WO2017142241A1 - 신재생 에너지 연계형 ess의 전력 관리 방법 - Google Patents

신재생 에너지 연계형 ess의 전력 관리 방법 Download PDF

Info

Publication number
WO2017142241A1
WO2017142241A1 PCT/KR2017/001243 KR2017001243W WO2017142241A1 WO 2017142241 A1 WO2017142241 A1 WO 2017142241A1 KR 2017001243 W KR2017001243 W KR 2017001243W WO 2017142241 A1 WO2017142241 A1 WO 2017142241A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
renewable energy
charge
management method
Prior art date
Application number
PCT/KR2017/001243
Other languages
English (en)
French (fr)
Inventor
윤주영
박성구
이영훈
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Publication of WO2017142241A1 publication Critical patent/WO2017142241A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a power management method of a renewable energy-linked ESS, and more particularly, to a power management method of an efficient renewable energy-linked ESS according to the characteristics of renewable energy and battery.
  • renewable energy is a combination of new energy and renewable energy. It refers to the energy used by converting existing fossil fuels or converting them into renewable energy including sunlight, water, precipitation, and bio-organisms.
  • Renewable energy includes solar, solar, bio, wind, and hydro, and new energy includes fuel cells and hydrogen energy.
  • ESS Electronicgy Storage System
  • solar and power storage system stores the surplus power of renewable energy or power system in the battery which can be charged and discharged, and supplies power to the load if necessary.
  • Supply system Korean Patent Publication No. 2013-0138611 discloses an energy storage system associated with a renewable energy generation system.
  • a renewable energy generation system-linked energy storage system charges a battery with renewable energy or grid power, and when a load is needed, the load is supplied via renewable energy, grid, or battery. do.
  • a renewable energy generation system-linked energy storage system charges a battery with renewable energy or grid power, and when a load is needed, the load is supplied via renewable energy, grid, or battery.
  • An object of the present invention is to provide an efficient power management method of renewable energy-linked ESS according to the characteristics of renewable energy and battery.
  • the power management method of the renewable energy-linked ESS of the present invention includes a battery that is connected to an external power grid that supplies power to a power load consuming power, a battery management system (BMS) for managing charging or discharging of a battery, Renewable energy-linked energy storage system (ESS) comprising an energy storage facility with a PCS (Power Conditioning System) for power supply and management, and a plurality of renewable energy generation facilities that produce electrical energy from renewable energy.
  • BMS battery management system
  • ESS Renewable energy-linked energy storage system
  • PCS Power Conditioning System
  • the power management method of the the power management method in the PCS, the step of calculating the predicted power consumption of the power load, the predicted production power of the renewable energy generation facility (S100) and the renewable energy generation facility Storing the type and characteristic information of the battery (S200); and the renewable energy generation facility that may be produced before the battery is discharged.
  • step S100 further comprises a charge / discharge schedule setting step (S150) of the battery.
  • step S500 If the amount of power shortage in step S500 is greater than or equal to the set value, maintaining the charging / discharging schedule of step S150 (S510), and charging the battery according to the charging / discharging schedule (S700).
  • step S510 is carried out.
  • the method may further include changing the charge / discharge schedule of the step S150 if the battery cannot be fully charged by the production power of the renewable energy generation facility in step S600 (S800).
  • the method may further include charging the battery with the power supplied from the renewable energy generation facility and the electric power grid after step S800 (S900).
  • the method may further include determining whether to charge the battery with power supplied from the power grid before step S900 (S850).
  • the charging of the battery in the step S700 is characterized in that made by the power supplied from the renewable energy generation facility and the power grid.
  • Charging by the power supplied from the electric power grid in step S700 is characterized in that the time is charged at the lowest load.
  • step S100 the predicted production power of the renewable energy generation facility is characterized in that it is calculated as the average value of the production power for a predetermined period.
  • step S700 When the battery is charged using the power grid in step S700, the battery is charged at the time when the lowest load charge is applied.
  • the renewable energy power generation facility is characterized in that the power generation facility using any one renewable energy source of solar, wind, tidal, biomass.
  • Power management method of the renewable energy-linked ESS by operating the energy storage system in consideration of the charge / discharge amount and time of the battery according to the characteristics of the renewable energy generation system by storing the energy and The efficiency of consumption is improved.
  • FIG. 1 is a schematic diagram showing the battery charging time according to the renewable energy-associated energy storage system of the present invention
  • FIG. 2 is a schematic diagram showing a battery discharge time according to the renewable energy-linked energy storage system of the present invention
  • FIG. 3 is a graph illustrating an example of a charge / discharge cycle according to the renewable energy-connected power management method of the present invention
  • FIG. 4 is a flow chart according to the renewable energy linked power management method of the present invention.
  • FIG. 1 is a schematic diagram showing a battery charging time according to the renewable energy-linked energy storage system of the present invention
  • Figure 2 is a schematic diagram showing a battery discharge time according to the renewable energy-linked energy storage system of the present invention.
  • a renewable energy-linked energy storage system is largely composed of at least one renewable energy generation facility 200 and an energy storage facility 300. Can be.
  • the renewable energy generation facility 200 serves to supply power to the energy storage facility 300 or the power load 400 together with the power supplied from the power grid 100.
  • Power grid 100 is a power grid for supplying the power produced by the existing power generation system, such as thermal power, hydropower, nuclear power, power load 400 means a variety of facilities, such as homes, buildings, factories that consume power.
  • Renewable energy generation facility 200 is a power generation facility using renewable energy, such as solar, wind, tidal, biomass, etc., different types of power generation facilities may be applied according to the installation site. At least one renewable energy generation facility 200 is applied, and preferably, a plurality of facilities suitable for local characteristics are applied (for convenience, the photovoltaic facility 210 and the wind turbine 230 are provided in the present invention). The case of simultaneously operating is explained as an example).
  • the photovoltaic facility 210 may include a solar cell, a power converter that converts electrical energy produced by the solar cell from direct current to alternating current and connects it to a power system, and a storage device that temporarily stores the produced electrical energy. have. Since the configuration of the photovoltaic power generation equipment is a technology for the main pipe, detailed description thereof will be omitted.
  • the wind turbine 230 may be composed of a blade, an energy conversion device for converting the kinetic energy of the wind into electrical energy, a power transmission device, a control device, and the like, and thus, a detailed description thereof will be omitted. Shall be.
  • the energy storage facility 300 includes a battery 310 that can be charged or discharged, and stores energy by charging the battery 310, and discharges the stored energy by discharging the battery 310 to the electric power grid 100 or a power load ( Power 400).
  • the energy storage facility 300 may include a battery management system (BMS) for managing charging or discharging of the battery 310, and a power conditioning system (PCS) for power supply and management.
  • BMS battery management system
  • PCS power conditioning system
  • the battery 310 may include various types of batteries, such as a flow battery and a secondary battery.
  • the battery 310 may include a flywheel using a superconductor, a NAS, an all-solid-state battery, and the like. It is possible to efficiently manage the battery by changing the battery charge / discharge plan according to the type and characteristics of the battery, and additionally, the short-term power operation plan can be established by acquiring the remaining capacity information of the battery.
  • the battery 310 is a function of the energy storage for storing the energy by charging the power supplied through the renewable energy generation facility 200 or the power grid 100 and the energy stored through the discharge load power 400 or It functions as an energy source for supplying the power grid 100.
