WO2015060520A1 - 변압기용 이중 불감대 탭 절환기 및 제어방법 - Google Patents

변압기용 이중 불감대 탭 절환기 및 제어방법 Download PDF

Info

Publication number
WO2015060520A1
WO2015060520A1 PCT/KR2014/007099 KR2014007099W WO2015060520A1 WO 2015060520 A1 WO2015060520 A1 WO 2015060520A1 KR 2014007099 W KR2014007099 W KR 2014007099W WO 2015060520 A1 WO2015060520 A1 WO 2015060520A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
dead band
tap
difference
reference voltage
Prior art date
Application number
PCT/KR2014/007099
Other languages
English (en)
French (fr)
Inventor
장길수
송종석
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US15/030,824 priority Critical patent/US10176938B2/en
Publication of WO2015060520A1 publication Critical patent/WO2015060520A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a tap-changer, and more particularly, to a tap-changer and a control method for suppressing frequent operation of the tap-changer by applying a double dead band and guaranteeing the life of the transformer due to system and distributed power variations. will be.
  • Prior arts for the present invention include a universal input device for tap changer (published number: 1020080110582).
  • the first problem to be solved by the present invention is to provide a tap-changer control method using a double deadband.
  • the second problem to be solved by the present invention is to provide a tap changer using a double deadband.
  • the present invention comprises the steps of measuring the data of the distribution system to achieve the first object; Calculating a second dead band and a reference voltage using the measured data; Comparing the difference between the measured actual voltage and the reference voltage with a first dead band; Comparing the difference between the actual voltage and the reference voltage with a second dead band when the difference between the actual voltage and the reference voltage is outside the first dead band as a result of the comparison with the first dead band; And controlling the tap of the transformer when the difference between the actual voltage and the reference voltage is out of the second dead band as a result of the comparison with the second dead band.
  • measuring the data of the distribution system, the tap-changer characterized in that for measuring at least one of the current of each feeder, the secondary bus voltage, the tap state, or the capacity of the distributed power supply It may be a control method.
  • the calculating of the second dead band and the reference voltage may include: each feeder which is a difference between the voltage when the distributed power supply for each feeder is excluded and the voltage when the total capacity of the distributed power supply is applied.
  • the method of controlling the tap-changer may be performed by calculating a distributed power supply voltage difference for each of the plurality and calculating a half of the largest value among the calculated distributed power supply voltage differences for each feeder as the second deadband.
  • the calculating of the second dead band and the reference voltage may include calculating the largest value among voltages calculated using the feeder current and the feeder compensation impedance of each feeder as the reference voltage. It may be a tap-changer control method.
  • the method may further include determining whether a time when the difference between the actual voltage and the reference voltage is outside the second dead band is greater than or equal to a reference time, wherein the time out of the second dead band is a reference time. It may be a tap changer control method characterized in that the control of the tap only when the above.
  • the measurement unit for measuring the data of the distribution system in order to achieve the second object The second dead band and the reference voltage are calculated using the measured data, and the difference between the measured actual voltage and the reference voltage is doubled by using the first dead band and the second dead band, and the A determination unit that determines whether the difference between the reference voltage is outside the dead band; And a tap controller configured to control the tap of the transformer according to whether the difference between the actual voltage and the reference voltage is out of the dead band.
  • the tap changer can be guaranteed.
  • the performance and ripple effects of the technology are significant in that the problem of controlling tap switching can be fundamentally solved and there is almost no additional cost.
  • the ease of applying a double deadband to an existing tap-changing method has the advantage that there is no cost burden for additional control and is applicable to existing tap-changing methods throughout existing installation operations or transformers to be newly installed or designed. It is possible.
  • FIG. 1 is a block diagram of a tap changer according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a tap-changer control method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a tap-changer control method according to an embodiment of the present invention.
  • FIG. 4 illustrates a process of controlling a double deadband tap according to an embodiment of the present invention.
  • FIG. 7A is a graph showing changes in Vs and Vsr values using the conventional LDC method
  • FIG. 7B is a graph showing changes in Vs and Vsr values applying the method according to an embodiment of the present invention.
  • a method of controlling a tap changer includes measuring data of a distribution system, calculating a second dead band and a reference voltage using the measured data, measured actual voltages, and reference voltages. Comparing the difference between the first deadband and the difference between the actual voltage and the reference voltage when the difference between the actual voltage and the reference voltage is outside the first deadband as a result of the comparison with the first deadband. Comparing the second deadband, and controlling the tap of the transformer when the difference between the actual voltage and the reference voltage is outside the second deadband as a result of the comparison with the second deadband.
  • a method of controlling a tap changer includes measuring data of a distribution system, calculating a second dead band and a reference voltage using the measured data, measured actual voltages, and reference voltages. Comparing the difference between the first deadband and the difference between the actual voltage and the reference voltage when the difference between the actual voltage and the reference voltage is outside the first deadband as a result of the comparison with the first deadband. Comparing the second deadband, and controlling the tap of the transformer when the difference between the actual voltage and the reference voltage is outside the second deadband as a result of the comparison with the second deadband.
  • FIG. 1 is a block diagram of a tap changer according to an embodiment of the present invention.
  • the tap changer 100 includes a measuring unit 110, a determination unit 120, and a tap control unit 130.
  • the measuring unit 110 measures data of the distribution system.
  • the measurement unit 110 may measure one or more of the current of each feeder, the secondary bus voltage, the tap state, or the capacity of the distributed power supply.
  • the capacity of the distributed power supply may be the total amount of distributed power for each feeder managed through a database of a distribution service provider or an operator, which may be automatically input from the database, or may be input by a distribution service provider or an operator. In addition, you can measure the data needed to adjust the tap.
  • the determination unit 120 calculates a second dead band and a reference voltage by using the measured data, and doubles the difference between the measured actual voltage and the reference voltage by using the first dead band and the second dead band. By comparing, it is determined whether the difference between the actual voltage and the reference voltage is out of the dead band.
  • the determination unit 120 uses the first deadband and the second deadband as the difference between the actual voltage and the reference voltage in order to reduce unnecessary tap operation by applying the deadband in duplicate. Determine if you are out of the dead zone.
  • the first dead band may be a preset dead band or may be a dead band used in an existing tap changer.
  • the second dead band is a dead band that varies depending on feeder-specific conditions calculated using the feeder current and the distributed power source measured by the measuring unit 110, and is used to determine whether the tap operation is required.
  • the reference voltage is also calculated in real time as a voltage that varies depending on the feeder situation, such as the current of the feeder.
  • the determination unit 120 calculates the distributed power supply voltage difference for each feeder, which is a difference between the voltage when the distributed power supply for each feeder is excluded and the voltage when the total capacity of the distributed power supply is applied, and the calculated dispersion for each feeder.
  • Half of the largest value of the power supply voltage difference is calculated as the second deadband, and the largest value of the voltages calculated using the feeder current and feeder compensation impedance of each feeder is calculated as the reference voltage.
  • the second dead band and the reference voltage are values that vary according to the conditions of each feeder.
  • the determination unit 120 uses the second dead band and the reference voltage to determine whether the actual voltage is out of the dead band. Or periodically calculating the second dead band and the reference voltage.
  • the difference in the distributed power supply voltage for each feeder which is the difference between the voltage when the distributed power supply for each feeder in the distribution system is excluded and the voltage when the total capacity of the distributed power supply is applied, is calculated.
