WO2014046466A1 - Ems 및 dms의 협조제어 장치 및 방법 - Google Patents

Ems 및 dms의 협조제어 장치 및 방법 Download PDF

Info

Publication number
WO2014046466A1
WO2014046466A1 PCT/KR2013/008416 KR2013008416W WO2014046466A1 WO 2014046466 A1 WO2014046466 A1 WO 2014046466A1 KR 2013008416 W KR2013008416 W KR 2013008416W WO 2014046466 A1 WO2014046466 A1 WO 2014046466A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactive power
dms
ems
cooperative control
power supply
Prior art date
Application number
PCT/KR2013/008416
Other languages
English (en)
French (fr)
Inventor
신정훈
이재걸
백승묵
한상욱
송지영
김태균
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to US14/426,655 priority Critical patent/US9871377B2/en
Priority to CN201380048414.5A priority patent/CN104769801B/zh
Publication of WO2014046466A1 publication Critical patent/WO2014046466A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to an apparatus and method for cooperative control of smart EMS and DMS.
  • the present invention relates to an EMS and DMS cooperative control apparatus and method for cooperatively controlling EMS and DMS to maintain the voltage quality of a system.
  • an individual voltage compensator eg, a capacitor, a reactor, a flexible AC transmission system (FACTS), etc.
  • FACTS flexible AC transmission system
  • the operation method using the voltage compensator is effective in maintaining the voltage of each substation, it is inefficiently operated because it does not consider the reactive power sources installed nearby to maintain the voltage quality of the entire system.
  • VMS voltage management system
  • VMS divides the entire power system into several electrically controlled voltage control zones for voltage quality control through voltage control.
  • VMS selects representative substations for each voltage controlled area.
  • the VMS coordinates and controls reactive power sources (eg generators, capacitors, reactors, FACTS, etc.) installed in the local system to maintain a constant voltage (eg 1.0 pu) at selected representative substations. .
  • VMS is to control the voltage of transmission substation (154kV or more) and is installed in the central energy management system (EMS), or it is configured and operated as a separate device.
  • EMS central energy management system
  • the distribution system below 22.9kV is treated as a load and is not included in the operation target, but is made through an automatic voltage regulator (AVR) of the transformer.
  • AVR automatic voltage regulator
  • the AVR operates independently of the EMS and maintains the secondary voltage of the 154kV / 22.9kV transformer within a certain range.
  • DMS distribution management system
  • the current grid 10 is associated with a plurality of loads 20 and a plurality of generators 30 (eg, distributed power supplies, etc.). That is, the power grid 10 is further connected to distributed power sources such as wind, solar, tidal, energy storage device, fuel cell.
  • distributed power sources such as wind, solar, tidal, energy storage device, fuel cell.
  • the EMS 40 (or VMS) and the DMS 50 are installed and operated for the entire operation of the power system including maintaining the voltage quality of the power grid. That is, EMS or VMS is connected to the transmission system to maintain the voltage quality of the transmission system, and DMS is connected to the distribution system to maintain the voltage quality of the distribution system.
  • the transmission system maintains the voltage quality of the transmission system using the voltage control through the individual voltage compensator installed in the transmission class substation in the EMS.
  • the voltage control method using the VMS may be used instead of the voltage control method using the voltage compensator.
  • the voltage control of the power transmission system by EMS (or VMS) and the voltage control of the power distribution system by DMS are performed independently, but the power transmission system and the power distribution system are interconnected through a 154kV / 22.9kV transformer.
  • the energy resources connected to can be fully utilized in the transmission system.
  • the voltage of the power transmission system is appropriately controlled through EMS (or VMS) in order to ensure the maximum reserve of pure reactive power in the system in order to prevent widespread power outage due to voltage instability in case of an accident.
  • EMS or VMS
  • DMS linked to the distribution system is responsible for the operation of the complex distribution system, including the control of the voltage of the distribution system. That is, the DMS cooperatively controls various distributed power supplies and various voltage compensation devices connected to the distribution system to maintain the voltage of the distribution system within a certain voltage range.
  • Korean Patent Laid-Open Publication No. 10-2010-0047726 (name: Optimal grid voltage control method through reactive power source cooperative control) refers to a technique for performing cooperative control of a reactive power source using a change amount of reactive power.
  • Korean Patent No. 10-1039425 (name: voltage control system and voltage control method of the power system) refers to a technique for performing cooperative control of the reactive power source by using the reactive power margin of the reactive power source.
  • the present invention has been proposed in view of the above-described circumstances, and the power transmission system provides a reserve power insufficient in reactive power sources of the distribution system based on the reactive power reserve power detected by the power transmission system and the required reactive power reserve power calculated by the EMS.
  • An object of the present invention is to provide a cooperative control apparatus and method for EMS and DMS.
  • a cooperative control apparatus for an EMS and a DMS includes an input unit for receiving EMS information from an EMS and receiving DMS information from a DMS; An operation unit for calculating an AQI index based on the target system information and the bird calculation data included in the input EMS information; Based on the calculated AQI index and the amount of reactive power reserve (Qreq) included in the input EMS information, it is determined whether the DMS switches to reactive power cooperative control, and the amount of reactive power reserve (Qreq) included in the EMS information is determined. And a determination unit to determine the amount of reactive power supply available based on the reactive power supply range included in the DMS information.
  • the cooperative control mode switch control signal is transmitted to switch the DMS to the reactive power cooperative control mode, and the DMS is controlled to supply reactive power corresponding to the determined reactive power supply amount to a higher layer. It includes a control unit.
  • the input unit receives EMS information including target system information, local representative voltage reference value (Vref), current calculation data, and local reactive power reserve (Qreq) from the EMS, and the reactive power control reference value (Qref), invalid from the DMS.
  • the arithmetic unit Based on the target system information included in the EMS information, the arithmetic unit shortens the target regional system into one equivalent busbar, connects a virtual generator to the equivalent busbar, and changes the reactive power output in the set range while performing bird flow calculation in each case. To perform.
  • the calculation unit detects the vertex of the curve in the XY graph generated using the reduced voltage value Va of the target busbar and the reactive power amount Qc of the virtual generator, and calculates the y coordinate size of the detected vertex AQI. Calculate with exponent
  • the determination unit determines that the reactive power cooperative control is switched.
  • the determination unit judges the local reactive power reserve Qreq as the reactive power supply available, and the local reactive power reserve Qreq is invalid. If the power supply range is exceeded, the maximum value of the reactive power supply range is determined as the amount of reactive power supply.
  • a cooperative control method for EMS and DMS comprising: receiving EMS information and DMS information by an input unit; Calculating, by the operation unit, the AQI index based on the target system information and the bird calculation data included in the input EMS information; Determining, by the determination unit, whether the DMS switches the reactive power cooperative control based on the calculated AQI index and the amount of reactive power reserve Qreq in the region included in the input EMS information; Transmitting, by the controller, the cooperative control mode switching control signal to switch the DMS to the reactive power cooperative control mode when it is determined in the determining step that the reactive power cooperative control switching of the DMS is performed; Determining, by the determining unit, the amount of reactive power supply available based on the amount of reactive power reserve Qreq in the region of the input EMS information and the range of available reactive power supply of the input DMS information; And controlling, by the controller, the DMS to supply reactive power corresponding to the determined reactive power supply available
  • the receiving step may include receiving, by the input unit, EMS information including target system information, region representative voltage reference value (Vref), current calculation data, and required reactive power reserve amount (Qreq) in the region; And receiving, by the input unit, DMS information including a reactive power control reference value (Qref) and a reactive power supply range available from the DMS.
  • EMS information including target system information, region representative voltage reference value (Vref), current calculation data, and required reactive power reserve amount (Qreq) in the region
  • DMS information including a reactive power control reference value (Qref) and a reactive power supply range available from the DMS.
  • the calculating of the AQI index may include, by the calculating unit, shortening the target area system into one equivalent bus based on the target system information included in the EMS information; Connecting the virtual generator to the equivalent bus line by the operation unit to perform tidal current calculation in each case while changing the reactive power output within a setting range; Generating, by the operation unit, an XY graph generated by using the reduced voltage value Va of the target bus bar and the reactive power amount Qc of the virtual generator among the tide calculation results; Detecting a vertex of a curve in the generated XY graph by the calculation unit; And calculating, by the calculating unit, the y coordinate size of the detected vertex as an AQI index.
  • the determination unit determines that the reactive power cooperative control switching is performed if the calculated AQI index is less than the reactive power control reference value Qref.
  • the determination unit determines that the amount of reactive power reserve Qreq in the region is available for reactive power supply if the amount of reactive power reserve Qreq in the region is within the range of available reactive power supply. However, if the required reactive power reserve (Qreq) in the region exceeds the reactive power supply range, the maximum value of the reactive power supply range is determined as the reactive power supply amount.
  • the cooperative control apparatus and method of the EMS and DMS provides a reserve power insufficient in the reactive power sources of the distribution system on the basis of the reactive power reserve force detected in the transmission system and the reactive power reserve force calculated by the EMS.
  • the system voltage quality can be efficiently maintained, and the effective system voltage quality can be maintained even when the reactive power source is increased.
  • 1 to 4 are diagrams for explaining a conventional cooperative control method.
  • FIG. 5 is a block diagram illustrating an apparatus for cooperative control of an EMS and a DMS according to an embodiment of the present invention.
  • FIG. 6 is a diagram for describing an input unit of FIG. 5.
  • FIG. 6 is a diagram for describing an input unit of FIG. 5.
  • FIG. 7 and 8 are views for explaining the calculation unit of FIG.
  • FIG. 9 is a flowchart illustrating a cooperative control method of an EMS and a DMS according to an embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining an AQI index calculation step of FIG. 9.
  • FIG. 11 is a flowchart for explaining a step of supplying a reactive power supply capable amount of FIG. 9 to a higher system
  • FIG. 5 is a block diagram illustrating an apparatus for cooperative control of an EMS and a DMS according to an embodiment of the present invention.
  • 6 is a diagram for describing an input unit of FIG. 5
  • FIGS. 7 and 8 are diagrams for explaining an operation unit of FIG. 5.
  • the cooperative control apparatus 100 of the EMS and the DMS includes an input unit 110, an operation unit 130, a determination unit 150, a control unit 170, and a delivery unit 190.
  • the cooperative control device 100 of the EMS and DMS is installed in the central control center and each regional power supply center, and can transmit and receive data (eg, EMS information, DMS information, etc.) with the EMS 200 and the DMS 300. It is connected through a communication line.
  • the input unit 110 receives EMS information for cooperative control of the EMS 200 and the DMS 300. That is, as shown in FIG. 6, the input unit 110 calculates the target system information from the EMS 200, a local representative voltage reference value Vref calculated through the optimization function of the EMS 200, and a tidal current calculation for AQI index calculation. Data is received from the EMS, including the reactive power reserve (Qreq) in the region. In this case, the input unit 110 may receive EMS information including a voltage allowable range and a representative voltage value measured value V P from the EMS 200.
  • the input unit 110 receives DMS information for cooperative control of the EMS 200 and the DMS 300. That is, as shown in FIG. 6, the input unit 110 receives the DMS information including the reactive power control reference value Qref and the reactive power supply range from the DMS 300. In this case, the input unit 110 may receive the DMS information further including the transformer AVR control signal and the reactive power output measurement value Q D from the DMS 300.
  • the calculator 130 calculates the AQI index based on the target system information and the bird calculation data input through the input unit 110. That is, as shown in FIG. 7, the operation unit 130 shortens the target area system into one equivalent bus (for example, the equivalent power source 410 and the equivalent load 420) based on the target system information.