  • the PCS 350 is a power converter, and serves to convert between AC and DC and to convert voltage, current, and frequency.
  • the PCS 350 supplies the energy load 400 to the power load 400 or charges the battery 310 through the power grid 100, or supplies the energy supplied from the renewable energy generation facility 200 to the power load ( 400 or supply to the battery 310.
  • the battery 310 is discharged to supply the stored energy to the power load 400 or the power grid 100 to perform power management. In this case, charging / discharging of the battery 310 is operated in consideration of the type and characteristic information of the battery 310.
  • the PCS 350 may monitor and store power consumed by the power load 400 as information.
  • the BMS 330 is a battery management system that senses the voltage, current, temperature, etc. of the battery to control the charge / discharge amount of the battery 310 to an appropriate level, and performs cell balancing of the battery 310, The remaining capacity of the battery 310 is determined. In addition, the BMS 330 protects the battery 310 through an emergency operation when a danger is detected. The BMS 330 stores the type and characteristic information of the battery 310 and manages charging and discharging according to the characteristics of the battery 310.
  • a separate server and controller may be provided to control the PCS 350 and the BMS 330, and may store information obtained from the PCS 350 and the BMS 330.
  • control of the energy storage system of the present invention in the PCS 350 and the BMS 330 without providing a separate server and controller will be described as an example.
  • FIG 3 is a graph showing an example of a charge and discharge cycle according to the renewable energy-linked power management method of the present invention
  • Figure 4 is a flow chart according to the renewable energy-related power management method of the present invention.
  • the power control station that manages the external power supply is equipped with a power server, and stores information such as power generation status, power status, hourly power price, and power consumption demand by general energy sources.
  • the power load 400 may receive power from the power grid 100 and the battery 310 of the energy storage system, and may be supplied only through the power grid 100 or the battery 310 according to a power situation. have.
  • the PCS 350 obtains power consumption demand and power status information from the above-described external power server (S50), and receives demand information such as past and recent power consumption from the power load 400. Can be obtained. Based on the information, the PCS 350 may calculate the predicted power consumption and the predicted power consumption (step S100 of calculating power consumption and production power, S100), and generate a battery charge / discharge schedule (S150). It is to be understood that the subject of charge / discharge schedule generation, change, and control of the battery is performed in the PCS unless otherwise noted.
  • the discharge (power consumption) of the battery 310 is scheduled at 2 pm to 4 pm, which is the peak time of the power consumption, and the charging of the battery 310 is performed according to the charging means. You can set the schedule to charge by different.
  • the charging of the battery 310 using the wind power generation can be made without any time constraints. Photovoltaic power generation is possible from sunrise to sunset, it can be charged to the battery 310 to produce the maximum power before and after noon, the time zone.
  • the type and characteristic information of the renewable energy generation facility 200 is stored in the PCS 350 (renewable energy characteristic information storage step, S200) to predict the production power that can be produced before the discharge of the battery 310. Can be utilized (production power prediction step, S300)
  • the charging of the battery 310 using the power grid 100 may be set so that the power charge is made at a low time period. For example, the lowest load charge before 9 am, which is the time when the intermediate charge charge is applied, is applied. It can be set to be charged in time. Wind power generation and photovoltaic power generation are also performed during the charging time of the battery 310 using the power grid 100, so that the produced power may be supplied to the battery 310.
  • the power produced by the solar power plant 210 and the wind turbine 230 during the charging time of the battery 310 using the power grid 100 may be sent to the battery 310 or to the power load 400. It may be possible (optional application depending on the situation).
  • the power generated through wind power and solar power and the power supplied through the electric power grid 100 are supplied to the power load 400, and the charge / discharge schedule of the battery 310 set by the PCS 350 is provided. As a result, the battery 310 is charged.
  • the PCS 350 may predict the amount of power generated by the renewable energy facility from 8 am to 2 pm for the charge / discharge schedule management of the battery 310 (S300, see FIG. 3).
  • the amount of electricity generated by renewable energy facilities may be achieved through simulation of the average amount of power generated over the previous 10 days or annual average data.
  • the amount of charge of the battery 310 at about 2 pm, before the discharge of the battery 310 starts is calculated. After calculating the power shortage required to fully charge 100% before the battery 310 starts to discharge, the battery charge requirement may be calculated (battery charge required amount calculation, S400).
  • step S500 If the power shortage is greater than or equal to a predetermined value (power shortage determination step S500), the battery 310 may be fully charged before being discharged, and thus the charge / discharge schedule of the battery 310 may not need to be changed. If the amount of power shortage is greater than or equal to the preset value (S500), it is calculated whether the battery 310 can be fully charged by the renewable energy facility based on the calculated value (step S600 of determining whether it can be buffered with renewable energy). The amount of remaining power D1 insufficient until the battery 310 is fully charged is calculated in kWh.
  • the battery 310 If the battery 310 can be fully charged by the renewable energy facility before the discharge of the battery 310 (YES in S600), the battery 310 is charged according to the above-described charging schedule (charging step, S700).
  • the buffer may not be fully charged by the renewable energy facility until the discharge of the battery 310 starts. This may be caused by weather factors, such as when the wind is not blowing or the weather is cloudy, or it may be caused by various factors such as power system failure, planned power outage, or sudden increase in power load.
  • the charging schedule is changed to recharge the battery 310 by additionally supplying power of the power grid 100 to supply smooth power through the battery 310, even if it is not the minimum load-to-charge time.
  • the amount of power to be charged through the power grid 100 can be calculated by dividing the remaining shortage power amount D1 by the time generated by the generation amount kW generated from the renewable energy generation facility 200 (renewable energy generation amount + D1 / 1hr). .
  • the battery 310 is charged using the renewable energy and the power supplied from the electric power grid 100 before the discharge time of the battery 310 with reference to the calculated value (S900).
  • the time for charging the battery 310 with the power supplied from the power grid 100 is not the time when the charge is charged at the lowest load, the power is supplied from the power grid 100 before charging the battery 310 (S900).
  • a decision request may be made to the manager or the server to determine whether to charge the battery 310 with the power.
  • whether or not the battery 310 is charged through the power grid 100 may be stored in advance according to the remaining amount of the battery 310, or the administrator may determine whether to proceed with operation S900 by directly determining the situation. .
  • the discharge of the battery 310 is performed in a fully charged state, and power and renewable energy charged in the battery 310 are at peak times when the battery 310 is discharged.
  • the power produced by the facility, all the power supplied from the power grid 100 will be supplied to the power load 400 (S1000).
  • the power remaining after supplying to the power load 400 may be supplied to the power grid 100 and sold to generate profit, or may be maintained as the remaining power of the battery 310.
  • the energy storage system is operated in consideration of the charge / discharge amount and time of the battery according to the characteristics of the renewable energy generation system, thereby improving the efficiency of storing and consuming energy.
  • the present invention can be applied to a power management method of an efficient renewable energy linked ESS according to the characteristics of renewable energy and battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Finance (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 신재생 에너지 연계형 ESS의 전력 관리 방법에 관한 것으로, 배터리의 방전 이전에 충전 필요량을 산출하여 충전 필요량에 따른 전력 부족량이 설정값 이상인지를 판단한다. 전력 부족량이 설정값 보다 작으면 신재생 에너지 발전 설비의 상기 생산 전력으로 배터리를 완충할 수 있는지 판단하여 그 결과에 따라 배터리의 충/방전 스케줄을 변경하는 것이 특징이다. 본 발명에 따르면, 신재생 에너지 발전 시스템의 특성에 따른 배터리의 충/방전량 및 시간 등을 고려하여 에너지 저장 시스템을 운영함으로써 에너지의 저장 및 소비의 효율성이 향상되는 효과가 있다.

