WO2015064026A1 - 油圧ショベル駆動システム - Google Patents

油圧ショベル駆動システム Download PDF

Info

Publication number
WO2015064026A1
WO2015064026A1 PCT/JP2014/005176 JP2014005176W WO2015064026A1 WO 2015064026 A1 WO2015064026 A1 WO 2015064026A1 JP 2014005176 W JP2014005176 W JP 2014005176W WO 2015064026 A1 WO2015064026 A1 WO 2015064026A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
boom
valve
control valve
hydraulic pump
Prior art date
Application number
PCT/JP2014/005176
Other languages
English (en)
French (fr)
Inventor
哲弘 近藤
伊藤 誠
藤山 和人
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201480057540.1A priority Critical patent/CN105637229B/zh
Priority to GB1606888.4A priority patent/GB2534519B/en
Priority to US15/028,866 priority patent/US9932995B2/en
Publication of WO2015064026A1 publication Critical patent/WO2015064026A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/782Concurrent control, e.g. synchronisation of two or more actuators

Definitions

  • the present invention relates to a hydraulic excavator drive system.
  • the hydraulic excavator drive system generally includes a swing motor, a boom cylinder, an arm cylinder, and a bucket cylinder as hydraulic actuators, and hydraulic oil is supplied from two hydraulic pumps to these hydraulic actuators.
  • a swing motor Normally, the supply of hydraulic oil to the swing motor and bucket cylinder is controlled by one control valve, but the supply of hydraulic oil to the boom cylinder (at least when the boom is raised) and the arm cylinder are controlled by two control valves. Is done.
  • Patent Document 1 discloses a hydraulic excavator drive system 100 as shown in FIG.
  • the arm main control valve 121 and the boom sub control valve 132 are arranged on the first bleed line 102 extending from the first hydraulic pump 101, and the arm is on the second bleed line 104 extending from the second hydraulic pump 103.
  • a sub control valve 122, a bucket control valve 110, and a boom main control valve 131 are arranged.
  • the arm main control valve 121 is connected to the arm operation valve 120 through an arm pulling pilot line 123
  • the boom main control valve 131 is connected to the boom operation valve 130 through a boom raising pilot line 133
  • a sub pilot line 124 branches from the arm pulling pilot line 123 and is connected to the arm sub control valve 122
  • the sub pilot line 134 branches from the boom raising pilot line 133 and is connected to the boom sub control valve 132.
  • the secondary pilot lines 124 and 134 are provided with electromagnetic proportional valves 125 and 135, respectively.
  • Each of the electromagnetic proportional valves 125 and 135 outputs a lower pilot pressure to the sub control valve (122 or 132) as the pilot pressure output from the operation valve (120 or 130) is higher. That is, the pilot pressure main force from the electromagnetic proportional valve to the sub control valve is in inverse proportion to the pilot pressure output from the operation valve to the main control valve.
  • the opening degree of the sub control valve is reduced.
  • Patent Document 1 describes that with this configuration, hydraulic oil can be preferentially supplied to one of the arm cylinder 126 and the boom cylinder 136 when the arm pulling operation and the boom raising operation are performed simultaneously. When the arm pulling operation and the boom raising operation are performed simultaneously, the bucket is moved horizontally so as to be close to the shovel body.
  • the arm sub control valve 122 and the boom sub control valve 132 operate according to the pilot pressure output from the arm operation valve 120 and the boom operation valve 130. It does not operate in response to the load pressure of 126 and boom cylinder 136.
  • the opening degrees of both the sub control valves 122 and 132 are reduced, they are not reduced to zero, and the hydraulic oil is supplied from both the first hydraulic pump 101 and the second hydraulic pump 103 to the arm cylinder 126 and the boom cylinder 136. Is supplied. For this reason, when the arm pulling operation and the boom raising operation are performed simultaneously, the opening degree of both the sub control valves 122 and 132 is reduced, so that the load pressure of the arm cylinder 126 and the boom cylinder 136 is reduced. The point that much hydraulic oil flows in is improved to some extent.
  • An object of the present invention is to provide a hydraulic excavator drive system capable of suppressing wasteful consumption.
  • the inventors of the present invention shut off the supply line from the arm sub control valve to the arm cylinder when the arm pulling operation and the boom raising operation are performed simultaneously. It was found that if the supply line from the boom sub-control valve to the boom cylinder is shut off, one hydraulic pump can be used exclusively for the arm cylinder and the other hydraulic pump can be used exclusively for the boom cylinder. In addition, in this case, since the discharge pressures of both hydraulic pumps can be made different, if both of the hydraulic pumps are controlled by horsepower (independent horsepower control), the arm cylinder and the hydraulic cylinder are controlled by the horsepower control characteristics of the individual hydraulic pumps. The amount of hydraulic oil supplied to the boom cylinder can be determined.
  • the hydraulic excavator drive system discharges hydraulic oil at a flow rate corresponding to the tilt angle, the first hydraulic pump and the second hydraulic pump that can independently control the tilt angle, and the arm cylinder.
  • An arm main control valve disposed on a first bleed line extending from the first hydraulic pump and an arm disposed on a second bleed line extending from the second hydraulic pump for controlling supply of hydraulic oil to the first hydraulic pump
  • Arm operation valve that outputs pilot pressure to the arm main control valve, boom operation valve that outputs pilot pressure to the boom main control valve, and boom raising operation are not performed
  • a pilot pressure is output to the arm sub-control valve in response to an arm pulling operation and an arm pushing operation, and a pilot pressure is not output to the arm sub-control valve when the arm pulling operation and the boom raising operation are performed simultaneously.
  • a pilot pressure is output to the boom sub-control valve in response to a boom raising operation when the arm pulling operation is not performed, and the boom sub control is performed when the arm pulling operation and the boom raising operation are performed simultaneously.
  • a boom-side regulating valve that does not output pilot pressure to the valve.
  • the arm sub control valve and the boom sub control valve do not operate when the arm pulling operation and the boom raising operation are performed simultaneously. Therefore, the first hydraulic pump can be used exclusively for the arm cylinder, and the second hydraulic pump can be used exclusively for the boom cylinder. As a result, it is possible to prevent a large amount of hydraulic oil from flowing into the arm cylinder and the boom cylinder having the lower load pressure.
  • the tilt angles of the first hydraulic pump and the second hydraulic pump can be controlled independently of each other, in other words, independent horsepower control is performed for both hydraulic pumps.
  • the amount of hydraulic oil supplied to the arm cylinder and the boom cylinder can be determined by the horsepower control characteristics of the hydraulic pump. Thereby, unnecessary pressure loss does not occur in the middle of the path from the first hydraulic pump and the second hydraulic pump to the arm cylinder and the boom cylinder, and wasteful consumption of energy can be suppressed.
  • Each of the pair of arm side restriction valves is an electromagnetic proportional valve that outputs a pilot pressure proportional to a pilot pressure output from the arm operation valve to the arm sub control valve when a boom raising operation is not performed.
  • the boom-side regulating valve may be an electromagnetic proportional valve that outputs a pilot pressure proportional to a pilot pressure output from the boom operation valve to the boom sub-control valve when an arm pulling operation is not performed.
  • the arm sub control valve can be operated in the same manner as the arm main control valve when the boom raising operation is not performed, and the boom sub control valve is operated when the arm pulling operation is not performed. It can be operated in the same way as a control valve.
  • Each of the pair of arm-side restriction valves is an electromagnetic on-off valve that shuts off the pilot line for the arm sub-control valve when the arm pulling operation and the boom raising operation are performed simultaneously.
  • An electromagnetic on-off valve that shuts off the pilot line for the boom sub-control valve when the pulling operation and the boom raising operation are performed simultaneously may be used. According to this structure, a structure and control logic can be simplified rather than the case where an electromagnetic proportional valve is employ
  • the hydraulic excavator drive system includes a first regulator that controls a tilt angle of the first hydraulic pump based on a discharge pressure and a power shift pressure of the first hydraulic pump, a discharge pressure of the second hydraulic pump, and the A second regulator that controls a tilt angle of the second hydraulic pump based on a power shift pressure; and an electromagnetic proportional valve that outputs the power shift pressure to the first regulator and the second regulator.
  • power shift control can be performed on the first hydraulic pump and the second hydraulic pump with one electromagnetic proportional valve.
  • the hydraulic excavator drive system includes a first regulator for controlling a tilt angle of the first hydraulic pump based on a discharge pressure and a first power shift pressure of the first hydraulic pump, and the first regulator to the first regulator.
  • a first electromagnetic proportional valve that outputs a power shift pressure a second regulator that controls a tilt angle of the second hydraulic pump based on a discharge pressure and a second power shift pressure of the second hydraulic pump, and the second And a second electromagnetic proportional valve that outputs the second power shift pressure to the regulator.
  • independent power shift control can be performed on the first hydraulic pump and the second hydraulic pump.
  • the first power shift pressure is increased and the discharge flow rate of the first hydraulic pump is decreased.
  • a controller that controls the electromagnetic proportional valve and that controls the second electromagnetic proportional valve so that the second power shift pressure is reduced and the discharge flow of the second hydraulic pump is increased.
  • the present invention when the arm pulling operation and the boom raising operation are performed at the same time, it is possible to prevent a large amount of hydraulic oil from flowing into the lower one of the arm cylinder and the boom cylinder, and to save energy. Wasteful consumption can be suppressed.
  • FIG. 1 is a hydraulic circuit diagram of a hydraulic excavator drive system according to a first embodiment of the present invention. It is a side view of a hydraulic excavator. It is a hydraulic circuit diagram which shows the structure of a regulator. It is a graph which shows the relationship between the pilot pressure from the operation valve when the arm pulling operation and the boom raising operation are not performed at the same time, and the pilot pressure from the electromagnetic proportional valve which is the arm side restriction valve and boom side restriction valve. 5A and 5B are graphs showing horsepower control characteristics of the second hydraulic pump and the first hydraulic pump in the first embodiment, respectively.