  • the calculating unit 130 designates a boundary line with a neighboring local system.
  • the calculating unit 130 connects a virtual generator 430 (or a virtual synchronization controller) to the bus line to adjust the reactive power output to a range of 0 to 500 MVAR.
  • the calculation unit 130 performs algal calculation in each case. As shown in FIG.
  • the calculating unit 130 displays the voltage value Va of the abbreviated target bus bar and the reactive power amount Qc of the virtual generator 430 on the XY graph.
  • the calculating unit 130 calculates the calculated y coordinate size (absolute value) as an AQI index.
  • the determination unit 150 cooperates with the reactive power of the DMS 300 (or the QMS 320) based on the AQI value calculated by the operation unit 130 and the required amount of reactive power reserve Qreq in the region input from the input unit 110. Determine whether to switch control. At this time, the determination unit 150 determines that the reactive power cooperative control switching of the DMS 300 (or the QMS 320) when the AQI is less than the reactive power control reference value Qref.
  • the determination unit 150 determines the available amount of reactive power supply of the distribution system based on the required amount of reactive power reserve Qreq in the region from the input unit 110 and the available range of reactive power supply. That is, the determination unit 150 determines the amount of reactive power supply that can provide reactive power required by the upper system in the distribution system by comparing the reactive power reserve Qreq in the region with the available range of reactive power supply. At this time, the determination unit 150 determines that the reactive power reserve power Qreq in the region as the reactive power supply available amount if the reactive power reserve power Qreq in the region is within the available range of reactive power supply. The determination unit 150 determines the maximum value of the reactive power supply allowable range (ie, Qref-max) as the reactive power supply allowable amount when the required reactive power reserve Qreq in the region exceeds the reactive power supply allowable range.
  • the maximum value of the reactive power supply allowable range ie, Qref-max
  • the control unit 170 generates a cooperative control mode switching control signal when the determination unit 150 determines that the reactive power cooperative control switching of the DMS 300 is performed.
  • the control unit 170 transmits the cooperative control mode switching control signal that is generated. 190).
  • the control unit 170 transmits the control signal for controlling to block the upper transformer AVR as the cooperative control mode switching control signal to the transmitter 190. In this way, the controller 170 switches the DMS 300 (or the QMS 320) to the reactive power cooperative control mode.
  • the controller 170 updates the reactive power supply available amount determined by the determination unit 150 to the reactive power control reference value Qref.
  • the controller 170 transmits the updated reactive power control reference value Qref to the transmitter 190.
  • the controller 170 controls the DMS 300 (or the QMS 320) to supply reactive power corresponding to the reactive power control reference value Qref to an upper system (ie, a power transmission system).
  • the controller 170 When the transmission of the updated reactive power control reference value Qref is completed, the controller 170 generates a recalculation request signal for the local representative voltage reference value Vref. The controller 170 transmits the generated recalculation request signal to the transmitter 190. The transmitter 190 transmits the recalculation request signal to the EMS 200.
  • the EMS 200 receives the updated reactive power control reference value Qref from the DMS 300 to recalculate the local representative voltage reference value Vref using the optimization function.
  • the EMS 200 calculates a difference value? Q between the existing reactive power control reference value Qref_old and the updated reactive power control reference value Qref as shown in Equation 1 below.
  • the EMS 200 updates the system reactive power reserve Qmax by summing the difference values ⁇ Q, as shown in Equation 2 below.
  • the EMS 200 updates the existing reactive power control reference value Qref_old to the updated reactive power control reference value Qref to calculate the next region representative voltage reference value Vref.
  • the EMS 200 calculates a value Q of an objective function (that is, Equation 4 below) while changing the representative bus voltage value Vp for each region.
  • the EMS 200 calculates the regional representative bus voltage value Vp at which the value Q of the calculated objective sum is maximum, as the regional representative voltage reference value Vref.
  • the transmitter 190 transmits the cooperative control mode switch control signal received from the controller 170 to the DMS 300 (or the QMS 320). At this time, the transmitter 190 transmits a cooperative control mode switching control signal to the DMS 300 (or the QMS 320) to control the control signal to block the upper transformer AVR. Accordingly, the DMS 300 (or QMS 320) that receives the cooperative control mode switch control signal blocks the operation of the transformer AVR and switches to the cooperative control mode.
  • the transmitter 190 transmits the reactive power control reference value Qref received from the controller 170 to the DMS 300 (or QMS 320). Accordingly, the DMS 300 (or the QMS 320) cooperatively controls reactive power sources in the distribution system and transmits reactive power corresponding to the reactive power control reference value Qref received from the transmitter 190 to the transmission system. Supply.
  • the transmitter 190 transmits the recalculation request signal received from the controller 170 to the EMS 200. Accordingly, the EMS 200 receiving the recalculation request signal recalculates an optimization function for determining the local representative voltage reference value Vref to update the local representative voltage reference value Vref.
  • FIG. 9 is a flowchart illustrating a cooperative control method of an EMS and a DMS according to an embodiment of the present invention.
  • FIG. 10 is a flowchart for describing an AQI index calculation step of FIG. 9, and
  • FIG. 11 is a flowchart for explaining a step of supplying a reactive power supply capable amount of FIG. 9 to a higher system.
  • the cooperative control apparatus 100 receives EMS information from the EMS 200.
  • the cooperative control apparatus 100 receives DMS information from the DMS 300 (S100). That is, the input unit 110 is the target system information from the EMS 200, the regional representative voltage reference value (Vref) calculated through the optimization function of the EMS 200, the tidal current calculation data for the AQI index calculation, the amount of reactive power reserve in the region required Receive EMS information including (Qreq).
  • the input unit 110 receives the DMS information including the reactive power control reference value Qref and the reactive power supply range available from the DMS 300.
  • the cooperative control apparatus 100 calculates an AQI index based on the input EMS information and the DMS information (S200). That is, the calculator 130 calculates the AQI index based on the target system information and the bird calculation data included in the EMS information. This will be described in more detail with reference to FIG. 10.
  • the calculating unit 130 shortens the target area system into one equivalent bus line based on the target system information (S210), and designates a boundary line with a neighboring area system (S220).
  • the calculating unit 130 connects a virtual generator 430 (or a virtual synchronization controller) to the bus line to adjust the reactive power output to a range of 0 to 500 MVAR.
  • the calculating unit 130 performs a tidal current calculation in each case according to the adjustment of the reactive power output (S230).
  • the calculation unit 130 generates an XY graph of the voltage value Va of the abbreviated target busbar and the reactive power amount Qc of the virtual generator 430 among the tide calculation results (S240).
  • the cooperative control apparatus 100 determines whether to switch the reactive power cooperative control of the EMS 200 based on the calculated AQI value and the EMS information (S300). That is, the determination unit 150 determines whether to switch the reactive power cooperative control of the DMS 300 (or the QMS 320) based on the AQI value and the local reactive power reserve power requirement Qreq. At this time, the determination unit 150 determines that the reactive power cooperative control switching of the DMS 300 (or the QMS 320) when the AQI is less than the reactive power control reference value Qref.
  • the cooperative control device 100 controls to switch the DMS 300 to the reactive power cooperative control mode (S400). That is, the control unit 170 generates a cooperative control mode switch control signal when the determination unit 150 determines that the reactive power cooperative control switching of the DMS 300 is performed.
  • the controller 170 transmits the generated cooperative control mode switch control signal to the transmitter 190.
  • the transmitter 190 transmits the cooperative control mode switch control signal received from the controller 170 to the DMS 300 (or the QMS 320). At this time, the transmitter 190 transmits a cooperative control mode switching control signal to the DMS 300 (or the QMS 320) to control the control signal to block the upper transformer AVR. Accordingly, the DMS 300 (or QMS 320) that receives the cooperative control mode switch control signal blocks the operation of the transformer AVR and switches to the cooperative control mode.
  • the cooperative control apparatus 100 controls to supply an available amount of reactive power of the distribution system to an upper system (for example, a power transmission system) (S500). This will be described in more detail with reference to FIG. 11.
  • an upper system for example, a power transmission system
  • the determination unit 150 compares the reactive power reserve Qreq in the region with the reactive power supply possible range. At this time, the determination unit 150 determines whether the reactive power reserve power requirement Qreq in the region exists within the available range of reactive power supply. If the determination unit 150 determines that the local reactive power reserve power Qreq exists within the reactive power supply available range (S510; YES), the controller 170 determines the local reactive power reserve power Qreq in the reactive power. The supply amount is set (S520).
  • the controller 170 sets the maximum value of the reactive power supply range to the reactive power supply amount (S530).
  • the controller 170 updates the set reactive power supply available amount to the reactive power control reference value Qref (S540).
  • the controller 170 transmits the updated reactive power control reference value Qref to the transmitter 190.
  • the transmitter 190 transmits the reactive power control reference value Qref received from the controller 170 to the DMS 300 (or QMS 320) (S550).
  • the DMS 300 (or the QMS 320) cooperatively controls reactive power sources in the distribution system and transmits reactive power corresponding to the reactive power control reference value Qref received from the transmitter 190 to the transmission system. Supply.
  • the cooperative control apparatus 100 requests a recalculation request signal for the local representative voltage reference value Vref to the EMS 200 (S600), that is, the controller 170 updates the updated reactive power control reference value Qref. ),
  • the controller 170 transmits the generated recalculation request signal to the transmitter 190.
  • the transmitter 190 transmits the recalculation request signal received from the controller 170 to the EMS 200.
  • the EMS 200 receiving the recalculation request signal recalculates an optimization function for determining the local representative voltage reference value Vref to update the local representative voltage reference value Vref.
  • the cooperative control apparatus and method of the EMS and DMS provide the reserve power insufficient in the reactive power sources of the distribution system based on the reactive power reserve power detected by the power transmission system and the reactive power reserve power calculated by the EMS.
  • the system voltage quality can be efficiently maintained, and the effective system voltage quality can be maintained even when the reactive power source is increased.
  • the advertisement service providing method including the cooperative control apparatus and method of EMS and DMS according to the present invention may be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the media may include, alone or in combination with the program instructions, data files, data structures, etc.
  • the program instructions recorded on the media may be those specially designed and constructed for the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, floppy disks, and the like. Such as magneto-optical media, ROM, RAM, flash memory, etc.
  • All types of hardware devices are specifically configured to store and execute the same program instructions.
  • Examples of program instructions include not only machine code, such as that produced by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like. It may include.
  • Such hardware devices may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
  • the teachings of the present principles can be implemented as a combination of hardware and software.
  • the software may be implemented as an application program that is actually implemented on the program storage unit.
  • the application can be uploaded to and executed by a machine that includes any suitable architecture.
  • the machine may be implemented on a computer platform having hardware such as one or more central processing units (CPU), computer processor, random access memory (RAM), and input / output (I / O) interfaces.
  • the computer platform may include an operating system and micro instruction code.
  • the various processes and functions described herein may be part of micro instruction code or part of an application program, or any combination thereof, and they may be executed by various processing apparatus including a CPU.
  • various other peripheral devices such as additional data storage and printers may be connected to the computer platform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

