically corrected to Qs' and the flow rate control value of the pressure flow control unit FCS matches the build-down flow rate Q. Adjusted to That is, the actual flow rate is adjusted to match the builddown flow rate Q.
  • the temperature detection sensor T, the filter F and the like are omitted, and the pressure type flow rate control unit FCS may be of any type, for example, one orifice.
  • the basic configuration itself of the pressure type flow rate control unit FCS and the build-down type flow rate monitoring unit BDM is well known, detailed description thereof is omitted here.
  • the gas having a pressure of 500 to 320 kPa abs flowing from the gas inlet 1 to the build-down type flow rate monitoring unit BDM is supplied with an inlet-side piezo switching valve PV 1 , a chamber-type build-down capacity BC, and an outlet-side piezo switching. flows in the order of the valve PV 2, monitors the flow rate Q is calculated by the monitor flow rate calculation control unit CPb, which is input to the set flow rate adjustment mechanism QSR of pressure type flow rate control unit FCS. Further, the gas flowing out from the build-down type flow rate monitoring unit BDM flows out from the gas outlet 2 through the control valve CV, the small diameter orifice OL 1 and / or the large diameter orifice OL 2 .
  • the flow rate calculation control unit CPa calculates the orifice flow gas flow rate, and controls the opening / closing of the control valve CV and the opening / closing control of the orifice switching valve OLV. Further, in the set flow rate adjustment mechanism QSR of the flow rate calculation control unit CPa, the monitor flow rate Q from the build-down type flow rate monitor unit BDM and the orifice flow rate (that is, the control flow rate in the flow rate calculation control unit CPa) are compared, When the difference between the two exceeds a predetermined set value, the set flow rate Qs is adjusted so that the control flow rate of the pressure flow control unit FCS matches the monitor flow rate Q, and this is automatically corrected to Qs ′.
  • build-down type flow monitor controller CPb to form the main part of the present invention, the inlet side (upstream side) piezo-off control of the switching valve PV 1, differential pressure detection pressure sensors P 3, the temperature sensor T (FIG. 12 is omitted), and the builddown flow rate Q is calculated from the volume V of the buildup capacity BC between the both switching valves PV 1 and PV 2 and the like, and this is output to the flow rate calculation control unit CPa.
  • the pressure drop rate ⁇ P / ⁇ t is measured and the monitor flow rate Q is calculated by the builddown type flow rate monitor unit BDM, and the monitor flow rate calculation control unit CPb is externally connected.
  • the monitor flow rate is monitored and displayed at a rate of at least once per second, and the control flow rate value of the pressure flow control unit FCS is corrected. Correction is performed automatically.
  • the pressure type flow control device FCS and the build-down type flow rate monitoring unit BDM are well known, and thus detailed description thereof is omitted here. Further, the difference between the monitor flow rate output Q (flow rate output from the monitor flow rate calculation control unit CPb) and the flow rate output of the pressure type flow rate control unit FCS (flow rate output from the pressure type flow rate calculation control unit CPa) is greater than the set value. If a problem occurs, a flow rate abnormality alarm is issued, or if necessary, the flow rate self-diagnosis of the so-called pressure-type flow control device FCS can be performed to identify the cause of the flow rate abnormality and its location. In addition, when a flow rate difference equal to or greater than a set value occurs, it is possible to automatically perform zero point adjustment or the like of the pressure type flow rate control unit FCS itself.
  • the inlet (upstream) side switching valve and the like are piezo-driven valves, but these may be direct-acting electromagnetically driven valves.
  • the internal volume V of the build-down capacity BC is selected in the range of 1.78 to 9.91 cc.
  • the pressure drop range ⁇ P is selected to be 20 kPa abs (350 to 320 kPa abs), and the monitor flow rate is output at least once per second.
  • the temperature detection sensor T (not shown) is an externally attached type resistance temperature sensor, but a thermostat type thermometer inserted into the monitor inlet side block VB 1 or the monitor outlet side block VB 2 is provided. It is also possible to use it.
  • the build-down capacity BC is used as the build-down capacity BC, as will be described later.
  • the build-down capacity BC is formed with the internal volume of the gas flow path, It is good also as a structure which obtains the builddown capacity
  • FIG. 13 is a schematic cross-sectional view of a flow control device with a build-down type flow rate monitor according to an embodiment of the present invention.
  • a chamber CH with a pressure sensor is used as the build-down capacity BC, and the inner diameters of the gas passages L 1 , L 2 , L 4 of the build-down type flow rate monitoring unit BDM are made as small as 1.8 mm.
  • a second pressure sensor P 2 separately on the downstream side of the orifice OL 1, OL 2.
  • a pressure sensor P 3 for and differential in the chamber CH pressure.
  • a small pressure chamber CH is provided between the inlet side switching valve PV 1 and the outlet side switching valve PV 2 , and the internal volume of the pressure chamber CH is adjusted so that the builddown is performed.
  • the internal volume V of the capacity BC is adjusted.
  • a piezo drive metal diaphragm type normal close valve is used.
  • the piezo drive metal diaphragm type normally closed valve itself is publicly known, description thereof is omitted.
  • the pressure chamber CH is formed in a double cylinder of an outer cylinder CHa and an inner cylinder CHb, and a gap G between the inner and outer cylinders CHa and CHb is selected to be 1.8 mm in this embodiment.
  • the internal volume of the pressure chamber CH are 1.3 to being selected to be approximately 12 cc, the configuration to which was attached a pressure sensor P 3 for differential pressure detection.
  • the volume of the pressure chamber CH can be freely selected, and the gas flow passages L 1 , L 2 , L 4, etc. can all be made the same small diameter (for example, 1.8 mm ⁇ ).
  • the internal volume of the build-down capacity BC can be set to a predetermined volume value accurately and easily.
  • test chambers CH five chambers of the sizes shown in Table 3 with the gap G of 1.8 mm and 3.6 mm were prepared as test chambers CH, and these were applied to the test apparatus of FIG.
  • the flow sensor T was stuck and fixed to the outer surface of the chamber CH.
  • the volumes of the gas flow paths L 2 and L 4 other than the chamber CH are 0.226 cc.
  • FIG. 14 shows the relationship between the gas flow rate (sccm) and the slope of the pressure drop (kPa / sec) when the pressure drop time (b) in FIG. The results are shown, and the actual build-up capacities when assembled in the test apparatus were 2.31 cc to 15.45 cc.
  • each flow rate can be measured at 25.2 sccm in chamber A, 106.6 sccm in chamber B, and 169.0 sccm in chamber E. I understand that.
  • FIG. 15 shows the linearity of the pressure drop when the gas flow rate is adjusted so that the slope of the pressure drop is 20 kPa / sec in the test apparatus of FIG. It is a similar diagram. Note that the measurement data is obtained by the data logger NR in FIG.
  • the flow rate measurement error due to the deviation from the linearity of the pressure drop characteristic curve is 0.25 within the flow rate measurable time (b) within 1 second. It is determined that five points are measured every second, and it can be seen that the chambers A and B having a smaller build-up capacity BC have a smaller flow rate error sooner after the pressure drop starts (that is, a straight line of the pressure drop characteristic). It can be said that it is excellent in properties).
  • FIG. 17 shows the results of investigating the reproducibility of the flow rate measurement accuracy for chamber A and chamber B, and is performed in the same manner as in FIG.
  • the reproducibility test of the flow rate measurement accuracy in order to stabilize the slope of the pressure drop, measurement is performed after a predetermined waiting time after the primary switching valve (upstream valve) AV is closed. In order to obtain reproducibility, measurement is performed over a long period of time, and the flow rate output time is set to be within 1 second.
  • Table 4 shows basic data used to create a diagram showing the reproducibility of the flow rate measurement accuracy shown in FIG. 17.
  • the present invention can be widely applied not only to gas supply equipment for semiconductor manufacturing equipment but also to gas supply equipment for chemical manufacturing equipment as long as it is a pressure type flow rate control device using an orifice or a critical nozzle.
  • BDM Build-down flow monitor FCS Pressure flow controller (pressure flow controller) AV Primary open / close switching valve (upstream valve) BC Builddown capacity V Internal volume RG of builddown capacity Pressure regulator N 2 N 2 supply source T Temperature sensor (resistance temperature detector) P 1 , P 2 pressure sensor P 3 differential pressure detection pressure sensor CV control valve OL orifice OL 1 small bore orifice OL 2 large bore orifice OIP external input / output circuit OLV orifice switching valve VB 1 monitor inlet side block VB 2 monitor outlet side Block VB 3 Flow rate control unit inlet side block VB 4 Flow rate control unit outlet side block VB 5 Connection portion gasket CT Signal transmission circuit (digital communication circuit) CP calculation control unit CPa flow rate calculation control unit CPb monitor flow rate calculation control unit E 1 power source for pressure flow control device E 2 power source for calculation control unit E 3 power source for solenoid valve ECV electric drive unit NR data logger S signal generator PC calculation display Part PV 1 inlet side switching valve (inlet side piezo switching valve