  • Half of the maximum value among the calculated distributed power supply voltage differences for each feeder is calculated as the second deadband. This may be represented as in Equation 1 below.
  • V noDG i when the dispersion power is negative is applied to the total amount of distributed generation When is the voltage.
  • V noDG, i may be calculated by Equation 2 below.
  • V cen is the load center point voltage
  • Z comp, i is the calculated feeder compensation impedance
  • I i, max is the current at maximum load conditions.
  • the I i, max may be I 0.9, i (t) to which a power factor is applied.
  • V DG, i may be calculated by Equation 3 below.
  • I net, i (t) is a current in which the total distributed power capacity is reflected.
  • I net, i (t) may be calculated by the following equation (4).
  • the reference voltage for calculating the difference between the measured actual voltage and the reference voltage is calculated as the largest value among the voltages calculated using the feeder current and feeder compensation impedance of each feeder.
  • the reference voltage may be calculated as shown in Equation 5 below.
  • the difference between the measured actual voltage and the calculated reference voltage is compared with the first deadband.
  • the measured actual voltage is the voltage measured at the secondary of the transformer.
  • it is determined that the tap is not operated when the difference between the actual voltage and the reference voltage does not exceed the first deadband.
  • the tap is not immediately operated, and it is determined whether to operate the tap by comparing with the second deadband. do. To do this, the difference between the actual voltage and the reference voltage is compared with a second dead band.
  • Equation 7 The difference between the measured actual voltage and the calculated reference voltage may be represented by Equation 7 below.
  • V s (t) is the voltage measured at the secondary side of the transformer, and in theory, it can be expressed as Equation (8).
  • V tap (t) is the secondary voltage generated by the transformer wiring and Z MTR is the transformer impedance.
  • the tap After determining that the difference between the measured actual voltage and the calculated reference voltage is out of the double dead band, it may be determined that the tap is operated only when the time out of the second dead band is greater than or equal to the reference time. Temporarily, it may be unnecessary to operate the tab when it is out of the double deadband, and it can be finally determined that the tap needs to be operated when the time out of the double deadband becomes longer than a predetermined time. This can be expressed as 9 in the following math.
  • T D is a time delay of the tap-changer, and may be performed only when the time exceeds the corresponding time.
  • the tap controller 130 controls the tap of the transformer according to whether the difference between the actual voltage and the reference voltage is out of the dead band.
  • the tap is controlled by increasing or decreasing the tap depending on whether the determiner 120 determines that the tap is to be operated.
  • FIG. 2 is a flowchart illustrating a tap-changer control method according to an embodiment of the present invention.
  • Step 210 is a step of measuring data of the distribution system.
  • one or more of the current of each feeder, the secondary bus voltage, the tap state, or the capacity of the distributed power supply is measured.
  • the detailed description of this step corresponds to the detailed description of the measuring unit 110 of FIG. 1, instead of the detailed description of the measuring unit 110 of FIG. 1.
  • a second dead band and a reference voltage are calculated using the measured data.
  • the second deadband and the reference voltage are calculated to determine whether to operate the tap by applying the second deadband in addition to the preset first deadband.
  • the second dead band and the reference voltage may vary according to feeder conditions and characteristics.
  • the second dead band and the reference voltage are calculated in real time or periodically using the data measured in step 210.
  • the distributed power supply voltage difference for each feeder which is the difference between the voltage when the total capacity of the distributed power supply for each feeder is applied and the voltage when the distributed power supply is excluded, is calculated, and the calculated respective feeders Half of the largest value among the respective distributed power supply voltage differences may be calculated as the second deadband.
  • the largest value among the voltages calculated by using the feeder current for each feeder and the calculated feeder compensation impedance may be calculated as the reference voltage.
  • the detailed description of this step corresponds to the detailed description of the determination unit 120 of FIG. 1, and instead of the detailed description of the determination unit 120 of FIG. 1.
  • the difference between the measured actual voltage and the reference voltage is compared with the first dead band.
  • the difference between the measured actual voltage and the reference voltage calculated in step 220 is compared with the first deadband to determine whether the first deadband is out of range.
  • the first deadband may be preset, and a deadband of an existing single deadband may be used.
  • the detailed description of this step corresponds to the detailed description of the determination unit 120 of FIG. 1, and instead of the detailed description of the determination unit 120 of FIG. 1.
  • step 240 when the difference between the actual voltage and the reference voltage is outside the first deadband and the second deadband, that is, the double deadband, it is necessary to operate the tap of the transformer. You can increase or decrease the tap depending on your needs.
  • the detailed description of this step corresponds to the detailed description of the tab control unit 130 of FIG. 1, and instead of the detailed description of the tab control unit 130 of FIG. 1.
  • the method may further include determining whether a difference between the actual voltage and the reference voltage is outside the second dead band is greater than or equal to a reference time.
  • the tap may be controlled only when the time out of the second dead band is equal to or greater than a reference time.
  • the detailed description of this step corresponds to the detailed description of the determination unit 120 of FIG. 1, and instead of the detailed description of the determination unit 120 of FIG. 1.
  • FIG. 3 is a flowchart illustrating a method of controlling a tap changer according to an embodiment of the present invention
  • FIG. 4 illustrates a process of controlling a double deadband tap according to an embodiment of the present invention.
  • the distribution system data is measured, in operation 321, a second dead band, which is a double dead band, is calculated, and in operation 322, a reference voltage is calculated.
  • operation 330 it is determined whether the difference between the actual voltage and the reference voltage is within the first dead band. In the case where the first dead zone is within the first dead zone, the tap is not operated and when the first dead zone is out of the first dead zone, it is determined whether the second dead zone is within the second dead zone. If it is within the second dead zone, the tap is not operated, and if it is out of the second dead zone, the tap is operated according to the result in operation 350. Referring to FIG.
  • step 410 the data of the feeders connected to the distribution system are measured in step 410, the second dead band is calculated in step 420, and the voltage is received in step 430 (Novel LDC method). It is determined whether to exit the double dead zone, and the tap switching is performed in step 440 according to the result.
  • FIG. 6 (A) shows an embodiment of the present invention as opposed to operating the tap immediately when the deadband is moved by the tap switching method according to the LDC method.
  • a double dead band can be provided to prevent unnecessary tap operation. That is, by overriding unnecessary tap operation through a double dead band, it is possible to ensure the original voltage adjusting role of the tap-changer while minimizing tap operation, and to ensure the tap-changer tap life by minimizing tap operation. .
  • Table 2 shows the results of performing the existing method and the tap-changer control method according to the embodiment of the present invention under the conditions having the system parameters of Table 1 below.
  • the tap operation number of the double dead-band method according to the embodiment of the present invention is significantly smaller than the conventional methods (LDC and MLDC).
  • FIG. 7A is a graph showing changes in Vs and Vsr values using the conventional LDC method
  • FIG. 7B is a graph showing changes in Vs and Vsr values applying the method according to an embodiment of the present invention.
  • FIG. 7A while the tap frequently operates in the conventional LDC method, it is confirmed that the continuous operation of the tap is suppressed as shown in FIG. 7B in the method according to the exemplary embodiment of the present invention.
  • Embodiments of the present invention may be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명은 탭 절환기 제어방법에 관한 것으로서, 배전계통의 데이터를 측정하는 단계, 상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하는 단계, 측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대와 비교하는 단계, 상기 제 1 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 1 불감대를 벗어난 경우, 상기 실제 전압과 상기 기준 전압의 차를 제 2 불감대와 비교하는 단계, 및 상기 제 2 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 경우, 변압기의 탭을 제어하는 단계를 포함함으로써, 계통 및 분산전원 변동에 의해 탭 절환기의 빈번한 동작을 이중 불감대를 적용하여 억제시키며 변압기의 수명을 보장할 수 있다.