Description

신재생 에너지 연계형 ESS의 전력 관리 방법
본 발명은 신재생 에너지 연계형 ESS의 전력 관리 방법에 관한 것으로, 더욱 상세하게는 신재생 에너지 및 배터리의 특성에 따른 효율적인 신재생 에너지 연계형 ESS의 전력 관리 방법에 관한 것이다.
일반적으로 신재생에너지는 신에너지와 재생에너지를 합쳐 부르는 말이다. 기존 화석연료를 변환하여 이용하거나 햇빛, 물, 강수, 생물유기체 등을 포함하여 재생이 가능한 에너지로 변환하여 이용하는 에너지를 말한다. 재생에너지에는 태양광, 태양열, 바이오, 풍력, 수력 등이 있고, 신에너지에는 연료전지, 수소에너지 등이 있다.
ESS(Energy Storage System)는 태양광으로 대표되는 신재생 에너지 발전 시스템과 전력 저장 시스템을 연계한 것으로, 충전 및 방전이 가능한 배터리에 신재생 에너지 또는 전력 계통의 잉여 전력을 저장하고 필요 시 부하에 전력을 공급하는 시스템이다. 한국특허공개 제2013-0138611호에 신재생 에너지 발전 시스템과 연계된 에너지 저장 시스템이 개시되어 있다.
일반적으로 신재생 에너지 발전 시스템 연계형 에너지 저장 시스템은 신재생 에너지 또는 계통의 전력으로 배터리를 충전하고, 부하에 전력 공급이 필요할 때 신재생 에너지, 계통, 배터리 중 어느 하나를 통해 부하에 전력을 공급한다. 신재생 에너지 및 에너지 저장 시스템에 대한 관심이 점차 높아지고, 에너지 저장 시스템이 복수의 전력 공급원을 통해 배터리를 충전하고 부하에 전력을 공급하면서 점차 시스템 복잡도가 높아지고 있는 상황이다. 따라서 신재생 에너지 및 배터리의 특성에 따라 최적화되고 에너지의 저장 및 소비를 보다 효율적으로 관리할 수 있는 기술이 요구된다.
본 발명의 목적은 신재생 에너지 및 배터리의 특성에 따른 효율적인 신재생 에너지 연계형 ESS의 전력 관리 방법을 제공하는 것이다.
본 발명의 신재생 에너지 연계형 ESS의 전력 관리 방법은, 전력을 소비하는 전력 부하에 전력을 공급하는 외부 전력망과 연결되어 충전되는 배터리, 배터리의 충전 또는 방전 관리를 위한 BMS(Battery Management System), 전력 공급 및 관리를 위한 PCS(Power Conditioning System)를 구비한 에너지 저장 설비와, 신재생 에너지로부터 전기 에너지를 생산하는 복수의 신재생 에너지 발전 설비를 포함하는 신재생 에너지 연계형 에너지 저장 시스템(ESS)의 전력 관리 방법에 있어서, 상기 PCS에서의 전력 관리 방법은, 상기 전력 부하의 예측 소비전력과, 상기 신재생 에너지 발전 설비의 예측 생산 전력을 산정하는 단계(S100)와, 상기 신재생 에너지 발전 설비의 종류 및 특성 정보를 저장하는 단계(S200)와, 상기 배터리의 방전 전까지 생산될 수 있는 상기 신재생 에너지 발전 설비의 생산 전력을 예측하는 단계(S300)와, 상기 배터리의 방전 이전 충전 필요량을 산출하는 단계(S400)와, 상기 배터리의 충전 필요량에 따른 전력 부족량이 설정값 이상인지 판단하는 단계(S500)와, 상기 전력 부족량이 설정값 보다 작으면 상기 신재생 에너지 발전 설비의 상기 생산 전력으로 상기 배터리를 완충할 수 있는지 판단하는 단계(S600)와, 상기 S600 단계의 결과에 따라 상기 배터리의 충/방전 스케줄을 변경하는 단계를 포함한다.
상기 S100 단계 이후에 상기 배터리의 충/방전 스케줄 설정 단계(S150)를 더 포함한다.
상기 S500 단계에서 상기 전력 부족량이 상기 설정값 이상이면 상기 S150 단계의 충/방전 스케줄을 유지하는 단계(S510)와, 상기 충/방전 스케줄 대로 상기 배터리를 충전하는 단계(S700)를 더 포함한다.
상기 S600 단계에서 상기 신재생 에너지 발전 설비의 상기 생산 전력으로 상기 배터리를 완충할 수 있으면 상기 S510 단계를 실시하는 것을 특징으로 한다.
상기 S600 단계에서 상기 신재생 에너지 발전 설비의 상기 생산 전력으로 상기 배터리를 완충할 수 없으면 상기 S150 단계의 충/방전 스케줄을 변경하는 단계(S800)를 더 포함한다.
상기 S800 단계 이후에 상기 신재생 에너지 발전 설비 및 상기 전력망에서 공급된 전력으로 상기 배터리를 충전하는 단계(S900)를 더 포함한다.
상기 S900 단계 이전에 상기 전력망에서 공급된 전력으로 상기 배터리를 충전할지의 여부를 결정하는 단계(S850)를 더 포함한다.
상기 S700 단계에서 상기 배터리의 충전은 상기 신재생 에너지 발전 설비 및 상기 전력망에서 공급되는 전력 의해 이루어지는 것을 특징으로 한다.
상기 S700 단계에서 상기 전력망에서 공급되는 전력에 의한 충전은 최저 부하대 요금이 부과되는 시간에 이루어지는 것을 특징으로 한다.
