WO2024096272A1 - 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 - Google Patents
전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 Download PDFInfo
- Publication number
- WO2024096272A1 WO2024096272A1 PCT/KR2023/012026 KR2023012026W WO2024096272A1 WO 2024096272 A1 WO2024096272 A1 WO 2024096272A1 KR 2023012026 W KR2023012026 W KR 2023012026W WO 2024096272 A1 WO2024096272 A1 WO 2024096272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric vehicle
- current
- charging
- charging current
- allowable
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000012544 monitoring process Methods 0.000 claims abstract description 7
- 230000008859 change Effects 0.000 claims description 67
- 238000004904 shortening Methods 0.000 claims description 22
- 230000007812 deficiency Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/62—Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/66—Data transfer between charging stations and vehicles
Definitions
- the present invention relates to a charging current control method for shortening the charging time of an electric vehicle, which can shorten the charging time of an electric vehicle and improve the charging efficiency of an electric vehicle charger.
- the present invention monitors the actual charging current of the electric vehicle and compares it with the reference current of the electric vehicle charger, adjusts the allowable charging current transmitted from the electric vehicle charger to the electric vehicle based on the comparison result, and adjusts the actual charging current of the electric vehicle and the actual charging current of the electric vehicle.
- a charging current control method that can shorten the charging time of an electric vehicle by repeating until the difference in the reference current of the electric vehicle charger is within the set value.
- the charging current control method for shortening the charging time of an electric vehicle of the present invention includes monitoring the charging voltage and the first actual charging current of the electric vehicle, and the first actual charging current of the electric vehicle is a reference current that can be supplied from an electric vehicle charger. Comparing, when the first actual charging current of the electric vehicle and the reference current of the electric vehicle charger are different, changing the first allowable charging current of the electric vehicle charger that supplies charging current to the electric vehicle by a predetermined value. A step of transmitting a second charging allowable current changed by the predetermined value to the electric vehicle, measuring a second actual charging current of the electric vehicle according to the second charging allowable current, and comparing it with the reference current. Includes.
- the step of changing the first allowable charging current by a predetermined value includes, when the first actual charging current of the electric vehicle is less than the reference current of the electric vehicle charger, changing the first allowable charging current of the electric vehicle charger by a predetermined value. It may include an increasing step.
- the step of changing the first allowable charging current by a predetermined value includes, when the first actual charging current of the electric vehicle is greater than the reference current of the electric vehicle charger, changing the first allowable charging current of the electric vehicle charger by a predetermined value. It may include a reducing step.
- the step of measuring the second actual charging current of the electric vehicle and comparing it with the reference current includes calculating a first current change amount that is the difference between the first actual charging current and the second actual charging current, and allowing the first charging. It may include calculating a second current change amount, which is the difference between the current and the second charge allowable current, and calculating a third charge allowable current using the first change amount and the second change amount.
- the step of calculating the third allowable charging current includes calculating a current difference value between the reference current and the second actual charging current, and dividing the first amount of current change in the actual charging current by the second amount of current change in the allowable charging current. It may include calculating the current change ratio.
- the step of calculating the third allowable charging current includes dividing the current difference value by the current change amount ratio to derive a third current change amount, and adding the third current change amount with the second allowable charging current to obtain a third allowable charge current. It may further include a step of calculating .
- the charging voltage of the electric vehicle may be within a preset rated voltage.
- the allowable charging current of the electric vehicle charger includes the current value of the allowable charging current transmitted from the electric vehicle charger to the electric vehicle, and the electric vehicle is disconnected from the electric vehicle charger in excess of the current value of the allowable charging current. Charging current may not be drawn.
- an electric vehicle charger monitors the charging voltage and the first actual charging current of the electric vehicle, and supplies charging current to the electric vehicle by comparing the first actual charging current of the electric vehicle with the reference current of the electric vehicle charger.
- the first allowable charging current is changed by a predetermined value, and the second allowable charging current changed by the predetermined value is transmitted to the electric vehicle, and then the second actual charging current of the electric vehicle is changed to a reference current that is the maximum current that the electric vehicle can supply.