Description

변압기용 이중 불감대 탭 절환기 및 제어방법
본 발명은 탭 절환기에 관한 것으로서, 더욱 상세하게는 계통 및 분산전원 변동에 의해 탭 절환기의 빈번한 동작을 이중 불감대를 적용하여 억제시키며 변압기의 수명을 보장하는 탭 절환기 및 제어 방법에 관한 것이다.
현재 분산전원이 전력계통에 차지하는 비중이 커짐에 따라 계통에 미치는 영향으로 인하여 해결해야 하는 과제 및 문제점들이 다수 발생하고 있고 이를 해결하고자 하는 연구가 활발하게 진행되고 있다. 이중 계통운영에서 생기는 문제점은 분산전원 출력변동에 의해서 현재 배전계통의 전압변동이 상당한 영향을 미치고 있으며 변전소에서 전압 조정하는 장치인 탭 절환 장치의 빈번한 탭 동작을 야기하고 있다. 이러한 탭 절환장치는 기존의 분산전원이 없는 단방향 계통에 맞춰서 설계 및 운영되고 있으며 수명 또한 대략 20년으로 맞춰서 운영되기 때문에 이러한 빈번한 탭 동작은 변압기의 수명에 악영향을 미치고 있다. 이러한 문제를 해결하기 위해서는 분산전원의 출력변동을 에너지저장장치 및 기타 보상장치를 설치운영해야 하지만 이 또한 상당한 설치운영비가 들기 때문에 경제적인 관점에서는 현실적인 해결책이 되지 않고 있다. 이러한 문제점으로 인해 계통운영자는 현재 탭 절환기의 탭을 고정시켜서 운전하는 사례가 발생하고 있지만 계통의 상황에 맞춰서 전압을 조정해야 하기 때문에 실제 운영상 맞지 않은 방법으로 해당 문제를 근본적으로 해결해야 하는 새로운 방법이 필요하다.
본 발명에 대한 선행기술로 '탭 절환기용 유니버셜 입력 장치(공개번호: 1020080110582)" 등이 있다.
본 발명이 해결하고자 하는 첫 번째 과제는 이중 불감대를 이용하는 탭 절환기 제어방법을 제공하는 것이다.
본 발명이 해결하고자 하는 두 번째 과제는 이중 불감대를 이용하는 탭 절환기를 제공하는 것이다.
본 발명은 상기 첫 번째 과제를 달성하기 위하여, 배전계통의 데이터를 측정하는 단계; 상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하는 단계; 측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대와 비교하는 단계; 상기 제 1 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 1 불감대를 벗어난 경우, 상기 실제 전압과 상기 기준 전압의 차를 제 2 불감대와 비교하는 단계; 및 상기 제 2 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 경우, 변압기의 탭을 제어하는 단계를 포함하는 탭 절환기 제어방법을 제공한다.
본 발명의 실시예에 의하면, 상기 배전계통의 데이터를 측정하는 단계는, 각 피더의 전류, 2 차측 버스 전압, 탭 상태, 또는 분산전원의 용량 중 하나 이상을 측정하는 것을 특징으로 하는 탭 절환기 제어방법일 수 있다.
본 발명의 실시예에 의하면, 상기 제 2 불감대 및 기준전압을 산출하는 단계는, 각 피더별 분산전원이 제외되었을 때의 전압과 상기 분산전원의 총 용량이 적용되었을 때의 전압의 차인 각 피더별 분산전원 전압 차를 산출하고, 상기 산출된 각 피더별 분산전원 전압 차 중 가장 큰 값의 반을 상기 제 2 불감대로 산출하는 것을 특징으로 하는 탭 절환기 제어방법일 수 있다.
본 발명의 실시예에 의하면, 상기 제 2 불감대 및 기준전압을 산출하는 단계는, 각 피더별 피더 전류 및 피더 보상 임피던스를 이용하여 산출되는 전압 중 가장 큰 값을 상기 기준 전압으로 산출하는 것을 특징으로 하는 탭 절환기 제어방법일 수 있다.
본 발명의 실시예에 의하면, 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인지를 판단하는 단계를 더 포함하고, 상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인 경우에만 상기 탭을 제어하는 것을 특징으로 하는 탭 절환기 제어방법일 수 있다.
본 발명은 상기 두 번째 과제를 달성하기 위하여, 배전계통의 데이터를 측정하는 측정부; 상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하고, 측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대 및 상기 제 2 불감대를 이용하여 이중으로 비교함으로써 상기 실제 전압과 상기 기준 전압의 차가 불감대를 벗어나는지를 판단하는 판단부; 및 상기 실제 전압과 상기 기준 전압의 차가 불감대를 벗어나는지에 따라 변압기의 탭을 제어하는 탭 제어부를 포함하는 탭 절환기를 제공한다.
본 발명에 따르면, 탭의 빈번한 동작을 억제시킬 수 있으며 탭 절환기의 수명을 보장할 수 있다. 또한, 탭 절환을 제어하는데 발생하는 문제점을 근본적으로 해결할 수 있으며 추가 비용 또한 거의 없다는 부분에 기술에 대한 실적용 및 파급효과가 상당하다. 나아가, 기존의 탭 절환 방법에 이중 불감대를 적용하는 방법의 용이성 때문에 추가 제어에 관한 비용 부담이 없다는 장점이 있고 기존 설치 운영 또는 신규 설치되거나 설계될 변압기 전반에 걸쳐 기존의 탭 절환 방법에 적용이 가능하다.
도 1은 본 발명의 일 실시예에 따른 탭 절환기의 블록도이다.
도 2는 본 발명의 일 실시예에 따른 탭 절환기 제어방법을 나타낸 흐름도이다.
도 3은 본 발명의 실시예에 따른 탭 절환기 제어방법을 나타낸 흐름도이다.
도 4는 본 발명의 실시예에 따른 이중 불감대 탭을 제어하는 과정을 도시한 것이다.
도 5 및 6은 본 발명의 실시예에 따른 탭 절환기 제어방법과 기존 방법을 비교한 것이다.
도 7a는 기존 LDC 방법을 이용한 Vs 및 Vsr 값의 변화를 나타낸 그래프이고, 도 7b는 본 발명의 일 실시예에 따른 방법을 적용한 Vs 및 Vsr 값의 변화를 나타낸 그래프이다.