상기 S100 단계에서 상기 신재생 에너지 발전 설비의 예측 생산 전력은 미리 설정된 기간 동안의 생산 전력 평균값으로 산정되는 것을 특징으로 한다.
상기 S700 및 S900 단계에서 상기 배터리가 완충되면 상기 배터리 충/방전 스케줄에 따라 상기 배터리가 방전되는 단계(S1000)를 더 포함한다.
상기 S700 단계에서 상기 전력망을 이용해 상기 배터리의 충전이 이루어지는 경우, 최저 부하대 요금이 적용되는 시간에 상기 배터리의 충전이 이루어지는 것을 특징으로 한다.
상기 신재생 에너지 발전 설비는 태양광, 풍력, 조력, 바이오 매스 중 어느 하나의 신재생 에너지원을 이용한 발전 설비인 것을 특징으로 한다.
본 발명의 일 실시 예에 따른 신재생 에너지 연계형 ESS의 전력 관리 방법은 신재생 에너지 발전 시스템의 특성에 따른 배터리의 충/방전량 및 시간 등을 고려하여 에너지 저장 시스템을 운영함으로써 에너지의 저장 및 소비의 효율성이 향상되는 효과가 있다.
도 1은 본 발명의 신재생 에너지 연계형 에너지 저장 시스템에 따른 배터리 충전 시를 도시한 모식도,
도 2는 본 발명의 신재생 에너지 연계형 에너지 저장 시스템에 따른 배터리 방전 시를 도시한 모식도,
도 3은 본 발명의 신재생 에너지 연계형 전력 관리 방법에 따른 충방전 사이클의 일 예를 도시한 그래프,
도 4는 본 발명의 신재생 에너지 연계형 전력 관리 방법에 따른 순서도이다.
이하에서는 도면을 참조하여, 본 발명의 일 실시 예에 따른 신재생 에너지 연계형 ESS의 전력 관리 방법에 대해 상세히 설명하기로 한다.
먼저 본 발명에 따른 신재생 에너지 연계형 ESS(Energy Storage System, 이하 에너지 저장 시스템)의 개략적인 구성에 대해 설명하기로 한다.
도 1은 본 발명의 신재생 에너지 연계형 에너지 저장 시스템에 따른 배터리 충전 시를 도시한 모식도이고, 도 2는 본 발명의 신재생 에너지 연계형 에너지 저장 시스템에 따른 배터리 방전 시를 도시한 모식도이다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시 예에 따른 신재생 에너지 연계형 에너지 저장 시스템은 크게 적어도 하나의 신재생 에너지 발전 설비(200)와, 에너지 저장 설비(300)로 구성될 수 있다. 신재생 에너지 발전 설비(200)는 전력망(100)으로부터 공급되는 전력과 함께 에너지 저장 설비(300) 또는 전력 부하(400)로 전력을 공급하는 역할을 한다.
전력망(100)은 화력, 수력, 원자력 등 기존의 발전 시스템에 의해 생산된 전력을 공급하는 전력망이며, 전력 부하(400)는 전력을 소비하는 가정, 빌딩, 공장 등의 다양한 시설을 의미한다.
신재생 에너지 발전 설비(200)는 태양광, 풍력, 조력, 바이오 매스 등과 같은 신재생 에너지를 이용한 발전 설비로, 설치 장소에 따라 각기 다른 종류의 발전 설비가 적용될 수 있다. 신재생 에너지 발전 설비(200)는 적어도 하나가 적용되며, 바람직하게는 지역 특성에 맞는 복수의 설비가 적용되는 것이 바람직하다(본 발명에서는 편의상 태양광 발전 설비(210)와 풍력 발전 설비(230)를 동시에 운용하는 경우를 예로 하여 설명한다).
태양광 발전 설비(210)는 태양전지, 태양전지에서 생산된 전기 에너지를 직류에서 교류로 변환하고 전력 계통에 연결시키는 전력 변환장치, 생산된 전기 에너지를 일시적으로 저장하는 저장 장치 등으로 구성될 수 있다. 태양광 발전 설비의 구성은 주지관용의 기술이므로 상세한 설명을 생략하기로 한다.
풍력 발전 설비(230)는 블레이드, 블레이드에 의해 바람의 운동 에너지를 전기 에너지로 변환하는 에너지 전환 장치 및 동력 전달 장치, 제어장치 등으로 구성될 수 있으며, 역시 주지관용의 기술이므로 상세한 설명을 생략하기로 한다.
에너지 저장 설비(300)는 충전 또는 방전이 가능한 배터리(310)를 구비하며, 배터리(310)를 충전하여 에너지를 저장하고, 배터리(310)를 방전시켜 저장된 에너지를 전력망(100) 또는 전력 부하(400)에 전력을 공급한다. 일반적으로 에너지 저장 설비(300)는 배터리(310)의 충전 또는 방전 관리를 위한 BMS(Battery Management System)과, 전력 공급 및 관리를 위한 PCS(Power Conditioning System)을 포함할 수 있다.
배터리(310)는 Flow Battery, 이차전지와 같은 다양한 종류의 배터리를 포함할 수 있다. 예를 들어, 배터리(310)는 초전도체를 이용한 Fly Wheel, NAS, 전고체전지 등을 포함할 수 있다. 배터리의 종류 및 특성에 따라 배터리 충/방전 계획을 달리하여 효율적인 배터리 관리가 가능하며, 추가적으로 배터리의 잔여 용량 정보를 획득함으로써 단기 전력 운용 계획을 수립할 수 있다. 또한, 배터리(310)는 신재생 에너지 발전 설비(200)나 전력망(100)을 통해 공급되는 전력을 충전하여 에너지를 저장하는 에너지 저장소의 기능과, 방전을 통해 저장된 에너지를 전력 부하(400)나 전력망(100)에 공급하는 에너지원으로 기능한다.