- the present invention controls the allowable charging current of the electric vehicle charger when the charging current charged in the electric vehicle does not reach the reference current that can be supplied by the electric vehicle charger, thereby controlling the difference between the actual charging current of the electric vehicle and the reference current of the electric vehicle charger. By minimizing , it provides an environment that improves the charging efficiency of electric vehicle chargers and shortens the charging time of electric vehicles.
- Figure 1 is a diagram showing the schematic configuration of a charging current control system for shortening the charging time of an electric vehicle according to an embodiment of the present invention.
- FIG. 2 is a diagram briefly illustrating the configuration of a charging current control device for shortening the charging time of an electric vehicle according to an embodiment of the present invention.
- Figure 3 briefly shows the process of charging an electric vehicle by comparing the actual charging current of the electric vehicle and the reference current of the electric vehicle charger according to an embodiment of the present invention, and changing the allowable charging current of the electric vehicle charger according to the comparison result. This is a flow chart.
- Figure 4 is a flow chart briefly illustrating the process of changing the allowable charging current of the electric vehicle charger by comparing the actual charging current of the electric vehicle and the reference current of the electric vehicle charger according to an embodiment of the present invention.
- Figure 5 changes the allowable charging current of the electric vehicle charger by comparing the actual charging current of the electric vehicle and the reference current of the electric vehicle charger according to an embodiment of the present invention, and shows the current change amount of the actual charging current and the current of the allowable charging current. This is a flow chart that briefly shows the process of deriving the optimal charging current using the change amount.
- Figure 6 is a diagram illustrating an example of controlling the allowable charging current of an electric vehicle charger so that the actual charging current of the electric vehicle is close to the reference current of the electric vehicle charger according to an embodiment of the present invention.
- FIGS. 1 to 6 a charging current control method for shortening the charging time of an electric vehicle according to an embodiment of the present invention will be described in detail.
- FIG. 1 is a diagram showing the schematic configuration of a charging current control system for shortening the charging time of an electric vehicle according to an embodiment of the present invention.
- the charging current control system 10 for shortening the charging time of an electric vehicle only shows a schematic configuration necessary for explanation according to an embodiment of the present invention and is not limited to this configuration.
- the charging current control system 10 for shortening the charging time of an electric vehicle monitors the actual charging current of the electric vehicle 30 and sets the standard for the electric vehicle charger 20. It includes a system that can shorten the charging time of the electric vehicle 30 by comparing it with the current and adjusting the allowable charging current delivered from the electric vehicle charger 20 to the electric vehicle 30.
- the electric vehicle charger 20 applied voltage and current within a normal range to the electric vehicle 30, but the actual charging current charged in the electric vehicle 30 is the reference current that can be supplied by the electric vehicle charger 20. may not reach.
- the charging current decreases in proportion to the voltage, and generally, a voltage of less than 220V may be applied due to environmental factors such as line condition and temperature.
- the electric vehicle 30 draws a current that is artificially lower than the allowable charging current sent from the electric vehicle charger 20, and the degree of this may vary depending on the vehicle type.
- the charging current control device 100 for shortening the charging time of the electric vehicle monitors the charging voltage and the first actual charging current of the electric vehicle 30, and monitors the charging voltage and first actual charging current of the electric vehicle 30. After comparing the first actual charging current with the reference current that can be supplied from the electric vehicle charger 20, if the first actual charging current of the electric vehicle 30 and the reference current of the electric vehicle charger 20 are different, The first allowable charging current of the electric vehicle charger 20, which supplies charging current to the electric vehicle 30, can be changed by a predetermined value.
- the charging current control device 100 for shortening the charging time of an electric vehicle controls the allowable charging current of the electric vehicle charger 20 to match the actual charging current and electricity of the electric vehicle 30. By minimizing the difference between the reference currents of the car charger 20, the charging time of the electric car 30 can be shortened.
- the charging current control device 100 for shortening the charging time of an electric vehicle improves the convenience of users using the electric vehicle charger 20 by shortening the charging time of the electric vehicle 30. It can be increased and provides an environment that can contribute to improving the distribution of eco-friendly electric vehicles.
- FIG. 2 is a diagram briefly illustrating the configuration of a charging current control device for shortening the charging time of an electric vehicle according to an embodiment of the present invention.
- the charging current control device 100 only shows a schematic configuration necessary for explanation according to an embodiment of the present invention and is not limited to this configuration.