본 발명의 일 실시예에 따른 탭 절환기 제어방법은 배전계통의 데이터를 측정하는 단계, 상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하는 단계, 측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대와 비교하는 단계, 상기 제 1 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 1 불감대를 벗어난 경우, 상기 실제 전압과 상기 기준 전압의 차를 제 2 불감대와 비교하는 단계, 및 상기 제 2 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 경우, 변압기의 탭을 제어하는 단계를 포함한다.
본 발명에 관한 구체적인 내용의 설명에 앞서 이해의 편의를 위해 본 발명이 해결하고자 하는 과제의 해결 방안의 개요 혹은 기술적 사상의 핵심을 우선 제시한다.
본 발명의 일 실시예에 따른 탭 절환기 제어방법은 배전계통의 데이터를 측정하는 단계, 상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하는 단계, 측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대와 비교하는 단계, 상기 제 1 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 1 불감대를 벗어난 경우, 상기 실제 전압과 상기 기준 전압의 차를 제 2 불감대와 비교하는 단계, 및 상기 제 2 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 경우, 변압기의 탭을 제어하는 단계를 포함한다.
이하 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있는 실시 예를 상세히 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
본 발명이 해결하고자 하는 과제의 해결 방안을 명확하게 하기 위한 발명의 구성을 본 발명의 바람직한 실시예에 근거하여 첨부 도면을 참조하여 상세히 설명하되, 도면의 구성요소들에 참조번호를 부여함에 있어서 동일 구성요소에 대해서는 비록 다른 도면상에 있더라도 동일 참조번호를 부여하였으며 당해 도면에 대한 설명시 필요한 경우 다른 도면의 구성요소를 인용할 수 있음을 미리 밝혀둔다. 아울러 본 발명의 바람직한 실시 예에 대한 동작 원리를 상세하게 설명함에 있어 본 발명과 관련된 공지 기능 혹은 구성에 대한 구체적인 설명 그리고 그 이외의 제반 사항이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.
도 1은 본 발명의 일 실시예에 따른 탭 절환기의 블록도이다.
본 발명의 일 실시예에 따른 탭 절환기(100)는 측정부(110), 판단부(120), 및 탭 제어부(130)로 구성된다.
측정부(110)는 배전계통의 데이터를 측정한다.
보다 구체적으로, 변압기의 탭을 조정할 지 여부를 판단하기 위해, 변압기를 포함하고 있는 배전계통의 데이터를 측정한다. 측정부(110)는 각 피더의 전류, 2 차측 버스 전압, 탭 상태, 또는 분산전원의 용량 중 하나 이상을 측정할 수 있다. 상기 분산전원의 용량은 배전사업자 또는 운영자의 데이터베이스를 통하여 관리되고 있는 피더별 분산전원 총량일 수 있고, 이는 상기 데이터베이스로부터 자동으로 입력받거나, 배전사업자 또는 운영자에 의해 입력받을 수 있다. 이외 탭을 조절하는데 필요한 데이터들을 측정할 수 있다.
판단부(120)는 상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하고, 측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대 및 상기 제 2 불감대를 이용하여 이중으로 비교함으로써 상기 실제 전압과 상기 기준 전압의 차가 불감대를 벗어나는지를 판단한다.
보다 구체적으로, 판단부(120)는 탭을 조절함에 있어서, 불감대를 이중으로 적용함으로써 불필요한 탭 동작을 줄이기 위하여, 실제 전압과 기준 전압의 차를 제 1 불감대 및 제 2 불감대를 이용하여 불감대를 벗어났는지를 판단한다. 상기 제 1 불감대는 미리 설정된 불감대일 수 있으며, 기존 탭 절환기에서 이용되는 불감대일 수 있다. 상기 제 2 불감대는 측정부(110)에서 측정된 피더의 전류 및 분산전원을 이용하여 산출되는 피더 별 상황에 따라 달라지는 불감대로써 실질적인 탭 동작 필요여부를 판단하는데 이용된다. 아울러, 상기 기준전압 또한, 피더의 전류와 같이, 피더 별 상황에 따라 달라지는 전압으로, 실시간으로 산출된다.
판단부(120)는 각 피더별 분산전원이 제외되었을 때의 전압과 상기 분산전원의 총 용량이 적용되었을 때의 전압의 차인 각 피더별 분산전원 전압 차를 산출하고, 상기 산출된 각 피더별 분산전원 전압 차 중 가장 큰 값의 반을 상기 제 2 불감대로 산출하며, 각 피더별 피더 전류 및 피더 보상 임피던스를 이용하여 산출되는 전압 중 가장 큰 값을 상기 기준 전압으로 산출한다. 상기 제 2 불감대 및 기준 전압은 각 피더별 상황에 따라 달라지는 값인바, 판단부(120)는 상기 제 2 불감대 및 기준 전압을 이용하여 실제 전압이 불감대를 벗어났는지를 판단하기 위하여, 실시간 또는 주기적으로 상기 제 2 불감대 및 기준 전압을 산출한다. 제 2 불감대를 산출하기 위하여, 배전계통의 각 피더별 분산전원이 제외되었을 때의 전압과 상기 분산전원의 총 용량이 적용되었을 때의 전압의 차인 각 피더별 분산전원 전압 차를 산출한다. 상기 산출된 각 피더별 분산전원 전압 차 중 최대값의 반을 제 2 불감대로 산출한다. 이는 다음 수학식 1과 같이 나타낼 수 있다.
수학식 1
Figure PCTKR2014007099-appb-M000001
여기서, DBD는 제 2 불감대, △Vi는 i 피더에서의 분산전원 전압의 차, VnoDG,i는 분산전원이 제외되었을 때의 전압, VDG,i는 분산전원의 총 용량이 적용되었을 때의 전압이다. 상기 VnoDG,i는 다음 수학식 2에 의해 산출될 수 있다.
수학식 2
Figure PCTKR2014007099-appb-M000002
여기서, Vcen은 부하 중심점 전압이고, Zcomp,i는 계산된 피더 보상 임피던스이고, Ii,max는 최대부하조건에서의 전류이다. 상기 Ii,max는 파워팩터가 적용된 I0.9,i(t)일 수 있다.
상기 VDG,i는 다음 수학식 3에 의해 산출될 수 있다.
수학식 3
Figure PCTKR2014007099-appb-M000003