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本発明は、圧力式流量制御部が備えた高い耐圧力変動特性を有効に利用して、ビルドダウン式流量モニタ部を圧力式流量制御部の上流側に組み合せすることにより、リアルタイムに近い流量モニタが行えると共に、モニタ流量を用いて圧力式流量制御部の設定流量を自動調整することができ、しかも装置の大幅な小型化及び低コスト化を可能にした流量モニタ付流量制御装置を提供する。本発明は、上流側に設けたビルドダウン式流量モニタ部(BDM)と、その下流側に設けた圧力式流量制御部(FCS)と、ビルドダウン式流量モニタ部(BDM)と圧力式流量制御部(FCS)とを連結し、ビルドダウン式流量モニタ部(BDM)のモニタ流量(Q)を圧力式流量制御部(FCS)へ伝送する信号伝送回路(CT)と、圧力式流量制御部(FCS)に設けられ、前記ビルドダウン式流量モニタ部(BDM)からのモニタ流量(Q)により圧力式流量制御部(FCS)の設定流量(Qs)を調整する流量設定値調整機構(QSR)とから構成する。

Description

流量モニタ付流量制御装置
 本発明は、流量モニタ付流量制御装置の改良に関し、詳しくは、耐圧力変動特性を備えた流量制御装置とビルドダウン式流量モニタとを有機的に組合せることにより、流量制御装置による制御流量をリアルタイムでモニタできると共に、制御流量とモニタ流量間の差異が設定値を超えると、自動的に流量制御装置側の流量設定値を調整することができるようにした流量モニタ付流量制御装置に関する。
 従前から、半導体制御装置用ガス供給装置に於いては、熱式流量制御装置MFCや圧力式流量制御装置FCSが広く利用されている。特に、後者の圧力式流量制御装置FCSは図19に示すように、コントロール弁CV、温度検出器T、圧力検出器P、オリフィスOL及び温度補正・流量演算回路CDaと比較回路CDbと入出力回路CDcと出力回路CDd等から成る演算制御部CD等から構成されており、一次側供給圧が大きく変動しても、安定した流量制御が行えるという優れた流量特性を具備している。
 即ち、図19の圧力式流量制御装置FCSでは、圧力検出器P及び温度検出器Tからの検出値がディジタル値に変換され、そのあと温度補正・流量演算回路CDaへ入力される。ここで検出圧力の温度補正と流量演算が行われ、流量演算値Qtが比較回路CDbへ入力される。また、設定流量に対応する入力信号QSが端子Inから入力され、入出力回路CDcでディジタル値に変換されたあと比較回路CDbへ入力され、ここで前記温度補正・流量演算回路CDaからの流量演算値Qtと比較される。比較の結果、設定流量入力信号Qsが流量演算値Qtより大きい場合には、コントロール弁CVの駆動部へ制御信号Pdが出力される。これによりコントロール弁CVが閉鎖方向へ駆動され、設定流量入力信号Qsと演算流量値Qtとの差(Qs-Qt)が零となるまで閉弁方向へ駆動される。
 当該圧力式流量制御装置FCSでは、オリフィスOLの下流側圧力Pと上流側圧力Pとの間にP/P≧約2の所謂臨界膨張条件が保持されている場合には、オリフィスOLを流通するガス流量QがQ=KP(但しKは定数)となり、圧力Pを制御することにより流量Qを高精度で制御できると共に、コントロール弁CVの上流側ガスGoの圧力が大きく変化しても、制御流量値が殆ど変化しないという優れた特性が備わっている。
 尚、圧力式流量制御装置FCSそのものは公知であるため、ここではその詳細な説明を省略する。
 しかし、この種の圧力式流量制御装置FCSでは、微小な穴径のオリフィスOLを使用しているため、オリフィスOLの穴径の経年変化が不可避である。そして、穴径が変化すると、圧力式流量制御装置FCSの設定流量(即ち制御流量値)と、現実にオリフィスOLを流通するガスGoの実流量値との間に差異を生ずることになる。また、この差異を検出するためには、所謂流量モニタを頻繁に行う必要があり、半導体製造装置の稼動性や製造した半導体の品質等に大きな影響を与えるという問題がある。
 そのため、圧力式流量制御装置の分野に於いては、従来から、オリフィスOLの穴径の変化を可能な限り早期に検出して、圧力式流量制御装置FCSによる制御流量値と、現実にオリフィスを流通するガスGoの実流量値との間の差異の発生を防止するための対策が採られており、この種のオリフィスOLの穴径変化等の検出には、所謂ビルドアップ方式やビルドダウン方式を用いたガス流量測定方法が多く用いられている。
 一方、前記ビルドアップ方式やビルドダウン方式のガス流量測定では、実ガスの供給を一時的に停止する必要があるため、ガス流量測定が半導体製造装置の稼動率の低下や製造した半導体の品質等に大きな影響を与えるという問題がある。
 そのため、近年、この種の流量制御装置の分野に於いては、実ガスの供給を一時的に停止することなしに、供給ガスの流量制御が適正に行われているか否かをリアルタイムで簡単にモニタできるようにした流量モニタ付流量制御装置の開発が進められている。
 例えば、図20はその一例を示すものであり、当該流量モニタ付流量制御装置20は、流路23と、入口側圧力を検出する第1圧力センサ27aと、開閉制御弁24と、熱式質量流量センサ25と、第2圧力センサ27bと、絞り部(音速ノズル)26と、演算制御部28aと、入出力回路28b等から構成されている。
 また、前記熱式質量流量センサ25は、整流体25aと、流路23から所定の割合F/Aの流量を分岐する分岐流路25bと、分岐流路25bに設けたセンサ本体25cとを有し、総流量Fを示す流量信号Sfを、演算制御部28aへ出力する。
 更に、絞り部26は、その上流側と下流側における圧力差が所定値以上のとき(即ち、臨界条件下の流体流のとき)に、上流側圧力に比例した流量の流体を流す音速ノズルである。尚、図20に於いて、SPa、SPbは圧力信号、Pa、Pbは圧力、Fは総流量、Sfは流量信号、Cpは弁開度制御信号である。
 前記演算制御部28aは、圧力センサ27a、27bからの圧力信号Spa、Spbおよび流量センサ25からの流量信号Sfをフィードバックして弁開度制御信号Cpを出力することで、開閉制御弁24をフィードバック制御する。即ち、演算制御部28aへは入出力回路28bから流量設定信号Fsが入力され、質量流量制御装置20に流れる流体の流量Fが流量設定信号Fsとなるように調整される。
 具体的には、演算制御部28aが第2圧力センサ27bの出力(圧力信号Spb)を用いて開閉制御弁24の開閉をフィードバック制御することにより、音速ノズル26を流れる流体の流量Fを制御すると共に、このときの熱式流量センサ25の出力(流量信号Sf)を用いて、実際に流れている流量Fの測定を行い、質量流量制御装置20の動作を確認するものである。
 上述のように、図20の流量モニタ付流量制御装置20に於いては、第2圧力センサ27bの圧力信号Spbを用いて開閉制御弁24の開度を調整する圧力式流量制御と、実流量の監視を行う熱式流量センサ25を用いた流量測定という二種の方式を演算制御部8aに組み込みしているため、設定流量Fsに対応する制御流量の流体が実際に流れているか否か、即ち制御流量と実流量と間に差があるか否かを簡単且つ確実にリアルタイムでモニタすることができ、高い実用的効用を奏するものである。
 しかし、当該図20の流量モニタ付流量制御装置20にも解決すべき問題が多く残されている。
 先ず、第1の問題は、モニタ流量値(実流量値)と制御流量値との間に差異が生じた場合に、差異の発生を警報等により感知することは可能であるものの、自動的に制御流量値の修正、即ち設定流量値Fsの調整ができない。そのため、もしも何等かの原因例えば運転要員の不在等で制御流量値の修正が遅れた場合には、設定流量値と異なった流量のガス(実流量ガス)の供給が継続されることになり、半導体製造上さまざまな不都合が生ずることになる。
 第2の問題は、流量制御を行うための第2圧力センサ27bを用いた圧力式流量測定と、流量監視を行うための熱式流量センサ25を用いた流量測定という二種の異なる測定方式を組み込みしているため、流量モニタ付流量制御装置20の構造が複雑となり、装置の小型化及び製造コストの引下げが図れない点である。