  • FIG. 4 is a hydraulic circuit diagram of a hydraulic excavator drive system according to a second embodiment of the present invention.
  • FIG. 7A and 7B are graphs showing the horsepower control characteristics of the second hydraulic pump and the first hydraulic pump in the second embodiment, respectively. It is a hydraulic circuit diagram of a hydraulic excavator drive system according to a third embodiment of the present invention. It is a hydraulic circuit diagram of a conventional hydraulic excavator drive system.
  • FIG. 1 shows a hydraulic excavator drive system 1A according to the first embodiment of the present invention
  • FIG. 2 shows a hydraulic excavator 10 equipped with the drive system 1A.
  • the drive system 1A includes a bucket cylinder 15, an arm cylinder 14 and a boom cylinder 13 shown in FIG. 2 as a hydraulic actuator, and includes a turning motor and a pair of left and right traveling motors (not shown).
  • the drive system 1A includes a first hydraulic pump 11 and a second hydraulic pump 12 that supply hydraulic oil to the hydraulic actuator. In FIG. 1, drawing of hydraulic actuators other than the arm cylinder 14 and the boom cylinder 13 and control valves for the hydraulic actuator is omitted.
  • a first bleed line 21 extends from the first hydraulic pump 11 to the tank, and a second bleed line 31 extends from the second hydraulic pump 12 to the tank.
  • a boom sub control valve 42 and an arm main control valve 51 are arranged in series.
  • a boom main control valve 41 and an arm sub control valve 52 are connected in series. Is arranged.
  • a swing control valve for controlling the supply of hydraulic oil to the swing motor is disposed on the first bleed line 21, and the operation to the bucket cylinder 15 is performed on the second bleed line 31.
  • a bucket control valve that controls the supply of oil is arranged.
  • a pair of travel control valves that control the supply of hydraulic oil to the pair of left and right travel motors are also disposed on the first bleed line 21 and the second bleed line 31.
  • the boom sub control valve 42 is a two-position valve, but the other control valves are three-position valves.
  • a parallel line 24 branches off from the first bleed line 21, and hydraulic oil discharged from the first hydraulic pump 11 is guided to all control valves on the first bleed line 21 through the parallel line 24.
  • a parallel line 34 is branched from the second bleed line 31, and hydraulic oil discharged from the second hydraulic pump 12 is guided to all control valves on the second bleed line 31 through the parallel line 34.
  • Control valves other than the boom sub control valve 42 on the first bleed line 21 are connected to the tank by the tank line 25, while all control valves on the second bleed line 31 are connected to the tank by the tank line 35. Yes.
  • All the control valves arranged on the first bleed line 21 and the second bleed line 31 are open center type valves. That is, when all the control valves on the bleed line (21 or 31) are in the neutral position, the control valve does not restrict the flow of the hydraulic oil in the bleed line, and any one of the control valves operates to be neutral. When moved from the position, the control valve restricts the flow of hydraulic oil in the bleed line.
  • the discharge flow rate of the first hydraulic pump 11 and the discharge flow rate of the second hydraulic pump 12 are controlled by a negative control (hereinafter referred to as “negative control”) method. That is, the first bleed line 21 is provided with throttles 22 on the downstream side of all control valves, and a relief valve 23 is arranged on a line that bypasses the throttles 22. Similarly, the second bleed line 31 is provided with throttles 32 on the downstream side of all control valves, and a relief valve 33 is disposed on a line that bypasses the throttles 32.
  • the first hydraulic pump 11 and the second hydraulic pump 12 are driven by an unillustrated engine and discharge hydraulic oil at a flow rate corresponding to the tilt angle and the engine speed.
  • a swash plate pump whose tilt angle is defined by the angle of the swash plate 11a (see FIG. 3) is employed as the first hydraulic pump 11 and the second hydraulic pump 12.
  • the first hydraulic pump 11 and the second hydraulic pump 12 may be a slant shaft pump whose tilt angle is defined by a slant shaft angle.
  • the tilt angle of the first hydraulic pump 11 is controlled by the first regulator 16, and the tilt angle of the second hydraulic pump 12 is controlled by the second regulator 17.
  • the discharge pressure of the first hydraulic pump 11 is guided to the first regulator 16, and the discharge pressure of the second hydraulic pump 12 is guided to the second regulator 17. Further, the power shift pressure is output from the electromagnetic proportional valve 91 to the first regulator 16 and the second regulator 17.
  • the electromagnetic proportional valve 91 is connected to the auxiliary pump 18 by the primary pressure line 92, and the auxiliary pump 18 is driven by the engine (not shown). Further, the electromagnetic proportional valve 91 is controlled by the controller 8 based on, for example, an engine speed (not shown). For example, the engine speed is divided into a plurality of operating areas, and the power shift pressure output from the electromagnetic proportional valve 91 is set for each operating area.
  • the first regulator 16 includes a servo cylinder 16a connected to the swash plate 11a of the first hydraulic pump 11, a spool 16b for controlling the servo cylinder 16a, and a spring for biasing the spool 16b. 16e, and a negative control piston 16c and a horsepower control piston 16d that press the spool 16b against the urging force of the spring 16e.
  • the servo cylinder 16a reduces the tilt angle of the first hydraulic pump 11 and moves the spool 16b by the biasing force of the spring 16e. 1 Increase the tilt of the hydraulic pump 11. If the tilt angle of the first hydraulic pump 11 decreases, the discharge flow rate of the first hydraulic pump 11 decreases, and if the tilt angle of the first hydraulic pump 11 increases, the discharge flow rate of the first hydraulic pump 11 increases.
  • the first regulator 16 has a pressure receiving chamber for pressing the spool 16b against the negative control piston 16c.
  • the first negative control pressure Pn1 which is the pressure upstream of the throttle 22 in the first bleed line 21, is guided to the pressure receiving chamber of the negative control piston 16c.
  • the first negative control pressure Pn1 is determined by the degree of restriction of the flow of the hydraulic fluid by the control valves (42, 51) in the first bleed line 21, and the negative control piston 16c advances when the first negative control pressure Pn1 increases (left side of the figure). )
  • the tilt angle of the first hydraulic pump 11 decreases, and when the first negative control pressure Pn1 decreases, the negative control piston 16c moves backward (moves to the right in the figure) and the first hydraulic pump 11 tilts. The turning angle increases.
  • the horsepower control piston 16d is for controlling the tilt angle of the first hydraulic pump 11 based on the discharge pressure and power shift pressure of the first hydraulic pump 11.
  • the first regulator 16 has two pressure receiving chambers for causing the horsepower control piston 16d to press the spool 16b.
  • the discharge pressure of the first hydraulic pump 11 and the power shift pressure from the electromagnetic proportional valve 91 are led to the two pressure receiving chambers of the horsepower control piston 16d, respectively.
  • the negative control piston 16c and the horsepower control piston 16d are configured so as to preferentially press the spool 16b in the direction of limiting (decreasing) the discharge flow rate of the first hydraulic pump 11.
  • the configuration of the second regulator 17 is the same as the configuration of the first regulator 16. That is, the second regulator 17 controls the tilt angle of the second hydraulic pump 12 based on the second negative control pressure Pn2 by the negative control piston 16c. The second regulator 17 controls the tilt angle of the second hydraulic pump 12 based on the discharge pressure of the second hydraulic pump 12 and the power shift pressure from the electromagnetic proportional valve 91 by the horsepower control piston 16d.
  • the first regulator 16 controls the tilt angle of the first hydraulic pump 11 without being based on the discharge pressure of the second hydraulic pump 12, and the second regulator 17 is based on the discharge pressure of the first hydraulic pump 11. Without limiting, the tilt angle of the second hydraulic pump 12 is controlled. For this reason, the tilt angles of the first hydraulic pump 11 and the second hydraulic pump 12 can be controlled independently of each other.
  • the boom main control valve 41 is connected to the boom cylinder 13 by a boom raising supply line 13a and a boom lowering supply line 13b.
  • the boom sub control valve 42 is connected to the boom raising supply line 13a by the sub supply line 13c.
  • the pilot port of the boom main control valve 41 is connected to the boom operation valve 61 by a boom raising pilot line 43 and a boom lowering pilot line 44.
  • the boom operation valve 61 includes an operation lever, and outputs a pilot pressure having a magnitude corresponding to the operation amount of the operation lever to the boom main control valve 41.
  • the boom raising pilot line 43 is provided with a first pressure sensor 81 for detecting the pilot pressure during the boom raising operation.
  • the pilot port of the boom sub-control valve 42 is connected to the boom side regulating valve 71 by the boom raising pilot line 45.
  • the boom side restriction valve 71 is an electromagnetic proportional valve.
  • the boom side regulating valve 71 is connected to the auxiliary pump 18 by a primary pressure line 74.
  • the arm main control valve 51 is connected to the arm cylinder 14 by an arm pulling supply line 14a and an arm pushing supply line 14b.
  • the arm sub control valve 52 is connected to the arm pulling supply line 14a by the sub supply line 14c, and is connected to the arm pushing supply line 14b by the sub supply line 14d.
  • the pilot port of the arm main control valve 51 is connected to the arm operation valve 62 by the arm pulling pilot line 53 and the arm pushing pilot line 54.
  • the arm operation valve 62 includes an operation lever, and outputs a pilot pressure having a magnitude corresponding to the operation amount of the operation lever to the arm main control valve 51.
  • the arm pulling pilot line 53 is provided with a second pressure sensor 82 for detecting the pilot pressure during the arm pulling operation, and the arm pushing pilot line 54 is for detecting the pilot pressure during the arm pushing operation.
  • the third pressure sensor 83 is provided.
  • the pilot port of the arm sub-control valve 52 is connected to a pair of arm-side regulating valves 72 and 73 by an arm pushing pilot line 56 and an arm pulling pilot line 55.
  • each of the arm side restriction valves 72 and 73 is an electromagnetic proportional valve.
  • the arm side restriction valves 72 and 73 are connected to the auxiliary pump 18 by a primary pressure line 75.
  • the boom side restriction valve 71 and the arm side restriction valves 72 and 73 are controlled by the controller 8. Specifically, the controller 8 outputs the pilot pressure to the arm sub control valve 52 in response to the arm pulling operation and the arm pushing operation when the boom raising operation is not performed on the arm side regulating valves 72 and 73, Control is performed so that pilot pressure is not output to the arm sub-control valve 52 when the operation and the boom raising operation are performed simultaneously. In addition, the controller 8 outputs a pilot pressure to the boom sub control valve 42 in response to the boom raising operation when the arm pulling operation is not performed, and the arm pulling operation and the boom raising operation are performed simultaneously. Control is performed so that the pilot pressure is not output to the boom sub-control valve 42.