송전계통에서 감지한 무효전력 예비력과 EMS에서 산정한 무효전력 예비력 필요량을 근거로 배전계통의 무효전력원들에서 부족한 예비력을 송전계통에서 제공하도록 한 EMS 및 DMS의 협조제어 장치 및 방법이 제시된다. 제시된 EMS 및 DMS의 협조제어 장치는 대상계통정보 및 조류계산 데이터를 근거로 AQI 지수를 연산하는 연산부; 연산한 AQI 지수 및 지역내 무효전력 예비력 필요량(Qreq)을 근거로 DMS의 무효전력 협조제어 전환 여부를 판단하고, 지역내 무효전력 예비력 필요량(Qreq) 및 무효전력공급 가능범위를 근거로 무효전력 공급 가능량을 판단하는 판단부; 및 DMS의 무효전력 협조제어 전환으로 판단하면 협조제어 모드 전환 제어신호를 전송하여 DMS를 무효전력 협조제어 모드로 전환시키고, 판단한 무효전력 공급 가능량에 해당하는 무효전력을 상위계층으로 공급하도록 DMS를 제어하는 제어부를 포함한다.

Description

EMS 및 DMS의 협조제어 장치 및 방법
본 발명은 스마트 EMS 및 DMS의 협조제어 장치 및 방법(APPARATUS AND METHOD FOR COOPERATION CONTROL OF ENERGY MANAGEMENT SYSTEM AND DISTRIBUTION MANAGEMENT SYSTEM)에 관한 것으로, 더욱 상세하게는 분산전원이 설치된 배전계통의 무효전력을 이용하여 송전계통의 전압품질을 유지하기 위해 EMS와 DMS를 협조제어하는 EMS 및 DMS의 협조제어 장치 및 방법에 대한 것이다.
전력계통에서의 전압은 주파수와는 달리 국지적인 문제로 간주된다. 이에 변전소의 전압만을 일정범위로 유지하기 위해 각 변전소에 개별적인 전압보상기기(예를 들면, 커패시터, 리액터, 유연전송시스템(FACTS; Flexible AC Transmission System) 등)를 설치하여 운영하고 있다.
전압보상기기를 이용한 운영 방식은 변전소별 전압 유지에 있어서는 효과적이지만, 계통 전체의 전압품질 유지를 위하여 인근에 설치되어 있는 무효전력원들을 고려하지 않고 있기 때문에 비효율적으로 운영되고 있는 실정이다.
또한, 최근에는 IT 기술과 고속 컴퓨팅 기술의 비약적인 발전으로 전압관리시스템(Voltage Management System, 이하 VMS)을 통해 계통 전체의 전압품질을 관리하는 기술들이 개발되고 있다. 예를 들면, VMS는 전압제어를 통한 전압품질 관리를 위해 전체 전력계통을 전기적으로 분리된 여러 개의 전압제어 지역으로 구분한다. VMS는 각 전압제어지역의 대표 변전소를 선정한다. VMS는 선정된 대표 변전소의 전압을 일정하게 유지(예를 들면, 1.0 p.u.)하게 하기 위해 지역계통 내에 설치되어 있는 무효전력원(예를 들면, 발전기, 커패시터, 리액터, FACTS 등)들을 협조제어한다.
VMS는 송전급 변전소(154kV 이상)의 전압을 제어하는 것으로 중앙의 에너지 관리시스템(Energy Management System, 이하 EMS)에 탑재되거나, 별도의 장치로 구성되어 운영된다. EMS에서는 22.9kV 이하의 배전계통을 부하로 처리하여 운영대상에 포함하지 않고 변압기의 자동 탭 조정장치(Automatic Voltage Regulator, AVR)를 통하여 이루어진다. 이때, AVR은 EMS와는 상관없이 개별적으로 동작하여, 154kV/22.9kV 변압기 2차측 전압을 일정범위 내로 유지한다.
배전계통은 다양한 분산전원이나 마이크로그리드(MG) 등이 확대, 보급되고 루프운전이 가능해지고 있다. 그에 따라, 송전계통의 EMS처럼 복잡해진 배전계통을 관리할 배전계통 관리시스템(Distribution Management System, 이하 DMS)이 개발되고 있다.
도 1에 도시된 바와 같이, 현재의 전력망(10)은 복수의 부하(20)들과 복수의 발전기(30; 예를 들면, 분산전원 등)들과 연계되고 있다. 즉, 전력망(10)은 풍력, 태양광, 조력, 에너지저장장치, 연료전지 등의 분산전원들이 추가로 연계되고 있다.
한편, 도 2에 도시된 바와 같이, 전력망에는 전력망의 전압품질 유지를 포함한 전력계통의 전체 운영을 위해 EMS(40; 또는 VMS) 및 DMS(50)가 설치되어 운영된다. 즉, 송전계통에는 EMS 또는 VMS가 연계되어 송전계통의 전압품질을 유지하고, 배전계통에는 DMS가 연계되어 배전계통의 전압품질을 유지한다.
이때, 도 3에 도시된 바와 같이, 송전계통에서는 EMS에서 송전급 변전소에 설치되어 있는 개별 전압보상기기를 통한 전압 제어를 이용해 송전계통의 전압품질을 유지한다. 물론, 도 4에 도시된 바와 같이, 전압보상기기를 이용한 전압제어 방식 대신 VMS를 이용한 전압제어 방식을 사용할 수도 있다.
EMS(또는, VMS)에 의한 송전계통의 전압 제어나 DMS에 의한 배전계통의 전압 제어는 각각 독립적으로 수행되지만, 송전계통과 배전계통은 154kV/22.9kV 변압기를 통해 상호 연결되어 있으므로 필요시 배전계통에 접속되어 있는 에너지 자원들을 송전계통에서 충분히 활용할 수 있다.
송전계통의 전압은 EMS(또는, VMS)를 통하여 사고시 전압 불안정에 의한 광역정전을 예방하기 위해 계통 내의 순동 무효전력 예비력을 최대한 확보함을 목적으로 적절히 제어된다.
특히, 전력계통이 사고 없이 정상상태에 있을 때(즉, 계통 내 무효전력 예비력이 충분히 있을 때)에는 상호 협조제어 없이 각각의 기능을 유지하는 것으로 EMS나 DMS의 역할을 잘 수행한다고 할 수 있지만, 전압 불안정을 야기시키는 사고시(즉, 무효전력 예비력이 불충분할 때)에는 EMS와 DMS의 상호 협조제어를 통해 계통의 자원을 효율적으로 활용하여 무효전력을 보상할 수 없는 문제점이 있다.
한편, 배전계통에 연계된 DMS는 배전계통의 전압의 제어를 포함한 복잡해진 배전계통의 운영을 담당한다. 즉, DMS는 배전계통에 연계된 다양한 분산전원과 각종 전압보상장치들을 협조제어하여 배전계통의 전압을 일정전압 범위 내로 유지한다.
최근에는 배전계통에 연계되는 다양한 분산전원들, 무효전력보상장치들이 증가함에 따라 추가되는 자원들(예를 들면, 분산전원, 무효전력보상장치들)을 효율적으로 활용하기 위한 협조제어 조정장치가 필요하다. 일례로, 한국공개특허 제10-2010-0047726호(명칭: 무효전력원 협조제어를 통한 최적 계통전압제어 방법)에서는 무효전력의 변화량을 이용하여 무효전력원의 협조제어를 수행하는 기술을 언급하고 있으며, 한국등록특허 제10-1039425호(명칭: 전력 계통의 전압 제어 시스템 및 전압 제어 방법)에서는 무효전력원의 무효전력 여유량을 이용하여 무효전력원의 협조제어를 수행하는 기술을 언급하고 있다.
하지만, 종래에는 송전계통과 배전계통은 각 계통에서의 무효전력원만을 고려하여 협조제어를 수행하기 때문에 전력계통 전체의 전압품질을 효율적으로 유지할 수 없고, 무효전력원의 증가에 대응이 어려운 문제점이 있다.
본 발명은 상기한 사정을 감안하여 제안된 것으로, 송전계통에서 감지한 무효전력 예비력과 EMS에서 산정한 무효전력 예비력 필요량을 근거로 배전계통의 무효전력원들에서 부족한 예비력을 송전계통에서 제공하도록 한 EMS 및 DMS의 협조제어 장치 및 방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 EMS 및 DMS의 협조제어 장치는, EMS로부터 EMS 정보를 입력받고, DMS로부터 DMS 정보를 입력받는 입력부; 입력된 EMS 정보에 포함된 대상계통정보 및 조류계산 데이터를 근거로 AQI 지수를 연산하는 연산부; 연산한 AQI 지수 및 입력된 EMS 정보에 포함된 지역내 무효전력 예비력 필요량(Qreq)을 근거로 DMS의 무효전력 협조제어 전환 여부를 판단하고, EMS 정보에 포함된 지역내 무효전력 예비력 필요량(Qreq) 및 DMS 정보에 포함된 무효전력공급 가능범위를 근거로 무효전력 공급 가능량을 판단하는 판단부; 및 DMS의 무효전력 협조제어 전환으로 판단하면 협조제어 모드 전환 제어신호를 전송하여 DMS를 무효전력 협조제어 모드로 전환시키고, 판단한 무효전력 공급 가능량에 해당하는 무효전력을 상위계층으로 공급하도록 DMS를 제어하는 제어부를 포함한다.