 第3の問題は、演算制御部28aが、第2圧力センサ27bの出力Spbと熱式流量センサ25の流量出力Sfの両信号を用いて開閉制御弁24を開閉制御すると共に、第1圧力センサ27aの出力Spaを用いて熱式流量センサ25の流量出力Sfを補正する構成としており、第1圧力センサ27a及び第2圧力センサ27bの二つの圧力信号と熱式流量センサ25からの流量信号との三つの信号を用いて、開閉制御弁24の開閉制御を行うようにしている。そのため、演算制御部28aの構成が複雑になるだけでなく、圧力式流量制御装置FCSとしての安定した流量制御特性や優れた高応答性が逆に低減されてしまうと云う問題がある。
特許第2635929号 特許第2982003号 特許第4308350号 特許第4137666号
 本発明は、a従前のビルドダウンやビルドアップ式の流量測定方法を用いた流量モニタ付流量制御装置の場合には、流量モニタに際して実ガスの供給を一時的に停止しなければならず、半導体製造装置の稼動率の低下や製造した半導体の品質変動等を生ずること、及び、b従前の図20のような熱式流量計と圧力式流量制御装置を組み合せた構造の流量モニタ付流量制御装置では、実流量の異常が判明しても自動的に制御流量の設定値の修正が行えず、流量修正の遅れによってさまざまな不都合が生じるうえ、流量制御装置自体の構造の簡素化及び装置の小型化が困難となり、加えて圧力式流量制御装置の有する優れた応答特性や安定した流量制御特性が減殺されること等の問題の解決を主たる発明の目的とする。
 上記目的を達成するため、本発明は、圧力式流量制御装置FCSとその上流側に設けたビルドダウン式の流量測定部とを一体に組合せし、流量制御装置の上流側圧力(入力側圧力)に許容される圧力変動範囲内で前記ビルドダウン式の流量測定部を作動させ、少なくとも1秒以内に1回(望ましくは、一秒間に複数回)ビルドダウン式流量測定部から流量モニタ信号を発信することにより、圧力式流量制御装置による流量制御と同時並行的にビルドダウン式流量測定部による実質的にリアルモニタに近い流量モニタが行えると共に、モニタ流量値と制御流量値の差異が所定流量値を越えた場合には、自動的に圧力式流量制御装置側の流量設定値を調整して、圧力式流量制御装置による流量制御値をビルドダウン式流量測定部による流量値に修正する様にした流量モニタ付流量制御装置を提供するものである。
 即ち、入力側の圧力変動により流量制御特性が殆ど影響を受ないと云う圧力式流量制御装置の流量特性をフルに活用して、ビルドダウン式流量モニタ部による流量モニタを略リアルタイム(少なくとも1回/1秒)に近い状況下で行うことができ、しかも、演算制御部の簡素化、機器本体部の大幅な小型化、及び、ガス置換性の向上等を可能にしたビルドダウン式流量モニタ付流量制御装置を提供せんとするものである。
 本発明者等は、先ず、オリフィスを用いた圧力式流量制御装置FCSを用いて図1に示す如き試験装置を構成し、圧力式流量制御装置FCSと一次側開閉切換弁(上流側弁)AV間の圧力降下の傾きとから、流量算出を行うビルドダウン方式による流量測定に関する基礎的な各種試験を行った。
 即ち、図1に於いて、Nはガス供給源、RGは圧力調整器、ECVは電磁駆動部、AVは一次側開閉切換弁(上流側弁)、FCSは圧力式流量制御装置、VPは真空ポンプ、BCはビルドダウン容量、Tは温度センサ、Pは圧力式流量制御装置FCS内のコントロール弁の1次側に設けた圧力センサ、Pは圧力センサ出力、Eは電源部、Eは圧力式流量制御装置用電源、Eは演算制御部用電源、Eは一次側開閉切換弁(上流側弁)用電源、Sは信号発生器、CPは演算制御部、CPaは圧力式流量演算制御部、CPbはビルドダウンモニタ流量演算制御部、PCは演算表示部、NRはデータロガである。
 前記ビルドダウン容量BCは、一次側開閉切換弁(上流側弁)AVの出口側と圧力式流量制御装置FCSのコントロール弁(図示省略)の入口側との間の管路空間容積に相当する。前記管路の長さや内径等の調整、或いは当該管路に介設したビルドダウン用チャンバ(図示省略)の内容積の調整により、当該ビルドダウン容量BCの内容積Vは1.78ccと9.91cc、4.6~11.6cc及び1.58cc~15.31ccの各容積に切換え調整できるように構成されている。
 尚、ビルドダウン用チャンバを用いた場合には、後述の実施例で説明するように、一次側開閉切換弁(上流側弁)AVの出口とコントロール弁CVの入口間の流路内径を1.8mmとし、且つビルドダウン容量BCの内容積Vを1.58cc~15.31ccに選定している。
 前記演算制御部CP内のビルドダウンモニタ流量演算制御部CPbでは、後述するようにビルドダウン容量BCに於ける圧力降下率を用いてモニタ流量の演算が行われ、更に、圧力式流量演算制御部CPaでは、従前の圧力式流量制御装置FCSの制御演算部と同様に、オリフィス(図示省略)を流通する流量の演算及びコントロール弁(図示省略)の開閉制御等が行われる。
 尚、圧力式流量制御装置FCS、一次側開閉切換弁(上流側弁)AV、圧力調整器RG及びその他の機器類は全て公知のものであるため、ここではその説明を省略する。
 また、前記一次側開閉切換弁(上流側弁)AVは、開閉を短時間内で行う必要があるため、ピエゾ駆動式メタルダイヤフラム弁や直動型電磁弁が使用されるが、パイロット電磁弁を設けたエアー作動弁であっても良い。
 ビルドダウン式の流量測定部が圧力式流量制御装置FCSの上流側に配置できるのは、前述の通りオリフィスを用いた圧力式流量制御装置FCSがガス供給圧変動の影響を受け難いからである。また、ビルドダウン方式により、高精度な流量測定が可能なことは公知のことである。
 即ち、ビルドダウン方式に於いては、内容積V(l)のビルドダウン容量BC内を流通する流量Qは、下記の(1)式により算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ただし、ここでVはビルドダウン容量BCの内容積(l)、ΔP/Δtはビルドダウン容量Vに於ける圧力降下率、Tはガス温度(℃)である。
 先ず、図1の試験装置を用いて、圧力式流量制御装置FCSの上流側圧力を400kPa abs、降下圧力(圧力差ΔP)を50kPa abs以上とすると共に、ビルドダウン容量BCの内容積Vを4.6~11.6ccとし、ビルドダウン方式による流量測定を行った。図2は、この時の圧力降下状態を示すものであり、流量そのものは比較的精度よく測定できるものの、圧力回復時間(a)が必要なために測定流量の出力が不連続となり、且つ1サイクルに要する時間が数秒以上となることが判った。
 即ち、一次側開閉切換弁(上流側弁)AVを開とし、圧力が規定値以上の圧力になるまでの時間を圧力回復時間(a)とし、また、一次側開閉切換弁(上流側弁)AVを閉として圧力が規定値以下にまで下降する時間を流量出力可能時間(b)とすると、上記(a)と(b)の割合によって、流量出力ができる時間の割合が決まることになる。また、この流量出力可能時間(b)は、FCSの制御流量、ビルドダウン容量の内容積V、圧力下降範囲ΔPによって決まるため、FCSの制御流量、ビルドダウン容量の内容積V及び圧力下降範囲ΔPをより厳密に検討して、夫々を適宜な値にしなければ、ビルドダウン方式による流量測定をリアルタイム流量モニタに近づけることができないことが判明した。
 一方、リアルタイム流量モニタであるためには、理想的には連続的な流量出力が必須となるが、現実の半導体製造装置等の運転に於いては、1秒間に少なくとも1回以上の流量出力を得ることが出来れば、ほぼリアルタイムに近い流量モニタが可能となる。
 そこで、本発明者等は、ビルドダウン式による流量測定に於いて、1秒間に少なくとも1回以上の流量出力を得てリアルタイムに近い流量モニタを可能とするために、前記圧力差ΔP及びビルドダウン容量の内容積Vをより小さくしてガス再充填に必要な時間(圧力回復時間(a))を短くすることを着想し、また、当該着想に基づいて、ビルドダウン容量BCの内容積V及び流量測定時の圧力差ΔPの減少によってリアルタイム性の確保が可能か否かを検討すると共に、流量モニタ精度やその再現性等について各種の試験を行った。
[試験1]
 先ず、図1の試験装置に於いて、圧力式流量制御装置FCSとして定格流量がF20、F200及びF600(sccm)の三種類のFCSを準備した。
 また、ビルドダウン容量BCの内容積Vを約1.78ccと、約9.91ccの二種類に設定した。尚、9.91ccのビルドダウン容量BCは、配管長さ及び配管内径を調整することにより容量の調整を行った。
 更に、流量出力の検出可能時間(b)は0.5sec(0.25ms×2000点)を目標とし、且つ試験環境温度は23℃±1℃とした。