여기서, Inet,i(t)는 분산전원 총 용량이 반영된 전류이다. Inet,i(t)는 다음 수학식 4에 의해 산출될 수 있다.
수학식 4
Figure PCTKR2014007099-appb-M000004
상기 측정된 실제 전압과 상기 기준 전압의 차를 산출하기 위한 기준전압은 각 피더별 피더 전류 및 피더 보상 임피던스를 이용하여 산출되는 전압 중 가장 큰 값으로 산출된다. 상기 기준전압은 다음 수학식 5와 같이 산출될 수 있다.
수학식 5
Figure PCTKR2014007099-appb-M000005
상기와 같이, 산출된 제 2 불감대와 기준전압, 및 제 1 불감대를 이용하여 측정된 실제 전압이 불감대를 벗어났는지를 판단한다.
우선, 측정된 실제 전압과 상기 산출된 기준 전압의 차를 제 1 불감대와 비교한다. 상기 측정된 실제 전압은 변압기 2차단에서 측정되는 전압이다. 상기 제 1 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 1 불감대를 벗어나지 않은 경우, 탭을 동작시키지 않는 것으로 판단한다. 상기 제 1 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 1 불감대를 벗어난 경우, 바로 탭을 동작시키지 아니하고, 이중으로 제 2 불감대와 비교함으로써, 탭을 동작시킬지를 판단한다. 이를 위하여, 상기 실제 전압과 상기 기준 전압의 차를 제 2 불감대와 비교한다. 상기 제 2 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 경우, 탭을 동작시킬 필요가 있다고 판단한다. 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어나지 않은 경우, 탭을 동작시키지 않는 것으로 판단한다. 상기 탭을 동작 시킬것인가를 판단하는 비교는 다음 수학식 6과 같이 나타낼 수 있다.
수학식 6
Figure PCTKR2014007099-appb-M000006
즉, 상기 측정된 실제 전압과 상기 산출된 기준 전압의 차가 제 1 불감대와 제 2 불감대로 형성되는 이중 불감대를 벗어나면서, 상기 실제 전압이 기준 전압보다 큰 경우, 탭을 증가할 필요가 있다고 판단하고, 상기 측정된 실제 전압과 상기 산출된 기준 전압의 차가 제 1 불감대와 제 2 불감대로 형성되는 이중 불감대를 벗어나면서 상기 실제 전압이 기준 전압보다 작은 경우, 탭을 감소시킬 필요가 있다고 판단한다. 하지만, 상기 측정된 실제 전압과 상기 산출된 기준 전압의 차가 이중 불감대를 벗어나지 않은 경우, 탭을 동작시키지 않는 것으로 판단한다.
상기 측정된 실제 전압과 상기 산출된 기준 전압의 차는 다음 수학식 7로 나타낼 수 있다.
수학식 7
Figure PCTKR2014007099-appb-M000007
여기서, Vs(t)는 변압기 2차측에서 측정된 전압이고, 이론적으로, 다음 수학식 8과 같이 나타낼 수 있다.
수학식 8
Figure PCTKR2014007099-appb-M000008
여기서, Vtap(t)는 변압기 결선에 의해 생성되는 2차 전압이고, ZMTR은 변압기 임피던스이다.
상기 측정된 실제 전압과 상기 산출된 기준 전압의 차가 이중 불감대를 벗어난 것으로 판단한 이후, 상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인 경우에만 상기 탭을 동작시키는 것으로 판단할 수 있다. 일시적으로, 이중 불감대를 벗어난 경우에는 탭을 동작시키는 것이 불필요할 수 있는바, 이중 불감대를 벗어난 시간이 일정 시간이 이상이 될 때, 탭을 동작시킬 필요가 있다고 최종적으로 판단할 수 있다. 이는 다음 수학시 9와 같이 나타낼 수 있다.
수학식 9
Figure PCTKR2014007099-appb-M000009
여기서, TD는 탭 절환기의 시간 지연으로, 해당 시간이 넘는 경우에만 탭 동작을 수행하도록 할 수 있다.
탭 제어부(130)는 상기 실제 전압과 상기 기준 전압의 차가 불감대를 벗어나는지에 따라 변압기의 탭을 제어한다.
보다 구체적으로, 판단부(120)가 탭을 동작시킬 것으로 판단하는지 여부에 따라 탭을 증가시키거나 감소시킴으로써 탭을 제어한다.
도 2는 본 발명의 일 실시예에 따른 탭 절환기 제어방법을 나타낸 흐름도이다.
210단계는 배전계통의 데이터를 측정하는 단계이다.
보다 구체적으로, 각 피더의 전류, 2 차측 버스 전압, 탭 상태, 또는 분산전원의 용량 중 하나 이상을 측정한다. 본 단계에 대한 상세한 설명은 도 1의 측정부(110)에 대한 상세한 설명에 대응하는바, 도 1의 측정부(110)에 대한 상세한 설명으로 대신한다.
220단계는 상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하는 단계이다.
보다 구체적으로, 미리 설정된 제 1 불감대 이외에 이중으로 제 2 불감대를 적용하여 탭을 동작시킬지를 판단하기 위한, 제 2 불감대와 기준전압을 산출한다. 상기 제 2 불감대와 기준전압은 피더 별 상황 및 특성에 따라 달라질 수 있다. 이를 위하여, 210단계에서 측정된 데이터를 이용하여 실시간 또는 주기적으로 제 2 불감대 및 기준전압을 산출한다. 상기 제 2 불감대에 대해서, 각 피더별 분산전원의 총 용량이 적용되었을 때의 전압과 상기 분산전원이 제외되었을 때의 전압의 차인 각 피더별 분산전원 전압 차를 산출하고, 상기 산출된 각 피더별 분산전원 전압 차 중 가장 큰 값의 반을 상기 제 2 불감대로 산출할 수 있다. 상기 기준 전압에 대해서, 각 피더별 피더 전류 및 계산된 피더 보상 임피던스를 이용하여 산출되는 전압 중 가장 큰 값을 상기 기준 전압으로 산출할 수 있다. 본 단계에 대한 상세한 설명은 도 1의 판단부(120)에 대한 상세한 설명에 대응하는바, 도 1의 판단부(120)에 대한 상세한 설명으로 대신한다.
230단계는 측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대와 비교하는 단계이다.
