WO2015062297A1 - 发光器件、阵列基板、显示装置及发光器件的制造方法 - Google Patents

发光器件、阵列基板、显示装置及发光器件的制造方法 Download PDF

Info

Publication number
WO2015062297A1
WO2015062297A1 PCT/CN2014/081120 CN2014081120W WO2015062297A1 WO 2015062297 A1 WO2015062297 A1 WO 2015062297A1 CN 2014081120 W CN2014081120 W CN 2014081120W WO 2015062297 A1 WO2015062297 A1 WO 2015062297A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting device
light
electrode
electrodes
organic layer
Prior art date
Application number
PCT/CN2014/081120
Other languages
English (en)
French (fr)
Inventor
王辉锋
刘则
王刚
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/420,736 priority Critical patent/US9722005B2/en
Publication of WO2015062297A1 publication Critical patent/WO2015062297A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a light emitting device, an array substrate, a display device, and a method of fabricating the same. Background technique
  • OLED Organic Light-Emitting Diode
  • LCD liquid crystal display
  • the ways to achieve 0LED colorization include: red/green/blue side by side (R/G/B side by side) mode, red/green/blue/white square (R/G/B/W square) mode or white OLED plus Color film (W0LED+CF) mode.
  • the white light 0LED plus color film method is considered to be the main method used in large-size 0LED mass production.
  • white light 0LED is mainly manufactured by an open mask process or a solution process.
  • FIG. 1 is a schematic view of an OLED manufactured by a surface evaporation process in the prior art.
  • the OLED manufactured by the open mask process includes: a substrate substrate 1 and a Pixel Define Layer (PDL) formed on the substrate 1 .
  • the 0 LED includes a plurality of pixel defining layers 2, and the pixel defining layer 2 defines each sub-pixel unit 3, and each of the sub-pixel units 3 includes a first electrode 4.
  • the organic layer 5 is entirely vapor-deposited by the mask of the vapor deposition mask, and the organic layer 5 deposited as a whole is a film.
  • the organic layer 5 is located above the first electrode 4 and above the pixel defining layer 2, and the protrusion of the pixel defining layer 2 relative to the first electrode 4 causes the organic layer 5 to be at the edge of the corresponding first electrode 4.
  • the portion where the unevenness occurs is uneven, which causes the flatness of the organic layer 5 above each of the first electrodes 4 to be poor.
  • the uniformity of film formation of the organic layer 5 is poor. In severe cases, even a short circuit may occur, which seriously affects the quality of the 0LED display.
  • the OLED manufactured by the solution process includes: a substrate substrate 1, a pixel defining layer 2 formed on the substrate substrate 1, and a first electrode 4 formed between the pixel defining layers 2, formed on An organic layer 5 over the first electrode 4 and a second electrode 6 formed over the organic layer 5.
  • the 0 LED includes a plurality of pixel defining layers 2, the pixel defining layer 2 defines each sub-pixel unit 3, and each of the sub-pixel units 3 includes a first electrode 4.
  • the carrier layer 5 is formed in each sub-pixel unit 3 by a solution process, at which time, the edge portion of the organic layer 5 in contact with the pixel defining layer 2 forms an upward convex (gp: coffee ring phenomenon), which causes each The film formation of the organic layer 5 is poor in flatness. Moreover, since the thickness of the organic layer 5 above the first electrode 4 is different in the solution process, the uniformity of the film formation of the organic layer 5 is poor, thereby seriously affecting the quality of the 0 LED display. Summary of the invention
  • An object of the present invention is to provide a light-emitting device, an array substrate, a display device, and a method of manufacturing an illuminating device for improving the flatness and uniformity of film formation of an organic layer in a light-emitting device, thereby improving the display quality of the light-emitting device.
  • the present invention provides a light emitting device comprising: a substrate substrate and a pixel defining layer on the substrate substrate, the pixel defining layer defining at least one pixel unit, each of the pixel units comprising a plurality of a first electrode, an organic layer over the plurality of first electrodes, and a second electrode over the organic layer.
  • a filling pattern is formed between the adjacent first electrodes.
  • the thickness of the filling pattern is smaller than the thickness of the pixel defining layer, and substantially coincides with the thickness of the first electrode.
  • a difference between a thickness of the filling pattern and a thickness of the first electrode is -1Onm to 50nm.
  • a difference between a thickness of the filling pattern and a thickness of the first electrode is greater than Onm and less than or equal to 50 nm.
  • the filling patterns have the same thickness.
  • the pixel defining layer comprises a ring structure.
  • the shape of the longitudinal section of the pixel defining layer includes a trapezoid or a square.
  • the pixel defining layer defines one pixel unit, and the pixel defining layer is located in a non-light emitting area around the light emitting device.
  • the present invention also provides an array substrate comprising: the above light emitting device.
  • the present invention also provides a display device comprising the steps of: the above array substrate.
  • the present invention also provides a method of fabricating a light emitting device, comprising: forming a plurality of first electrodes on a substrate;
  • the pixel defining layer defining at least one pixel unit, each of the pixel units including a plurality of the first electrodes;
  • a second electrode is formed on the base substrate, and the second electrode is located above the organic layer in the pixel unit.
  • the method further includes the step of: forming a filling pattern between the adjacent first electrodes.
  • a fill pattern is formed between the adjacent pixel defining layer and the first electrode adjacent thereto while forming a fill pattern between adjacent ones of the first electrodes.
  • the step of forming an organic layer on the base substrate comprises: forming the organic layer over the plurality of first electrodes in the pixel unit by an evaporation process or a solution process.
  • the pixel defining layer defines at least one pixel unit, each pixel unit includes a plurality of first electrodes and is organic
  • the layer is located above the plurality of first electrodes, so that the flatness of the organic layer above the plurality of first electrodes is better, and the thickness of the organic layer above the plurality of different first electrodes is uniform, thereby improving the light emitting device.
  • the flatness and uniformity of the film formation in the organic layer further improve the display quality of the light-emitting device.
  • FIG. 1 is a schematic view of a 0 LED manufactured by a surface evaporation process in the prior art
  • FIG. 2 is a schematic view of a 0 LED manufactured by a solution process in the prior art
  • FIG. 3 is a schematic structural diagram of a light emitting device according to an embodiment of the present invention.
  • FIG. 4 is a plan view showing a first electrode in the light emitting device shown in FIG. 3;
  • Figure 5 is a plan view showing a filling pattern in the light-emitting device shown in Figure 3;
  • FIG. 6 is a schematic plan view of a pixel defining layer in the light emitting device shown in FIG. 3;
  • FIG. 7 is a schematic structural view of an array substrate according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of a method for fabricating a light emitting device according to an embodiment of the present invention
  • FIG. 9a is a schematic view of a first electrode formed according to the manufacturing method shown in FIG. 8
  • FIG. 9c is a schematic view of a pixel defining layer formed according to the manufacturing method shown in FIG. 8
  • FIG. 9d is a schematic view of the organic layer formed according to the manufacturing method shown in FIG. detailed description
  • FIG. 3 is a schematic structural diagram of a light emitting device according to an embodiment of the present invention.
  • the light emitting device comprises: a substrate substrate 1 and a pixel defining layer 2 on the substrate substrate 1, the pixel defining layer 2 defining at least one pixel unit 3, each pixel unit 3 comprising a plurality of first electrodes 4.
  • An organic layer 5 located above the plurality of first electrodes 4 and a second electrode 6 located above the organic layer 5.
  • the shape of the first electrode 4 may include: a parallelogram or an ellipse, wherein the parallelogram may include: a rectangle, a square, or a diamond. In this embodiment, preferably, the shape of the first electrode 4 is a rectangle. In practical applications, the first electrode 4 can also adopt any other according to the production needs. Shape, such as any quadrilateral.
  • the first electrode 4 may be an anode or a cathode.
  • the material of the first electrode 4 may comprise a high work function transparent conductive material or a translucent conductive material, such as: IT0, Ag, Ni0, A1 or graphene; 4 is a cathode, then preferably, the material of the first electrode 4 may include a low work function metal or a combination of metals, for example: one of Al, Mg, Ca, Ba, Na, Li, K, and Ag or any of them combination.
  • the area, the thickness, and the interval 8 of the first electrode 4 can be arbitrarily set as needed, wherein the area and the interval 8 of the first electrode 4 can be set according to the resolution of the pixel.
  • Fig. 5 is a plan view schematically showing a filling pattern 7 in the light emitting device shown in Fig. 3. As shown in Figs. 3 and 5, a filling pattern 7 may be formed between adjacent first electrodes 4. Further, the filling pattern 7 may also be located between the first electrode 4 and the pixel defining layer 2. Specifically, the fill pattern