입력부는, EMS로부터 대상계통정보, 지역 대표전압 기준값(Vref), 조류계산 데이터, 지역내 무효전력 예비력 필요량(Qreq)을 포함하는 EMS 정보를 입력받고, DMS로부터 무효전력 제어 기준값(Qref), 무효전력공급 가능범위를 포함하는 DMS 정보를 입력받는다.
연산부는, EMS 정보에 포함된 대상계통정보를 근거로 대상 지역계통을 하나의 등가모선으로 축약하고, 등가모선에 가상 발전기를 연결하여 무효전력출력을 설정 범위에서 변경하면서 각각의 케이스에서 조류계산을 수행한다.
연산부는, 조류계산 결과중 축약된 대상모선의 전압값(Va)과 가상 발전기의 무효전력량(Qc)을 이용하여 생성한 XY 그래프 중에서 곡선의 꼭지점을 검출하고, 검출한 꼭지점의 y좌표 크기를 AQI 지수로 연산한다.
판단부는, 연산한 AQI 지수가 무효전력 제어 기준값(Qref) 미만이면 무효전력 협조제어 전환으로 판단한다.
판단부는, 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위 내에 존재하면 지역내 무효전력 예비력 필요량(Qreq)을 무효전력 공급 가능량으로 판단하고, 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위를 초과하면 무효전력공급 가능범위의 최대값을 무효전력 공급 가능량으로 판단한다.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 EMS 및 DMS의 협조제어 방법은, 입력부에 의해, EMS 정보 및 DMS 정보를 입력받는 단계; 연산부에 의해, 입력된 EMS 정보에 포함된 대상계통정보 및 조류계산 데이터를 근거로 AQI 지수를 연산하는 단계; 판단부에 의해, 연산한 AQI 지수 및 입력된 EMS 정보에 포함된 지역내 무효전력 예비력 필요량(Qreq)을 근거로 DMS의 무효전력 협조제어 전환 여부를 판단하는 단계; 제어부에 의해, 판단하는 단계에서 DMS의 무효전력 협조제어 전환으로 판단하면 협조제어 모드 전환 제어신호를 전송하여 DMS를 무효전력 협조제어 모드로 전환시키는 단계; 판단부에 의해, 입력된 EMS 정보의 지역내 무효전력 예비력 필요량(Qreq)과 입력된 DMS 정보의 무효전력공급 가능범위를 근거로 무효전력 공급 가능량을 판단하는 단계; 및 제어부에 의해, 판단한 무효전력 공급 가능량에 해당하는 무효전력을 상위계층으로 공급하도록 DMS를 제어하는 단계를 포함한다.
입력받는 단계는, 입력부에 의해, EMS로부터 대상계통정보, 지역 대표전압 기준값(Vref), 조류계산 데이터, 지역내 무효전력 예비력 필요량(Qreq)을 포함하는 EMS 정보를 입력받는 단계; 및 입력부에 의해, DMS로부터 무효전력 제어 기준값(Qref), 무효전력공급 가능범위를 포함하는 DMS 정보를 입력받는 단계를 더 포함한다.
AQI 지수를 연산하는 단계는, 연산부에 의해, EMS 정보에 포함된 대상계통정보를 근거로 대상 지역계통을 하나의 등가모선으로 축약하는 단계; 연산부에 의해, 등가모선에 가상 발전기를 연결하여 무효전력출력을 설정 범위에서 변경하면서 각각의 케이스에서 조류계산을 수행하는 단계; 연산부에 의해, 조류계산 결과중 축약된 대상모선의 전압값(Va)과 가상 발전기의 무효전력량(Qc)을 이용하여 생성한 XY 그래프를 생성하는 단계; 연산부에 의해, 생성한 XY 그래프 중에서 곡선의 꼭지점을 검출하는 단계; 및 연산부에 의해, 검출한 꼭지점의 y좌표 크기를 AQI 지수로 연산하는 단계를 포함한다.
무효전력 협조제어 전환 여부를 판단하는 단계에서는, 판단부에 의해, 연산한 AQI 지수가 무효전력 제어 기준값(Qref) 미만이면 무효전력 협조제어 전환으로 판단한다.
무효전력 공급 가능량을 판단하는 단계에서는, 판단부에 의해, 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위 내에 존재하면 지역내 무효전력 예비력 필요량(Qreq)을 무효전력 공급 가능량으로 판단하고, 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위를 초과하면 무효전력공급 가능범위의 최대값을 무효전력 공급 가능량으로 판단한다.
본 발명에 의하면, EMS 및 DMS의 협조제어 장치 및 방법은 송전계통에서 감지한 무효전력 예비력과 EMS에서 산정한 무효전력 예비력 필요량을 근거로 배전계통의 무효전력원들에서 부족한 예비력을 송전계통에서 제공하는 협조제어를 수행으로써, 계통 전압품질을 효율적으로 유지할 수 있고, 무효전력원의 증가시에도 효율적인 계통 전압품질을 유지할 수 있는 효과가 있다.
도 1 내지 도 4는 종래의 협조제어 방법을 설명하기 위한 도면.
도 5는 본 발명의 실시예에 따른 EMS 및 DMS의 협조제어 장치를 설명하기 위한 블록도.
도 6은 도 5의 입력부를 설명하기 위한 도면.
도 7 및 도 8은 도 5의 연산부를 설명하기 위한 도면.
도 9는 본 발명의 실시예에 따른 EMS 및 DMS의 협조제어 방법을 설명하기 위한 흐름도.
도 10은 도 9의 AQI 지수 산출 단계를 설명하기 위한 흐름도.
도 11은 도 9의 무효전력 공급 가능량을 상위계통으로 공급하는 단계를 설명하기 위한 흐름도.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
이하, 본 발명의 실시예에 따른 EMS 및 DMS의 협조제어 장치를 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 5는 본 발명의 실시예에 따른 EMS 및 DMS의 협조제어 장치를 설명하기 위한 블록도이다. 도 6은 도 5의 입력부를 설명하기 위한 도면이고, 도 7 및 도 8은 도 5의 연산부를 설명하기 위한 도면이다.
도 5에 도시된 바와 같이, EMS 및 DMS의 협조제어 장치(100)는 입력부(110), 연산부(130), 판단부(150), 제어부(170), 송출부(190)를 포함하여 구성된다. 이때, EMS 및 DMS의 협조제어 장치(100)는 중앙제어센터와 각 지역급전센터 내에 설치되며, EMS(200) 및 DMS(300)와 데이터(예컨대, EMS 정보, DMS 정보 등)를 송수신할 수 있는 통신선로를 통해 연결된다.
입력부(110)는 EMS(200) 및 DMS(300)의 협조제어를 위한 EMS 정보를 입력받는다. 즉, 도 6에 도시된 바와 같이, 입력부(110)는 EMS(200)로부터 대상계통정보, EMS(200)의 최적화기능을 통해 계산된 지역 대표전압 기준값(Vref), AQI 지수계산을 위한 조류계산 데이터, 지역내 무효전력 예비력 필요량(Qreq)을 포함하는 EMS 정보를 입력받는다. 이때, 입력부(110)는 EMS(200)로부터 전압 허용 범위, 대표전압값 측정치(VP)를 더 포함하는 EMS 정보를 입력받을 수도 있다.
입력부(110)는 EMS(200) 및 DMS(300)의 협조제어를 위한 DMS 정보를 입력받는다. 즉, 도 6에 도시된 바와 같이, 입력부(110)는 DMS(300)로부터 무효전력 제어 기준값(Qref), 무효전력공급 가능범위를 포함하는 DMS 정보를 입력받는다. 이때, 입력부(110)는 DMS(300)로부터 변압기 AVR 제어신호, 무효전력출력 측정값(QD)을 더 포함하는 DMS 정보를 입력받을 수도 있다.