 次に、FCS上流側圧力を370kPa abs.とし、圧力差ΔP=20kPa abs、流量N=100sccmに設定(FCS側で設定)し、ビルドダウン流量測定の際の圧力回復特性(圧力回復時間(a))を測定した。
 図3は圧力回復特性の測定結果を示すものであり、また、図4はその拡大図である。
 更に、図5は、その時の圧力降下特性を示すものである。
 図3は及び図4からも明らかなように、ビルドダウン容量BCの内容積Vを1.78cc及び圧力下降範囲ΔPを20kPa absと小さくすることにより、N流量100sccmに於いても再充填時間(圧力回復時間(a))を大幅に短くすることができ、図5に示すように、少なくとも1秒以内の間隔で測定流量出力を行えることが確認できた。
 試験1に関連して、一次側開閉切換弁(上流側弁)AVの開閉速度が、圧力回復時間(a)を流量出力可能時間(b)に対して小さくする点で大きな影響を持つことが判明した。そのため、一次側開閉切換弁(上流側弁)AVとしては、ピエゾ駆動式メタルダイヤフラム弁や電磁直付型弁が望ましいことが判明した。
 また、圧力下降範囲ΔP及びビルドダウン容量BCの内容積Vの減少による圧力回復時間(a)の短縮化は、圧力降下時間(流量出力可能時間(b))の短縮化を招くことになるため、測定流量とビルドダウン容量BCの内容積Vと圧力降下時間(b)の関係が、特に重要となることが判明した。
Figure JPOXMLDOC01-appb-T000001
 表1は、ビルドダウン容量BCの内容積Vを1.78ccとした場合の測定流量(sccm)と圧力降下時間(sec)との関係を示すものであり、ビルドダウン容量BCの内容積Vが1.78ccの場合には、50sccm以下の流量でないと1秒間以内に1回以上の流量出力を行うことが困難となり、リアルタイムに相当する流量モニタを行うことが困難となることが判る。
 一方、流量出力可能時間(b)に於ける圧力降下特性は、直線性を有することが測定誤差の点から必要であり、流量算出が可能な範囲は、圧力降下率が一定(即ち、直線性を有する部分)の範囲に限定されることになる。
 図6乃至図8は、試験1に於いて、測定流量が100,50及び10sccmに於ける圧力降下特性の形態を調査した結果を示すものであり、何れの場合に於いても、ビルドダウン直後には圧力降下特性が直線性を喪失したものとなる。尚、この場合のビルドダウン容量BCは1.78ccであり、流体はNガスである。
 上記図6乃至図8に示されているビルドダウン直後に於ける直線性からのずれは、圧力変化に伴うガスの断熱膨張によるガス内部温度変化に起因して生ずるものと想定される。そして、測定流量が小さいほど、この直線性からのずれは大きくなる傾向にあり、これにより流量算出の可能な時間幅が狭められることが判る。
 次に、圧力降下特性曲線の直線性からのずれによる流量測定誤差を、流量測定可能時間(b)が1秒以内の場合について、0.25秒毎に5点測定することにより計測した。
 即ち、ビルドダウン容量BCの内容積Vを1.78cc及び9.91ccとし、圧力下降範囲ΔPを20kPa abs、一次側開閉切換弁(上流側弁)AVの閉からの流量安定までの時間を1秒として、0.25sec毎に流量を算出し、制御流量に対する算出流量の誤差を検討した。
 図9及び図10は、その結果を示すものであり、何れの場合も一次側開閉切換弁(上流側弁)AVの閉鎖より0.25sec以上経過することにより、誤差が大幅に減少することが判った。即ち、圧力降下特性曲線が直線に近づくに従って、誤差が減少することが確認された。
 尚、表2は、ビルドダウン容量BCの内容積Vと、測定流量と、圧力降下時間(b)の関係を示すものであり、ビルドダウン容量BCの内容積V=1.78ccの場合には、流量20~50sccmの時に、約1秒以内の間隔で流量出力が行えることになる。
 また、ビルドダウン容量BCの内容積V=9.91ccの場合には、流量100~200sccmの時に約1秒以内の間隔で流量出力が可能であることが判る。
Figure JPOXMLDOC01-appb-T000002
 更に、再現性の確認のため、図9に対応する測定を繰り返し行った場合の流量精度を調査した。
 即ち、一次側開閉切換弁(上流側弁)AVを閉にしてから0.5~1sec間で流量算出(3点)を行った。尚、降下時間が1sec未満の場合は最終点より0.5secまでのデータを、また、前記表2の50sccm(V=1.79cc)及び200sccm(V=9.91cc)については、0.25秒間のデータ(2点)を用いて流量演算を行っている。
 図11は、繰り返し測定(10回)を行った場合の流量精度の測定データを示すものであり、圧力降下時間(b)が0.5秒以下の場合には、図7に示す如く圧力降下特性曲線の非直線領域内で流量演算が行われるため、流量誤差が図11の如くプラス方向に出現する傾向のあることが判る。
 尚、ビルトダウン方式による流量Qは、前記(1)式からも明らかなように、Q=K×(ビルドダウン容量×圧力降下率×1/温度)の関係にある。その結果、圧力変化による断熱膨張により温度降下が生じても、圧力降下率が大になって演算流量Qは一定になると想定されるが、現実には演算流量が上昇することになる。その理由は、ガス温度の測定を圧力式流量制御装置FCSのボディ外表面で行っているため、温度計測値が室温に支配され易いうえ、ガス自体の熱容量が小さいにも拘わらず温度センサの熱容量が大であるため、ガス温度が正確に測定されていないからであると想定される。
 本発明は、上記各試験の結果を基礎にして創作されたものであり、上流側に設けたビルドダウン式流量モニタ部BDMと、その下流側に設けた圧力式流量制御部FCSと、ビルドダウン式流量モニタ部BDM と圧力式流量制御部FCSとを連結し、ビルドダウン式流量モニタ部BDMのモニタ流量Qを圧力式流量制御部FCSへ伝送する信号伝送回路CTと、圧力式流量制御部FCSに設けられ、前記ビルドダウン式流量モニタ部BDMからのモニタ流量Qにより圧力式流量制御部FCSの設定流量Qsを調整する流量設定値調整機構QSRとから構成したことを特徴とする。
 圧力式流量制御部FCSは、圧力センサを含む流量制御部とし得る。
 流量設定値調整機構QSRは、モニタ流量Qと設定流量Qsとの比較器を備え、モニタ流量Qと設定流量Qsとの差異が設定値を超えると、設定流量Qsをモニタ流量Qに自動修正する構成の流量設定値調整機構とし得る。
 ビルドダウン式流量モニタ部BDMは、ガス供給源からのガスの流通を開閉する一次側開閉切換弁PV1と、一次側開閉切換弁PV1の出口側に接続した所定の内容積Vを有するビルドダウン容量BCと、当該ビルドダウン容量BCを流通するガスの温度を検出する温度センサと、前記ビルドダウン容量BCを流通するガスの圧力を検出する圧力センサPと、前記一次側開閉切換弁PV1の開閉制御を行うと共に、一次側開閉切換弁PV1の開放によりビルドダウン容量BC内のガス圧力を設定上限圧力値にしたあと、一次側開閉切換弁PV1の閉鎖により所定時間t秒後にガス圧力を設定下限圧力値まで下降させることにより、ビルドダウン式によりモニタ流量Qを演算して出力するモニタ流量演算制御部CPbとを備え、前記モニタ流量Qを
Figure JPOXMLDOC01-appb-M000002
 (但し、Tはガス温度(℃)、Vはビルドダウン容量BCの内容積(l)、ΔPは圧力降下範囲(設定上限圧力値-設定下限圧力値)(Torr)、Δtは一次側開閉切換弁AVの閉鎖から開放までの時間(sec)である。)として演算する構成とし得る。
 圧力式流量制御部FCSは、コントロール弁CVとオリフィスOL又は臨界ノズルと圧力計P及び又は圧力計Pと流量演算制御部CPaとから成る耐圧力変動性を備えた圧力式流量制御装置FCSとし得る。
 ビルドダウン容量BCの内容積Vを0.5~20ccとすると共に、設定上限圧力値を400~100kPa abs及び設定下限圧力値を350kPa abs~50kPa absに、また、所定時間tを0.5~5秒以内とし得る。
 一次側開閉切換弁AVをピエゾ駆動式メタルダイヤフラム弁又は電磁直動型電動弁とすると共に、弁の高速開閉により一次側開閉切換弁AVの開による設定下限圧力値から設定上限圧力値へのガス圧力の回復時間を、一次側開閉切換弁AVの閉による設定上限圧力値から設定下限圧力値までのガス圧力下降時間よりも大幅に短くするようにし得る。