  • the filling pattern 7 is located in the space 8 between the adjacent first electrodes 4. Further, the filling pattern 7 is also located in the interval between the first electrode 4 and the pixel defining layer 2.
  • the filling pattern 7 is filled between the adjacent first electrodes 4, and the thickness difference between the filling pattern 7 and the first electrode 4 (which will be described later) is appropriately set, and the first electrode 4 can also be made to have a planarization layer. effect.
  • the material of the filling pattern 7 may be selected from materials having good film forming property, high insulating property, and surface energy close to the surface of the material of the first electrode 4.
  • the material of the filling pattern 7 may include an organic material or an inorganic material, for example: the organic material may include a silicone resin or a polyimide, and the inorganic material may include SiO 2 or ceramic.
  • the material of the filling pattern 7 is made of an inorganic material because the inorganic material is similar in properties to the material of the first electrode 4 (for example, IT0), and the filling can be effectively reduced. The difference between the material of the pattern 7 and the material of the first electrode 4.
  • the thickness of the filling pattern 7 is smaller than the thickness of the pixel defining layer 2 and is substantially the same as the thickness of the first electrode 4. In a specific implementation, the thickness of the filling pattern 7 may be greater than, less than, or equal to the thickness of the first electrode 4. Preferably, the difference d between the thickness of the filling pattern 7 and the thickness of the first electrode 4 is -10 nm to 50 nm. Within the above difference range, the first electrode 4 can be made to maintain a higher level of planarization.
  • the difference d between the thickness of the filling pattern 7 and the thickness of the first electrode 4 is greater than Onm and less than or equal to 50 nm (ie: 0 nm ⁇ d 50 nm), and the preferred difference range is effective to avoid the first The occurrence of the electrostatic discharge phenomenon of the electrode 4 allows the first electrode 4 to maintain a high flattening effect.
  • the number of the pixel units 3 may be one or more.
  • the entire filling pattern 7 has the same thickness for ease of manufacture.
  • FIG. 6 is a plan view showing a pixel defining layer 2 in the light emitting device shown in FIG. As shown in FIG. 3 and FIG.
  • the pixel unit 3 is defined by the pixel defining layer 2, and the pixel defining layer 2 can define one or more pixel units 3 on the base substrate 1, the number of the defined pixel units 3. It can be set according to actual needs.
  • the pixel defining layer 2 defines one pixel unit 3 as an example for description.
  • the pixel unit 3 includes all of the sub-pixel units on the base substrate 1, and preferably, the pixel unit 3 is disposed at a non-light-emitting area around the light-emitting device.
  • the pixel defining layer 2 may include a ring structure in which the pixel defining layer 2 is disposed around the plurality of first electrodes 4.
  • the area defined by the pixel defining layer 2 is larger than the area of the area formed by the plurality of first electrodes 4 included in the pixel unit 3 defined therein, so that a space is formed between the pixel defining layer 2 and the first electrode 4.
  • a filling pattern is also formed in this interval, which enlarges the planarized region, and when the organic layer is subsequently formed, the film formation uniformity is uniform on the first electrode located at the most edge and the first electrode layer located inside.
  • the thickness of the pixel defining layer 2 is greater than the height of the filling pattern 7 (or the first electrode 4), and may be specifically 0. ⁇ to ⁇ , preferably ⁇ to 5 ⁇ .
  • each portion of the pixel defining layer 2 may be the same or different, and preferably, the entire pixel defining 2 has the same thickness.
  • the shape of the longitudinal section of the pixel defining layer 2 may be trapezoidal or square. In the present embodiment, the shape of the longitudinal section of the pixel defining layer 2 is trapezoidal, as shown in FIG.
  • the material of the pixel defining layer 2 may include: resin, polyimide, silicone or SiO 2 .
  • the number of the first electrodes 4 included in each of the pixel units 3 can be set according to actual needs. In this embodiment, 32 first electrodes 4 are included in each pixel unit 3 as an example for description.
  • the organic layer 5 may include one or more organic layer units, each of which includes: a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron blocking layer, an electron transport layer, and an electron Inject one of the layers or any combination thereof.
  • the organic layer 5 includes a plurality of the above organic layer units, a plurality of organic layer units are connected in series. As shown in FIG. 3, the organic layer 5 is located above the first electrode 4. Since the pixel defining layer 2 is not disposed between the first electrodes 4, the organic layer 5 is formed in a nearly planar structure, thereby improving the flatness and uniformity of the organic layer 5. Particularly when the filling pattern 7 is formed between the first electrodes 4, the first electrode 4 is flattened. The effect of the canned layer allows the organic layer 5 to be formed into a flatter planar structure, thereby further improving the flatness and uniformity of the organic layer 5.
  • the second electrode 6 is formed on the organic layer 5.
  • the second electrode 6 covers the entire substrate 1, and thus the second electrode 6 is also located above the pixel defining layer 2.
  • the second electrode 6 may be a cathode or an anode correspondingly as the anode or the cathode with respect to the first electrode 4. If the second electrode 6 is a cathode, preferably, the material of the second electrode 6 may include a low work function metal or a combination of metals, such as: Al, Mg, Ca, Ba, Na, Li, K, and Ag.
  • the material of the second electrode 6 may comprise a high work function transparent conductive material or a translucent conductive material, such as: IT0, Ag, Ni0, A1 or Graphene. Since the pixel defining layer 2 is not disposed between the adjacent first electrodes 4, the organic layer 5 is formed in a nearly planar structure, so that the second electrode 6 located above the organic layer 5 is also formed into a nearly planar structure, thereby The flatness and uniformity of the second electrode 6 are improved.
  • the first electrode 4 achieves the effect of the planarization layer, so that both the organic layer 5 and the second electrode 6 are formed into a flatter planar structure, thereby The flatness and uniformity of the second electrode 6 are further improved, and the possibility of occurrence of leakage is also reduced, so that the stability and yield of the light-emitting device are improved.
  • the light emitting device may be a bottom emission type light emitting device or a top emission type light emitting device.
  • the light emitting device provided in this embodiment may be 0 LED.
  • the first electrode 4 is made of a transparent material
  • the second electrode 6 is made of a reflective material.
  • the material of the first electrode 4 may be a high work function transparent conductive material or a translucent conductive material, for example: IT0, Ag, Ni0, A1 or graphene
  • the material of the second electrode 6 may be a low work function metal or A composition of a metal, for example, one of Al, Mg, Ca, Ba, Na, Li, K, and Ag, or any combination thereof.
  • the first electrode 4 is made of a reflective material
  • the second electrode 6 is made of a transparent material.
  • the material of the first electrode 4 may be a low work function metal or a combination of metals, for example: one of Al, Mg, Ca, Ba, Na, Li, K, and Ag or any combination thereof; the second electrode
  • the material of 6 may be a high work function transparent conductive material or a translucent conductive material such as IT0, Ag, Ni0, A1 or graphene.
  • the light emitting device may further include: a color film pattern (not shown).
  • the color film pattern may be formed on the second electrode 6 or Below the first electrode 4. Wherein, if the light emitting device is a top emitting type light emitting device, the color film pattern is formed above the second electrode 6; and if the light emitting device is a bottom emitting type light emitting device, the color film pattern is formed under the first electrode 4. The portion of the organic layer directly above each of the first electrodes 4 corresponds to a color film pattern.
  • the portion of the organic layer directly above each of the first electrodes 4 forms a sub-pixel with the corresponding color film pattern (i.e., the sub-pixels may be defined by the spacer 8 or the filling pattern 7), and the plurality of sub-pixels form one pixel.
  • the three sub-pixels forming one pixel are respectively a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the arrangement of the sub-pixels may include: a side by side arrangement, a square arrangement, or a triangle arrangement.
  • the arrangement of the sub-pixels is a side by side arrangement.
  • the pixel unit 3 can also adopt other arrangements, which are not listed here.
  • the light emitting device may further include: an encapsulation layer (not shown), and the encapsulation layer may be located above the second electrode 6 (if the light emitting device comprises a color film pattern, the encapsulation layer is located above the color film pattern).
  • the encapsulation layer protects the illuminating device and effectively prevents the illuminating device from being damaged by moisture and oxygen.
  • the second electrode 6 (or the color film pattern) may be applied by a glass sintering (Frit), a dam filling (Dam & Fi ll ), a film (Fi lm), a metal (metal) or a laminator (Laminator).
  • the upper layer forms an encapsulation layer.