연산부(130)는 입력부(110)를 통해 입력된 대상계통정보 및 조류계산 데이터를 근거로 AQI 지수를 연산한다. 즉, 도 7에 도시된 바와 같이, 연산부(130)는 대상계통정보를 근거로 대상 지역계통을 하나의 등가모선(예컨대, 등가 전원(410) 및 등가 부하(420)로 표현)으로 축약한다. 연산부(130)는 인근 지역계통과의 경계 선로를 지정한다. 연산부(130)는 모선에 가상 발전기(430; 또는, 가상 동기조상기)를 연결하여 무효전력출력을 0 내지 500MVAR 범위로 조정한다. 연산부(130)는 각각의 케이스에서 조류계산을 수행한다. 도 8에 도시된 바와 같이, 연산부(130)는 조류계산 결과중 축약된 대상모선의 전압값(Va)과 가상 발전기(430)의 무효전력량(Qc)을 XY그래프 상에 표시한다. 연산부(130)는 XY 그래프 상에 표시된 곡선의 꼭지점(dQc/dVa=0)을 구한 후 꼭지점의 y좌표 크기(절대값)를 연산한다. 연산부(130)는 연산한 y좌표 크기(절대값)를 AQI 지수로 연산한다.
판단부(150)는 연산부(130)에서 연산한 AQI 값과 입력부(110)로부터 입력된 지역내 무효전력 예비력 필요량(Qreq)을 근거로 DMS(300; 또는, QMS(320))의 무효전력 협조제어 전환 여부를 판단한다. 이때, 판단부(150)는 AQI가 무효전력 제어 기준값(Qref) 미만이면 DMS(300; 또는, QMS(320))의 무효전력 협조제어 전환으로 판단한다.
판단부(150)는 입력부(110)로부터의 지역내 무효전력 예비력 필요량(Qreq)과 무효전력공급 가능범위를 근거로 배전계통의 무효전력 공급 가능량을 판단한다. 즉, 판단부(150)는 지역내 무효전력 예비력 필요량(Qreq)과 무효전력공급 가능범위를 비교하여 상위계통에서 필요로 하는 무효전력을 배전계통에서 제공할 수 있는 무효전력 공급 가능량을 판단한다. 이때, 판단부(150)는 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위 내에 있으면 지역내 무효전력 예비력 필요량(Qreq)을 무효전력 공급 가능량으로 판단한다. 판단부(150)는 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위를 초과하면 무효전력공급 가능범위의 최대값(즉, Qref-max)을 무효전력 공급 가능량으로 판단한다.
제어부(170)는 판단부(150)에서 DMS(300)의 무효전력 협조제어 전환으로 판단하면 협조제어 모드 전환 제어신호를 발생한다.제어부(170)는 발생한 협조제어 모드 전환 제어신호를 송출부(190)로 전송한다. 이때, 제어부(170)는 상위 변압기 AVR을 블록킹하도록 제어하는 제어신호를 협조제어 모드 전환 제어신호로 하여 송출부(190)에게로 전송한다. 이를 통해, 제어부(170)는 DMS(300; 또는, QMS(320))를 무효전력 협조제어 모드로 전환시킨다.
제어부(170)는 판단부(150)에서 판단한 무효전력 공급 가능량을 무효전력 제어 기준값(Qref)으로 갱신한다. 제어부(170)는 갱신한 무효전력 제어 기준값(Qref)을 송출부(190)에게로 전송한다. 이를 통해, 제어부(170)는 DMS(300; 또는, QMS(320))에서 무효전력 제어 기준값(Qref)에 해당하는 무효전력을 상위계통(즉, 송전계통)으로 공급하도록 제어한다.
제어부(170)는 갱신된 무효전력 제어 기준값(Qref)의 전송이 완료되면 지역 대표전압 기준값(Vref)에 대한 재계산 요청신호를 발생한다. 제어부(170)는 발생한 재계산 요청신호를 송출부(190)에게로 전송한다. 송출부(190)는 재계산 요청신호를 EMS(200)에게로 전송한다.
그에 따라, EMS(200)는 최적화함수를 이용하여 지역 대표전압 기준값(Vref)을 재계산하기 위해 DMS(300)로부터 갱신된 무효전력 제어 기준값(Qref)을 전송받는다.
EMS(200)는 하기의 수학식 1과 같이, 기존 무효전력 제어 기준값(Qref_old)와 갱신된 무효전력 제어 기준값(Qref)의 차이값(△Q)을 산출한다.
수학식 1
Figure PCTKR2013008416-appb-M000001
EMS(200)는 하기의 수학식 2와 같이, 차이값(△Q)을 합산하여 계통 무효전력 예비력(Qmax)을 갱신한다.
수학식 2
Figure PCTKR2013008416-appb-M000002
이후, EMS(200)는 다음 지역 대표전압 기준값(Vref)의 산출을 위해 하기의 수학식 3과 같이, 기존 무효전력 제어 기준값(Qref_old)을 갱신된 무효전력 제어 기준값(Qref)으로 갱신한다.
수학식 3
Figure PCTKR2013008416-appb-M000003
이후, EMS(200)는 지역별 대표모선 전압값(Vp)를 변경하면서 목적함수(즉, 하기의 수학식 4)의 값(Q)을 산출한다.
수학식 4
Figure PCTKR2013008416-appb-M000004
EMS(200)는 산출한 목적합수의 값(Q)이 최대가 되는 지역별 대표모선 전압값(Vp)을 지역 대표전압 기준값(Vref)으로 산출한다.
송출부(190)는 제어부(170)로부터 수신한 협조제어 모드 전환 제어신호를 DMS(300; 또는, QMS(320))에게로 전송한다. 이때, 송출부(190)는 상위 변압기 AVR을 블록킹하도록 제어하는 제어신호를 협조제어 모드 전환 제어신호를 DMS(300; 또는, QMS(320))에게로 전송한다. 그에 따라, 협조제어 모드 전환 제어신호를 수신한 DMS(300; 또는, QMS(320))는 변압기 AVR의 동작을 블록킹하여 협조제어 모드로 전환한다.
송출부(190)는 제어부(170)로부터 수신한 무효전력 제어 기준값(Qref)을 DMS(300; 또는, QMS(320))에게로 전송한다. 그에 따라, DMS(300; 또는, QMS(320))는 배전계통 내에 있는 무효전력원들을 협조제어하여 송출부(190)로부터 수신한 무효전력 제어 기준값(Qref)에 해당하는 무효전력을 송전계통으로 공급한다.
송출부(190)는 제어부(170)로부터 수신한 재계산 요청신호를 EMS(200)에게로 전송한다. 그에 따라, 재계산 요청신호를 수신한 EMS(200)는 지역 대표전압 기준값(Vref)을 결정하기 위한 최적화 함수를 재계하여 지역 대표전압 기준값(Vref)을 갱신한다.
이하, 본 발명의 실시예에 따른 EMS 및 DMS의 협조제어 방법을 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 9는 본 발명의 실시예에 따른 EMS 및 DMS의 협조제어 방법을 설명하기 위한 흐름도이다. 도 10은 도 9의 AQI 지수 산출 단계를 설명하기 위한 흐름도이고, 도 11은 도 9의 무효전력 공급 가능량을 상위계통으로 공급하는 단계를 설명하기 위한 흐름도이다.
먼저, 협조제어 장치(100)는 EMS(200)로부터 EMS 정보를 입력받는다. 협조제어 장치(100)는 DMS(300)로부터 DMS 정보를 입력받는다(S100). 즉, 입력부(110)는 EMS(200)로부터 대상계통정보, EMS(200)의 최적화기능을 통해 계산된 지역 대표전압 기준값(Vref), AQI 지수계산을 위한 조류계산 데이터, 지역내 무효전력 예비력 필요량(Qreq)을 포함하는 EMS 정보를 입력받는다. 입력부(110)는 DMS(300)로부터 무효전력 제어 기준값(Qref), 무효전력공급 가능범위를 포함하는 DMS 정보를 입력받는다.