  • the boom side regulating valve 71 which is an electromagnetic proportional valve, allows the boom raising pilot line 45 to communicate with the tank if no current is supplied from the controller 8. At this time, the boom sub control valve 42 is maintained in the neutral position.
  • the boom raising pilot line detected by the first pressure sensor 81 is used.
  • a current having a magnitude corresponding to the pilot pressure of 43 is supplied to the boom side regulating valve 71.
  • the boom side control valve 71 outputs the pilot pressure proportional to the pilot pressure output from the boom operation valve 61 to the boom sub control valve 42 as shown in FIG.
  • the controller 8 performs the arm pulling operation and the boom raising operation simultaneously, that is, the pilot pressure of the boom raising pilot line 43 detected by the first pressure sensor 81 is equal to or higher than the threshold value, and the second pressure sensor 82.
  • the pilot pressure of the arm pulling pilot line 53 detected in (1) becomes equal to or higher than the threshold value, no current is supplied to the boom side regulating valve 71.
  • the boom sub control valve 42 does not operate.
  • the arm-side regulating valves 72 and 73 that are electromagnetic proportional valves cause the pilot lines 55 and 56 to communicate with the tank unless current is supplied from the controller 8. At this time, the arm sub control valve 52 is maintained in the neutral position.
  • the boom raising operation is not performed, that is, when the pilot pressure of the boom raising pilot line 43 detected by the first pressure sensor 81 is less than the threshold, the arm pulling pilot line detected by the second pressure sensor 82 is used.
  • a current having a magnitude corresponding to the pilot pressure of 53 is supplied to the arm-side regulating valve 72 or a current having a magnitude corresponding to the pilot pressure of the arm pushing pilot line 54 detected by the third pressure sensor 83 is supplied to the arm side. Feed to the regulation valve 73.
  • one of the arm-side regulating valves 72 and 73 outputs a pilot pressure proportional to the pilot pressure output from the arm operation valve 62 to the arm sub control valve 52 as shown in FIG.
  • the controller 8 does not supply current to the arm side regulating valves 72 and 73. As a result, the arm sub control valve 52 does not operate.
  • the arm sub control valve 52 and the boom sub control valve 42 do not operate when the arm pulling operation and the boom raising operation are performed simultaneously. Therefore, the first hydraulic pump 11 can be used exclusively for the arm cylinder 14 and the second hydraulic pump 12 can be used exclusively for the boom cylinder 13. As a result, it is possible to prevent a large amount of hydraulic oil from flowing into the arm cylinder 14 and the boom cylinder 13 with the lower load pressure.
  • “dedicated” here means that only one of the arm cylinder 14 and the boom cylinder 13 is excluded, and other hydraulic actuators (for example, the bucket cylinder 15) are not necessarily excluded.
  • the tilt angles of the first hydraulic pump 11 and the second hydraulic pump 12 can be controlled independently of each other.
  • the independent horsepower control is performed on both the hydraulic pumps 11 and 12, so that the first The amount of hydraulic oil supplied to the arm cylinder 14 and the boom cylinder 13 can be determined according to the load pressure of the arm cylinder 14 and the boom cylinder 13 by the horsepower control characteristics of the hydraulic pump 11 and the second hydraulic pump 12.
  • FIG. 5A shows the horsepower control characteristics of the second hydraulic pump 12 defined by the second regulator 17, and FIG. 5B shows the horsepower control characteristics of the first hydraulic pump 11 defined by the first regulator 16.
  • the discharge pressure of the first hydraulic pump 11 which is the load pressure of the arm cylinder 14 is usually used.
  • the discharge pressure of the second hydraulic pump 12, which is the load pressure of the boom cylinder 13 becomes relatively high.
  • the discharge flow rate of the first hydraulic pump 11 changes according to the horsepower control characteristics shown in FIG.
  • the first and second regulators 16 and 17 may be configured such that the horsepower control characteristics shown in FIGS. 5B and 5A correspond to 1 ⁇ 2 of the engine output.
  • unnecessary pressure loss does not occur in the course of the path from the first hydraulic pump 11 to the arm cylinder 14 and the path from the second hydraulic pump 12 to the boom cylinder 13. , Wasteful consumption of energy can be suppressed.
  • the single hydraulic proportional valve controls the first hydraulic pump 11 and the second hydraulic pump 12.
  • Power shift control That is, by changing the power shift pressure, the horsepower control characteristics shown in FIGS. 5A and 5B can be simultaneously shifted as indicated by arrows in the drawing.
  • the boom-side restriction valve 71 and the arm-side restriction valves 72 and 73 are all electromagnetic that outputs to the sub-control valves 42 and 52 a pilot pressure proportional to the pilot pressure output from the operation valves 61 and 62. It is a proportional valve. Therefore, when the boom raising operation is not performed, the arm sub control valve 52 can be operated in the same manner as the arm main control valve 51, and when the arm pulling operation is not performed, the boom sub control valve 42 is operated. It can be operated similarly to the control valve 41.
  • the boom main control valve 41 and the arm main control valve 51 are Since it can be continuously operated, the boom cylinder 13 and the arm cylinder 14 can be operated at a certain speed.
  • a first electromagnetic proportional valve 93 and a second electromagnetic proportional valve 95 are employed as electromagnetic proportional valves for power shift control.
  • the first electromagnetic proportional valve 93 is connected to the auxiliary pump 18 by a primary pressure line 94
  • the second electromagnetic proportional valve 95 is connected to the auxiliary pump 18 by a primary pressure line 96.
  • the first electromagnetic proportional valve 93 outputs the first power shift pressure to the first regulator 16, and the second electromagnetic proportional valve 95 outputs the second power shift pressure to the second regulator 17.
  • the first regulator 16 controls the tilt angle of the first hydraulic pump 11 based on the discharge pressure and the first power shift pressure of the first hydraulic pump 11, and the second regulator 17
  • the tilt angle of the second hydraulic pump 12 is controlled based on the discharge pressure and the second power shift pressure.
  • the same effect as in the first embodiment can be obtained.
  • power shift control independent of each other can be performed on the first hydraulic pump 11 and the second hydraulic pump 12. For this reason, the amount of hydraulic oil supplied to the arm cylinder 14 and the boom cylinder 13 can be manipulated using the power shift control of the first hydraulic pump 11 and the second hydraulic pump 12.
  • the controller 8 when the arm pulling operation and the boom raising operation are performed simultaneously, the controller 8 causes the first power shift pressure to increase and the discharge flow rate of the first hydraulic pump 11 to decrease.
  • the first electromagnetic proportional valve 93 may be controlled, and the second electromagnetic proportional valve 95 may be controlled so that the second power shift pressure decreases and the discharge flow of the second hydraulic pump 12 increases.
  • the boom-side regulating valve 71 is connected to a boom raising pilot line 43 that extends from the boom operation valve 61 to the pilot port of the boom main control valve 41 by a relay line 46.
  • the arm side restriction valve 72 is connected to the arm push pilot line 54 that extends from the arm operation valve 62 to the pilot port of the arm main control valve 51 through the first relay line 58.
  • Two relay lines 57 are connected to an arm pulling pilot line 53 extending from the arm operation valve 62 to the pilot port of the arm main control valve 51.
  • the controller 8 does not supply current to the boom-side regulating valve 71 and the arm-side regulating valves 72 and 73 that are electromagnetic on-off valves, except when the arm pulling operation and the boom raising operation are performed simultaneously.
  • the boom-side regulating valve 71 communicates the boom raising pilot line 45 for the boom sub-control valve 42 with the boom raising pilot line 43 for the boom main control valve 41 through the relay line 46, and the arm-side regulating valves 72, 73.
  • the arm pushing pilot line 56 and the arm pulling pilot line 55 for the arm sub-control valve 52 are connected to the arm pushing pilot line 54 and the arm pulling pilot 55 for the arm main control valve 51 through the first relay line 58 and the second relay line 57, respectively. It communicates with the line 53.
  • the boom-side restriction valve 71 outputs pilot pressure to the boom sub-control valve 42 in response to the boom raising operation
  • the arm-side restriction valves 72 and 73 are arm sub-control valves in response to the arm pulling operation and the arm pushing operation.
  • the pilot pressure is output to 52.
  • the controller 8 supplies current to the boom side restriction valve 71 and the arm side restriction valves 72 and 73.
  • the boom side regulation valve 71 shuts off the boom raising pilot line 45
  • the arm side regulation valves 72 and 73 shut off the arm pushing pilot line 56 and the arm pulling pilot line 55, respectively. That is, the boom side restriction valve 71 does not output pilot pressure to the boom sub control valve 42, and the arm side restriction valves 72 and 73 do not output pilot pressure to the arm sub control valve 52.
  • the configuration and control logic can be simplified as compared with the case where an electromagnetic proportional valve is employed as the boom side control valve 71 and the arm side control valves 72 and 73.
  • an electromagnetic proportional valve as described in the first embodiment as the boom side regulating valve 71 and the arm side regulating valves 72 and 73.
  • one of the boom side restriction valve 71 and the arm side restriction valves 72 and 73 may be an electromagnetic on-off valve, and the other may be an electromagnetic proportional valve.
  • the electromagnetic proportional valve 91 that outputs the power shift to the first regulator 16 and the second regulator 17
  • the first electromagnetic proportional that outputs the first power shift pressure to the first regulator 16.
  • a second electromagnetic proportional valve 95 that outputs the second power shift pressure to the valve 93 and the second regulator 17 may be employed.
  • the control method of the discharge flow rate of the first and second hydraulic pumps 11 and 12 is not necessarily the negative control method, and may be the positive control method. That is, the first and second regulators 16 and 17 may have a structure replacing the negative control piston 16c. Further, the discharge flow rate control method of the first and second hydraulic pumps 11 and 12 may be a load sensing method.
  • the present invention is useful not only for self-propelled excavators but also for various types of excavators.