  • the pixel defining layer defines at least one pixel unit, each of the pixel units includes a plurality of first electrodes and the organic layer is located above the plurality of first electrodes, such that the plurality of first electrodes are organic
  • the flatness of the film formation is better, and the thickness of the organic layer above the different first electrodes is uniform, thereby improving the flatness and uniformity of the film formation of the organic layer, thereby improving the display quality of the light-emitting device.
  • FIG. 7 is a schematic structural diagram of an array substrate according to an embodiment of the present invention.
  • the array substrate includes: a light emitting device, and the light emitting device may be the light emitting device provided in the above embodiment, and details are not described herein again.
  • the light emitting device may be a bottom emission type light emitting device or a top emission type light emitting device.
  • the array substrate may further include a driving unit.
  • the driving unit may include: a thin film transistor (TFT).
  • TFT thin film transistor
  • the TFT may include: a gate electrode 9, an active layer 11, and an etch stop layer (Etch Stop Layer, Abbreviation: ESL) 12.
  • ESL etch stop Layer
  • Source 13 and drain 14 Further, the array substrate may further include: a resin layer 16.
  • the array substrate may further include: a gate insulating layer 10 and a passivation layer 15. As shown in FIG. 7, specifically, the gate 9 is on the base substrate 1, the gate insulating layer 10 is on the gate 9, the active layer 11 is on the gate insulating layer 10, and the source 13 and the drain 14 are located. Above the active layer 11, a passivation layer 15 is over the source 13 and drain 14.
  • the thickness of the TFT may be ⁇ to 100 ⁇ .
  • the resin layer 16 is located above the passivation layer 15. Since the thickness of the passivation layer 15 is generally thin, the resin layer 16 is provided on the passivation layer 15 in order to further increase the degree of planarization, thereby enabling the light-emitting device to be planarized. Made on the surface. A via hole is formed in the passivation layer 15 and the resin layer 16, and the first electrode 4 is connected to the drain electrode 14 through the via hole. The light emitting device is located above the resin layer 16. Further, the array substrate may further include: a gate line and a data line (not shown), the gate line is electrically connected to the gate 9, and the data line is electrically connected to the source 13.
  • FIG. 7 only shows the partial structure of the array substrate provided by the embodiment, and specifically shows the structure of the partial array substrate located at the edge portion (gp, the pixel defining layer 2) of the pixel unit 3 . It will be understood that in a sub-pixel structure (HP, a sub-pixel structure located at a non-edge portion of the pixel unit 3) that does not include a pixel defining layer, the TFT may be located below the filling pattern 7.
  • the pixel defining layer defines at least one pixel unit, each pixel unit includes a plurality of first electrodes, and the organic layer is located above the plurality of first electrodes, such that the plurality of first electrodes are above
  • the film formation of the organic layer is better, and the thickness of the organic layer above the plurality of different first electrodes is uniform, thereby improving the flatness and uniformity of the film formation of the organic layer, thereby improving the display quality of the light-emitting device.
  • the embodiment of the invention further provides a display device, the display device comprising: an array substrate.
  • the array substrate can be the array substrate provided in the above embodiments, and details are not described herein again.
  • the pixel defining layer defines at least one pixel unit, each pixel unit includes a plurality of first electrodes and the organic layer is located above the plurality of first electrodes, such that the plurality of first electrodes are organic
  • the flatness of the film formation is good, and the thickness of the organic layer above the plurality of different first electrodes is uniform, thereby improving the flatness and uniformity of the film formation of the organic layer, thereby improving the display quality of the light-emitting device.
  • FIG. 8 is a flowchart of a method for manufacturing a light emitting device according to an embodiment of the present invention. As shown in FIG. 8, the method includes: Step 101: Form a plurality of first electrodes on the base substrate.
  • Fig. 9a is a schematic view showing the formation of the first electrode in the fourth embodiment. As shown in Fig. 9a, a first electrode material is deposited on the substrate 1 and a first electrode 4 is formed by a patterning process.
  • an interval is formed between adjacent first electrodes 4, and therefore, this embodiment may further include step 102.
  • Step 102 Form a filling pattern between adjacent first electrodes.
  • Fig. 9b is a schematic view showing the filling pattern formed in the embodiment. As shown in FIG. 9b, by Plasma Enhanced Chemical Vapor Deposition (PECVD), spin-coat, slit coating (sl it) or inkjet printing A filling material is formed on the base substrate 1, and a filling pattern 7 is formed between the adjacent first electrodes 4 by a patterning process.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • spin-coat spin-coat
  • slit coating sl it
  • inkjet printing A filling material is formed on the base substrate 1, and a filling pattern 7 is formed between the adjacent first electrodes 4 by a patterning process.
  • Step 103 Form a pixel defining layer on the base substrate, the pixel defining layer defining at least one pixel unit, each pixel unit including a plurality of first electrodes.
  • a space is formed between the pixel defining layer and the first electrode. Therefore, in step 102, a filling pattern is formed between adjacent first electrodes, and the pixel defining layer and the pixel defining layer are further adjacent to each other. A filling pattern is formed between the electrodes to enlarge the flattened regions, so that the film formation uniformity is consistent on the first electrode located at the most edge and the first electrode layer located inside when the organic layer is subsequently formed.
  • FIG. 9c is a schematic view showing the formation of a pixel defining layer in the fourth embodiment, as shown in FIG. 9c, on the substrate 1 by plasma enhanced chemical vapor deposition, spin coating, slit coating or inkjet printing.
  • a pixel defining layer material is formed, and a pixel defining layer 2 is formed on the base substrate 1 by a patterning process, and the pixel defining layer 2 defines the pixel unit 3.
  • the pixel defining layer material needs to be exposed by a halftone mask or a gray tone mask during the exposure process in the patterning process to form each Partially different pixels define layer 2.
  • the multiple film forming process refers to forming a pixel defining layer material on the base substrate 1, and then performing a patterning process on the pixel defining layer material a plurality of times to form a pixel defining layer 2 having different thicknesses of the respective portions.
  • Step 104 forming an organic layer on the base substrate, the organic layer being located above the plurality of first electrodes in each pixel unit.
  • Figure 9d is a schematic view showing the formation of an organic layer in the present embodiment.
  • the organic layer 5 may be formed over the plurality of first electrodes 4 in the pixel unit 3 by an evaporation process or a solution process.
  • the organic layer 5 can be formed by a method of inkjet printing, nozzle coating, or ink pouring during the solution process. Wherein, as long as the first electrode 4 and the filling pattern 7 are formed in a planar structure, the ink droplets can spontaneously spread uniformly on the planar structure when the ink is poured.
  • the organic layer 5 can be formed by using various film forming methods in the solution process, thereby further expanding the film forming method of the solution process.
  • the present embodiment greatly reduces the occurrence of the coffee ring phenomenon, thereby improving the flatness and uniformity of the film formation. Sex.
  • Step 105 forming a second electrode on the base substrate, the second electrode being located above the organic layer in the pixel unit.
  • a second electrode 6 is deposited on the base substrate 1.
  • the patterning process may include: photoresist coating, exposure, development, etching, photoresist stripping, and the like.
  • step 103 can be completed prior to step 102 without affecting the effects of the present invention.
  • the method for fabricating the illuminating device provided in this embodiment can be used to manufacture the illuminating device provided in the above embodiment.
  • the method for fabricating the illuminating device provided in this embodiment can be used to manufacture the illuminating device provided in the above embodiment.
  • the pixel defining layer defines at least one pixel unit, each pixel unit includes a plurality of first electrodes and the organic layer is located above the plurality of first electrodes, so that The organic layer above the first electrode has good flatness, and the thickness of the organic layer above the plurality of different first electrodes is uniform, thereby improving the flatness and uniformity of the organic layer film formation, thereby improving the film thickness.
  • the display quality of the light emitting device can manufacture the light emitting device by relying on existing processes and equipment capabilities, and the manufacturing process is simple and easy to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件、阵列基板、显示装置及发光器件的制造方法。该发光器件包括衬底基板(1)和位于衬底基板(1)上的像素界定层(2),所述像素界定层(2)限定至少一个像素单元(3),每个所述像素单元(3)包括多个第一电极(4)、位于所述多个第一电极(4)之上的有机层(5)和位于所述有机层(5)之上的第二电极(6)。该发光器件、阵列基板、显示装置及发光器件的制造方法可以使得多个第一电极上方的有机层成膜的平整性较好,并且使得多个不同的第一电极上方的有机层的厚度一致,从而提高了发光器件中有机层成膜的平整性和均一性,进而提高了发光器件的显示品质。