PCS(350)는 전력변환장치로서, 교류와 직류간의 변환 및 전압, 전류, 주파수를 변환시키는 역할을 한다. PCS(350)는 전력망(100)을 통해 발전소로부터 공급되는 에너지를 전력 부하(400)에 공급하거나 배터리(310)에 충전시키거나, 신재생 에너지 발전 설비(200)로부터 공급되는 에너지를 전력 부하(400)에 공급하 거나 배터리(310)에 충전시킨다. 또는 배터리(310)를 방전시켜 저장된 에너지를 전력 부하(400)나 전력망(100)에 공급하여, 전력 관리를 수행한다. 이때, 배터리(310)의 충/방전은 배터리(310)의 종류 및 특성 정보를 고려하여 운용된다. 또한, PCS(350)는 전력부하(400)에서 소비되는 전력을 모니터링하여 정보로 저장하여 보유할 수 있다.
BMS(330)는 배터리 관리 시스템으로서, 배터리의 전압, 전류, 온도 등을 감지하여 배터리(310)의 충/방전량을 적정 수준으로 제어함은 물론, 배터리(310)의 셀 밸런싱을 수행하고, 배터리(310)의 잔여 용량을 파악한다. 또한, BMS(330)는 위험이 감지되는 경우 비상 동작을 통해 배터리(310)을 보호한다. BMS(330)는 배터리(310)의 종류 및 특성 정보가 저장되며, 배터리(310)의 특성에 맞게 충전 및 방전을 관리한다.
도면에 도시하지는 않았으나, 별도의 서버 및 컨트롤러가 구비되어 PCS(350) 및 BMS(330)의 제어, PCS(350) 및 BMS(330)에서 획득한 정보의 저장 등의 역할을 할 수 있다.
본 발명에서는 별도의 서버와 컨트롤러를 구비하지 않고 PCS(350) 및 BMS(330)에서 본 발명의 에너지 저장 시스템을 제어하는 것을 예로 하여 설명한다.
전술한 구성을 갖는 본 발명의 신재생 에너지 연계형 에너지 저장 시스템에 있어서, 에너지 저장 및 소비 상황별 전력 관리 방법에 대해 도면을 참조하여 설명하기로 한다.
도 3은 본 발명의 신재생 에너지 연계형 전력 관리 방법에 따른 충방전 사이클의 일 예를 도시한 그래프이고, 도 4는 본 발명의 신재생 에너지 연계형 전력 관리 방법에 따른 순서도이다.
외부 전력 공급을 관장하는 전력 관제소에는 전력 서버가 구비되어 있으며, 일반 에너지원에 의한 발전 현황, 전력 상황, 시간별 전력 가격, 소비전력 수요 등의 정보를 저장하고 있다.
전력 부하(400)는 전력망(100) 및 에너지 저장 시스템의 배터리(310)로부터 전력을 공급받을 수 있으며, 전력 상황에 따라 전력망(100) 또는 배터리(310) 중 어느 하나를 통해서만 전력을 공급받을 수도 있다.
도 4에 도시된 바와 같이, PCS(350)는 전술한 외부 전력 서버로부터 소비전력 수요와 전력 상황 정보 등을 획득하고(S50), 전력 부하(400)로부터 과거 및 최근 소비 전력 등의 수요 정보를 획득할 수 있다. 이러한 정보들을 바탕으로 PCS(350)에서는 예측 소비 전력과 예측 생산 전력을 산정하고(소비 전력 및 생산 전력 산정 단계, S100), 배터리 충/방전 스케줄을 생성할 수 있다(S150). 배터리의 충/방전 스케줄 생성 및 변경, 제어의 주체는 따로 언급하지 않더라도 PCS에서 이루어지는 것으로 이해되어야 할 것이다.
예들 들어, 도 3에 도시된 바와 같이 배터리(310)의 방전(전력 소비)은 전력 소비의 피크 시간 대인 오후 2시 내지 4시로 스케줄을 설정하고, 배터리(310)의 충전은 충전 수단에 따라 시간대를 달리하여 충전하도록 스케줄을 설정할 수 있다.
신재생 에너지 설비 중 풍력 발전은 하루 중 거의 대부분 발전이 되므로, 풍력 발전을 이용한 배터리(310)의 충전은 시간의 제약 없이 이루어지도록 할 수 있다. 태양광 발전은 일출에서 일몰까지 가능하며, 시간대인 정오 전후로 최대 전력을 생산해 배터리(310)에 충전할 수 있다. 이러한 신재생 에너지 발전 설비(200)의 종류 및 그에 따른 특성 정보는 PCS(350)에 저장되어(신재생 에너지 특성 정보 저장 단계, S200) 배터리(310)의 방전 전까지 생산될 수 있는 생산 전력 예측에 활용될 수 있다(생산 전력 예측 단계, S300)