Abstract

 油圧ショベル駆動システムは、傾転角が互いに独立して制御可能な第1油圧ポンプおよび第2油圧ポンプと、アームシリンダへの作動油の供給を制御するためのアーム主制御弁およびアーム副制御弁と、ブームシリンダへの作動油の供給を制御するためのブーム主制御弁およびブーム副制御弁を含む。アーム主制御弁へはアーム操作弁からパイロット圧が出力され、ブーム主制御弁へはブーム操作弁からパイロット圧が出力される。アーム引き操作とブーム上げ操作が同時に行われるときには、一対のアーム側規制弁がアーム副制御弁へパイロット圧を出力せず、ブーム側規制弁がブーム副制御弁へパイロット圧を出力しない。

Description

油圧ショベル駆動システム
 本発明は、油圧ショベル駆動システムに関する。
 油圧ショベル駆動システムは、一般に、油圧アクチュエータとして旋回モータ、ブームシリンダ、アームシリンダおよびバケットシリンダを含み、これらの油圧アクチュエータには、2つの油圧ポンプから作動油が供給される。通常、旋回モータおよびバケットシリンダへの作動油の供給はそれぞれ1つの制御弁により制御されるが、ブームシリンダ(少なくともブーム上げ時)およびアームシリンダへの作動油の供給はそれぞれ2つの制御弁により制御される。
 例えば、特許文献1には、図9に示すような油圧ショベル駆動システム100が開示されている。この駆動システム100では、第1油圧ポンプ101から延びる第1ブリードライン102上にアーム主制御弁121およびブーム副制御弁132が配置され、第2油圧ポンプ103から延びる第2ブリードライン104上にアーム副制御弁122、バケット制御弁110およびブーム主制御弁131が配置されている。
 アーム主制御弁121はアーム引きパイロットライン123によりアーム操作弁120と接続されており、ブーム主制御弁131はブーム上げパイロットライン133によりブーム操作弁130と接続されている。アーム引きパイロットライン123からは副パイロットライン124が分岐してアーム副制御弁122へつながっている。同様に、ブーム上げパイロットライン133からは副パイロットライン134が分岐してブーム副制御弁132へつながっている。副パイロットライン124,134には、電磁比例弁125,135がそれぞれ設けられている。
 電磁比例弁125,135のそれぞれは、操作弁(120または130)から出力されるパイロット圧が高いほど副制御弁(122または132)へ低いパイロット圧を出力する。すなわち、電磁比例弁から副制御弁へ主力されるパイロット圧は、操作弁から主制御弁へ出力されるパイロット圧と反比例の関係にある。副制御弁へ導かれるパイロット圧が低くされると、副制御弁の開度が絞られる。特許文献1には、この構成によりアーム引き操作とブーム上げ操作を同時に行ったときにアームシリンダ126とブームシリンダ136の一方へ作動油を優先的に供給することができる、と記載されている。アーム引き操作とブーム上げ操作を同時に行ったときとは、バケットをショベル本体に近づけるように水平に移動させるときである。
特開2006-29468号公報
 ところで、図9に示す駆動システム100では、アーム副制御弁122およびブーム副制御弁132が、アーム操作弁120およびブーム操作弁130から出力されるパイロット圧に応じて作動するのであって、アームシリンダ126およびブームシリンダ136の負荷圧力に応じて作動するわけではない。しかも、双方の副制御弁122,132の開度は絞られるもののゼロとされることはなく、第1油圧ポンプ101および第2油圧ポンプ103のどちらからもアームシリンダ126とブームシリンダ136へ作動油が供給される。このため、アーム引き操作とブーム上げ操作が同時に行われたときに双方の副制御弁122,132の開度が絞られることで、アームシリンダ126とブームシリンダ136のうちの負荷圧力の低い方に多くの作動油が流入するという点はある程度改善される。
 しかしながら、図9に示す駆動システム100では、副制御弁122,132の開度の絞りによってシリンダ126,136への作動油供給経路の途中で不必要な圧力損失が発生する。このため、エネルギーが無駄に消費されることになる。
 そこで、本発明は、アーム引き操作とブーム上げ操作が同時に行われるときに、アームシリンダとブームシリンダのうちの負荷圧力の低い方に多くの作動油が流入することを防止でき、かつ、エネルギーの無駄な消費を抑制することができる油圧ショベル駆動システムを提供することを目的とする。
 前記課題を解決するために、本発明の発明者らは、鋭意研究の結果、アーム引き操作とブーム上げ操作が同時に行われるときに、アーム副制御弁からアームシリンダへの供給ラインを遮断するとともにブーム副制御弁からブームシリンダへの供給ラインを遮断すれば、一方の油圧ポンプをアームシリンダ専用、他方の油圧ポンプをブームシリンダ専用として使用できることを見出した。しかも、この場合は、双方の油圧ポンプの吐出圧を異ならせることができるため、双方の油圧ポンプを単独で馬力制御すれば(独立馬力制御)、個々の油圧ポンプの馬力制御特性によってアームシリンダおよびブームシリンダへ供給される作動油の量を定めることができる。すなわち、通常の油圧ショベル駆動システムでは、双方の油圧ポンプが自己の吐出圧および相手側の吐出圧に基づいて制御される、いわゆる全馬力制御が行われており、この全馬力制御では、双方の油圧ポンプの傾転角が常に同じ角度に保たれる。これに対し、双方の油圧ポンプが相手側の吐出圧に基づかずに自己の吐出圧に基づいて制御される独立馬力制御では、双方の油圧ポンプの傾転角が互いに独立して制御可能である。本発明は、このような観点からなされたものである。
 すなわち、本発明の油圧ショベル駆動システムは、傾転角に応じた流量の作動油を吐出する、前記傾転角が互いに独立して制御可能な第1油圧ポンプおよび第2油圧ポンプと、アームシリンダへの作動油の供給を制御するための、前記第1油圧ポンプから延びる第1ブリードライン上に配置されたアーム主制御弁および前記第2油圧ポンプから延びる第2ブリードライン上に配置されたアーム副制御弁と、ブームシリンダへの作動油の供給を制御するための、前記第2ブリードライン上に配置されたブーム主制御弁および前記第1ブリードライン上に配置されたブーム副制御弁と、前記アーム主制御弁へパイロット圧を出力するアーム操作弁と、前記ブーム主制御弁へパイロット圧を出力するブーム操作弁と、ブーム上げ操作が行われないときにアーム引き操作およびアーム押し操作に応じて前記アーム副制御弁へパイロット圧を出力し、アーム引き操作とブーム上げ操作が同時に行われるときに前記アーム副制御弁へパイロット圧を出力しない一対のアーム側規制弁と、アーム引き操作が行われないときにブーム上げ操作に応じて前記ブーム副制御弁へパイロット圧を出力し、アーム引き操作とブーム上げ操作が同時に行われるときに前記ブーム副制御弁へパイロット圧を出力しないブーム側規制弁と、を備える、ことを特徴とする。
 上記の構成によれば、アーム引き操作とブーム上げ操作が同時に行われるときに、アーム副制御弁とブーム副制御弁が作動しない。このため、第1油圧ポンプをアームシリンダ専用、第2油圧ポンプをブームシリンダ専用として使用することができる。その結果、アームシリンダとブームシリンダのうちの負荷圧力の低い方に多くの作動油が流入することを防止することができる。しかも、第1油圧ポンプと第2油圧ポンプの傾転角は互いに独立して制御可能である、換言すれば双方の油圧ポンプに対して独立馬力制御が行われるので、第1油圧ポンプおよび第2油圧ポンプの馬力制御特性によってアームシリンダおよびブームシリンダへ供給される作動油の量を定めることができる。これにより、第1油圧ポンプおよび第2油圧ポンプからアームシリンダおよびブームシリンダまでの経路の途中で不必要な圧力損失を生じることがなく、エネルギーの無駄な消費を抑制することができる。
 前記一対のアーム側規制弁のそれぞれは、ブーム上げ操作が行われないときに前記アーム操作弁から出力されるパイロット圧に比例するパイロット圧を前記アーム副制御弁へ出力する電磁比例弁であり、前記ブーム側規制弁は、アーム引き操作が行われないときに前記ブーム操作弁から出力されるパイロット圧に比例するパイロット圧を前記ブーム副制御弁へ出力する電磁比例弁であってもよい。この構成によれば、ブーム上げ操作が行われないときにアーム副制御弁をアーム主制御弁と同様に作動させることができるとともに、アーム引き操作が行われないときにブーム副制御弁をブーム主制御弁と同様に作動させることができる。
 前記一対のアーム側規制弁のそれぞれは、アーム引き操作とブーム上げ操作が同時に行われるときに前記アーム副制御弁用のパイロットラインを遮断する電磁開閉弁であり、前記ブーム側規制弁は、アーム引き操作とブーム上げ操作が同時に行われるときに前記ブーム副制御弁用のパイロットラインを遮断する電磁開閉弁であってもよい。この構成によれば、規制弁として電磁比例弁を採用する場合よりも、構成および制御ロジックを簡単にすることができる。
 上記の油圧ショベル駆動システムは、前記第1油圧ポンプの吐出圧およびパワーシフト圧に基づいて前記第1油圧ポンプの傾転角を制御する第1レギュレータと、前記第2油圧ポンプの吐出圧および前記パワーシフト圧に基づいて前記第2油圧ポンプの傾転角を制御する第2レギュレータと、前記第1レギュレータおよび前記第2レギュレータへ前記パワーシフト圧を出力する電磁比例弁と、をさらに備えてもよい。この構成によれば、1つの電磁比例弁で第1油圧ポンプと第2油圧ポンプに対してパワーシフト制御を行うことができる。
 上記の油圧ショベル駆動システムは、前記第1油圧ポンプの吐出圧および第1パワーシフト圧に基づいて前記第1油圧ポンプの傾転角を制御する第1レギュレータと、前記第1レギュレータへ前記第1パワーシフト圧を出力する第1電磁比例弁と、前記第2油圧ポンプの吐出圧および第2パワーシフト圧に基づいて前記第2油圧ポンプの傾転角を制御する第2レギュレータと、前記第2レギュレータへ前記第2パワーシフト圧を出力する第2電磁比例弁と、をさらに備えてもよい。この構成によれば、第1油圧ポンプおよび第2油圧ポンプに対して互いに独立したパワーシフト制御を行うことができる。
 例えば、上記の油圧ショベル駆動システムは、アーム引き操作とブーム上げ操作が同時に行われるときに、前記第1パワーシフト圧が上昇して前記第1油圧ポンプの吐出流量が減少するように前記第1電磁比例弁を制御し、かつ、前記第2パワーシフト圧が低下して前記第2油圧ポンプの吐出流用が増大するように前記第2電磁比例弁を制御するコントローラをさらに備えてもよい。
 本発明によれば、アーム引き操作とブーム上げ操作が同時に行われるときに、アームシリンダとブームシリンダのうちの負荷圧力の低い方に多くの作動油が流入することを防止でき、かつ、エネルギーの無駄な消費を抑制することができる。
本発明の第1実施形態に係る油圧ショベル駆動システムの油圧回路図である。 油圧ショベルの側面図である。 レギュレータの構成を示す油圧回路図である。 アーム引き操作とブーム上げ操作が同時に行われないときの操作弁からのパイロット圧とアーム側規制弁およびブーム側規制弁である電磁比例弁からのパイロット圧との関係を示すグラフである。 図5Aおよび5Bは、それぞれ、第1実施形態における第2油圧ポンプおよび第1油圧ポンプの馬力制御特性を示すグラフである。 本発明の第2実施形態に係る油圧ショベル駆動システムの油圧回路図である。 図7Aおよび7Bは、それぞれ、第2実施形態における第2油圧ポンプおよび第1油圧ポンプの馬力制御特性を示すグラフである。 本発明の第3実施形態に係る油圧ショベル駆動システムの油圧回路図である。 従来の油圧ショベル駆動システムの油圧回路図である。