- the charging current control device 100 includes a control module 110, a monitoring module 120, a current comparison module 130, a current calculation module 140, and a charging allowance. It includes a current control module 150 and a communication module 160.
- the control module 110 monitors the charging voltage and the first actual charging current of the electric vehicle 30, and when the charging voltage of the electric vehicle 30 is within the preset rated voltage, the first actual charging current of the electric vehicle 30 is monitored.
- the actual charging current is compared with the reference current that can be supplied from the electric vehicle charger 20, and as a result of the comparison, if the first actual charging current of the electric vehicle 30 and the reference current of the electric vehicle charger 20 are different, the electric vehicle charger 20
- the operation of each part can be controlled to change the first allowable charging current of the electric vehicle charger 20, which supplies charging current to the vehicle 30, by a predetermined value.
- control module 110 transmits a second allowable charging current changed by a predetermined value to the electric vehicle 30, and generates a second actual charging current of the electric vehicle 30 according to the second allowable charging current.
- the operation of each part can be controlled to derive the optimal charging current that can shorten the charging time of the electric vehicle 30.
- the monitoring module 120 monitors the actual charging voltage and first actual charging current of the electric vehicle 30.
- the actual charging current includes the actual current value transmitted from the electric vehicle charger 20 to the electric vehicle 30, and is a value obtained by measuring the charging power within the electric vehicle charger 20 or the electric vehicle 30. It can be included.
- the current comparison module 130 may compare the first actual charging current of the electric vehicle 30 with a reference current that can be supplied from the electric vehicle charger 20.
- the reference current may include a current value that can be supplied by the electric vehicle charger.
- the current comparison module 130 may include a comparison unit 132 according to an embodiment of the present invention.
- the comparison unit 132 may compare the first actual charging current of the electric vehicle 30 according to the first allowable charging current of the electric vehicle charger 20 with a reference current that can be supplied by the electric vehicle charger 20.
- comparison unit 132 may measure the second actual charging current of the electric vehicle 30 according to the second allowable charging current of the electric vehicle charger 20 and compare it with the reference current.
- the allowable charging current may include a current value of the allowable charging current transmitted from the electric vehicle charger 20 to the electric vehicle 30. Additionally, the electric vehicle 30 cannot draw charging current from the electric vehicle charger 20 because it exceeds the current value of the allowable charging current.
- the current calculation module 140 calculates a first current change amount that is the difference between the first actual charging current and the second actual charging current, and a second current that is the difference between the first allowable charging current and the second allowable charging current. The amount of change can be calculated. Additionally, the current calculation module 140 may calculate a third allowable charging current using the first change amount and the second change amount.
- the current calculation module 140 may calculate a current difference value between the reference current and the second actual charging current.
- the current calculation module 140 divides the first current change amount of the actual charging current measured in the electric vehicle 30 by the second current change amount of the charging allowable current provided by the electric vehicle charger 20 to obtain a current change ratio. It can be calculated.
- the current calculation module 140 divides the current difference value by the current change amount ratio to derive a third current change amount, and adds the third current change amount with the second charge allowable current to obtain a third charge allowable current. It can be derived.
- the current calculation module 140 may include a calculation unit 142 according to an embodiment of the present invention.
- the calculation unit 142 calculates a first current change amount that is the difference between the first actual charging current and the second actual charging current, and a second current change amount that is the difference between the first allowable charge current and the second allowable charge current. It can be calculated. Additionally, the calculation unit 142 may calculate a current difference value between the reference current and the second actual charging current.
- the calculation unit 142 may calculate the current change ratio by dividing the first current change amount of the actual charging current measured by the electric vehicle 30 by the second current change amount of the charging allowable current provided by the electric vehicle charger 20. there is.
- calculation unit 142 may derive a third current change amount by dividing the current difference value by the current change amount ratio, and calculate the third allowable charge current by adding the third amount of current change and the second allowable charge current. there is.
- the charging allowable current control module 150 The allowable charging current of the electric vehicle charger 20, which supplies charging current to the electric vehicle, can be changed from the first allowable charge current to the allowable second charge current or third allowable charge current calculated by the current calculation module 140. there is.
- the charging allowable current control module 150 adjusts the first allowable charging current of the electric vehicle charger to a predetermined value. It can also be increased by as much.