전력망(100)을 이용한 배터리(310)의 충전은 전력 요금이 저렴한 시간대에 이루어지도록 스케줄을 설정할 수 있으며, 예를 들어 중간 부하대 요금이 적용되는 시간인 오전 9시 이전 최저 부하대 요금이 적용되는 시간에 충전이 이루어지도록 설정될 수 있다. 전력망(100)을 이용한 배터리(310)의 충전 시간 대에 풍력 발전 및 태양광 발전 역시 이루어지므로 여기서 생산된 전력을 배터리(310)로 공급할 수도 있다. 전력망(100)을 이용한 배터리(310)의 충전 시간 대에 태양광 발전 설비(210) 및 풍력 발전 설비(230)로 생산된 전력은 배터리(310)로 보내질 수도 있고, 전력 부하(400)로 보내질 수도 있다(상황에 따라 선택적 적용).
일반적인 상황에서 풍력 발전과 태양광 발전을 통해 생산된 전력과 전력망(100)을 통해 공급되는 전력은 전력 부하(400)로 공급되고, PCS(350)에서 설정한 배터리(310)의 충/방전 스케줄에 따라 배터리(310)가 충전된다.
PCS(350)는 배터리(310)의 충/방전 스케줄 관리를 위해 오전 8시에서 오후 2시까지의 신재생 에너지 설비에 의한 발전량을 예측할 수 있다(S300, 도 3 참조). 신재생 에너지 설비에 의한 발전량은 이전 10일간의 발전량 평균값이나 연평균 데이터를 이용한 시뮬레이션 등을 통해 이루어질 수 있다.
신재생 에너지 설비에 의한 발전량이 예측되면, 배터리(310)의 방전이 시작되기 전인 오후 2시 경의 배터리(310)의 충전량을 산출한다. 배터리(310)의 방전 시작 전 100% 완충하는데 필요한 전력 부족량을 계산한 후 배터리 충전 필요량을 계산할 수 있다(배터리 충전 필요량 산출, S400).
전력 부족량이 미리 설정된 값 이상이면(전력 부족량 판단 단계, S500) 배터리(310)가 방전되기 전 완충될 수 있으므로 배터리(310)의 충/방전 스케줄이 변경될 필요가 없어진다. 전력 부족량이 미리 설정된 값 이상이면(S500) 계산된 값을 바탕으로 신재생 에너지 설비에 의해 배터리(310)를 100% 완충할 수 있는지를 계산한다(신재생 에너지로 완충 가능 판단 단계, S600). 배터리(310)의 완충까지 부족한 잔여 전력량(D1)은 kWh로 계산된다.
만약 배터리(310)의 방전 시작 전까지 신재생 에너지 설비에 의해 완충할 수 있으면(S600에서 YES 이면) 전술한 충전 스케줄 대로 배터리(310)를 충전한다(충전 단계, S700).
그러나 최저 부하대 요금 구간에서 전력망(100)을 이용해 배터리(310)를 충전했음에도 불구하고 배터리(310)의 방전 시작 전까지 신재생 에너지 설비에 의해 완충이 불가능한 경우가 발생할 수 있다. 이러한 경우는 바람이 불지 않거나 날씨가 흐린 경우 등과 같이 기상 요인에 의해 발생할 수도 있고, 전력 계통의 고장이나 계획 정전, 갑작스러운 전력 부하의 증가 등 여러 요인에 의해 발생할 수 있다.
이 경우(S600에서 NO 이면), 배터리(310)를 통한 원활한 전력 공급을 위해 최저 부하대 요금 시간이 아니더라도 전력망(100)의 전력을 추가로 투입해 배터리(310)를 충전하도록 충전 스케줄을 변경한다(충/방전 스케줄 변경 단계, S800). 전력망(100)을 통해 충전해야 할 전력량은 신재생 에너지 발전 설비(200)로부터 발전되는 발전량(kW)에 잔여 부족 전력량(D1)을 시간으로 나누어 계산할 수 있다(신재생 에너지 발전량 + D1/1hr). 계산된 값을 참조하여 배터리(310)의 방전 시간 전까지 신재생 에너지 및 전력망(100)에서 공급된 전력을 이용해 배터리(310)를 충전한다(S900).
그러나 전력망(100)으로부터 공급되는 전력으로 배터리(310)를 충전하는 시간이 요금이 최저 부하대 요금이 부과되는 시간이 아니므로, 배터리(310)의 충전(S900) 이전에 전력망(100)으로부터 공급되는 전력으로 배터리(310)를 충전할지의 여부를 결정하도록 관리자 또는 서버로 의사 결정 요청을 할 수 있다(S850).
서버에는 배터리(310)의 잔량에 따라 전력망(100)을 통한 배터리(310)의 충전 여부가 미리 데어터화되어 저장될 수도 있고, 관리자가 상황에 따라 직접 판단하여 S900 단계의 진행 여부를 결정할 수 있다.
배터리(310)의 충전 완료 후(S700, S900), 배터리(310)의 방전은 완충 상태에서 이루어지며, 배터리(310)가 방전되는 피크 시간 대에는 배터리(310)에 충전된 전력 및 신재생 에너지 설비에 의해 생산된 전력, 전력망(100)에서 공급되는 전력을 모두 전력 부하(400)로 공급하게 된다(S1000). 경우에 따라 전력 부하(400)로 공급하고 남는 전력은 전력망(100)으로 공급해 판매하여 수익을 창출하거나, 배터리(310)의 잔여 전력으로 유지할 수 있다.
전술한 바와 같이, 신재생 에너지 발전 시스템의 특성에 따른 배터리의 충/방전량 및 시간 등을 고려하여 에너지 저장 시스템을 운영함으로써 에너지의 저장 및 소비의 효율성이 향상되는 효과가 있다.
본 발명은 신재생 에너지 및 배터리의 특성에 따른 효율적인 신재생 에너지 연계형 ESS의 전력 관리 방법에 적용할 수 있다.