 (第1実施形態)
 図1に、本発明の第1実施形態に係る油圧ショベル駆動システム1Aを示し、図2に、その駆動システム1Aが搭載された油圧ショベル10を示す。
 駆動システム1Aは、油圧アクチュエータとして、図2に示すバケットシリンダ15、アームシリンダ14およびブームシリンダ13を含むとともに、図示しない旋回モータおよび左右一対の走行モータを含む。また、駆動システム1Aは、上記の油圧アクチュエータに作動油を供給する第1油圧ポンプ11および第2油圧ポンプ12を含む。なお、図1では、アームシリンダ14およびブームシリンダ13以外の油圧アクチュエータおよびその油圧アクチュエータ用の制御弁の作図を省略している。
 アームシリンダ14への作動油の供給は、アーム主制御弁51およびアーム副制御弁52により制御され、ブームシリンダ13への作動油の供給は、ブーム主制御弁41およびブーム副制御弁42により制御される。第1油圧ポンプ11からは第1ブリードライン21がタンクまで延びており、第2油圧ポンプ12からは第2ブリードライン31がタンクまで延びている。第1ブリードライン21上には、ブーム副制御弁42とアーム主制御弁51が直列に配置されており、第2ブリードライン31上には、ブーム主制御弁41とアーム副制御弁52が直列に配置されている。
 なお、図示は省略するが、第1ブリードライン21上には、旋回モータへの作動油の供給を制御する旋回制御弁が配置され、第2ブリードライン31上には、バケットシリンダ15への作動油の供給を制御するバケット制御弁が配置される。また、第1ブリードライン21および第2ブリードライン31上には、左右一対の走行モータへの作動油の供給を制御する一対の走行制御弁も配置される。
 上述した制御弁のうち、ブーム副制御弁42は2位置弁であるが、その他の制御弁は3位置弁である。
 第1ブリードライン21からはパラレルライン24が分岐しており、このパラレルライン24を通じて第1ブリードライン21上の全ての制御弁へ第1油圧ポンプ11から吐出される作動油が導かれる。同様に、第2ブリードライン31からはパラレルライン34が分岐しており、このパラレルライン34を通じて第2ブリードライン31上の全ての制御弁へ第2油圧ポンプ12から吐出される作動油が導かれる。第1ブリードライン21上のブーム副制御弁42以外の制御弁はタンクライン25によりタンクと接続されている一方、第2ブリードライン31上の全ての制御弁はタンクライン35によりタンクと接続されている。
 第1ブリードライン21および第2ブリードライン31上に配置された全ての制御弁は、オープンセンター型の弁である。すなわち、ブリードライン(21または31)上の全ての制御弁が中立位置にあるときには制御弁によって当該ブリードラインにおける作動油の流通が制限されることがなく、いずれかの制御弁が作動して中立位置から移動するとその制御弁によって当該ブリードラインにおける作動油の流通が制限される。
 本実施形態では、第1油圧ポンプ11の吐出流量および第2油圧ポンプ12の吐出流量がネガティブコントロール(以下、「ネガコン」という)方式で制御される。すなわち、第1ブリードライン21には全ての制御弁の下流側に絞り22が設けられているとともに、この絞り22をバイパスするライン上にリリーフ弁23が配置されている。同様に、第2ブリードライン31には全ての制御弁の下流側に絞り32が設けられているとともに、この絞り32をバイパスするライン上にリリーフ弁33が配置されている。
 第1油圧ポンプ11および第2油圧ポンプ12は、図略のエンジンにより駆動されて、傾転角およびエンジン回転数に応じた流量の作動油を吐出する。本実施形態では、第1油圧ポンプ11および第2油圧ポンプ12として、斜板11a(図3参照)の角度により傾転角が規定される斜板ポンプが採用されている。ただし、第1油圧ポンプ11および第2油圧ポンプ12は、斜軸の角度により傾転角が規定される斜軸ポンプであってもよい。
 第1油圧ポンプ11の傾転角は、第1レギュレータ16により制御され、第2油圧ポンプ12の傾転角は、第2レギュレータ17により制御される。第1レギュレータ16には、第1油圧ポンプ11の吐出圧が導かれ、第2レギュレータ17には、第2油圧ポンプ12の吐出圧が導かれる。また、第1レギュレータ16および第2レギュレータ17へは、電磁比例弁91からパワーシフト圧が出力される。
 電磁比例弁91は、一次圧ライン92により補助ポンプ18と接続されており、補助ポンプ18は、上述した図略のエンジンにより駆動される。また、電磁比例弁91は、コントローラ8により、例えば図略のエンジンの回転数に基づいて制御される。例えば、エンジンの回転数が複数の稼動領域に区分けされ、それらの稼動領域ごとに電磁比例弁91から出力されるパワーシフト圧が設定される。
 図3に示すように、第1レギュレータ16は、第1油圧ポンプ11の斜板11aと連結されたサーボシリンダ16aと、サーボシリンダ16aを制御するためのスプール16bと、スプール16bを付勢するスプリング16eと、スプリング16eの付勢力に抗してスプール16bを押圧するネガコン用ピストン16cおよび馬力制御用ピストン16dと、を含む。
 サーボシリンダ16aは、ネガコン用ピストン16cまたは馬力制御用ピストン16dによってスプール16bが押圧されると第1油圧ポンプ11の傾転角を小さくし、スプリング16eの付勢力によってスプール16bが移動させられると第1油圧ポンプ11の傾転を大きくする。第1油圧ポンプ11の傾転角が小さくなれば第1油圧ポンプ11の吐出流量が減少し、第1油圧ポンプ11の傾転角が大きくなれば第1油圧ポンプ11の吐出流量が増大する。
 第1レギュレータ16には、ネガコン用ピストン16cにスプール16bを押圧させるための受圧室が形成されている。ネガコン用ピストン16cの受圧室には、第1ブリードライン21における絞り22の上流側の圧力である第1ネガコン圧Pn1が導かれる。第1ネガコン圧Pn1は第1ブリードライン21における制御弁(42,51)による作動油の流通の制限度合によって定まり、第1ネガコン圧Pn1が大きくなればネガコン用ピストン16cが進出(図の左方へ移動)して第1油圧ポンプ11の傾転角が小さくなり、第1ネガコン圧Pn1が小さくなればネガコン用ピストン16cが後退(図の右方へ移動)して第1油圧ポンプ11の傾転角が大きくなる。
 馬力制御用ピストン16dは、第1油圧ポンプ11の吐出圧およびパワーシフト圧に基づいて第1油圧ポンプ11の傾転角を制御するためのものである。具体的に、第1レギュレータ16には、馬力制御用ピストン16dにスプール16bを押圧させるための2つの受圧室が形成されている。馬力制御用ピストン16dの2つの受圧室には、それぞれ、第1油圧ポンプ11の吐出圧および電磁比例弁91からのパワーシフト圧が導かれる。
 なお、ネガコン用ピストン16cと馬力制御用ピストン16dは、そのうちの第1油圧ポンプ11の吐出流量を制限する方(減少させる方)が優先してスプール16bを押圧するように構成される。
 第2レギュレータ17の構成は、第1レギュレータ16の構成と同様である。すなわち、第2レギュレータ17は、ネガコン用ピストン16cにより、第2ネガコン圧Pn2に基づいて第2油圧ポンプ12の傾転角を制御する。また、第2レギュレータ17は、馬力制御用ピストン16dにより、第2油圧ポンプ12の吐出圧および電磁比例弁91からのパワーシフト圧に基づいて第2油圧ポンプ12の傾転角を制御する。
 上述したように、第1レギュレータ16は第2油圧ポンプ12の吐出圧に基づかずに第1油圧ポンプ11の傾転角を制御し、第2レギュレータ17は第1油圧ポンプ11の吐出圧に基づかずに第2油圧ポンプ12の傾転角を制御する。このため、第1油圧ポンプ11および第2油圧ポンプ12の傾転角は、互いに独立して制御可能である。
 図1に戻って、ブーム主制御弁41は、ブーム上げ供給ライン13aおよびブーム下げ供給ライン13bによりブームシリンダ13と接続されている。ブーム副制御弁42は、副供給ライン13cによりブーム上げ供給ライン13aと接続されている。
 また、ブーム主制御弁41のパイロットポートは、ブーム上げパイロットライン43およびブーム下げパイロットライン44によりブーム操作弁61と接続されている。ブーム操作弁61は、操作レバーを含み、操作レバーの操作量に応じた大きさのパイロット圧をブーム主制御弁41へ出力する。ブーム上げパイロットライン43には、ブーム上げ操作時のパイロット圧を検出するための第1圧力センサ81が設けられている。
 一方、ブーム副制御弁42のパイロットポートは、ブーム上げパイロットライン45によりブーム側規制弁71に接続されている。本実施形態では、ブーム側規制弁71が電磁比例弁である。ブーム側規制弁71は、一次圧ライン74により補助ポンプ18と接続されている。
 アーム主制御弁51は、アーム引き供給ライン14aおよびアーム押し供給ライン14bによりアームシリンダ14と接続されている。アーム副制御弁52は、副供給ライン14cによりアーム引き供給ライン14aと接続され、副供給ライン14dによりアーム押し供給ライン14bと接続されている。
 また、アーム主制御弁51のパイロットポートは、アーム引きパイロットライン53およびアーム押しパイロットライン54によりアーム操作弁62と接続されている。アーム操作弁62は、操作レバーを含み、操作レバーの操作量に応じた大きさのパイロット圧をアーム主制御弁51へ出力する。アーム引きパイロットライン53には、アーム引き操作時のパイロット圧を検出するための第2圧力センサ82が設けられており、アーム押しパイロットライン54には、アーム押し操作時のパイロット圧を検出するための第3圧力センサ83が設けられている。
 一方、アーム副制御弁52のパイロットポートは、アーム押しパイロットライン56およびアーム引きパイロットライン55により一対のアーム側規制弁72,73に接続されている。本実施形態では、アーム側規制弁72,73のそれぞれが電磁比例弁である。アーム側規制弁72,73は、一次圧ライン75により補助ポンプ18と接続されている。
 ブーム側規制弁71およびアーム側規制弁72,73は、コントローラ8により制御される。具体的に、コントローラ8は、アーム側規制弁72,73を、ブーム上げ操作が行われないときにアーム引き操作およびアーム押し操作に応じてアーム副制御弁52へパイロット圧を出力し、アーム引き操作とブーム上げ操作が同時に行われるときにアーム副制御弁52へパイロット圧を出力しないように制御する。また、コントローラ8は、ブーム側規制弁71を、アーム引き操作が行われないときにブーム上げ操作に応じてブーム副制御弁42へパイロット圧を出力し、アーム引き操作とブーム上げ操作が同時に行われるときにブーム副制御弁42へパイロット圧を出力しないように制御する。
 まず、ブーム側規制弁71の制御について、詳しく説明する。
 電磁比例弁であるブーム側規制弁71は、コントローラ8から電流が送給されなければ、ブーム上げパイロットライン45をタンクと連通させる。このとき、ブーム副制御弁42は、中立位置に維持される。コントローラ8は、アーム引き操作が行われないとき、すなわち第2圧力センサ82で検出されるアーム引きパイロットライン53のパイロット圧が閾値未満のときには、第1圧力センサ81で検出されるブーム上げパイロットライン43のパイロット圧に応じた大きさの電流をブーム側規制弁71へ送給する。これにより、ブーム側規制弁71は、図4に示すように、ブーム操作弁61から出力されるパイロット圧に比例するパイロット圧をブーム副制御弁42へ出力する。