Description

发光器件、 阵列基板、 显示装置及发光器件的制造方法 技术领域
本发明涉及显示技术领域, 特别涉及一种发光器件、 阵列基板、 显 示装置及发光器件的制造方法。 背景技术
有机电致发光器件 (Organic Light- Emitting Diode, 简称: OLED ) 相对于液晶显示器 (Liquid Crystal Display, 简称: LCD) 具有自发光、 反应快、 视角广、 亮度高、 色彩艳以及轻薄化等优点, 被认为是下一代显 示技术。
实现 0LED彩色化的方式主要包括: 红 /绿 /蓝并排 (R/G/B side by side ) 方式、 红 /绿 /蓝 /白方形 (R/G/B/W square ) 方式或者白光 OLED加 彩膜 (W0LED+CF) 方式。
其中, 白光 0LED加彩膜方式被认为是大尺寸 0LED量产中主要采用 的方式。 目前白光 0LED主要通过面蒸镀 (Open Mask) 工艺或者溶液工艺 制造。
图 1为现有技术中通过面蒸镀工艺制造出的 0LED的示意图。 如图 1 所示, 通过面蒸镀 (open mask) 工艺制造出的 OLED包括: 衬底基板 1、 形成于衬底基板 1之上的像素界定层 (Pixel Define Layer, 简称: PDL) 2、形成于像素界定层 2之间的第一电极 4、形成于第一电极 4之上的有机 层 5以及形成于有机层 5之上的第二电极 6。 其中, 0LED包括多个像素界 定层 2, 像素界定层 2限定各亚像素单元 3, 每个亚像素单元 3中包括一 个第一电极 4。 其中, 通过面蒸镀掩膜板的掩膜来整体蒸镀出有机层 5, 整体蒸镀出的有机层 5为一层薄膜。 但是, 该有机层 5除了位于第一电极 4之上还位于像素界定层 2之上, 而像素界定层 2相对于第一电极 4的凸 起会导致有机层 5在对应第一电极 4的边缘的部分出现不平整的现象, 这 会造成每个第一电极 4上方的有机层 5成膜的平整性较差。又由于在蒸镀 工艺过程中会出现不同的第一电极 4上方的有机层 5厚度不一致的情况, 因此有机层 5成膜的均一性较差。 严重时甚至会出现短路的可能, 从而严 重影响 0LED显示的品质。
图 2为现有技术中通过溶液工艺制造出的 0LED的示意图。 如图 2所 示, 通过溶液工艺制造出的 0LED包括: 衬底基板 1、 形成于衬底基板 1 之上的像素界定层 2、 形成于像素界定层 2之间的第一电极 4、 形成于第 一电极 4之上的有机层 5以及形成于有机层 5之上的第二电极 6。 其中, 0LED包括多个像素界定层 2, 像素界定层 2限定各亚像素单元 3, 每个亚 像素单元 3中包括一个第一电极 4。 通过溶液工艺在每个亚像素单元 3中 形成机层 5, 此时, 有机层 5与像素界定层 2接触的边缘部分会形成向上 的凸起 (gp : 咖啡环现象) , 这会造成每个有机层 5成膜的平整性较差。 又由于在溶液工艺过程中会出现不同的第一电极 4上方的有机层 5厚度不 一致的情况, 因此有机层 5成膜的均一性较差, 从而严重影响 0LED显示 的品质。 发明内容
本发明的目的是提供一种发光器件、 阵列基板、 显示装置及发光器 件的制造方法, 用于提高发光器件中有机层成膜的平整性和均一性, 进而 提高发光器件的显示品质。
为实现上述目的, 本发明提供了一种发光器件, 包括: 衬底基板和 位于衬底基板上的像素界定层, 所述像素界定层限定至少一个像素单元, 每个所述像素单元包括多个第一电极、位于所述多个第一电极之上的有机 层和位于所述有机层之上的第二电极。
可选地, 相邻的所述第一电极之间形成有填充图形。
可选地, 所述填充图形的厚度小于所述像素界定层的厚度, 并且与 所述第一电极的厚度基本一致。 可选地, 所述填充图形的厚度与所述第一电极的厚度的差值为 -lOnm 至 50nm。
可选地,所述填充图形的厚度与所述第一电极的厚度的差值大于 Onm 且小于或者等于 50nm。 可选地, 所述填充图形的厚度相同。
可选地, 所述像素界定层包括环状结构。
可选地, 所述像素界定层的纵截面的形状包括梯形或者方形。
可选地, 所述像素界定层限定一个像素单元, 并且所述像素界定层 位于所述发光器件周边的非发光区域。
为实现上述目的, 本发明还提供了一种阵列基板, 包括: 上述发光 器件。
为实现上述目的, 本发明还提供了一种显示装置, 包括步骤: 上述 阵列基板。
为实现上述目的, 本发明还提供了一种发光器件的制造方法, 包括: 在衬底基板上形成多个第一电极;
在衬底基板上形成像素界定层, 所述像素界定层限定至少一个像素 单元, 每个所述像素单元包括多个所述第一电极;
在衬底基板上形成有机层, 所述有机层位于所述像素单元内的多个 所述第一电极之上; 以及
在衬底基板上形成第二电极, 所述第二电极位于所述像素单元内的 所述有机层之上。
可选地, 还包括步骤: 在相邻的所述第一电极之间形成填充图形。 可选地, 在相邻的所述第一电极之间形成填充图形的同时也在所述 像素界定层和与其相邻的所述第一电极之间形成填充图形。
可选地, 所述在衬底基板上形成有机层的步骤包括: 通过蒸镀工艺 或者溶液工艺在所述像素单元内的多个第一电极之上形成所述有机层。
本发明具有以下有益效果:
本发明提供的发光器件、 阵列基板、 显示装置及通过本发明提供的 发光器件的制造方法制造的发光器件中, 像素界定层限定至少一个像素单 元, 每个像素单元包括多个第一电极且有机层位于多个第一电极之上, 使 得多个第一电极上方的有机层成膜的平整性较好, 并且使得多个不同的第 一电极上方的有机层的厚度一致, 从而提高了发光器件中有机层成膜的平 整性和均一性, 进而提高了发光器件的显示品质。 附图说明
图 1为现有技术中通过面蒸镀工艺制造的 0LED的示意图; 图 2为现有技术中通过溶液工艺制造的 0LED的示意图;
图 3为本发明实施例提供的一种发光器件的结构示意图;
图 4为图 3所示的发光器件中的第一电极的平面示意图;
图 5为图 3所示的发光器件中的填充图形的平面示意图;
图 6为图 3所示的发光器件中的像素界定层的平面示意图; 图 7为本发明实施例提供的一种阵列基板的结构示意图;
图 8为本发明实施例提供的一种发光器件的制造方法的流程图; 图 9a为根据图 8所示制造方法形成的第一电极的示意图; 图 9b为根据图 8所示制造方法形成的填充图形的示意图; 图 9c为根据图 8所示制造方法形成的像素界定层的示意图; 以及 图 9d为根据图 8所示制造方法形成的有机层的示意图。 具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案, 下面结合附 图对本发明提供的发光器件、 阵列基板、 显示装置及发光器件的制造方法 进行详细描述。
图 3为本发明实施例提供的一种发光器件的结构示意图。 如图 3所 示, 该发光器件包括: 衬底基板 1和位于衬底基板 1上的像素界定层 2, 像素界定层 2限定至少一个像素单元 3, 每个像素单元 3包括多个第一电 极 4、 位于多个第一电极 4之上的有机层 5和位于有机层 5之上的第二电 极 6。
图 4为图 3所示的发光器件中的第一电极 4的平面示意图。 如图 3 和图 4所示, 第一电极 4以矩阵形式设置于衬底基板 1之上, 且第一电极 4均匀分布于衬底基板 1之上。 相邻的第一电极 4之间形成有间隔 8。 第 一电极 4的形状可包括: 平行四边形或者椭圆形, 其中, 平行四边形可包 括: 长方形、 正方形或者菱形。 本实施例中, 优选地, 第一电极 4的形状 为长方形。 在实际应用中, 第一电极 4还可以根据生产需要采用其它任意 形状, 例如任意四边形。 第一电极 4可以为阳极或者阴极。 若第一电极 4 为阳极, 则优选地, 第一电极 4的材料可包括高功函的透明导电材料或者 半透明导电材料, 例如: IT0、 Ag、 Ni0、 A1 或者石墨烯; 若第一电极 4 为阴极, 则优选地, 第一电极 4的材料可包括低功函的金属或者金属的组 合物, 例如: Al、 Mg、 Ca、 Ba、 Na、 Li、 K和 Ag中之一或者其任意组合物。 第一电极 4的面积、 厚度及间隔 8均可以根据需要进行任意设置, 其中, 第一电极 4的面积和间隔 8可根据像素的分辨率进行设置。