Claims (17)

  1. 전력을 소비하는 전력 부하에 전력을 공급하는 외부 전력망과 연결되어 충전되는 배터리, 배터리의 충전 또는 방전 관리를 위한 BMS(Battery Management System), 전력 공급 및 관리를 위한 PCS(Power Conditioning System)를 구비한 에너지 저장 설비와, 신재생 에너지로부터 전기 에너지를 생산하는 복수의 신재생 에너지 발전 설비를 포함하는 신재생 에너지 연계형 에너지 저장 시스템(ESS)의 전력 관리 방법에 있어서,
    상기 PCS에서의 전력 관리 방법은,
    상기 전력 부하의 예측 소비전력과, 상기 신재생 에너지 발전 설비의 예측 생산 전력을 산정하는 단계(S100)와,
    상기 신재생 에너지 발전 설비의 종류 및 특성 정보를 저장하는 단계(S200)와,
    상기 배터리의 방전 전까지 생산될 수 있는 상기 신재생 에너지 발전 설비의 생산 전력을 예측하는 단계(S300)와,
    상기 배터리의 방전 이전 충전 필요량을 산출하는 단계(S400)와,
    상기 배터리의 충전 필요량에 따른 전력 부족량이 설정값 이상인지 판단하는 단계(S500)와,
    상기 전력 부족량이 설정값 보다 작으면 상기 신재생 에너지 발전 설비의 상기 생산 전력으로 상기 배터리를 완충할 수 있는지 판단하는 단계(S600)와,
    상기 S600 단계의 결과에 따라 상기 배터리의 충/방전 스케줄을 변경하는 단계(S800)를 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  2. 제1항에 있어서,
    상기 S100 단계 이후에 상기 배터리의 충/방전 스케줄 설정 단계(S150)를 더 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  3. 제2항에 있어서,
    상기 S500 단계에서 상기 전력 부족량이 상기 설정값 이상이면 상기 S150 단계의 충/방전 스케줄을 유지하는 단계(S510)를 더 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  4. 제3항에 있어서,
    상기 S510 단계 이후에 상기 충/방전 스케줄 대로 상기 배터리를 충전하는 단계(S700)를 더 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  5. 제4항에 있어서,
    상기 S600 단계에서 상기 신재생 에너지 발전 설비의 상기 생산 전력으로 상기 배터리를 완충할 수 있으면 상기 S510 단계를 실시하는 것을 특징으로 하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  6. 제5항에 있어서,
    상기 S600 단계에서 상기 신재생 에너지 발전 설비의 상기 생산 전력으로 상기 배터리를 완충할 수 없으면 상기 S150 단계의 충/방전 스케줄을 변경하는 단계(S800)를 더 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  7. 제6항에 있어서,
    상기 S800 단계 이후에 상기 신재생 에너지 발전 설비 및 상기 전력망에서 공급된 전력으로 상기 배터리를 충전하는 단계(S900)를 더 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  8. 제7항에 있어서,
    상기 S900 단계 이전에 상기 전력망에서 공급된 전력으로 상기 배터리를 충전할지의 여부를 결정하는 단계(S850)를 더 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  9. 제4항에 있어서,
    상기 S700 단계에서 상기 배터리의 충전은 상기 신재생 에너지 발전 설비 및 상기 전력망에서 공급되는 전력 의해 이루어지는 것을 특징으로 하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  10. 제9항에 있어서,
    상기 S700 단계에서 상기 전력망에서 공급되는 전력에 의한 충전은 최저 부하대 요금이 부과되는 시간에 이루어지는 것을 특징으로 하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  11. 제1항에 있어서,
    상기 S100 단계에서 상기 신재생 에너지 발전 설비의 예측 생산 전력은 미리 설정된 기간 동안의 생산 전력 평균값으로 산정되는 것을 특징으로 하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  12. 제11항에 있어서,
    상기 S700 단계에서 상기 배터리가 완충되면 상기 배터리 충/방전 스케줄에 따라 상기 배터리가 방전되는 단계(S1000)를 더 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  13. 제11항에 있어서,
    상기 S900 단계에서 상기 배터리가 완충되면 상기 배터리 충/방전 스케줄에 따라 상기 배터리가 방전되는 단계(S1000)를 더 포함하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  14. 제9항에 있어서,
    상기 S700 단계에서 상기 전력망을 이용해 상기 배터리의 충전이 이루어지는 경우, 최저 부하대 요금이 적용되는 시간에 상기 배터리의 충전이 이루어지는 것을 특징으로 하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  15. 제1항에 있어서,
    상기 신재생 에너지 발전 설비는 태양광, 풍력, 조력, 바이오 매스 중 어느 하나의 신재생 에너지원을 이용한 발전 설비인 것을 특징으로 하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  16. 제1항에 있어서,
    상기 PCS는 외부 서버와의 통신 없이 상기 신재생 에너지 연계형 에너지 저장 시스템을 관리하는 것을 특징으로 하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
  17. 제1항에 있어서,
    상기 BMS는 외부 서버와의 통신 없이 상기 신재생 에너지 연계형 에너지 저장 시스템을 관리하는 것을 특징으로 하는 신재생 에너지 연계형 ESS의 전력 관리 방법.
PCT/KR2017/001243 2016-02-15 2017-02-05 신재생 에너지 연계형 ess의 전력 관리 방법 WO2017142241A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160017164A KR101834061B1 (ko) 2016-02-15 2016-02-15 신재생 에너지 연계형 ess의 전력 관리 방법
KR10-2016-0017164 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017142241A1 true WO2017142241A1 (ko) 2017-08-24

Family

ID=59561830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001243 WO2017142241A1 (ko) 2016-02-15 2017-02-05 신재생 에너지 연계형 ess의 전력 관리 방법

Country Status (3)