 一方、コントローラ8は、アーム引き操作とブーム上げ操作が同時に行われる場合、すなわち、第1圧力センサ81で検出されるブーム上げパイロットライン43のパイロット圧が閾値以上となり、かつ、第2圧力センサ82で検出されるアーム引きパイロットライン53のパイロット圧が閾値以上となったときは、ブーム側規制弁71へ電流を送給しない。その結果、ブーム副制御弁42が作動しない。
 次に、アーム側規制弁72,73の制御について、詳しく説明する。
 電磁比例弁であるアーム側規制弁72,73は、コントローラ8から電流が送給されなければ、パイロットライン55,56をタンクと連通させる。このとき、アーム副制御弁52は、中立位置に維持される。コントローラ8は、ブーム上げ操作が行われないとき、すなわち第1圧力センサ81で検出されるブーム上げパイロットライン43のパイロット圧が閾値未満のときには、第2圧力センサ82で検出されるアーム引きパイロットライン53のパイロット圧に応じた大きさの電流をアーム側規制弁72へ送給するか、第3圧力センサ83で検出されるアーム押しパイロットライン54のパイロット圧に応じた大きさの電流をアーム側規制弁73へ送給する。これにより、アーム側規制弁72,73の一方は、図4に示すように、アーム操作弁62から出力されるパイロット圧に比例するパイロット圧をアーム副制御弁52へ出力する。
 一方、コントローラ8は、アーム引き操作とブーム上げ操作が同時に行われる場合は、アーム側規制弁72,73へ電流を送給しない。その結果、アーム副制御弁52が作動しない。
 以上説明したように、本実施形態の駆動システム1Aでは、アーム引き操作とブーム上げ操作が同時に行われるときに、アーム副制御弁52とブーム副制御弁42が作動しない。このため、第1油圧ポンプ11をアームシリンダ14専用、第2油圧ポンプ12をブームシリンダ13専用として使用することができる。その結果、アームシリンダ14とブームシリンダ13のうちの負荷圧力の低い方に多くの作動油が流入することを防止することができる。なお、ここでいう「専用」とは、アームシリンダ14とブームシリンダ13の一方のみを排除する趣旨であり、その他の油圧アクチュエータ(例えば、バケットシリンダ15)が必ずしも排除されるわけではない。
 しかも、第1油圧ポンプ11と第2油圧ポンプ12の傾転角は互いに独立して制御可能である、換言すれば双方の油圧ポンプ11,12に対して独立馬力制御が行われるので、第1油圧ポンプ11および第2油圧ポンプ12の馬力制御特性によって、アームシリンダ14およびブームシリンダ13へ供給される作動油の量を、アームシリンダ14およびブームシリンダ13の負荷圧力に応じて定めることができる。
 例えば、図5Aに、第2レギュレータ17によって規定される第2油圧ポンプ12の馬力制御特性を示し、図5Bに、第1レギュレータ16によって規定される第1油圧ポンプ11の馬力制御特性を示す。アーム引き操作とブーム上げ操作を同時に行ったとき、換言すればバケットをショベル本体に近づけるように水平に移動させるときは、通常は、アームシリンダ14の負荷圧力である第1油圧ポンプ11の吐出圧が相対的に低くなり、ブームシリンダ13の負荷圧力である第2油圧ポンプ12の吐出圧が相対的に高くなる。第1油圧ポンプ11の吐出流量は、第1油圧ポンプ11の吐出圧に応じて図5Bに示す馬力制御特性に沿って推移し、第2油圧ポンプ12の吐出流量は、第2油圧ポンプ12の吐出圧に応じて図5Aに示す馬力制御特性に沿って推移する。なお、第1および第2レギュレータ16,17は、図5Bおよび5Aに示す馬力制御特性がエンジンの出力の1/2に相当するように構成されてもよい。本実施形態の油圧ショベル駆動システム1Aでは、第1油圧ポンプ11からアームシリンダ14までの経路、および第2油圧ポンプ12からブームシリンダ13までの経路の途中で不必要な圧力損失を生じることがなく、エネルギーの無駄な消費を抑制することができる。
 また、本実施形態では、第1レギュレータ16および第2レギュレータ17へ電磁比例弁91からパワーシフト圧が出力されるので、1つの電磁比例弁で第1油圧ポンプ11と第2油圧ポンプ12に対してパワーシフト制御を行うことができる。すなわち、パワーシフト圧を変更することによって、図5Aおよび5Bに示す馬力制御特性を同時に図中に矢印で示すようにシフトさせることができる。
 さらに、本実施形態では、ブーム側規制弁71およびアーム側規制弁72,73の全てが操作弁61,62から出力されるパイロット圧に比例するパイロット圧を副制御弁42,52に出力する電磁比例弁である。このため、ブーム上げ操作が行われないときにアーム副制御弁52をアーム主制御弁51と同様に作動させることができるとともに、アーム引き操作が行われないときにブーム副制御弁42をブーム主制御弁41と同様に作動させることができる。
 また、本実施形態では、電気系統の故障により電磁比例弁であるブーム側規制弁71およびアーム側規制弁72,73に電流が流れなくなっても、ブーム主制御弁41およびアーム主制御弁51は継続して作動可能であるので、ブームシリンダ13およびアームシリンダ14をある程度の速度で稼動させることができる。
 (第2実施形態)
 次に、図6を参照して、本発明の第2実施形態に係る油圧ショベル駆動システム1Bを示す。なお、本実施形態ならびに後述する第3実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
 本実施形態では、パワーシフト制御用の電磁比例弁として、第1電磁比例弁93と第2電磁比例弁95が採用されている。第1電磁比例弁93は、一次圧ライン94により補助ポンプ18と接続されており、第2電磁比例弁95は、一次圧ライン96により補助ポンプ18と接続されている。第1電磁比例弁93は、第1レギュレータ16へ第1パワーシフト圧を出力し、第2電磁比例弁95は、第2レギュレータ17へ第2パワーシフト圧を出力する。そして、第1レギュレータ16は、第1油圧ポンプ11の吐出圧および第1パワーシフト圧に基づいて第1油圧ポンプ11の傾転角を制御し、第2レギュレータ17は、第2油圧ポンプ12の吐出圧および第2パワーシフト圧に基づいて第2油圧ポンプ12の傾転角を制御する。
 本実施形態でも、第1実施形態と同様の効果を得ることができる。また、本実施形態では、第1油圧ポンプ11および第2油圧ポンプ12に対して互いに独立したパワーシフト制御を行うことができる。このため、第1油圧ポンプ11および第2油圧ポンプ12のパワーシフト制御を利用して、アームシリンダ14およびブームシリンダ13へ供給される作動油の量を操作することができる。
 例えば、図7Aおよび7Bに示すように、アーム引き操作とブーム上げ操作が同時に行われるときに、コントローラ8が、第1パワーシフト圧が上昇して第1油圧ポンプ11の吐出流量が減少するように第1電磁比例弁93を制御し、かつ、第2パワーシフト圧が低下して第2油圧ポンプ12の吐出流用が増大するように第2電磁比例弁95を制御してもよい。
 (第3実施形態)
 次に、図8を参照して、本発明の第3実施形態に係る油圧ショベル駆動システム1Cを説明する。本実施形態では、ブーム側規制弁71およびアーム側規制弁72,73として、電磁開閉弁が採用されている。
 ブーム側規制弁71は、中継ライン46により、ブーム操作弁61からブーム主制御弁41のパイロットポートまで延びるブーム上げパイロットライン43と接続されている。一方、アーム側規制弁72は、第1中継ライン58により、アーム操作弁62からアーム主制御弁51のパイロットポートまで延びるアーム押しパイロットライン54と接続されており、アーム側規制弁73は、第2中継ライン57により、アーム操作弁62からアーム主制御弁51のパイロットポートまで延びるアーム引きパイロットライン53と接続されている。
 コントローラ8は、アーム引き操作とブーム上げ操作が同時に行われる場合以外は、電磁開閉弁であるブーム側規制弁71およびアーム側規制弁72,73へ電流を送給しない。これにより、ブーム側規制弁71が、ブーム副制御弁42用のブーム上げパイロットライン45を中継ライン46を通じてブーム主制御弁41用のブーム上げパイロットライン43に連通し、アーム側規制弁72,73が、アーム副制御弁52用のアーム押しパイロットライン56およびアーム引きパイロットライン55をそれぞれ第1中継ライン58および第2中継ライン57を通じてアーム主制御弁51用のアーム押しパイロットライン54およびアーム引きパイロットライン53に連通する。すなわち、ブーム側規制弁71は、ブーム上げ操作に応じてブーム副制御弁42へパイロット圧を出力し、アーム側規制弁72,73は、アーム引き操作およびアーム押し操作に応じてアーム副制御弁52へパイロット圧を出力する。
 一方、アーム引き操作とブーム上げ操作が同時に行われるときは、コントローラ8は、ブーム側規制弁71およびアーム側規制弁72,73へ電流を送給する。これにより、ブーム側規制弁71がブーム上げパイロットライン45を遮断し、アーム側規制弁72,73がそれぞれアーム押しパイロットライン56およびアーム引きパイロットライン55を遮断する。すなわち、ブーム側規制弁71はブーム副制御弁42へパイロット圧を出力せず、アーム側規制弁72,73はアーム副制御弁52へパイロット圧を出力しない。
 本実施形態の構成によれば、ブーム側規制弁71およびアーム側規制弁72,73として電磁比例弁を採用する場合よりも、構成および制御ロジックを簡単にすることができる。
 また、本実施形態では、ブーム操作弁61およびアーム操作弁62の未操作時にブーム副制御弁42およびアーム副制御弁52へパイロット圧が出力されることがないため、ブームシリンダ13およびアームシリンダ14の誤作動を防止することができる。
 なお、図8に示す油圧回路において、ブーム側規制弁71およびアーム側規制弁72,73として第1実施形態で説明したような電磁比例弁を採用することも可能である。あるいは、ブーム側規制弁71およびアーム側規制弁72,73の一方が電磁開閉弁であり、他方が電磁比例弁であってもよい。
 また、第2実施形態と同様に、第1レギュレータ16および第2レギュレータ17へパワーシフトを出力する電磁比例弁91に代えて、第1レギュレータ16へ第1パワーシフト圧を出力する第1電磁比例弁93と第2レギュレータ17へ第2パワーシフト圧を出力する第2電磁比例弁95を採用してもよい。
 (その他の実施形態)
 前記第1~第3実施形態において、第1および第2油圧ポンプ11,12の吐出流量の制御方式は、必ずしもネガコン方式である必要はなく、ポジティブコントロール方式であってもよい。すなわち、第1および第2レギュレータ16,17はネガコン用ピストン16cに代替する構造を有してもよい。また、第1および第2油圧ポンプ11,12の吐出流量の制御方式は、ロードセンシング方式であってもよい。
 本発明は、自走式の油圧ショベルだけでなく種々の形式の油圧ショベルに有用である。
 1A~1C 油圧ショベル駆動システム
 11 第1油圧ポンプ
 12 第2油圧ポンプ
 13 ブームシリンダ
 14 アームシリンダ
 16 第1レギュレータ
 17 第2レギュレータ
 21 第1ブリードライン
 31 第2ブリードライン
 41 ブーム主制御弁
 42 ブーム副制御弁
 51 アーム主制御弁
 52 アーム副制御弁
 61 ブーム操作弁
 62 アーム操作弁
 71 ブーム側規制弁
 72,73 アーム側規制弁
 8  コントローラ
 91 電磁比例弁
 93 第1電磁比例弁
 95 第2電磁比例弁