 圧力式流量制御部FCSの流量演算制御部CPaとビルドダウン式流量モニタ部BDMの演算制御装置CPbとを一体に形成する構成とし得る。
 ビルドダウン容量BCをチャンバとすると共に、当該チャンバを内筒と外筒を同心状に配設固定した構造とすると共に、チャンバを形成する内・外筒間の間隙をガス流通路とし、当該チャンバに圧力センサPを設ける構成とし得る。
 本発明に於いては、流量モニタ付流量制御装置を、上流側に設けたビルドダウン式流量モニタ部BDMと、ビルドダウン式流量モニタ部BDMの下流側に設けた圧力式流量制御部FCSと、ビルドダウン式流量モニタ部BDM と圧力式流量制御部FCSとを連結し、ビルドダウン式流量モニタ部BDMのモニタ流量Qを圧力式流量制御部FCSへ伝送する信号伝送回路CTと、圧力式流量制御部FCSに設けられ、前記ビルドダウン式流量モニタ部BDMからのモニタ流量Qにより圧力式流量制御部FCSの設定流量Qsを調整する流量設定値調整機構QSRとから構成し、ビルドダウン式流量モニタ部BDMのモニタ流量により圧力式流量制御部FCSの設定流量値を自動的に調整するようにしている。
 その結果、モニタ流量値(オリフィスを流通する実流量値)と、圧力式流量制御部FCSの設定流量値(制御流量値)とが大きく異なった状態が長期に亘って継続されるようなことが皆無となり、半導体製品の品質向上等の点で多くの効用が得られる。
 また、圧力式流量制御部FCSの上流側にビルドダウン式流量モニタ部BDMを設け、圧力式流量制御装部の入力側圧力変動に対する高応答性を活用して、圧力式流量制御部FCSの入力側圧力変動が許容される範囲内のガス圧力差に対応する圧力降下ΔPを、前記ビルドダウン容量BC内に1秒間に1回以上の割合で起生させ、当該圧力降下率ΔP/Δtとビルドダウン容量BCの内容積Vとガス温度Kとから、1秒間に少なくとも1回以上のモニタ流量を演算して出力できるように、上記圧力降下値(圧力差ΔP)、圧力降下時間(Δt)及びビルドダウン容量BCの内容量Vを設定する構成としている。
 その結果、前記圧力降下値(圧力差)ΔPを略20~30kPa absに、圧力降下時間Δtを0.5~0.8secに、及びビルドダウン容量BCの内容積Vを1.8~18ccに設定することにより、少なくとも1秒間当りに1回以上の割合でモニタ流量を高精度で演算し、出力することが可能となり、ビルドダウン方式の利用にも拘わらず略リアルタイムに近い高精度な流量モニタが可能となる。
 また、従前の熱式流量センサを組合せる方式に比較して、流量モニタ付圧力式流量制御装置の大幅な構造の簡素化、小型化と製造費の引下げが可能となり、流量モニタ付流量制御装置の付加価値が著しく向上する。
ビルドダウン式流量モニタ付圧力式流量制御装置の流量モニタ特性を測定するための試験装置の概要構成図である。 ビルドダウン式流量モニタの圧力降下状態の説明図である。 ビルドダウン流量測定時の圧力回復特性曲線の一例を示すものである。 図4の部分拡大図である。 試験1に於ける圧力回復特性曲線を示すものである。 圧力降下特性の形態を示すものである(制御流量=100sccm)。 圧力降下特性の形態を示すものである(制御流量=50sccm)。 圧力降下特性の形態を示すものである(制御流量=10sccm)。 一次側開閉切換弁(上流側弁)AVの閉鎖からの経過時間と流量安定性との関係を示す線図である(ビルドダウン容量BC=1.78cc)。 一次側開閉切換弁(上流側弁)弁AVの閉鎖からの経過時間と流量安定性との関係を示す線図である(ビルドダウン容量BC=9.91cc)。 10回繰り返し測定に於ける流量精度を示すものである。 本発明に係る流量モニタ付圧力式流量制御装置の基本構成を示す系統図である。 本発明に係るビルドダウン式の流量モニタ付圧力式流量制御装置の縦断面概要図である。 実施例で使用した各チャンバA~Eに於いて、測定可能時間を1秒以下とした場合のガス流量sccmと圧力降下の傾きkPa/secとの関係を示す線図である。 本実施例で使用した各チャンバA~Eの圧力降下の傾きが20kPa/secに於ける圧力降下特性の形態を示すものである。 本実施例で使用した各チャンバA~Eの一次側開閉切換弁(上流側弁)AVの閉鎖からの経過時間と流量安定性との関係を示す線図である。 本実施形態で使用したチャンバA及びチャンバBの繰り返し測定に於ける流量精度%S.P.と流量sccmの関係を示す線図である。 本実施形態で使用したチャンバA及びチャンバBの繰り返し測定に於ける流量精度%S.P.と圧力降下の傾きkPa/secとの関係を示す線図である。 従前の圧力式流量制御装置の基本構成図である。 従前の流量モニタ付圧力式流量制御装置の基本構成図である。
 以下、図面に基づいて本発明の実施形態を説明する。
 図12は、本発明に係る流量モニタ付流量制御装置の基本構成を示す系統図であり、当該流量モニタ付流量制御装置は、ビルドダウン部BDMと圧力式流量制御部FCSと両者間を連結する信号伝送回路(デジタル通信回路)CTとから構成されている。
 尚、図12に於いて、PVは入口側切換弁、PVは出口側切換弁、BCはビルドダウン容量、P3は差圧検出用圧力センサ、CPbはモニタ流量演算制御部、VB1はモニタ入口側ブロック、VBはモニタ出口側ブロックである。
 また、図12に於いて、CVはコントロール弁、CPaは流量演算制御部、OLは小径オリフィス、OLは大径オリフィス、P1は第1圧力センサ、Pは第2圧力センサ、VB3は流量制御部入口側ブロック、VBは流量制御部出口側ブロック、VBは連結用ブロック、SKは連結部のガスケットである。
 更に、圧力式流量制御部FCSには設定流量調整機構QSRが設けられており、予め設定された流量値Qsが、信号伝送回路CTを介して入力されたビルドダウン流量Qと比較器(図示省略)により比較され、両者の差異が規定以上の流量値になると、自動的に設定流量値QsがQs’に修正され、圧力式流量制御部FCSの流量制御値がビルドダウン流量Qに合致するように調整される。即ち、実流量がビルドダウン流量Qに合致するように調整される。
 尚、図12においては、温度検出センサT, フィルタF等は省略されており、また、圧力式流量制御部FCSは如何なる形式のもの、例えばオリフィスが1基のものであっても良いことは勿論であり、更に、圧力式流量制御部FCSやビルドダウン式流量モニタ部BDMの基本構成そのものは公知であるため、ここではその詳細な説明を省略する。
 図12を参照して、ガス入口1からビルドダウン式流量モニタ部BDMへ流入した圧力500~320kPa absのガスは、入口側ピエゾ切換弁PV1、チャンバ式のビルドダウン容量BC、 出口側ピエゾ切換弁PVの順に流通し、モニタ流量演算制御部CPbでモニタ流量Qが演算され、これが圧力式流量制御部FCSの設定流量調整機構QSRへ入力される。
 また、ビルドダウン式流量モニタ部BDMから流出したガスは、コントロール弁CV、小径オリフィスOL 1及び又は大径オリフィスOLを通り、ガス出口2から流出する。その間に、前記流量演算制御部CPaがオリフィス流通ガス流量を演算すると共に、コントロール弁CVの開閉制御やオリフィス切換弁OL Vの開閉制御をする。
 更に、前記流量演算制御部CPaの設定流量調整機構QSRでは、ビルドダウン式流量モニタ部BDMからのモニタ流量Qとオリフィス流通流量(即ち、流量演算制御部CPaでの制御流量)とが比較され、両者の差異が予め定めた設定値を超えると、圧力式流量制御部FCSの制御流量を前記モニタ流量Qに合致させるよう設定流量Qsの方を調整し、これをQs’に自動修正する。
 即ち、本発明の要部を形成するビルドダウン式流量モニタ制御部CPbは、入口側(上流側)ピエゾ切換弁PVの開閉制御や、差圧検出圧力センサP、温度検出センサT(図12では省略)及び両切換弁PV、PV間のビルドアップ容量BCの容積V等から、ビルドダウン流量Qを演算し、これを流量演算制御部CPaへ出力する。
 上述の如く、本発明に係る流量モニタ付流量制御装置では、ビルドダウン式流量モニタ部BDMで圧力降下率ΔP/Δtの測定やモニタ流量Qの演算が行なわれ、モニタ流量演算制御部CPbへ外部入出力回路PIOを介して指令信号及び又は設定信号を入力することにより、モニタ流量が少なくとも1秒間に1回の割合でモニタ表示されると共に、上記圧力式流量制御部FCSの制御流量値の修正、補正が自動的に行われる。
 尚、圧力式流量制御装置FCSやビルドダウン式流量モニタ部BDMそのものは公知であるため、ここではその詳細な説明は省略する。