보다 구체적으로, 측정된 실제 전압과 220단계에서 산출된 기준전압의 차를 제 1 불감대와 비교하여, 제 1 불감대를 벗어났는지를 판단한다. 상기 제 1 불감대는 미리 설정되어 있을 수 있으며, 기존 단일 불감대의 불감대를 이용할 수 있다. 본 단계에 대한 상세한 설명은 도 1의 판단부(120)에 대한 상세한 설명에 대응하는바, 도 1의 판단부(120)에 대한 상세한 설명으로 대신한다.
240단계는 상기 제 1 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 1 불감대를 벗어난 경우, 상기 실제 전압과 상기 기준 전압의 차를 제 2 불감대와 비교하는 단계이다.
보다 구체적으로, 단일 불감대의 불필요한 탭 동작을 줄이기 위하여, 제 1 불감대를 벗어난 경우에, 상기 실제 전압과 상기 기준 전압의 차를 이중으로 제 2 불감대와 비교한다. 이중으로 불감대를 적용함으로써 불필요한 탭 동작을 줄일 수 있다. 본 단계에 대한 상세한 설명은 도 1의 판단부(120)에 대한 상세한 설명에 대응하는바, 도 1의 판단부(120)에 대한 상세한 설명으로 대신한다.
250단계는 상기 제 2 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 경우, 변압기의 탭을 제어하는 단계이다.
보다 구체적으로, 240단계의 비교결과, 상기 실제 전압과 상기 기준 전압의 차가 제 1 불감대 및 제 2 불감대, 즉 이중 불감대를 벗어난 경우, 변압기의 탭을 동작시킬 필요가 있는바, 그 결과에 따라 탭을 증가시키거나 감소시킬 수 있다. 본 단계에 대한 상세한 설명은 도 1의 탭 제어부(130)에 대한 상세한 설명에 대응하는바, 도 1의 탭 제어부(130)에 대한 상세한 설명으로 대신한다.
상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인지를 판단하는 단계를 더 포함할 수 있다.
보다 구체적으로, 일시적으로 이중 불감대를 벗어난 경우, 탭 동작을 방지하기 위하여, 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인지를 판단할 수 있다. 상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인 경우에만 상기 탭을 제어하도록 할 수 있다. 본 단계에 대한 상세한 설명은 도 1의 판단부(120)에 대한 상세한 설명에 대응하는바, 도 1의 판단부(120)에 대한 상세한 설명으로 대신한다.
도 3은 본 발명의 실시예에 따른 탭 절환기 제어방법을 나타낸 흐름도이고, 도 4는 본 발명의 실시예에 따른 이중 불감대 탭을 제어하는 과정을 도시한 것이다.
310단계에서 배전계통의 데이터를 측정하고, 321단계에서 이중 불감대인 제 2 불감대를 산출하고, 322단계에서 기준전압을 산출한다. 상기 산출된 결과를 이용하여, 330단계에서 실제 전압과 기준전압의 차가 제 1 불감대 내인지를 판단한다. 제 1 불감대 내인 경우, 탭을 동작시키지 않고, 제 1 불감대를 벗어나는 경우, 340단계에서 제 2 불감대 내인지 판단한다. 제 2 불감대 내인 경우, 탭을 동작시키지 않고, 제 2 불감대를 벗어나는 경우, 350단계에서 그 결과에 따라 탭을 동작시킨다. 도 4를 참조하면, 410단계(Measuring element)에서 배전계통에 연결된 피더들의 데이터들을 측정하고, 420단계(Double dead-band)에서 제 2 불감대를 산출하고, 430(Novel LDC method)단계에서 전압이 이중불감대를 벗어나는지를 판단하고, 그 결과에 따라 440단계(Tap Changing mechanism)에서 탭 절환을 수행한다.
도 5 및 6은 본 발명의 실시예에 따른 탭 절환기 제어방법과 기존 방법을 비교한 것이다.
기존의 탭 절환 방식(LDC, line drop compensation) 같은 경우에는 어느 특정 불감대(dead band)를 벗어나는 전압에 대해서 벗어나는 순간 탭이 다음의 해당 탭으로 위치가 변경되는 방식으로 구동되고 있다. 하지만 부하의 변동 또는 분산전원 변동에 의해서 전압이 변하게 되는데 전압 변동이 불감대 경계선 주변에 형성되면 불감대 경계선을 지나갈 때 마다 탭 동작이 발생하게 된다. 본 발명의 실시예에 따르면 이러한 빈번한 탭 동작을 방지하기 위해서 불감대 경계선에 또 하나의 불감대(double dead-band)를 적용하여 불감대 경계선 주변에 생기는 전압 변동에 의한 탭 절환을 억제할 수 있다.(굵은 점선-불감대 경계선, 옅은 점선-이중 불감대 경계선) 도 6(A)는 LDC 방식에 따른 탭 절환 방식으로 불감대를 벗어나는 경우, 바로 탭을 동작시키는 것에 반해, 본 발명의 실시예에 따른 탭 절환 방식은 도 6(B)에서 보이는 바와 같이, 이중 불감대를 두어, 불 필요한 탭 동작을 방지할 수 있다. 즉, 불필요한 탭 동작을 이중 불감대를 통해 오버라이딩(overriding) 함으로써 탭 동작을 최소화하면서 탭 절환기 본래의 전압 조정 역할을 보장할 수 있고, 탭 동작 최소화를 통한 탭 절환기 탭 수명 보장할 수 있다.
아래 표 1의 시스템 파라미터를 갖는 조건에서 기존 방법들과 본 발명의 실시예에 따른 탭 절환기 제어방법을 수행한 결과는 표 2와 같다.
표 1
Figure PCTKR2014007099-appb-T000001
표 2
Figure PCTKR2014007099-appb-T000002
표 2에서 보이는 바와 같이, 본 발명의 실시예에 따른 탭 절환기 제어방법(Double dead-band method)의 탭 동작 숫자가 기존 방식(LDC 및 MLDC)에 비하여 현저히 적다는 것을 알 수 있다.
도 7a는 기존 LDC 방법을 이용한 Vs 및 Vsr 값의 변화를 나타낸 그래프이고, 도 7b는 본 발명의 일 실시예에 따른 방법을 적용한 Vs 및 Vsr 값의 변화를 나타낸 그래프이다. 도 7a와 같이 기존 LDC 방법에서는 탭이 빈번하게 동작하는 것에 반해, 본 발명의 일 실시예에 따른 방법에서는 도 7b와 같이, 탭의 연속적인 동작이 억제되는 것을 확인할 수 있다.
본 발명의 실시예들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
본 발명의 일 실시예에 따른 탭 절환기 제어방법을 이용함으로써 계통 및 분산전원 변동에 의해 탭 절환기의 빈번한 동작을 이중 불감대를 적용하여 억제시키며 변압기의 수명을 보장할 수 있다.