图 5为图 3所示的发光器件中的填充图形 7的平面示意图。 如图 3 和图 5所示,相邻的第一电极 4之间还可以形成有填充图形 7。进一步地, 填充图形 7还可位于第一电极 4与像素界定层 2之间。 具体地, 填充图形
7位于相邻的第一电极 4之间的间隔 8中。 进一步地, 填充图形 7还位于 第一电极 4与像素界定层 2之间的间隔中。填充图形 7填充于相邻的第一 电极 4之间, 适当地设置填充图形 7与第一电极 4之间的厚度差(将在下 文描述) , 还可以使第一电极 4实现平坦化层的效果。 填充图形 7的材料 可选择成膜性好、 绝缘性高、 表面能和第一电极 4的材料的表面能接近的 材料。 填充图形 7的材料可包括有机材料或者无机材料, 例如: 有机材料 可以包括有机硅树脂或者聚酰亚胺, 无机材料可以包括 Si02或者陶瓷。 具体地, 当第一电极 4为阳极时, 优选地, 填充图形 7的材料采用无机材 料, 这是由于无机材料与第一电极 4 的材料 (例如: IT0) 的性质相近, 可有效减小填充图形 7的材料与第一电极 4的材料间的差异性。
填充图形 7的厚度小于像素界定层 2的厚度, 并与第一电极 4的厚 度大致相同。 在具体实现时, 填充图形 7的厚度可以大于、 小于或者等于 第一电极 4的厚度。 优选地, 填充图形 7的厚度与第一电极 4的厚度之间 的差值 d为- 10nm至 50nm。 在上述差值范围内, 可使得第一电极 4保持较 高水平的平坦化的效果。 进一步优选地, 填充图形 7的厚度与第一电极 4 的厚度之间的差值 d大于 Onm且小于或者等于 50nm (即: 0nm<d 50nm), 此优选的差值范围既可有效避免第一电极 4静电放电现象的发生, 又可使 得第一电极 4保持较高的平坦化的效果。 本实施例中, 像素单元 3的数量 可以为一个或者多个。 优选地, 整个填充图形 7具有相同的厚度, 以便于 制造。 图 6为图 3所示的发光器件中像素界定层 2的平面示意图。 如图 3 和图 6所示, 本发明中由像素界定层 2限定像素单元 3, 像素界定层 2可 在衬底基板 1上限定一个或者多个像素单元 3, 所限定的像素单元 3的数 量可根据实际需要进行设置。 本实施例中, 以像素界定层 2限定一个像素 单元 3为例进行描述。 在这种情况下, 像素单元 3包括衬底基板 1上的全 部亚像素单元, 并且优选地, 像素单元 3设置在发光器件周边的非发光区 域。 像素界定层 2可以包括环状结构, 像素界定层 2围绕多个第一电极 4 的周围设置。 优选地, 像素界定层 2所围出的面积大于其限定的像素单元 3内包括的多个第一电极 4所形成区域的面积, 因此像素界定层 2与第一 电极 4之间形成有间隔, 在此间隔中同样形成填充图形, 这样可扩大平坦 化的区域, 在后续形成有机层时, 位于最边缘处的第一电极和位于内部的 第一电极层上成膜均匀性保持一致。 像素界定层 2的厚度大于填充图形 7 (或第一电极 4)的高度,具体可以为 0. Ιμηι至 ΙΟΟμηι,优选为 Ιμηι至 5μηι。 像素界定层 2各部分的厚度可以相同或者不同, 优选地, 整个像素界定 2 具有相同的厚度。 像素界定层 2的纵截面的形状可以为梯形或者方形。 在 本实施例中, 像素界定层 2的纵截面的形状为梯形, 如图 3所示。 像素界 定层 2的材料可包括: 树脂、 聚酰亚胺、 有机硅或者 Si02。 每个像素单元 3中包括的第一电极 4的数量可根据实际需要进行设置, 本实施例中以每 个像素单元 3中包括 32个第一电极 4为例进行描述。
虽然以上仅以当像素界定层 2在衬底基板 1上限定一个像素单元 3 为例进行了说明, 但是可以理解的是, 当像素界定层 2在衬底基板 1上限 定多个像素单元 3时, 每个像素单元 3均具有与图 3和图 6所示类似的结 构, 因此在此不予赘述。
进一步地, 有机层 5 可包括一个或者多个有机层单元, 每个有机层 单元包括: 空穴注入层、 空穴传输层、发光层、 空穴阻挡层、 电子阻挡层、 电子传输层以及电子注入层中的一层或者其任意组合。 当有机层 5包括多 个上述有机层单元时, 多个有机层单元之间串联连接。 如图 3所示, 有机 层 5位于第一电极 4之上。 由于第一电极 4之间未设置像素界定层 2, 因 此有机层 5形成为接近平面的结构, 从而提高了有机层 5的平整性和均匀 性。 特别是当第一电极 4之间形成有填充图形 7时, 第一电极 4实现了平 坦化层的效果, 使得有机层 5能够形成为更为平整的平面结构, 从而进一 步提高了有机层 5的平整性和均匀性。
第二电极 6形成于有机层 5之上。 优选地, 第二电极 6覆盖整个衬 底基板 1, 因此第二电极 6也位于像素界定层 2之上。 相对于第一电极 4 用作阳极或者阴极, 第二电极 6可以相应地为阴极或者阳极。 若第二电极 6为阴极, 则优选地, 第二电极 6的材料可包括低功函的金属或者金属的 组合物, 例如: Al、 Mg、 Ca、 Ba、 Na、 Li、 K和 Ag中之一或者其任意组合 物; 若第二电极 6为阳极, 则优选地, 第二电极 6的材料可包括高功函的 透明导电材料或者半透明导电材料, 例如: IT0、 Ag、 Ni0、 A1或者石墨烯。 由于相邻的第一电极 4之间未设置像素界定层 2, 因此有机层 5形成为接 近平面的结构, 使得位于有机层 5之上的第二电极 6也形成为接近平面的 结构, 从而还提高了第二电极 6的平整性和均匀性。 特别是当相邻的第一 电极 4之间形成有填充图形 7时, 第一电极 4实现了平坦化层的效果, 使 得有机层 5和第二电极 6均形成为更平整的平面结构, 从而还进一步提高 了第二电极 6的平整性和均匀性, 同时也减小了漏电发生的可能性, 使得 发光器件的稳定性和良率得到了提高。
发光器件可为底发光型发光器件或者顶发光型发光器件。
本实施例提供的发光器件可以为 0LED。
本实施例中, 若发光器件为底发光型发光器件, 则第一电极 4采用 透明性的材料, 第二电极 6采用反射性的材料。 其中, 第一电极 4的材料 可为高功函的透明导电材料或者半透明导电材料, 例如: IT0、 Ag、 Ni0、 A1或者石墨烯; 第二电极 6的材料可为低功函的金属或者金属的组合物, 例如: Al、 Mg、 Ca、 Ba、 Na、 Li、 K和 Ag中之一或者其任意组合物。
本实施例中, 若发光器件为顶发光型发光器件, 则第一电极 4采用 反射性的材料, 第二电极 6采用透明性的材料。 其中, 第一电极 4的材料 可为低功函的金属或者金属的组合物, 例如: Al、 Mg、 Ca、 Ba、 Na、 Li、 K和 Ag中之一或者其任意组合物;第二电极 6的材料可为高功函的透明导 电材料或者半透明导电材料, 例如: IT0、 Ag、 Ni0、 A1或者石墨烯。
进一步地, 若发光器件需要实现彩色化显示, 则该发光器件还可以 包括: 彩膜图形 (图中未示出) 。 彩膜图形可形成于第二电极 6的上方或 者第一电极 4的下方。 其中, 若发光器件为顶发光型发光器件, 则彩膜图 形形成于第二电极 6的上方; 若发光器件为底发光型发光器件, 则彩膜图 形形成于第一电极 4的下方。每个第一电极 4正上方的有机层部分与一个 彩膜图形对应。每个第一电极 4正上方的有机层部分与相应的彩膜图形形 成一个亚像素(即, 可由间隔 8或填充图形 7限定亚像素) , 多个亚像素 形成一个像素。 例如: 当采用 RGB显示模式时, 则形成一个像素的三个亚 像素分别为红色亚像素、 绿色亚像素和蓝色亚像素。 具体地, 亚像素的排 列方式可包括: 并排 (side by side ) 排列方式、 方形 (square ) 排列方 式或者三角形(triangle ) 排列方式。 本实施例中, 亚像素的排列方式为 并排排列方式。 在实际应用中, 像素单元 3还可以采用其它排列方式, 此 处不再 列举。