- the charging allowable current control module 150 controls the first allowable charging current of the electric vehicle charger 20. It can also be reduced by a predetermined value.
- the communication module 160 can transmit and receive various data with the electric vehicle charger 20 and the electric vehicle 30.
- the communication module 160 may receive the first to third actual charging currents of the electric vehicle 30 from the electric vehicle 30 .
- the communication module 160 may transmit the first allowable charging current to the third charging current to the electric vehicle charger 20 or the electric vehicle 30.
- the communication module 160 transmits the allowable charging current changed by a predetermined value to the electric vehicle charger 20 or the electric vehicle 30, and accordingly, the actual charging current measured by the electric vehicle 30 Can be transmitted to the electric vehicle charger 20.
- the charging current control device 100 calculates the optimal charging allowable current of the electric vehicle charger 20 according to the actual charging current of the electric vehicle 30 and operates the electric vehicle charger 20. (20) and the electric vehicle 30, and repeat the above steps until the difference between the actual charging current of the electric vehicle 30 and the reference current of the electric vehicle charger 20 is within the set value. An environment that can shorten the charging time of the car 30 is provided.
- Figure 3 briefly shows the process of charging an electric vehicle by comparing the actual charging current of the electric vehicle and the reference current of the electric vehicle charger according to an embodiment of the present invention, and changing the allowable charging current of the electric vehicle charger according to the comparison result.
- This is a flow chart. At this time, the following flowchart is described using the same reference numerals in connection with the configuration of FIGS. 1 and 2.
- the charging current control device 100 can monitor the charging voltage and first actual charging current of the electric vehicle according to the first allowable current of the electric vehicle charger (S110 ).
- the charging current control device 100 can compare the first actual charging current of the electric vehicle with a reference current that can be supplied from the electric vehicle charger (S120).
- the charging current control device 100 is configured to supply charging current to the electric vehicle when the first actual charging current of the electric vehicle is different from the reference current of the electric vehicle charger.
- the second allowable charging current of the car charger can be calculated, and the calculated second allowable charging current can be transmitted to the electric car charger or the electric car (S130).
- the charging current control device 100 may remeasure the second actual charging current of the electric vehicle according to the second allowable charging current and compare it with the reference current.
- the charging current control device 100 when the second actual charging current of the electric vehicle is different from the reference current of the electric vehicle charger, the charging current control device 100 according to an embodiment of the present invention provides the first actual charging current and the second actual charging current.
- the first current change amount which is the difference between the charging currents
- the second current change amount which is the difference between the first allowable charging current and the second allowable charging current
- the charging current control device 100 can calculate the optimal third allowable charging current using the first change amount and the second change amount (S150).
- the charging current control device 100 calculates the current difference value between the reference current and the second actual charging current, and uses the first current change in the actual charging current as the second amount of change in the allowable charging current. You can calculate the current change ratio by dividing it by the current change amount.
- the charging current control device 100 divides the current difference value by the current change amount ratio to derive a third current change amount, and sums the third current change amount with the second charging allowable current.
- the third allowable charging current can be calculated.
- the charging current control device 100 can shorten the charging time of the electric vehicle by transmitting the third allowable charging current to the electric vehicle charger or the electric vehicle (S160).
- FIGS. 1 and 2 are flow charts briefly illustrating the process of changing the allowable charging current of the electric vehicle charger by comparing the actual charging current of the electric vehicle and the reference current of the electric vehicle charger according to an embodiment of the present invention. At this time, the following flowchart is described using the same reference numerals in connection with the configuration of FIGS. 1 and 2.
- the charging current control device 100 can monitor the charging voltage of the electric vehicle according to the allowable charging current of the electric vehicle charger when charging of the electric vehicle begins (S202 and S204).
- the charging current control device 100 provides the actual charging current of the electric vehicle according to the allowable charging current of the electric vehicle charger when the charging voltage measured by the metering unit of the electric vehicle is operating within the rated voltage. can be monitored (S206 and S208).
- the charging current control device 100 is configured to adjust the actual charging current and the reference current when the actual charging current of the electric vehicle is less than or equal to the reference current of the electric vehicle charger and is outside the preset reference current range. can be compared (S210).
- the charging current control device 100 increases the allowable charging current of the electric vehicle charger by a certain amount if the actual charging current is less than the reference current. Otherwise, the charging current of the electric vehicle charger is increased by a certain amount.