Country Link
US (1) US10193343B2 (ko)
KR (1) KR101834061B1 (ko)
WO (1) WO2017142241A1 (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11789415B2 (en) 2016-06-30 2023-10-17 Johnson Controls Tyco IP Holdings LLP Building HVAC system with multi-level model predictive control
US11669061B2 (en) 2016-06-30 2023-06-06 Johnson Controls Tyco IP Holdings LLP Variable refrigerant flow system with predictive control
US20180004171A1 (en) 2016-06-30 2018-01-04 Johnson Controls Technology Company Hvac system using model predictive control with distributed low-level airside optimization and airside power consumption model
WO2018005670A1 (en) 2016-06-30 2018-01-04 Johnson Controls Technology Company Variable refrigerant flow system with multi-level model predictive control
WO2018035236A1 (en) * 2016-08-16 2018-02-22 Helion Concepts, Inc. A hardware/software reconfigurable, intelligent and versatile electrical energy provisioning system for on-grid and off-grid applications
US10816235B2 (en) * 2017-04-27 2020-10-27 Johnson Controls Technology Company Building energy system with predictive control of battery and green energy resources
CN107732948A (zh) * 2017-10-17 2018-02-23 北京华泰美景科技发展有限公司 一种移动式储能电站系统
KR101843571B1 (ko) * 2017-12-26 2018-03-30 대영채비(주) 신재생 에너지와 연계된 전기자동차 충전시스템
KR102039703B1 (ko) * 2017-12-26 2019-11-01 김성두 충전 장치
WO2020060943A1 (en) * 2018-09-17 2020-03-26 Caban Systems, Inc. Systems and methods for energy storage and power distribution
KR101973527B1 (ko) * 2018-09-20 2019-04-30 주식회사 케이디티 태양광 및 배터리 융합형 전기 자동차의 충전 시스템
KR101973526B1 (ko) * 2018-09-20 2019-04-30 주식회사 케이디티 태양광 및 ess 조합형 전기 자동차의 충전 시스템
CN109492815B (zh) * 2018-11-15 2021-05-11 郑州大学 一种市场机制下面向电网的储能电站选址定容优化方法
KR102005218B1 (ko) 2019-03-28 2019-07-31 (주)제이에이치에너지 케이스 생성 기반 3차원 동적 계획법을 이용한 pv-ess 연계형 시스템의 운용방법
KR102251476B1 (ko) 2019-06-19 2021-05-13 두산중공업 주식회사 신재생 에너지와 연계된 에너지 저장 시스템의 용량을 산정하는 방법 및 이를 위한 장치
WO2021058071A1 (en) * 2019-09-23 2021-04-01 Vestas Wind Systems A/S Method of controlling a wind power plant
CN114946097A (zh) * 2020-01-23 2022-08-26 瑞典爱立信有限公司 使用通信网络的基础设施的电力网频率稳定
GB2592218B (en) * 2020-02-19 2022-06-22 Conductify Ltd A method for managing an energy system
JP7426278B2 (ja) 2020-03-31 2024-02-01 大和ハウス工業株式会社 電力供給システム
US11658486B2 (en) * 2020-05-15 2023-05-23 Honeywell International Inc. Energy control for energy storage systems
CN112350369B (zh) * 2020-10-20 2022-04-05 清华四川能源互联网研究院 光储充一体化电站能效评估方法
CN112488370B (zh) * 2020-11-20 2023-09-22 西安热工研究院有限公司 一种采用需求侧响应规划的储能优化方法
CN112736908A (zh) * 2020-12-28 2021-04-30 江苏晟能科技有限公司 一种多能协同优化配置规划方法
CN113471963B (zh) * 2021-06-23 2022-12-09 国网吉林省电力有限公司电力科学研究院 可再生能源氢能微网系统能量路由管理方法
WO2023038709A1 (en) * 2021-09-08 2023-03-16 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources
EP4399778A1 (en) 2021-09-08 2024-07-17 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources
US11404871B1 (en) 2021-09-08 2022-08-02 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources
KR102503382B1 (ko) 2021-09-30 2023-02-28 에너지기술서비스(주) 신재생 에너지 발전설비와 연계된 에너지 저장시스템의 관리방법
US20230387684A1 (en) * 2022-05-27 2023-11-30 B2U Storage Solutions Inc. Method and system for operation and usage of battery energy storage in a power grid
KR20240034382A (ko) 2022-09-07 2024-03-14 케빈랩 주식회사 기상예보 및 스마트팜 작물 특성에 따른 소비전력을 반영한 신재생 에너지 전력 사전 확보 시스템 및 방법
US11769218B1 (en) 2022-12-22 2023-09-26 8Me Nova, Llc Behind the meter flow control to separate renewable energy
KR102569939B1 (ko) * 2023-04-18 2023-08-23 주식회사 아이온커뮤니케이션즈 해상 양식장의 피해 저감을 위한 해상 인프라 관리 시스템 및 방법
KR102684052B1 (ko) * 2023-11-01 2024-07-16 비앤더블유이앤씨㈜ 신재생에너지 관리 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130034395A (ko) * 2011-09-28 2013-04-05 한국전력공사 피코 그리드의 전력사용 스케줄링 시스템 및 방법
KR20130138611A (ko) * 2012-06-11 2013-12-19 삼성에스디아이 주식회사 에너지 저장 시스템
KR20140067654A (ko) * 2012-11-27 2014-06-05 에스케이씨앤씨 주식회사 전력 관리 방법 및 시스템
KR101529294B1 (ko) * 2014-12-15 2015-06-19 주식회사 파워이십일 에너지 저장 장치를 제어하는 전력 관리 시스템
KR20150095601A (ko) * 2013-11-08 2015-08-21 한양대학교 에리카산학협력단 전력 관리 방법 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130034395A (ko) * 2011-09-28 2013-04-05 한국전력공사 피코 그리드의 전력사용 스케줄링 시스템 및 방법
KR20130138611A (ko) * 2012-06-11 2013-12-19 삼성에스디아이 주식회사 에너지 저장 시스템
KR20140067654A (ko) * 2012-11-27 2014-06-05 에스케이씨앤씨 주식회사 전력 관리 방법 및 시스템
KR20150095601A (ko) * 2013-11-08 2015-08-21 한양대학교 에리카산학협력단 전력 관리 방법 및 시스템
KR101529294B1 (ko) * 2014-12-15 2015-06-19 주식회사 파워이십일 에너지 저장 장치를 제어하는 전력 관리 시스템

Also Published As

Publication number Publication date
US10193343B2 (en) 2019-01-29
KR101834061B1 (ko) 2018-03-02
US20170237259A1 (en) 2017-08-17
KR20170095580A (ko) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2017142241A1 (ko) 신재생 에너지 연계형 ess의 전력 관리 방법
US8803362B2 (en) Standalone unit of a standalone power grid for communicating energy requests with another standalone unit
KR101478791B1 (ko) 전력 관리 방법 및 시스템
WO2017142218A1 (ko) 에너지 저장 시스템 및 시스템 운용 방법
Ricalde et al. Design of a smart grid management system with renewable energy generation
US9509149B2 (en) Power management system and management method
US20110082598A1 (en) Electrical Power Time Shifting
CN108233430B (zh) 一种计及系统能源波动性的交直流混合微网优化方法
JP7299201B2 (ja) 電力システム
KR102391449B1 (ko) 독립운전 시 수소설비가 있는 전력 커뮤니티를 위한 에너지 제어 시스템
JP5729764B2 (ja) 集合住宅電力システム及び制御装置
KR102503382B1 (ko) 신재생 에너지 발전설비와 연계된 에너지 저장시스템의 관리방법
CN112383086B (zh) 一种孤岛微电网日前能量-备用联合优化调度方法
JP2013038838A (ja) 集合住宅電力システム
JP6146624B1 (ja) エネルギーマネジメントシステム
CN104281984A (zh) 一种用于微电网经济运行的供电方法
WO2017204588A2 (ko) 태양광 발전 장치 관리 시스템, 태양광 발전 장치 관리 방법 및 컴퓨터 판독 가능 저장 매체
Zhang et al. Resilient energy management for residential communities under grid outages
Sakagami et al. Performance of a DC-based microgrid system in Okinawa
CN116544991A (zh) 一种考虑风电不确定性的风储联合优化调度方法
CN115912442A (zh) 一种用户侧光储优化配置及其盈亏平衡分析方法
KR20230016446A (ko) 에너지 저장 장치가 마련된 변전 시스템, 에너지 저장 장치 용량 산정 방법 및 이를 위한 제어 장치
Azizou et al. Unit commitment using dynamic programing for planning optimization and emission reduction
CN108808666A (zh) 一种能源互联网协同控制系统与控制方法
Bruno et al. Predictive Control Based Energy Management of a Residential Hybrid AC-DC Nanogrid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753402

Country of ref document: EP

Kind code of ref document: A1