进一步地, 该发光器件还可以包括: 封装层 (图中未示出) , 封装 层可位于第二电极 6的上方(若发光器件包括彩膜图形, 则封装层位于彩 膜图形的上方) 。 该封装层可对发光器件起到保护作用, 有效避免发光器 件受到水气和氧的破坏。 本实施例中, 可通过玻璃烧结 (Frit ) 、 水坝填 充(Dam&Fi ll ) 、 薄膜(Fi lm) 、 金属 (metal )或者压膜机(Laminator) 等封装方法在第二电极 6 (或彩膜图形) 的上方形成封装层。
在本实施例提供的发光器件中, 像素界定层限定至少一个像素单元, 每个像素单元包括多个第一电极且有机层位于多个第一电极之上, 使得多 个第一电极上方的有机层成膜的平整性较好, 以及使得不同的第一电极上 方的有机层的厚度一致, 从而提高了有机层成膜的平整性和均一性, 进而 提高了发光器件的显示品质。
图 7为本发明实施例提供的一种阵列基板的结构示意图, 如图 7所 示, 该阵列基板包括: 发光器件, 该发光器件可采用上述实施例提供的发 光器件, 此处不再赘述。
本实施例中, 发光器件可为底发光型发光器件或者顶发光型发光器 件。
进一步地, 该阵列基板还可以包括驱动单元。 本实施例中, 驱动单 元可包括: 薄膜晶体管 (Thin- fi lm transistor, 简称: TFT ) 。 如图 7 所示, TFT可包括: 栅极 9、 有源层 11、 刻蚀阻挡层 (Etch Stop Layer, 简称: ESL) 12、 源极 13和漏极 14。 进一步地, 阵列基板还可以包括: 树 脂层 16。 进一步地, 阵列基板还可以包括: 栅绝缘层 10和钝化层 15。 如 图 7所示, 具体地, 栅极 9位于衬底基板 1上, 栅绝缘层 10位于栅极 9 之上,有源层 11位于栅绝缘层 10之上,源极 13和漏极 14位于有源层 11 之上, 钝化层 15位于源极 13和漏极 14之上。 本实施例中, 优选地, TFT 的厚度可以为 Ιμηι至 100μηι。 树脂层 16位于钝化层 15之上, 由于钝化层 15的厚度通常较薄,在钝化层 15上设置树脂层 16是为了进一步提高平坦 化程度, 从而使得发光器件能够在一个平坦化的表面上制作。 钝化层 15 和树脂层 16上设置有过孔, 第一电极 4通过该过孔与漏极 14连接。 发光 器件位于树脂层 16之上。 进一步地, 阵列基板还可以包括: 栅线和数据 线 (图中未示出) , 栅线与栅极 9电连接, 数据线与源极 13电连接。
需要说明的是: 图 7仅示出了本实施例提供的阵列基板的局部结构, 具体地, 示出了位于像素单元 3的边缘部分(gp, 像素限定层 2附近) 的 部分阵列基板的结构。 可以理解的是, 在不包括像素限定层的亚像素结构 ( HP, 位于像素单元 3的非边缘部分的亚像素结构) 中, TFT可位于填充 图形 7的下方。
本实施例提供的阵列基板的技术方案中, 像素界定层限定至少一个 像素单元, 每个像素单元包括多个第一电极且有机层位于多个第一电极之 上, 使得多个第一电极上方的有机层成膜的平整性较好, 以及使得多个不 同的第一电极上方的有机层的厚度一致, 从而提高了有机层成膜的平整性 和均一性, 进而提高了发光器件的显示品质。
本发明实施例还提供了一种显示装置, 该显示装置包括: 阵列基板。 该阵列基板可采用上述实施例提供的阵列基板, 此处不再赘述。
在本实施例提供的显示装置中, 像素界定层限定至少一个像素单元, 每个像素单元包括多个第一电极且有机层位于多个第一电极之上, 使得多 个第一电极上方的有机层成膜的平整性较好, 以及使得多个不同的第一电 极上方的有机层的厚度一致, 从而提高了有机层成膜的平整性和均一性, 进而提高了发光器件的显示品质。
图 8 为本发明实施例提供的一种发光器件的制造方法的流程图, 如 图 8所示, 该方法包括: 步骤 101、 在衬底基板上形成多个第一电极。
图 9a为实施例四中形成了第一电极的示意图。 如图 9a所示, 在衬 底基板 1上沉积第一电极材料, 并通过构图工艺形成第一电极 4。
优选地, 相邻的第一电极 4之间形成有间隔 8, 因此, 本实施例还可 以包括步骤 102。
步骤 102、 在相邻的第一电极之间形成填充图形。
图 9b为本实施例中形成了填充图形的示意图。 如图 9b所示, 通过 等离子体增强化学气相沉积法 (Plasma Enhanced Chemical Vapor Deposition,简称: PECVD )、旋转涂布法(Spin- coat )、狭缝涂布法(sl it ) 或者喷墨打印法在衬底基板 1上形成填充材料, 并通过构图工艺在相邻的 第一电极 4之间形成填充图形 7。
步骤 103、在衬底基板上形成像素界定层, 像素界定层限定至少一个 像素单元, 每个像素单元包括多个第一电极。
优选地, 像素界定层和第一电极之间形成有间隔, 因此, 步骤 102 中,在相邻的第一电极之间形成填充图形的同时还在像素界定层和与像素 界定层相邻的第一电极之间形成填充图形, 扩大平坦化的区域, 这样, 在 后续形成有机层时, 位于最边缘处的第一电极和位于内部的第一电极层上 成膜均匀性保持一致。
图 9c为实施例四中形成像素界定层的示意图, 如图 9c所示, 通过 等离子体增强化学气相沉积法、 旋转涂布法、 狭缝涂布法或者喷墨打印法 在衬底基板 1上形成像素界定层材料, 并通过构图工艺在衬底基板 1上形 成像素界定层 2, 像素界定层 2限定像素单元 3。 本实施例中, 若像素界 定层 2的各部分的厚度不同, 则在构图工艺中的曝光过程中需要采用半色 调掩膜板或者灰调掩膜板对像素界定层材料进行曝光, 以形成各部分厚度 不同的像素界定层 2。 或者采用多次成膜工艺形成厚度不同的像素界定层
2, 其中, 多次成膜工艺是指在衬底基板 1上形成像素界定层材料后, 通 过对像素界定层材料多次进行构图工艺以形成各部分厚度不同的像素界 定层 2。
步骤 104、在衬底基板上形成有机层, 有机层位于各像素单元内的多 个第一电极之上。 图 9d为本实施例中形成了有机层的示意图。 如图 9d所示, 可通过 蒸镀工艺或者溶液工艺在像素单元 3内的多个第一电极 4之上形成有机层 5。 在溶液工艺过程中, 可通过喷墨打印、 喷嘴涂覆或者墨水倾倒的方法 形成有机层 5。 其中, 只要第一电极 4和填充图形 7形成为平面结构, 则 采用墨水倾倒的方法时墨滴可在该平面结构上自发的铺展均匀。与现有技 术相比, 本实施例中, 在溶液工艺过程中可采用多种成膜方式形成有机层 5, 从而进一步拓展了溶液工艺的成膜方法。
对于溶液工艺过程, 由于本实施例中像素界定层的数量较少且每个 像素单元中包括多个第一电极, 因此在通过本实施例形成的发光器件中仅 仅与像素界定层相邻的有机层部分会出现咖啡环现象。与现有技术中每个 第一电极上方的有机层的边缘不可避免的出现咖啡环的现象相比, 本实施 例极大地减少了咖啡环现象的发生, 从而提高了成膜的平整性和均匀性。
步骤 105、在衬底基板上形成第二电极, 第二电极位于所述像素单元 内的所述有机层之上。
如图 3所示, 在衬底基板 1上沉积第二电极 6。
本实施例中, 构图工艺可以包括: 光刻胶涂覆、 曝光、 显影、 刻蚀、 光刻胶剥离等工艺。
上述各步骤的执行顺序为一种优选方案, 在实际应用中, 可根据生 产需要变更各步骤的执行顺序。 比如,步骤 103可在步骤 102之前完成而 不会影响本发明的效果。
本实施例提供的发光器件的制造方法可用于制造上述实施例提供的 发光器件, 对发光器件中各结构的具体描述可参见上述对实施例的描述, 此处不再赘述。
本实施例提供的发光器件的制造方法制造出的发光器件中, 像素界 定层限定至少一个像素单元, 每个像素单元包括多个第一电极且有机层位 于多个第一电极之上, 使得多个第一电极上方的有机层成膜的平整性较 好, 以及使得多个不同的第一电极上方的有机层的厚度一致, 从而提高了 有机层成膜的平整性和均一性, 进而提高了发光器件的显示品质。 本实施 例提供的制造方法可依靠现有的工艺和设备能力制造出发光器件, 制造工 艺简单, 易于实现。 可以理解的是, 以上实施方式仅仅是为了说明本发明的原理而采用 的示例性实施方式, 然而本发明并不局限于此。 对于本领域内的普通技术 人员而言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和 改进, 这些变型和改进也视为本发明的保护范围。