 また、モニタ流量出力Q(モニタ流量演算制御部CPbからの流量出力)と圧力式流量制御部FCSの流量出力(圧力式流量演算制御部CPaからの流量出力)との間に設定値以上の差異が生じた場合に、流量異常の警報を発信、或いは必要な場合には、所謂圧力式流量制御装置FCSの流量自己診断を実施して流量異常の原因やその発生場所を特定することも可能であり、更に、設定値以上の流量差異が生じた場合には、圧力式流量制御部FCS自体の零点調整等を自動的に実施すること等も可能である。
 尚、本実施形態に於いては、入口(上流)側切換弁等をピエゾ駆動式弁としているが、これらを直動型の電磁駆動弁としてもよい。また、ビルドダウン容量BCの内容積Vは1.78~9.91ccの範囲に選定している。更に、圧力降下範囲ΔPは20kPa abs(350~320kPa abs)に選定されており、少なくとも1秒間に1回以上のモニタ流量を出力する構成としている。加えて、前記温度検出センサT(図示省略)は外面貼付型の測温抵抗式温度センサとしているが、モニタ入口側ブロックVB1又はモニタ出口側ブロックVBの内部へ挿入するサーモスタット型温度計を用いることも可能である。
 また、本実施形態では、ビルドダウン容量BCとして後述するように圧力センサ付チャンバを用いているが、当該ビルドダウン容量BCをガス流路の内容積でもって形成し、ガス流路の内径及び流路長さを適宜に選定することにより、所望の内容積Vのビルドダウン容量BCを得る構成としても良い。
[実施例]
 図13は、本発明の実施例に係るビルドダウン式流量モニタ付流量制御装置の従断面概要図である。当該実施例では、ビルドダウン容量BCとして圧力センサ付チャンバCHを用い、ビルドダウン式流量モニタ部BDMの各ガス通路L、L、Lの内径を1.8mmの細径としている。また、オリフィスOL 1、OL 2の下流側に第2圧力センサPを別途に設けている。更に、チャンバCHに差圧検出用圧力センサPを設けている。
 即ち、当該実施例に於いては、入口側切換弁PVと出口側切換弁PVの間に小型の圧力チャンバCHを設け、この圧力チャンバCHの内容積を調整することにより、前記ビルドダウン容量BCの内容積Vを調整する構成としている。また、両切換弁PV、PVの開閉速度を上げるために、ピエゾ駆動メタルダイヤフラム型ノーマルクローズ弁を利用している。尚、ピエゾ駆動メタルダイヤフラム型ノーマルクローズ弁そのものは公知であるため、説明は省略する。
 前記圧力チャンバCHは外筒CHaと内筒CHbとの2重筒に形成されており、且つ内外筒CHa、CHb間のギャップGが本実施形態に於いては1.8mmに選定されている。そして、圧力チャンバCHの内容積は1.3~12cc程度に選定されており、これに差圧検出用圧力センサPを付設した構成としている。
 尚、当該実施例に於いては、圧力チャンバCHの容積を自由に選定できると共に、ガス流通路L、L2、L等を全て同一の細径(例えば1.8mmΦ)に揃えることができ、ビルドダウン容量BCの内容積 を正確且つ容易に所定の容積値に設定することができる。
 具体的には、供試用のチャンバCHとして、前記ギャップGを1.8mm及び3.6mmとした表3の如きサイズの5種のチャンバを作成し、これ等を図1の試験装置に適用してガス流量(sccm)と圧力降下の傾き(kPa/sec)と圧力降下時間(sec)等との関係等を調査した。
 尚、図1の試験装置を用いた調査に於いて、流量センサTはチャンバCHの外表面に貼付け固定した。また、チャンバCH以外のガス流路L、Lの容積は0.226ccである。
Figure JPOXMLDOC01-appb-T000003
 図14は、図2に於ける圧力降下時間(b)を1秒以内とした場合のガス流量(sccm)と圧力降下の傾き(kPa/sec)の関係を、各チャンバA~Eについて測定した結果を示すものであり、試験装置に組付けした状態に於ける現実の各ビルドアップ容量は2.31cc~15.45ccであった。
 図14からも明らかなように、圧力降下範囲ΔPを20kPa/secとした時には、チャンバAの場合には25.2sccm、チャンバBで106.6sccm、チャンバEで169.0sccmの各流量測定の可能なことが判る。
 図15は、図1の試験装置に於いて、圧力降下の傾きが20kPa/secとなるようにガス流量を調整した場合の圧力降下の直線性を示すものであり、前記図6~図8と同様の線図である。尚、測定データは、図1のデータロガNRにより取得したものである。
 図15からも明らかなように、ビルドダウン容量BCの内容積Vが小さなチャンバCHの場合(即ち、チャンバA、B等)ほど、圧力降下特性の直線性が良好になることが判る。
 また、図16は、前記図9及び図10の場合と同様に、圧力降下特性曲線の直線性からのずれによる流量測定誤差を、1秒以内の流量測定可能時間(b)内に0.25秒毎に5点測定することに求めたものであり、ビルドアップ容量BCの小さなチャンバA、Bほど、圧力降下開始後から早期に流量誤差が少なくなることが判る(即ち、圧力降下特性の直線性に優れていると云える)。
 図17は、チャンバA及びチャンバBについて、流量測定精度の再現性を調査した結果を示すものであり、前記図11の場合と同趣旨で行ったものである。
 尚、この流量測定精度の再現性試験に於いては、圧力降下の傾きを安定させるために、一次側切換開閉弁(上流側弁)AVを閉にしてから所定の待ち時間をおいて測定を行い、且つ再現性を得るために長い時間に亘って測定を行っているが、流量出力時間は何れも1秒以内としている。
 図17からも明らかなように再現性の点から、チャンバAの場合には流量3~50sccmが適用可能範囲であり、また、チャンバBの場合には30~300sccmが適用範囲であることが判る。
 表4は、上記図17に示した流量測定精度の再現性を示す線図の作成に用いた基礎データであり、チャンバA(ビルドダウン容量BCの内容積V=2.31cc)及びチャンバB(ビルドダウン容量BCの内容積V=9.47cc)を試験対象としたものである。
Figure JPOXMLDOC01-appb-T000004
 また、図18は、上記表4のデータからチャンバA及びチャンバBの圧力降下の傾きkPa/secと誤差%S.P.との関係を調査したものであり、圧力降下の傾きが2~60kPa/secの範囲内であれば、流量測定誤差%S.P.が±1%の範囲内に納まることが判る。
 本発明は半導体製造装置用ガス供給設備のみならず、オリフィス又は臨界ノズルを用いた圧力式流量制御装置であれば、化学品製造装置用ガス供給設備へも広く適用できるものである。
BDM   ビルドダウン式流量モニタ部
FCS   圧力式流量制御部(圧力式流量制御装置)
AV    一次側開閉切換弁(上流側弁)
BC    ビルドダウン容量
V     ビルドダウン容量の内容積
RG    圧力調整器
     N供給源
T     温度センサ(測温抵抗体)
、P  圧力センサ
3      差圧検出用圧力センサ
CV    コントロール弁
OL    オリフィス
OL    小口径オリフィス
OL2      大口径オリフィス
OIP   外部入出力回路
OLV   オリフィス切換弁
VB1     モニタ入口側ブロック
VB2     モニタ出口側ブロック
VB3      流量制御部入口側ブロック
VB4      流量制御部出口側ブロック
VB5          連結部ガスケット
CT    信号伝送回路(ディジタル通信回路)
CP    演算制御部
CPa   流量演算制御部
CPb   モニタ流量演算制御部
     圧力式流量制御装置用電源
     演算制御部用電源
     電磁弁用電源
ECV   電気駆動部
NR    データロガ
S     信号発生器
PC    演算表示部
PV1     入口側切換弁(入口側ピエゾ切換弁)
PV2     出口側切換弁(出口側ピエゾ切換弁)
1       入口側ピエゾ切換弁のガス入口側通路
2     入口側ピエゾ切換弁のガス出口側通路
3        出口側ピエゾ切換弁のガス入口側通路
4        出口側ピエゾ切換弁のガス出口側通路
Cu    銅棒片
Q     モニタ流量(ビルドダウン流量)
CH    チャンバ
CHa   外筒
CHb   内筒
R   流量設定値調整機構
     設定流量
‘    調整流量
1     ガス入口
2     ガス出口