협조제어 장치(100)는 입력된 EMS 정보 및 DMS 정보를 근거로 AQI 지수를 산출한다(S200). 즉, 연산부(130)는 EMS 정보에 포함된 대상계통정보 및 조류계산 데이터를 근거로 AQI 지수를 연산한다. 이를 첨부된 도 10을 참조하여 더욱 상세하게 설명하면 아래와 같다.
연산부(130)는 대상계통정보를 근거로 대상 지역계통을 하나의 등가모선으로 축약하고(S210), 인근 지역계통과의 경계 선로를 지정한다(S220).
연산부(130)는 모선에 가상 발전기(430; 또는, 가상 동기조상기)를 연결하여 무효전력출력을 0 내지 500MVAR 범위로 조정한다. 연산부(130)는 무효전력출력의 조정에 따른 각각의 케이스에서 조류계산을 수행한다(S230).
연산부(130)는 조류계산 결과중 축약된 대상모선의 전압값(Va)과 가상 발전기(430)의 무효전력량(Qc)을 XY그래프를 생성한다(S240).
연산부(130)는 XY 그래프 상에 표시된 곡선의 꼭지점(dQc/dVa=0)을 검출하고(S250), 검출한 꼭지점의 y좌표 크기(절대값)를 AQI 지수로 연산한다(S260).
협조제어 장치(100)는 기연산한 AQI 값과 EMS 정보를 근거로 EMS(200)의 무효전력 협조제어 전환 여부를 판단한다(S300). 즉, 판단부(150)는 AQI 값과 지역내 무효전력 예비력 필요량(Qreq)을 근거로 DMS(300; 또는, QMS(320))의 무효전력 협조제어 전환 여부를 판단한다. 이때, 판단부(150)는 AQI가 무효전력 제어 기준값(Qref) 미만이면 DMS(300; 또는, QMS(320))의 무효전력 협조제어 전환으로 판단한다.
무효전력 협조제어 전환으로 판단하면(S300; 예), 협조제어 장치(100)는 DMS(300)를 무효전력 협조제어 모드로 전환하도록 제어한다(S400). 즉, 제어부(170)는 판단부(150)에서 DMS(300)의 무효전력 협조제어 전환으로 판단하면 협조제어 모드 전환 제어신호를 발생한다. 제어부(170)는 발생한 협조제어 모드 전환 제어신호를 송출부(190)로 전송한다. 송출부(190)는 제어부(170)로부터 수신한 협조제어 모드 전환 제어신호를 DMS(300; 또는, QMS(320))에게로 전송한다. 이때, 송출부(190)는 상위 변압기 AVR을 블록킹하도록 제어하는 제어신호를 협조제어 모드 전환 제어신호를 DMS(300; 또는, QMS(320))에게로 전송한다. 그에 따라, 협조제어 모드 전환 제어신호를 수신한 DMS(300; 또는, QMS(320))는 변압기 AVR의 동작을 블록킹하여 협조제어 모드로 전환한다.
협조제어 장치(100)는 배전계통의 무효전력 공급 가능량을 상위계통(예를 들면, 송전계통)으로 공급하도록 제어한다(S500). 이를 첨부된 도 11을 참조하여 더욱 상세하게 설명하면 아래와 같다.
판단부(150)는 지역내 무효전력 예비력 필요량(Qreq)과 무효전력공급 가능범위를 비교한다. 이때, 판단부(150)는 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위 내에 존재하는지를 판단한다. 판단부(150)에서 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위 내에 존재하는 것으로 판단하면(S510; 예), 제어부(170)는 지역내 무효전력 예비력 필요량(Qreq)을 무효전력 공급 가능량으로 설정한다(S520).
제어부(170)는 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위를 초과하면 무효전력공급 가능범위의 최대값을 무효전력 공급 가능량으로 설정한다(S530).
제어부(170)는 설정된 무효전력 공급 가능량을 무효전력 제어 기준값(Qref)으로 갱신한다(S540).
제어부(170)는 갱신한 무효전력 제어 기준값(Qref)을 송출부(190)에게로 전송한다. 송출부(190)는 제어부(170)로부터 수신한 무효전력 제어 기준값(Qref)을 DMS(300; 또는, QMS(320))에게로 전송한다(S550). 그에 따라, DMS(300; 또는, QMS(320))는 배전계통 내에 있는 무효전력원들을 협조제어하여 송출부(190)로부터 수신한 무효전력 제어 기준값(Qref)에 해당하는 무효전력을 송전계통으로 공급한다.
이후, 협조제어 장치(100)는 지역 대표 전압 기준값(Vref)에 대한 재계산 요청신호를 EMS(200)에게로 요청한다(S600), 즉, 제어부(170)는 갱신된 무효전력 제어 기준값(Qref)의 전송이 완료되면 지역 대표전압 기준값(Vref)에 대한 재계산 요청신호를 발생한다. 제어부(170)는 발생한 재계산 요청신호를 송출부(190)에게로 전송한다. 송출부(190)는 제어부(170)로부터 수신한 재계산 요청신호를 EMS(200)에게로 전송한다. 그에 따라, 재계산 요청신호를 수신한 EMS(200)는 지역 대표전압 기준값(Vref)을 결정하기 위한 최적화 함수를 재계하여 지역 대표전압 기준값(Vref)을 갱신한다.
상술한 바와 같이, EMS 및 DMS의 협조제어 장치 및 방법은 송전계통에서 감지한 무효전력 예비력과 EMS에서 산정한 무효전력 예비력 필요량을 근거로 배전계통의 무효전력원들에서 부족한 예비력을 송전계통에서 제공하는 협조제어를 수행으로써, 계통 전압품질을 효율적으로 유지할 수 있고, 무효전력원의 증가시에도 효율적인 계통 전압품질을 유지할 수 있는 효과가 있다.
본 발명에 따른 EMS 및 DMS의 협조제어 장치 및 방법을 포함하는 광고 서비스 제공 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다.상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다.상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 모든 형태의 하드웨어 장치가 포함된다.프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함할 수 있다. 이러한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
본 발명의 원리들의 교시들은 하드웨어와 소프트웨어의 조합으로서 구현될 수 있다. 또한, 소프트웨어는 프로그램 저장부 상에서 실재로 구현되는 응용 프로그램으로서 구현될 수 있다. 응용 프로그램은 임의의 적절한 아키텍쳐를 포함하는 머신에 업로드되고 머신에 의해 실행될 수 있다. 바람직하게는, 머신은 하나 이상의 중앙 처리 장치들(CPU), 컴퓨터 프로세서, 랜덤 액세스 메모리(RAM), 및 입/출력(I/O) 인터페이스들과 같은 하드웨어를 갖는 컴퓨터 플랫폼 상에 구현될 수 있다. 또한, 컴퓨터 플랫폼은 운영 체제 및 마이크로 명령 코드를 포함할 수 있다. 여기서 설명된 다양한 프로세스들 및 기능들은 마이크로 명령 코드의 일부 또는 응용 프로그램의 일부, 또는 이들의 임의의 조합일 수 있고, 이들은 CPU를 포함하는 다양한 처리 장치에 의해 실행될 수 있다. 추가로, 추가 데이터 저장부 및 프린터와 같은 다양한 다른 주변 장치들이 컴퓨터 플랫폼에 접속될 수 있다.
첨부 도면들에서 도시된 구성 시스템 컴포넌트들 및 방법들의 일부가 바람직하게는 소프트웨어로 구현되므로, 시스템 컴포넌트들 또는 프로세스 기능 블록들 사이의 실제 접속들은 본 발명의 원리들이 프로그래밍되는 방식에 따라 달라질 수 있다는 점이 추가로 이해되어야 한다. 여기서의 교시들이 주어지면, 관련 기술분야의 당업자는 본 발명의 원리들의 이들 및 유사한 구현예들 또는 구성들을 참작할 수 있을 것이다.
이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.