Claims

权 利 要 求 书
1、 一种发光器件, 其特征在于, 包括: 衬底基板和位于衬底基板上 的像素界定层, 所述像素界定层限定至少一个像素单元, 每个所述像素单 元包括多个第一电极、位于所述多个第一电极之上的有机层和位于所述有 机层之上的第二电极。
2、 根据权利要求 1所述的发光器件, 其特征在于, 相邻的所述第一 电极之间形成有填充图形。
3、 根据权利要求 2所述的发光器件, 其特征在于, 所述像素界定层 和与其相邻的所述第一电极之间也形成有所述填充图形。
4、 根据权利要求 2或 3所述的发光器件, 其特征在于, 所述填充图 形的厚度小于所述像素界定层的厚度, 并且与所述第一电极的厚度基本一 致。
5、 根据权利要求 4所述的发光器件, 其特征在于, 所述填充图形的 厚度与所述第一电极的厚度的差值为- 10nm至 50nm。
6、 根据权利要求 5所述的发光器件, 其特征在于, 所述填充图形的 厚度与所述第一电极的厚度的差值大于 Onm且小于或者等于 50nm。
7、 根据权利要求 2-4任一项所述的发光器件, 其特征在于, 所述填 充图形的厚度相同。
8、 根据权利要求 1-7任一项所述的发光器件, 其特征在于, 所述像 素界定层包括环状结构。
9、 根据权利要求 8所述的发光器件, 其特征在于, 所述像素界定层 的纵截面的形状包括梯形或者方形。
10、 根据权利要求 1-9中任一项所述的发光器件, 其特征在于,所述 像素界定层限定一个像素单元, 并且所述像素界定层位于所述发光器件周 边的非发光区域。
11、 一种阵列基板, 其特征在于, 包括: 权利要求 1至 10中任一项 所述的发光器件。
12、 一种显示装置, 其特征在于, 包括: 权利要求 11所述的阵列基 板。
13、 一种发光器件的制造方法, 其特征在于, 包括步骤:
在衬底基板上形成多个第一电极;
在衬底基板上形成像素界定层, 所述像素界定层限定至少一个像素 单元, 每个所述像素单元包括多个所述第一电极;
在衬底基板上形成有机层, 所述有机层位于所述像素单元内的多个 所述第一电极之上; 和
在衬底基板上形成第二电极, 所述第二电极位于所述像素单元内的 所述有机层之上。
14、 根据权利要求 13所述的发光器件的制造方法, 其特征在于, 还 包括步骤:
在相邻的所述第一电极之间形成填充图形。
15、 根据权利要求 14所述的发光器件的制造方法, 其特征在于, 在相邻的所述第一电极之间形成填充图形的同时也在所述像素界定 层和与其相邻的所述第一电极之间形成填充图形。
16、 根据权利要求 13至 15中任一项所述的发光器件的制造方法, 其特征在于, 所述在衬底基板上形成有机层的步骤包括:
通过蒸镀工艺或者溶液工艺在所述像素单元内的多个第一电极之上 形成所述有机层。
PCT/CN2014/081120 2013-10-28 2014-06-30 发光器件、阵列基板、显示装置及发光器件的制造方法 WO2015062297A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/420,736 US9722005B2 (en) 2013-10-28 2014-06-30 Light-emitting device, array substrate, display device and manufacturing method of light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310516699.2 2013-10-28
CN201310516699.2A CN103545457B (zh) 2013-10-28 2013-10-28 发光器件、阵列基板、显示装置及发光器件的制造方法

Publications (1)

Publication Number Publication Date
WO2015062297A1 true WO2015062297A1 (zh) 2015-05-07

Family

ID=49968707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081120 WO2015062297A1 (zh) 2013-10-28 2014-06-30 发光器件、阵列基板、显示装置及发光器件的制造方法

Country Status (3)