Claims (9)

  1.  上流側に設けたビルドダウン式流量モニタ部と、該ビルドダウン式流量モニタ部の下流側に設けた流量制御部と、ビルドダウン式流量モニタ部と流量制御部とを連結し、ビルドダウン式流量モニタ部のモニタ流量を流量制御部へ伝送する信号伝送回路と、流量制御部に設けられ、前記ビルドダウン式流量モニタ部からのモニタ流量により流量制御部の設定流量を調整する流量設定値調整機構と、を備える流量モニタ付流量制御装置。
  2.  流量制御部が、圧力センサを含む流量制御部である請求項1に記載の流量モニタ付流量制御装置。
  3.  流量設定値調整機構は、モニタ流量と設定流量との比較器を備えるとともに、モニタ流量と設定流量との差異が設定値を超えると、設定流量をモニタ流量に自動修正するように構成されている請求項1に記載の流量モニタ付流量制御装置。
  4.  ビルドダウン式流量モニタ部は、ガス供給源からのガスの流通を開閉する一次側開閉切換弁と、一次側開閉切換弁の出口側に接続した所定の内容積を有するビルドダウン容量と、当該ビルドダウン容量を流通するガスの温度を検出する温度センサと、前記ビルドダウン容量を流通するガスの圧力を検出する圧力センサと、前記一次側開閉切換弁の開閉制御を行うと共に、一次側開閉切換弁の開放によりビルドダウン容量内のガス圧力を設定上限圧力値にしたあと、一次側開閉切換弁の閉鎖により所定時間経過後にガス圧力を設定下限圧力値まで下降させることにより、ビルドダウン式によりモニタ流量を演算して出力するモニタ流量演算制御部とを備え、
    前記モニタ流量は、Tをガス温度(℃)、Vをビルドダウン容量の内容積(リットル)、ΔPを設定上限圧力値と設定下限圧力値との差である圧力降下範囲(Torr)、Δtを一次側開閉切換弁の閉鎖から開放までの時間(秒)として下記式により演算される請求項1に記載の流量モニタ付流量制御装置
    Figure JPOXMLDOC01-appb-M000003
  5.  流量制御部は、コントロール弁と、オリフィス又は臨界ノズルと、圧力計と、流量演算制御部とを含む、耐圧力変動性を備えた流量制御装置である請求項2に記載の流量モニタ付流量制御装置。
  6.  ビルドダウン容量の内容積が0.5~20ccであり、設定上限圧力値が400~100kPa absであり、設定下限圧力値が350kPa abs~50kPa absであり、且つ、前記所定時間が0.5~5秒である請求項2に記載の流量モニタ付流量制御装置。
  7.  一次側開閉切換弁は、ピエゾ駆動式メタルダイヤフラム弁又は電磁直動型電動弁であって、弁の高速開閉により一次側開閉切換弁の開による設定下限圧力値から設定上限圧力値へのガス圧力の回復時間が、一次側開閉切換弁の閉による設定上限圧力値から設定下限圧力値までのガス圧力降下時間よりも短い請求項4に記載の流量モニタ付流量制御装置。
  8.  流量制御部の流量演算制御部とビルドダウン式流量モニタ部のモニタ流量演算制御部とが、一体に形成されている請求項1に記載の流量モニタ付流量制御装置。
  9.  ビルドダウン式流量モニタ部がビルドダウン用チャンバを備え、該チャンバは、内筒と外筒とを同心状に配設固定した構造とされると共に該チャンバを形成する内・外筒間の間隙をガス流通路とされ、さらに、当該チャンバに圧力センサが設けられている請求項1に記載の流量モニタ付流量制御装置。
PCT/JP2014/001504 2013-03-25 2014-03-17 流量モニタ付流量制御装置 WO2014156042A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/778,398 US9791867B2 (en) 2013-03-25 2014-03-17 Flow control device equipped with flow monitor
KR1020157026228A KR101707877B1 (ko) 2013-03-25 2014-03-17 유량 모니터 부착 유량 제어 장치
CN201480003757.4A CN105247433B (zh) 2013-03-25 2014-03-17 带流量监控器的流量控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-062537 2013-03-25
JP2013062537A JP5847106B2 (ja) 2013-03-25 2013-03-25 流量モニタ付圧力式流量制御装置。