Claims (11)

  1. EMS로부터 EMS 정보를 입력받고, DMS로부터 DMS 정보를 입력받는 입력부;
    상기 입력된 EMS 정보에 포함된 대상계통정보 및 조류계산 데이터를 근거로 AQI 지수를 연산하는 연산부;
    상기 연산한 AQI 지수 및 상기 입력된 EMS 정보에 포함된 지역내 무효전력 예비력 필요량(Qreq)을 근거로 상기 DMS의 무효전력 협조제어 전환 여부를 판단하고, 상기 EMS 정보에 포함된 지역내 무효전력 예비력 필요량(Qreq) 및 상기 DMS 정보에 포함된 무효전력공급 가능범위를 근거로 무효전력 공급 가능량을 판단하는 판단부; 및
    상기 DMS의 무효전력 협조제어 전환으로 판단하면 협조제어 모드 전환 제어신호를 전송하여 상기 DMS를 무효전력 협조제어 모드로 전환시키고, 상기 판단한 무효전력 공급 가능량에 해당하는 무효전력을 상위계층으로 공급하도록 상기 DMS를 제어하는 제어부를 포함하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 장치.
  2. 청구항 1에 있어서,
    상기 입력부는,
    상기 EMS로부터 대상계통정보, 지역 대표전압 기준값(Vref), 조류계산 데이터, 지역내 무효전력 예비력 필요량(Qreq)을 포함하는 EMS 정보를 입력받고,
    DMS로부터 무효전력 제어 기준값(Qref), 무효전력공급 가능범위를 포함하는 DMS 정보를 입력받는 것을 특징으로 하는 EMS 및 DMS의 협조제어 장치.
  3. 청구항 1에 있어서,
    상기 연산부는,
    상기 EMS 정보에 포함된 대상계통정보를 근거로 대상 지역계통을 하나의 등가모선으로 축약하고, 상기 등가모선에 가상 발전기를 연결하여 무효전력출력을 설정 범위에서 변경하면서 각각의 케이스에서 조류계산을 수행하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 장치.
  4. 청구항 3에 있어서,
    상기 연산부는,
    상기 조류계산 결과중 축약된 대상모선의 전압값(Va)과 가상 발전기의 무효전력량(Qc)을 이용하여 생성한 XY 그래프 중에서 곡선의 꼭지점을 검출하고, 상기 검출한 꼭지점의 y좌표 크기를 AQI 지수로 연산하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 장치.
  5. 청구항 1에 있어서,
    상기 판단부는,
    상기 연산한 AQI 지수가 무효전력 제어 기준값(Qref) 미만이면 무효전력 협조제어 전환으로 판단하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 장치.
  6. 청구항 1에 있어서,
    상기 판단부는
    상기 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위 내에 존재하면 상기 지역내 무효전력 예비력 필요량(Qreq)을 무효전력 공급 가능량으로 판단하고,
    상기 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위를 초과하면 상기 무효전력공급 가능범위의 최대값을 무효전력 공급 가능량으로 판단하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 장치.
  7. 입력부에 의해, EMS 정보 및 DMS 정보를 입력받는 단계;
    연산부에 의해, 상기 입력된 EMS 정보에 포함된 대상계통정보 및 조류계산 데이터를 근거로 AQI 지수를 연산하는 단계;
    판단부에 의해, 상기 연산한 AQI 지수 및 상기 입력된 EMS 정보에 포함된 지역내 무효전력 예비력 필요량(Qreq)을 근거로 DMS의 무효전력 협조제어 전환 여부를 판단하는 단계;
    제어부에 의해, 상기 판단하는 단계에서 DMS의 무효전력 협조제어 전환으로 판단하면 협조제어 모드 전환 제어신호를 전송하여 상기 DMS를 무효전력 협조제어 모드로 전환시키는 단계;
    상기 판단부에 의해, 상기 입력된 EMS 정보의 지역내 무효전력 예비력 필요량(Qreq)과 상기 입력된 DMS 정보의 무효전력공급 가능범위를 근거로 무효전력 공급 가능량을 판단하는 단계; 및
    상기 제어부에 의해, 상기 판단한 무효전력 공급 가능량에 해당하는 무효전력을 상위계층으로 공급하도록 상기 DMS를 제어하는 단계를 포함하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 방법.
  8. 청구항 7에 있어서,
    상기 입력받는 단계는,
    상기 입력부에 의해, 상기 EMS로부터 대상계통정보, 지역 대표전압 기준값(Vref), 조류계산 데이터, 지역내 무효전력 예비력 필요량(Qreq)을 포함하는 EMS 정보를 입력받는 단계; 및
    상기 입력부에 의해, DMS로부터 무효전력 제어 기준값(Qref), 무효전력공급 가능범위를 포함하는 DMS 정보를 입력받는 단계를 더 포함하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 방법.
  9. 청구항 7에 있어서,
    상기 AQI 지수를 연산하는 단계는,
    상기 연산부에 의해, 상기 EMS 정보에 포함된 대상계통정보를 근거로 대상 지역계통을 하나의 등가모선으로 축약하는 단계;
    상기 연산부에 의해, 상기 등가모선에 가상 발전기를 연결하여 무효전력출력을 설정 범위에서 변경하면서 각각의 케이스에서 조류계산을 수행하는 단계;
    상기 연산부에 의해, 상기 조류계산 결과중 축약된 대상모선의 전압값(Va)과 가상 발전기의 무효전력량(Qc)을 이용하여 생성한 XY 그래프를 생성하는 단계;
    상기 연산부에 의해, 상기 생성한 XY 그래프 중에서 곡선의 꼭지점을 검출하는 단계; 및
    상기 연산부에 의해, 상기 검출한 꼭지점의 y좌표 크기를 AQI 지수로 연산하는 단계를 포함하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 방법.
  10. 청구항 7에 있어서,
    상기 무효전력 협조제어 전환 여부를 판단하는 단계에서는,
    상기 판단부에 의해, 상기 연산한 AQI 지수가 무효전력 제어 기준값(Qref) 미만이면 무효전력 협조제어 전환으로 판단하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 방법.
  11. 청구항 7에 있어서,
    상기 무효전력 공급 가능량을 판단하는 단계에서는,
    상기 판단부에 의해, 상기 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위 내에 존재하면 상기 지역내 무효전력 예비력 필요량(Qreq)을 무효전력 공급 가능량으로 판단하고,
    상기 지역내 무효전력 예비력 필요량(Qreq)이 무효전력공급 가능범위를 초과하면 상기 무효전력공급 가능범위의 최대값을 무효전력 공급 가능량으로 판단하는 것을 특징으로 하는 EMS 및 DMS의 협조제어 방법.
PCT/KR2013/008416 2012-09-20 2013-09-17 Ems 및 dms의 협조제어 장치 및 방법 WO2014046466A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/426,655 US9871377B2 (en) 2012-09-20 2013-09-17 Device and method for cooperation control of EMS and DMS
CN201380048414.5A CN104769801B (zh) 2012-09-20 2013-09-17 用于对ems和dms进行协同控制的装置及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120104574A KR101374623B1 (ko) 2012-09-20 2012-09-20 Ems 및 dms의 협조제어 장치 및 방법
KR10-2012-0104574 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046466A1 true WO2014046466A1 (ko) 2014-03-27