Country Link
US (1) US9722005B2 (zh)
CN (1) CN103545457B (zh)
WO (1) WO2015062297A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545457B (zh) * 2013-10-28 2016-06-29 京东方科技集团股份有限公司 发光器件、阵列基板、显示装置及发光器件的制造方法
CN106717119B (zh) * 2014-09-25 2018-12-04 株式会社日本有机雷特显示器 有机el显示面板的制造方法
CN104362257B (zh) * 2014-10-22 2017-10-17 京东方科技集团股份有限公司 一种顶发射oled器件及其制作方法、显示设备
CN105633301A (zh) * 2014-11-17 2016-06-01 上海和辉光电有限公司 一种降低oled混色缺陷的方法及oled显示面板
KR102620576B1 (ko) 2016-06-30 2024-01-02 엘지디스플레이 주식회사 유기발광 표시장치 및 그의 제조방법
CN106449717B (zh) * 2016-11-14 2020-08-18 京东方科技集团股份有限公司 有机电致发光器件基板、显示装置及制造方法
WO2018179528A1 (ja) * 2017-03-27 2018-10-04 パイオニア株式会社 発光装置
CN112670332A (zh) * 2017-04-20 2021-04-16 京东方科技集团股份有限公司 像素单元及其制作方法和显示装置
CN109728030B (zh) * 2017-10-31 2024-05-21 合肥鑫晟光电科技有限公司 显示基板及其制备方法、显示面板
CN108281574B (zh) * 2018-01-18 2020-07-10 华南理工大学 一种有机发光显示面板及其制备方法
CN108172699A (zh) * 2018-01-18 2018-06-15 华南理工大学 一种有机发光显示面板及其制备方法
CN108573998B (zh) 2018-04-19 2021-01-26 京东方科技集团股份有限公司 显示面板及制造方法、显示装置
CN110164909B (zh) 2018-04-24 2021-03-16 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN108649000B (zh) 2018-05-08 2021-01-26 京东方科技集团股份有限公司 测试基板及其制备方法、检测方法、显示基板、显示装置
CN111293152B (zh) * 2020-02-20 2022-11-04 京东方科技集团股份有限公司 显示用基板及其制备方法、电致发光显示装置
CN111554723B (zh) * 2020-05-18 2023-05-26 京东方科技集团股份有限公司 像素结构和显示面板
CN111710694B (zh) * 2020-05-28 2022-10-25 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN111969025B (zh) * 2020-08-28 2023-08-01 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN112259704A (zh) * 2020-10-21 2021-01-22 安徽熙泰智能科技有限公司 一种避免基板上阴极断裂的制程方法
CN112259590B (zh) * 2020-10-22 2023-04-07 合肥京东方卓印科技有限公司 显示面板及其制备方法、显示装置
CN114582939A (zh) * 2022-02-18 2022-06-03 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置
CN114784069A (zh) * 2022-04-12 2022-07-22 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080309230A1 (en) * 2003-11-29 2008-12-18 Nam-Choul Yang Full color organic electroluminescence display devices by thermal patterning using laser and method for manufacturing the same
US20130105821A1 (en) * 2011-10-28 2013-05-02 Samsung Mobile Display Co., Ltd. Organic electroluminescent display device and method of fabricating the same
CN103187434A (zh) * 2013-04-01 2013-07-03 京东方科技集团股份有限公司 有机电致发光器件及制备有机电致发光器件的方法
US20130207085A1 (en) * 2012-02-14 2013-08-15 Samsung Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN103353701A (zh) * 2013-07-22 2013-10-16 京东方科技集团股份有限公司 一种显示面板、显示装置、显示面板制作方法及显示方法
CN103545457A (zh) * 2013-10-28 2014-01-29 京东方科技集团股份有限公司 发光器件、阵列基板、显示装置及发光器件的制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050290B1 (ko) * 2004-06-25 2011-07-19 엘지디스플레이 주식회사 유기전계발광 소자 및 그 제조방법
CN100495640C (zh) * 2007-01-18 2009-06-03 复旦大学 自限定边界的薄膜图形制备方法
KR20100111315A (ko) * 2008-02-01 2010-10-14 이 아이 듀폰 디 네모아 앤드 캄파니 용액 처리된 전자 소자를 제조하기 위한 구조물
WO2012085982A1 (ja) * 2010-12-24 2012-06-28 パナソニック株式会社 有機el素子およびその製造方法
WO2013145640A1 (ja) * 2012-03-27 2013-10-03 パナソニック株式会社 真空チャンバーの減圧方法、真空装置、有機膜の形成方法、有機el素子の製造方法、有機el表示パネル、有機el表示装置、有機el発光装置および不純物検出方法
JP6040448B2 (ja) * 2012-04-18 2016-12-07 株式会社Joled 表示装置および表示装置の製造方法
KR101411656B1 (ko) * 2012-06-27 2014-06-25 엘지디스플레이 주식회사 유기전계발광 표시장치 및 이의 제조 방법
US9614191B2 (en) * 2013-01-17 2017-04-04 Kateeva, Inc. High resolution organic light-emitting diode devices, displays, and related methods
KR102079257B1 (ko) * 2013-06-28 2020-02-20 삼성디스플레이 주식회사 박막 트랜지스터 어레이 기판 및 이를 포함하는 유기발광표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080309230A1 (en) * 2003-11-29 2008-12-18 Nam-Choul Yang Full color organic electroluminescence display devices by thermal patterning using laser and method for manufacturing the same
US20130105821A1 (en) * 2011-10-28 2013-05-02 Samsung Mobile Display Co., Ltd. Organic electroluminescent display device and method of fabricating the same
US20130207085A1 (en) * 2012-02-14 2013-08-15 Samsung Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN103187434A (zh) * 2013-04-01 2013-07-03 京东方科技集团股份有限公司 有机电致发光器件及制备有机电致发光器件的方法
CN103353701A (zh) * 2013-07-22 2013-10-16 京东方科技集团股份有限公司 一种显示面板、显示装置、显示面板制作方法及显示方法
CN103545457A (zh) * 2013-10-28 2014-01-29 京东方科技集团股份有限公司 发光器件、阵列基板、显示装置及发光器件的制造方法

Also Published As

Publication number Publication date
US9722005B2 (en) 2017-08-01
CN103545457A (zh) 2014-01-29
US20160035802A1 (en) 2016-02-04
CN103545457B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2015062297A1 (zh) 发光器件、阵列基板、显示装置及发光器件的制造方法
US11296160B2 (en) Display substrate, display apparatus, and method of fabricating the display substrate
US9373814B2 (en) Organic light-emitting diode (OLED) display panel, pixel define layer (PDL) and preparation method thereof
CN106449722B (zh) 印刷型顶发射电致发光显示器及其制备方法
WO2016101452A1 (zh) 显示基板及其制作方法、显示装置
CN111987136B (zh) Oled显示面板及其制备方法
TW201721858A (zh) 有機發光顯示裝置
WO2016101576A1 (zh) 阵列基板及其制作方法和显示装置
US9679953B2 (en) WOLED back panel and method of manufacturing the same
WO2015113357A1 (zh) 有机电致发光显示面板
JP7443650B2 (ja) 表示基板、表示装置及び表示基板の製造方法
WO2021120324A1 (zh) 一种显示面板及其制备方法
CN110890406A (zh) 一种有机发光显示背板、其制作方法及显示装置
WO2021233070A1 (zh) 显示基板及其制作方法、显示面板及显示装置
CN108573998B (zh) 显示面板及制造方法、显示装置
TW202002353A (zh) 顯示面板
WO2022048010A1 (zh) 显示面板及其制作方法
WO2020224010A1 (zh) Oled 显示面板及其制备方法
CN110085655A (zh) 显示面板及其制造方法、显示装置
CN111146215A (zh) 一种阵列基板、其制作方法及显示装置
KR20140127382A (ko) 유기 발광 표시 장치 및 그 제조 방법
CN110752220B (zh) 一种显示基板及其制备方法和显示面板
WO2019192421A1 (zh) Oled基板及其制备方法、显示装置
WO2021120282A1 (zh) 一种显示面板及显示装置
KR100899428B1 (ko) 유기전계발광표시장치 및 그의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14420736

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14858697

Country of ref document: EP

Kind code of ref document: A1