Claims (9)

  1. 배전계통의 데이터를 측정하는 단계;
    상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하는 단계;
    측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대와 비교하는 단계;
    상기 제 1 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 1 불감대를 벗어난 경우, 상기 실제 전압과 상기 기준 전압의 차를 제 2 불감대와 비교하는 단계; 및
    상기 제 2 불감대와의 비교 결과 상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 경우, 변압기의 탭을 제어하는 단계를 포함하는 탭 절환기 제어방법.
  2. 제 1 항에 있어서,
    상기 배전계통의 데이터를 측정하는 단계는,
    각 피더의 전류, 2 차측 버스 전압, 탭 상태, 또는 분산전원의 용량 중 하나 이상을 측정하는 것을 특징으로 하는 탭 절환기 제어방법.
  3. 제 1 항에 있어서,
    상기 제 2 불감대 및 기준전압을 산출하는 단계는,
    각 피더별 분산전원이 제외되었을 때의 전압과 상기 분산전원의 총 용량이 적용되었을 때의 전압의 차인 각 피더별 분산전원 전압 차를 산출하고, 상기 산출된 각 피더별 분산전원 전압 차 중 가장 큰 값의 반을 상기 제 2 불감대로 산출하는 것을 특징으로 하는 탭 절환기 제어방법.
  4. 제 1 항에 있어서,
    상기 제 2 불감대 및 기준전압을 산출하는 단계는,
    각 피더별 피더 전류 및 피더 보상 임피던스를 이용하여 산출되는 전압 중 가장 큰 값을 상기 기준 전압으로 산출하는 것을 특징으로 하는 탭 절환기 제어방법.
  5. 제 1 항에 있어서,
    상기 실제 전압과 상기 기준 전압의 차가 상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인지를 판단하는 단계를 더 포함하고,
    상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인 경우에만 상기 탭을 제어하는 것을 특징으로 하는 탭 절환기 제어방법.
  6. 배전계통의 데이터를 측정하는 측정부;
    상기 측정된 데이터를 이용하여 제 2 불감대 및 기준전압을 산출하고, 측정된 실제 전압과 상기 기준 전압의 차를 제 1 불감대 및 상기 제 2 불감대를 이용하여 이중으로 비교함으로써 상기 실제 전압과 상기 기준 전압의 차가 불감대를 벗어나는지를 판단하는 판단부; 및
    상기 실제 전압과 상기 기준 전압의 차가 불감대를 벗어나는지에 따라 변압기의 탭을 제어하는 탭 제어부를 포함하는 탭 절환기.
  7. 제 6 항에 있어서,
    측정부는,
    각 피더의 전류, 2 차측 버스 전압, 탭 상태, 또는 분산전원의 용량 중 하나 이상을 측정하는 것을 특징으로 하는 탭 절환기.
  8. 제 6 항에 있어서,
    상기 판단부는,
    각 피더별 분산전원이 제외되었을 때의 전압과 상기 분산전원의 총 용량이 적용되었을 때의 전압의 차인 각 피더별 분산전원 전압 차를 산출하고, 상기 산출된 각 피더별 분산전원 전압 차 중 가장 큰 값의 반을 상기 제 2 불감대로 산출하며,
    각 피더별 피더 전류 및 피더 보상 임피던스를 이용하여 산출되는 전압 중 가장 큰 값을 상기 기준 전압으로 산출하는 것을 특징으로 하는 탭 절환기.
  9. 제 6 항에 있어서,
    상기 판단부는,
    상기 제 2 불감대를 벗어난 시간이 기준 시간 이상인 경우에만 상기 탭을 제어하는 것을 특징으로 하는 탭 절환기.
PCT/KR2014/007099 2013-10-25 2014-08-01 변압기용 이중 불감대 탭 절환기 및 제어방법 WO2015060520A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/030,824 US10176938B2 (en) 2013-10-25 2014-08-01 Double dead band tab switch for transformer and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130127763A KR101505472B1 (ko) 2013-10-25 2013-10-25 변압기용 이중 불감대 탭 절환기 및 제어방법
KR10-2013-0127763 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015060520A1 true WO2015060520A1 (ko) 2015-04-30

Family

ID=52993085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007099 WO2015060520A1 (ko) 2013-10-25 2014-08-01 변압기용 이중 불감대 탭 절환기 및 제어방법