Claims (6)

  1.  傾転角に応じた流量の作動油を吐出する、前記傾転角が互いに独立して制御可能な第1油圧ポンプおよび第2油圧ポンプと、
     アームシリンダへの作動油の供給を制御するための、前記第1油圧ポンプから延びる第1ブリードライン上に配置されたアーム主制御弁および前記第2油圧ポンプから延びる第2ブリードライン上に配置されたアーム副制御弁と、
     ブームシリンダへの作動油の供給を制御するための、前記第2ブリードライン上に配置されたブーム主制御弁および前記第1ブリードライン上に配置されたブーム副制御弁と、
     前記アーム主制御弁へパイロット圧を出力するアーム操作弁と、
     前記ブーム主制御弁へパイロット圧を出力するブーム操作弁と、
     ブーム上げ操作が行われないときにアーム引き操作およびアーム押し操作に応じて前記アーム副制御弁へパイロット圧を出力し、アーム引き操作とブーム上げ操作が同時に行われるときに前記アーム副制御弁へパイロット圧を出力しない一対のアーム側規制弁と、
     アーム引き操作が行われないときにブーム上げ操作に応じて前記ブーム副制御弁へパイロット圧を出力し、アーム引き操作とブーム上げ操作が同時に行われるときに前記ブーム副制御弁へパイロット圧を出力しないブーム側規制弁と、
    を備える、油圧ショベル駆動システム。
  2.  前記一対のアーム側規制弁のそれぞれは、ブーム上げ操作が行われないときに前記アーム操作弁から出力されるパイロット圧に比例するパイロット圧を前記アーム副制御弁へ出力する電磁比例弁であり、
     前記ブーム側規制弁は、アーム引き操作が行われないときに前記ブーム操作弁から出力されるパイロット圧に比例するパイロット圧を前記ブーム副制御弁へ出力する電磁比例弁である、
    請求項1に記載の油圧ショベル駆動システム。
  3.  前記一対のアーム側規制弁のそれぞれは、アーム引き操作とブーム上げ操作が同時に行われるときに前記アーム副制御弁用のパイロットラインを遮断する電磁開閉弁であり、
     前記ブーム側規制弁は、アーム引き操作とブーム上げ操作が同時に行われるときに前記ブーム副制御弁用のパイロットラインを遮断する電磁開閉弁である、
    請求項1に記載の油圧ショベル駆動システム。
  4.  前記第1油圧ポンプの吐出圧およびパワーシフト圧に基づいて前記第1油圧ポンプの傾転角を制御する第1レギュレータと、
     前記第2油圧ポンプの吐出圧および前記パワーシフト圧に基づいて前記第2油圧ポンプの傾転角を制御する第2レギュレータと、
     前記第1レギュレータおよび前記第2レギュレータへ前記パワーシフト圧を出力する電磁比例弁と、
    をさらに備える、請求項1~3のいずれか一項に記載の油圧ショベル駆動システム。
  5.  前記第1油圧ポンプの吐出圧および第1パワーシフト圧に基づいて前記第1油圧ポンプの傾転角を制御する第1レギュレータと、
     前記第1レギュレータへ前記第1パワーシフト圧を出力する第1電磁比例弁と、
     前記第2油圧ポンプの吐出圧および第2パワーシフト圧に基づいて前記第2油圧ポンプの傾転角を制御する第2レギュレータと、
     前記第2レギュレータへ前記第2パワーシフト圧を出力する第2電磁比例弁と、
    をさらに備える、請求項1~3のいずれか一項に記載の油圧ショベル駆動システム。
  6.  アーム引き操作とブーム上げ操作が同時に行われるときに、前記第1パワーシフト圧が上昇して前記第1油圧ポンプの吐出流量が減少するように前記第1電磁比例弁を制御し、かつ、前記第2パワーシフト圧が低下して前記第2油圧ポンプの吐出流用が増大するように前記第2電磁比例弁を制御するコントローラをさらに備える、請求項5に記載の油圧ショベル駆動システム。
PCT/JP2014/005176 2013-10-31 2014-10-10 油圧ショベル駆動システム WO2015064026A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480057540.1A CN105637229B (zh) 2013-10-31 2014-10-10 油压挖掘机驱动系统
GB1606888.4A GB2534519B (en) 2013-10-31 2014-10-10 Hydraulic excavator drive system
US15/028,866 US9932995B2 (en) 2013-10-31 2014-10-10 Hydraulic excavator drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-226450 2013-10-31
JP2013226450A JP6220227B2 (ja) 2013-10-31 2013-10-31 油圧ショベル駆動システム