Family

ID=50341691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008416 WO2014046466A1 (ko) 2012-09-20 2013-09-17 Ems 및 dms의 협조제어 장치 및 방법

Country Status (4)

Country Link
US (1) US9871377B2 (ko)
KR (1) KR101374623B1 (ko)
CN (1) CN104769801B (ko)
WO (1) WO2014046466A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167740A (zh) * 2014-08-12 2014-11-26 广东电网公司电力调度控制中心 500kV变电站35kV电容电抗省地协同自动控制系统及方法
CN104466972A (zh) * 2014-12-15 2015-03-25 国家电网公司 一种站配协调的电压无功分布式控制方法
CN104538969A (zh) * 2014-12-15 2015-04-22 重庆大学 一种根据考核评估结果进行站配协调的电压无功调节方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587522B2 (ja) * 2015-11-20 2019-10-09 株式会社日立製作所 電圧・無効電力制御装置、方法、および電圧・無効電力制御システム
CN105356478A (zh) * 2015-12-11 2016-02-24 谭焕玲 一种具有无功补偿功能的供电系统
CN110768247B (zh) * 2019-10-28 2022-12-06 国网福建省电力有限公司 一种基于配电自动化主站的主配网模型拼接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300726A (ja) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd 電力供給システムおよび無効電力供給方法および自家発電設備解列方法ならびに無効電力供給指令装置
KR100987167B1 (ko) * 2008-10-01 2010-10-11 한국전력공사 다기 facts 기기의 제어방법 및 장치
KR101039425B1 (ko) * 2009-09-30 2011-06-08 한국전력공사 전력 계통의 전압 제어 시스템 및 전압 제어 방법
JP2012039727A (ja) * 2010-08-05 2012-02-23 Chugoku Electric Power Co Inc:The 調相制御システム、調相制御装置、スマートメータ及び調相制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792428B2 (ja) * 1999-03-09 2006-07-05 三菱電機株式会社 電力系統制御装置及び電力系統制御方法
WO2002066974A2 (en) * 2001-02-19 2002-08-29 Rosemount Analytical Inc. Improved generator monitoring, control and efficiency
KR20100047726A (ko) 2008-10-29 2010-05-10 한국전력공사 무효전력원 협조제어를 통한 최적 계통전압제어 방법.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300726A (ja) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd 電力供給システムおよび無効電力供給方法および自家発電設備解列方法ならびに無効電力供給指令装置
KR100987167B1 (ko) * 2008-10-01 2010-10-11 한국전력공사 다기 facts 기기의 제어방법 및 장치
KR101039425B1 (ko) * 2009-09-30 2011-06-08 한국전력공사 전력 계통의 전압 제어 시스템 및 전압 제어 방법
JP2012039727A (ja) * 2010-08-05 2012-02-23 Chugoku Electric Power Co Inc:The 調相制御システム、調相制御装置、スマートメータ及び調相制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167740A (zh) * 2014-08-12 2014-11-26 广东电网公司电力调度控制中心 500kV变电站35kV电容电抗省地协同自动控制系统及方法
CN104466972A (zh) * 2014-12-15 2015-03-25 国家电网公司 一种站配协调的电压无功分布式控制方法
CN104538969A (zh) * 2014-12-15 2015-04-22 重庆大学 一种根据考核评估结果进行站配协调的电压无功调节方法

Also Published As

Publication number Publication date
US20150214739A1 (en) 2015-07-30
CN104769801B (zh) 2017-08-04
KR101374623B1 (ko) 2014-03-17
US9871377B2 (en) 2018-01-16
CN104769801A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2014046466A1 (ko) Ems 및 dms의 협조제어 장치 및 방법
WO2017142241A1 (ko) 신재생 에너지 연계형 ess의 전력 관리 방법
WO2012043917A1 (ko) 분산전원 제어 장치 및 방법
WO2017018584A1 (ko) 마이크로그리드의 멀티 주파수 제어 시스템 및 방법
WO2014061889A1 (ko) Pmu를 이용한 facts 기기 운용 장치 및 방법
WO2011040656A1 (ko) 마이크로그리드 운영 시스템 및 방법
WO2012165842A2 (en) Method for estimation state of health for ess
JP2018068045A (ja) 電圧無効電力運用支援装置および支援方法、並びに電圧無効電力運用監視制御装置および監視制御方法
CN108667147B (zh) 一种含多微电网的柔性中压直流配电中心优化调度方法
CN109193776B (zh) 一种适用于梯次电池储能的功率分配方法
WO2018056500A1 (ko) 스케줄링 기반 배전선로 전압제어 방법 및 전압제어 시스템
WO2016105104A1 (ko) 에너지저장장치의 soc 관리 시스템 및 그 방법
WO2013005875A1 (ko) 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법
CN104063031A (zh) 混合功率提升技术的动态响应改进
WO2019059491A1 (ko) Ess 출력 제어 방법
WO2013133592A1 (ko) 주파수 제어 시스템 및 방법
WO2018199395A1 (ko) 과도안정도 상태에 따른 ess 제어 장치 및 그 방법
CN111555321A (zh) 储能联合火电调频中pcs的功率分配方法及装置
WO2017159982A1 (ko) 마이크로그리드 운영 시스템 및 방법
KR20130034769A (ko) 순동무효전력을 확보하기 위한 무효전력보상 제어장치 및 그 방법
WO2014167830A1 (ja) 電力制御システム
WO2020075929A1 (ko) 신재생에너지용 변전설비의 제어장치 및 그 방법
CN115833306A (zh) 一种配电网储能电池浮充电压管理方法及系统
WO2018021787A1 (ko) 하이브리드 전력 저장 시스템 및 이의 전력 운용 방법
Sanjari et al. HSA-based optimal placement of shunt FACTS devices in the smart grid considering voltage stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14426655

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06-07-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13839890

Country of ref document: EP

Kind code of ref document: A1