Country Status (3)

Country Link
US (1) US10176938B2 (ko)
KR (1) KR101505472B1 (ko)
WO (1) WO2015060520A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297114A1 (en) * 2016-09-19 2018-03-21 General Electric Company System and method for regulation of voltage on an electric power system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1106471B1 (pt) * 2011-10-17 2020-12-22 Companhia Hidro Elétrica Do São Francisco - Chesf método de regulação de tensão e paralelismo entre diferentes modelos de fontes de tensão e/ou vãos energizados de alta tensão
KR101904102B1 (ko) 2017-06-28 2018-10-04 효성중공업 주식회사 정지형 동기 보상기(statcom)의 하이브리드 제어장치
JP7245067B2 (ja) * 2019-02-12 2023-03-23 株式会社日立製作所 整定値候補算出装置、配電系統の電圧調整装置、電圧調整システム、電圧調整方法および配電設備設計支援システム
CN113470995B (zh) * 2021-08-04 2023-07-21 国网经济技术研究院有限公司 适用特高压直流工程减少分接开关频繁动作的方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006674A (ja) * 2005-06-27 2007-01-11 Chugoku Electric Power Co Inc:The 配電設備制御システム
JP3992212B2 (ja) * 1999-04-06 2007-10-17 東京電力株式会社 配電用自動電圧調整器の電力逆潮流原因判定方法及び装置、並びに電力逆潮流時配電用自動電圧調整器制御方法
JP2011055599A (ja) * 2009-08-31 2011-03-17 Chugoku Electric Power Co Inc:The 自動電圧調整器
JP2011229267A (ja) * 2010-04-19 2011-11-10 Kyushu Electric Power Co Inc 配電系統の電圧制御装置およびプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853072B2 (ja) 1998-06-16 2006-12-06 東京電力株式会社 電力系統の電圧制御方式
JP4002190B2 (ja) 2003-01-17 2007-10-31 北陸電力株式会社 自動電圧調整装置
US7432697B2 (en) 2006-02-21 2008-10-07 Abb Technology Ltd. Universal input device for a tap changer
EP1923765A1 (en) * 2006-11-17 2008-05-21 ABB Research Ltd Voltage control for electric power systems
KR100980854B1 (ko) * 2009-09-30 2010-09-10 한국전력공사 정지형 보상기 및 이의 제어 방법
US8761954B2 (en) * 2011-07-26 2014-06-24 General Electric Company Devices and methods for decentralized coordinated volt/VAR control
JP6071310B2 (ja) * 2012-08-01 2017-02-01 株式会社日立製作所 配電系統の電圧調整装置、電圧調整方法および電力制御システム
AU2015298737B2 (en) * 2014-08-05 2021-05-27 Eaton Intelligent Power Limited Voltage regulator for a power distribution system and method of controlling same
US10235340B2 (en) * 2014-09-22 2019-03-19 Tsinghua University Method and apparatus for controlling reactive power of generator in power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992212B2 (ja) * 1999-04-06 2007-10-17 東京電力株式会社 配電用自動電圧調整器の電力逆潮流原因判定方法及び装置、並びに電力逆潮流時配電用自動電圧調整器制御方法
JP2007006674A (ja) * 2005-06-27 2007-01-11 Chugoku Electric Power Co Inc:The 配電設備制御システム
JP2011055599A (ja) * 2009-08-31 2011-03-17 Chugoku Electric Power Co Inc:The 自動電圧調整器
JP2011229267A (ja) * 2010-04-19 2011-11-10 Kyushu Electric Power Co Inc 配電系統の電圧制御装置およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297114A1 (en) * 2016-09-19 2018-03-21 General Electric Company System and method for regulation of voltage on an electric power system
US10048709B2 (en) 2016-09-19 2018-08-14 General Electric Company System and method for regulation of voltage on an electric power system

Also Published As

Publication number Publication date
KR101505472B1 (ko) 2015-03-30
US20160254106A1 (en) 2016-09-01
US10176938B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2015060520A1 (ko) 변압기용 이중 불감대 탭 절환기 및 제어방법
WO2015002372A1 (en) Power supply device, micro server having the same, and power supply method
WO2018124523A2 (ko) Mmc 컨버터의 서브모듈 제어기용 전원장치
WO2017018584A1 (ko) 마이크로그리드의 멀티 주파수 제어 시스템 및 방법
WO2018070779A1 (ko) 자기유도 전원 공급 장치
WO2020138832A1 (ko) 와이어 텐션 제어 장치 및 방법
WO2014196756A1 (ko) 스위치 전류의 조절을 이용한 고효율 포락선 증폭기를 위한 장치 및 방법
WO2014046466A1 (ko) Ems 및 dms의 협조제어 장치 및 방법
WO2014073811A1 (en) Electronic apparatus, power supply apparatus, and power supply method
WO2024096272A1 (ko) 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법
WO2021049787A1 (en) Electronic apparatus and control method thereof
EP3132326B1 (en) Serial bus voltage compensation
WO2017160098A1 (ko) 스위칭 전원의 1차측에 위치하는 정류 다이오드에서 생성되는 잡음을 낮추는 방법과 장치
WO2019146878A1 (ko) 전동기 모의 장치
WO2012165890A9 (ko) 전력저장용 단위 랙의 연결을 위한 전압 평준화 장치 및 이를 포함하는 전력저장 시스템
WO2012096442A1 (ko) 노이즈 보상을 위한 전압 가변형 디지털 오디오 증폭 장치 및 그 방법
SE455358B (sv) Forfarande for utreglering av langvariga spenningsendringar vid en overforingsanleggning for hogspend likstrom
WO2018074861A1 (ko) 자기유도 전원 공급 장치
WO2013047932A1 (ko) 배전계통에서의 전압 조정 장치 및 그 방법
WO2020153609A1 (ko) 인덕턴스 가변 장치 및 이의 제어방법
WO2012033295A2 (ko) 전력손실 및 발열을 최소화하기 위한 엘이디 전원공급장치 및 엘이디 전원공급방법
WO2018079918A1 (ko) 배터리 셀 밸런싱 장치
WO2016099161A1 (ko) 레독스 플로우 전지의 펌프 속도 제어 방법 및 장치
WO2018016707A1 (ko) 전기자동차 절연안정성 평가 장치
WO2018038398A1 (ko) 펄스 전원 보상 장치 및 이를 포함하는 고전압 펄스 전원 시스템.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030824

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856451

Country of ref document: EP

Kind code of ref document: A1