Publications (1)

Publication Number Publication Date
WO2014156042A1 true WO2014156042A1 (ja) 2014-10-02

Family

ID=51623059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001504 WO2014156042A1 (ja) 2013-03-25 2014-03-17 流量モニタ付流量制御装置

Country Status (6)

Country Link
US (1) US9791867B2 (ja)
JP (1) JP5847106B2 (ja)
KR (1) KR101707877B1 (ja)
CN (1) CN105247433B (ja)
TW (1) TWI507836B (ja)
WO (1) WO2014156042A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064050A1 (ja) * 2013-10-28 2015-05-07 株式会社フジキン 流量計及びそれを備えた流量制御装置
US10753497B2 (en) * 2015-04-15 2020-08-25 Fujikin Incorporated Shutoff-opening device
TWI755704B (zh) * 2019-05-14 2022-02-21 日商富士金股份有限公司 流量控制裝置、流量控制方法、流量控制裝置的控制程式

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369425B (zh) * 2015-12-25 2021-03-02 株式会社富士金 流量控制装置以及使用流量控制装置的异常检测方法
US10928813B2 (en) * 2016-03-29 2021-02-23 Fujikin Incorporated Pressure-type flow rate control device and flow rate self-diagnosis method using critical expansion condition
JP6767232B2 (ja) * 2016-10-14 2020-10-14 東京エレクトロン株式会社 基板処理装置の流量制御器によって出力されるガスの出力流量を求める方法
CN106404093A (zh) * 2016-12-14 2017-02-15 成都秦川科技发展有限公司 电子远传水表及水表系统
TWI612247B (zh) * 2017-01-24 2018-01-21 Huang Guo Hong 流體控制閥
JP7190186B2 (ja) * 2017-11-30 2022-12-15 株式会社フジキン 流量制御装置の自己診断方法
CN111788534A (zh) * 2018-02-26 2020-10-16 株式会社富士金 流量控制装置以及流量控制方法
US11269362B2 (en) * 2018-04-27 2022-03-08 Fujikin Incorporated Flow rate control method and flow rate control device
US11004711B2 (en) * 2018-08-17 2021-05-11 Taiwan Semiconductor Manufacturing Co., Ltd. Automated wafer monitoring
JP2020139864A (ja) * 2019-02-28 2020-09-03 株式会社堀場エステック 流量算出システム、流量算出システム用プログラム、流量算出方法、及び、流量算出装置
KR20210139347A (ko) * 2019-04-25 2021-11-22 가부시키가이샤 후지킨 유량 제어 장치
TWI774227B (zh) * 2020-02-21 2022-08-11 日商富士金股份有限公司 流量控制裝置、流量控制裝置的控制方法、流量控制裝置的控制程式
CN111623239A (zh) * 2020-05-29 2020-09-04 张峰 一种监测低压燃气管道特征流量的方法
CN112572756A (zh) * 2020-12-11 2021-03-30 中国人民解放军63660部队 一种飞艇副气囊体积监测装置及方法
TWI770918B (zh) * 2021-03-31 2022-07-11 新唐科技股份有限公司 設定值自動調整裝置和方法
CN114235302B (zh) * 2021-11-16 2024-02-06 北京谊安医疗系统股份有限公司 一种通气回路泄露量的检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137528A (ja) * 1998-08-24 2000-05-16 Tadahiro Omi 圧力式流量制御装置におけるオリフィス目詰検出方法およびその検出装置
JP2003529218A (ja) * 2000-03-27 2003-09-30 パーカー・ハニフィン・コーポレーション 半導体製造におけるプロセス・ガスの流量制御
JP2008504613A (ja) * 2004-07-07 2008-02-14 パーカー・ハニフィン・コーポレーション 流量制御装置および体積の内部等温制御により流量検証を行うための方法
JP2009265988A (ja) * 2008-04-25 2009-11-12 Fujikin Inc 流量自己診断機能を備えた圧力式流量制御装置の圧力制御弁用駆動回路
JP2011510404A (ja) * 2008-01-18 2011-03-31 ピヴォタル システムズ コーポレーション ガスの流量を決定する方法、ガス・フロー・コントローラの動作を決定する方法、ガスフローコントロールシステムの一部の容量を決定する方法、及びガス搬送システム
WO2013179550A1 (ja) * 2012-05-31 2013-12-05 株式会社フジキン ビルドダウン方式流量モニタ付流量制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133511A (en) * 1977-01-26 1979-01-09 Frieseke & Hoepfner Gmbh Electro-hydraulic regulating valve system
JP2982003B2 (ja) 1992-07-28 1999-11-22 コマツ電子金属株式会社 気相成長装置および気相成長装置におけるマスフローコントローラの校正方法
JP2635929B2 (ja) 1994-04-12 1997-07-30 シーケーディ株式会社 マスフローコントローラ絶対流量検定システム
EP1035457B1 (en) 1998-08-24 2003-10-22 Fujikin Incorporated Method for detecting plugging of pressure flow-rate controller and sensor used therefor
JP4308350B2 (ja) 1998-11-27 2009-08-05 小林製薬株式会社 シイタケ菌糸体抽出物を含有するlak活性スクリーニング物質およびそれを用いたlak活性スクリーニング法
JP4308356B2 (ja) 1999-01-25 2009-08-05 株式会社堀場エステック 圧力式流量コントローラのノズル診断機構および圧力式流量コントローラのノズル診断方法
JP4137666B2 (ja) 2003-02-17 2008-08-20 株式会社堀場エステック マスフローコントローラ
JP4856905B2 (ja) * 2005-06-27 2012-01-18 国立大学法人東北大学 流量レンジ可変型流量制御装置
JP4743763B2 (ja) * 2006-01-18 2011-08-10 株式会社フジキン 圧電素子駆動式金属ダイヤフラム型制御弁
JP4820698B2 (ja) * 2006-07-03 2011-11-24 株式会社フジキン 圧力式流量制御装置の絞り機構下流側バルブの作動異常検出方法
JP4933936B2 (ja) * 2007-03-30 2012-05-16 株式会社フジキン 圧電素子駆動式制御弁
CN201062289Y (zh) * 2007-06-01 2008-05-21 青海省高原科技发展有限公司 一种新型手工藏毯纺纱机纱管联接器
CN103518165B (zh) * 2011-05-10 2016-06-08 株式会社富士金 带有流量监测器的压力式流量控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137528A (ja) * 1998-08-24 2000-05-16 Tadahiro Omi 圧力式流量制御装置におけるオリフィス目詰検出方法およびその検出装置
JP2003529218A (ja) * 2000-03-27 2003-09-30 パーカー・ハニフィン・コーポレーション 半導体製造におけるプロセス・ガスの流量制御
JP2008504613A (ja) * 2004-07-07 2008-02-14 パーカー・ハニフィン・コーポレーション 流量制御装置および体積の内部等温制御により流量検証を行うための方法
JP2011510404A (ja) * 2008-01-18 2011-03-31 ピヴォタル システムズ コーポレーション ガスの流量を決定する方法、ガス・フロー・コントローラの動作を決定する方法、ガスフローコントロールシステムの一部の容量を決定する方法、及びガス搬送システム
JP2009265988A (ja) * 2008-04-25 2009-11-12 Fujikin Inc 流量自己診断機能を備えた圧力式流量制御装置の圧力制御弁用駆動回路
WO2013179550A1 (ja) * 2012-05-31 2013-12-05 株式会社フジキン ビルドダウン方式流量モニタ付流量制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064050A1 (ja) * 2013-10-28 2015-05-07 株式会社フジキン 流量計及びそれを備えた流量制御装置
US10073469B2 (en) 2013-10-28 2018-09-11 Fujikin Incorporated Flow meter and flow control device provided therewith
US10753497B2 (en) * 2015-04-15 2020-08-25 Fujikin Incorporated Shutoff-opening device
TWI755704B (zh) * 2019-05-14 2022-02-21 日商富士金股份有限公司 流量控制裝置、流量控制方法、流量控制裝置的控制程式

Also Published As

Publication number Publication date
TW201506568A (zh) 2015-02-16
JP5847106B2 (ja) 2016-01-20
CN105247433A (zh) 2016-01-13
JP2014186662A (ja) 2014-10-02
KR101707877B1 (ko) 2017-02-17
CN105247433B (zh) 2018-01-30
TWI507836B (zh) 2015-11-11
US20160282880A1 (en) 2016-09-29
US9791867B2 (en) 2017-10-17
KR20150121156A (ko) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2014156042A1 (ja) 流量モニタ付流量制御装置
JP5797246B2 (ja) 流量計及びそれを備えた流量制御装置
JP5768186B2 (ja) ビルドダウン方式流量モニタ付流量制御装置及びこれを用いたモニタ付流量制御方法。
JP2015087110A5 (ja)
JP5727596B2 (ja) 流量モニタ付圧力式流量制御装置の実ガスモニタ流量初期値のメモリ方法及び実ガスモニタ流量の出力確認方法
TWI470187B (zh) Flow measurement device for flow control device for gas supply device and flow measurement method
JP2020098653A (ja) 質量流量制御装置の流量をリアルタイムで監視するシステムおよび方法
JP4137666B2 (ja) マスフローコントローラ
US20070233412A1 (en) Mass flow rate control apparatus, its calibration method and semiconductor-producing apparatus
JP2004280688A (ja) マスフローコントローラ
JP7131561B2 (ja) 質量流量制御システム並びに当該システムを含む半導体製造装置及び気化器
TW202012887A (zh) 氣體流量檢定單元
JP2023163311A (ja) 流量測定装置、流量測定方法および流量制御装置の校正方法
JPH07325625A (ja) マスフローコントローラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14778398

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157026228

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774715

Country of ref document: EP

Kind code of ref document: A1