Publications (1)

Publication Number Publication Date
WO2015064026A1 true WO2015064026A1 (ja) 2015-05-07

Family

ID=53003660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005176 WO2015064026A1 (ja) 2013-10-31 2014-10-10 油圧ショベル駆動システム

Country Status (5)

Country Link
US (1) US9932995B2 (ja)
JP (1) JP6220227B2 (ja)
CN (1) CN105637229B (ja)
GB (1) GB2534519B (ja)
WO (1) WO2015064026A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608548A4 (en) * 2018-03-19 2021-03-10 Hitachi Construction Machinery Co., Ltd. CONSTRUCTION MACHINE

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334885B2 (ja) * 2013-10-15 2018-05-30 川崎重工業株式会社 油圧駆動システム
JP6220228B2 (ja) * 2013-10-31 2017-10-25 川崎重工業株式会社 建設機械の油圧駆動システム
JP5965502B1 (ja) * 2015-02-23 2016-08-03 川崎重工業株式会社 建設機械の油圧駆動システム
JP6603568B2 (ja) * 2015-12-14 2019-11-06 川崎重工業株式会社 油圧駆動システム
KR102571079B1 (ko) * 2016-09-06 2023-09-06 에이치디현대인프라코어 주식회사 굴삭기의 메인 컨트롤 밸브 제어 방법 및 이를 수행하기 위한 장치
JP6803194B2 (ja) * 2016-10-25 2020-12-23 川崎重工業株式会社 建設機械の油圧駆動システム
JP6797015B2 (ja) * 2016-12-22 2020-12-09 川崎重工業株式会社 油圧ショベル駆動システム
JP6450487B1 (ja) 2018-05-15 2019-01-09 川崎重工業株式会社 油圧ショベル駆動システム
CN110857571B (zh) * 2018-08-23 2022-03-01 柳州柳工挖掘机有限公司 挖掘机工作装置液压系统及挖掘控制方法
JP7253933B2 (ja) * 2019-02-08 2023-04-07 川崎重工業株式会社 油圧駆動システム
JP7221101B2 (ja) * 2019-03-20 2023-02-13 日立建機株式会社 油圧ショベル
JP7324655B2 (ja) * 2019-08-23 2023-08-10 川崎重工業株式会社 建設機械の油圧システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204234A (ja) * 1982-05-21 1983-11-28 Hitachi Constr Mach Co Ltd 油圧式掘削機の油圧回路
JPS5947771U (ja) * 1982-09-20 1984-03-29 株式会社小松製作所 建設機械の作業機油圧回路
JPH0247252U (ja) * 1988-09-26 1990-03-30
JP2006029468A (ja) * 2004-07-16 2006-02-02 Shin Caterpillar Mitsubishi Ltd 流体圧制御装置
US20060130473A1 (en) * 2004-12-22 2006-06-22 Doosan Infracore Co., Ltd. Hydraulic control device for controlling a boom-swing frame combined motion in an excavator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947771A (ja) * 1982-09-10 1984-03-17 Nec Corp 半導体製造方法
JPH076530B2 (ja) * 1986-09-27 1995-01-30 日立建機株式会社 油圧ショベルの油圧回路
JPH0247252A (ja) * 1988-08-05 1990-02-16 Seiko Instr Inc 複合材料膜の製造方法
CN1093610A (zh) * 1993-04-08 1994-10-19 佳峰运动用品股份有限公司 球拍
KR0185493B1 (ko) * 1996-03-30 1999-04-01 토니헬샴 중장비용 유량 합류장치
ES2133920T3 (es) * 1996-10-11 1999-09-16 Lucio Falace Procedimiento y circuito para complementar una tension de red de corriente alterna, particularmente para cargas resistivas.
JP3923242B2 (ja) * 2000-07-14 2007-05-30 株式会社小松製作所 油圧駆動機械のアクチュエータ制御装置
JP4209705B2 (ja) * 2003-03-17 2009-01-14 日立建機株式会社 作業機の油圧回路
JP4410512B2 (ja) * 2003-08-08 2010-02-03 日立建機株式会社 油圧駆動装置
JP5410373B2 (ja) * 2010-07-02 2014-02-05 日立建機株式会社 双腕型作業機械
CN103168176B (zh) * 2010-10-20 2015-09-02 沃尔沃建造设备有限公司 用于施工机械的液压系统
JP5572586B2 (ja) * 2011-05-19 2014-08-13 日立建機株式会社 作業機械の油圧駆動装置
JP5356476B2 (ja) * 2011-09-06 2013-12-04 住友建機株式会社 建設機械
JP5855496B2 (ja) * 2012-02-29 2016-02-09 住友建機株式会社 建設機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204234A (ja) * 1982-05-21 1983-11-28 Hitachi Constr Mach Co Ltd 油圧式掘削機の油圧回路
JPS5947771U (ja) * 1982-09-20 1984-03-29 株式会社小松製作所 建設機械の作業機油圧回路
JPH0247252U (ja) * 1988-09-26 1990-03-30
JP2006029468A (ja) * 2004-07-16 2006-02-02 Shin Caterpillar Mitsubishi Ltd 流体圧制御装置
US20060130473A1 (en) * 2004-12-22 2006-06-22 Doosan Infracore Co., Ltd. Hydraulic control device for controlling a boom-swing frame combined motion in an excavator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608548A4 (en) * 2018-03-19 2021-03-10 Hitachi Construction Machinery Co., Ltd. CONSTRUCTION MACHINE

Also Published As

Publication number Publication date
US20160252107A1 (en) 2016-09-01
JP2015086958A (ja) 2015-05-07
JP6220227B2 (ja) 2017-10-25
CN105637229B (zh) 2017-05-24
US9932995B2 (en) 2018-04-03
GB2534519B (en) 2019-12-11
GB2534519A (en) 2016-07-27
CN105637229A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6220227B2 (ja) 油圧ショベル駆動システム
JP6220228B2 (ja) 建設機械の油圧駆動システム
JP5172477B2 (ja) ハイブリッド建設機械の制御装置
JP5489563B2 (ja) ハイブリッド建設機械の制御装置
CN110651127B (zh) 油压系统
JP6302601B2 (ja) 油圧駆動システム
WO2014084213A1 (ja) 電動式油圧作業機械の油圧駆動装置
JP2016169818A (ja) 油圧駆動システム
WO2019220954A1 (ja) 油圧ショベル駆動システム
WO2018117029A1 (ja) 油圧ショベル駆動システム
JP6776334B2 (ja) ショベル及びショベル用コントロールバルブ
JP2016217378A (ja) 建設機械の油圧駆動システム
JP6196567B2 (ja) 建設機械の油圧駆動システム
WO2015056422A1 (ja) 油圧駆動システム
JP2006027351A (ja) 作業車両の油圧駆動装置
US10330128B2 (en) Hydraulic control system for work machine
WO2018230642A1 (ja) 油圧システム
US10107310B2 (en) Hydraulic drive system
JP6799480B2 (ja) 油圧システム
WO2015056423A1 (ja) 油圧駆動システム
JP2020128778A (ja) 油圧駆動システム
JP6629189B2 (ja) ショベル及びその制御方法
JP2010065511A (ja) 作業機械の油圧制御装置
WO2017164169A1 (ja) ショベル及びショベル用コントロールバルブ
JP5946184B2 (ja) 作業機械の油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15028866

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201606888

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141010

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857774

Country of ref document: EP

Kind code of ref document: A1