- the allowable charging current can be controlled to decrease by a certain amount (S212 and S214).
- the charging current control device 100 transmits the changed charging allowable current to the electric vehicle or electric vehicle charger, and the actual charging current of the electric vehicle is within the reference current range that can be supplied by the electric vehicle charger. By repeatedly controlling charging at , it provides an environment that can shorten the charging time of electric vehicles.
- Figure 5 changes the allowable charging current of the electric vehicle charger by comparing the actual charging current of the electric vehicle and the reference current of the electric vehicle charger according to an embodiment of the present invention, and shows the current change amount of the actual charging current and the current of the allowable charging current.
- This is a flowchart that briefly illustrates the process of deriving the optimal charging allowable current using the change amount. At this time, the following flowchart is described using the same reference numerals in connection with the configuration of FIGS. 1 and 2.
- the charging current control device 100 monitors the actual charging voltage and actual charging current of the electric vehicle according to the allowable charging current of the electric vehicle charger. You can (S302 and S304).
- the charging current control device 100 adjusts the actual charging current of the electric vehicle to the reference current of the electric vehicle charger. Below, you can monitor whether the current exceeds the reference current range (S306 and S308).
- the charging current control device 100 adjusts the allowable charging current of the electric vehicle charger by a certain amount if the actual charging current is less than the reference current. Otherwise, the allowable charging current of the electric vehicle charger can be controlled to decrease by a certain amount (S310 to S314).
- the charging current control device 100 calculates the first current change amount of the actual charging current using the actual charging current measured in the metering unit of the electric vehicle, and uses this to allow optimal charging. Current can be calculated (S316 to S318).
- the charging current control device 100 calculates the first current change amount, which is the difference between the first actual charging current and the second actual charging current, and the first allowable charging current.
- the second current change amount which is the difference between and the second charging allowable current, can be calculated.
- the charging current control device 100 may calculate a third allowable charging current using the first change amount and the second change amount.
- the charging current control device 100 calculates a current difference value between the reference current and the second actual charging current, and uses the first current change in the actual charging current as the second current change in the allowable charging current. You can calculate the current change ratio by dividing it by the current change amount. In addition, the charging current control device 100 according to an embodiment of the present invention divides the current difference value by the current change amount ratio to derive a third current change amount, and sums the third current change amount with the second charging allowable current. Thus, the third allowable charging current can be calculated.
- the charging current control device 100 transmits the changed charging allowable current to the electric vehicle or electric vehicle charger, and the actual charging current of the electric vehicle is within the reference current range that can be supplied by the electric vehicle charger. By repeatedly controlling charging at , it provides an environment that can shorten the charging time of electric vehicles.
- Figure 6 is a diagram illustrating an example of controlling the allowable charging current of an electric vehicle charger so that the actual charging current of the electric vehicle is close to the reference current of the electric vehicle charger according to an embodiment of the present invention.
- the allowable charging current of the electric vehicle charger is equal to the reference current and the actual charging current of the electric vehicle does not exceed the reference current, such as in the section t0 to t1, the actual charging current of the electric vehicle is smaller than the reference current.
- the charging speed of electric vehicles may be slow.
- the charging current control device 100 can monitor the actual charging current of the electric vehicle and control the allowable charging current transmitted from the electric vehicle charger when the electric vehicle is charged below the reference current.
- the charging current control device 100 controls the actual charging current of the electric vehicle to be close to the reference current by gradually increasing the allowable charging current, as in the t1 to t2 section. can do.
- the charging current control device 100 sets the allowable charging current of the electric vehicle charger higher than the reference current, as in the section t2 to t3, so that the actual actual charging current of the electric vehicle It can be charged at the reference current, which is the maximum current that can be supplied by the charger.
- the charging current control method for shortening the charging time of an electric vehicle monitors the charging voltage and the first actual charging current of the electric vehicle, and monitors the first actual charging current of the electric vehicle and the first actual charging current of the electric vehicle.
- the first allowable charging current of the electric vehicle charger that supplies charging current to the electric vehicle is changed by a predetermined value, and the second allowable charging current changed by the predetermined value is transmitted to the electric vehicle and then Second, by changing the actual charging current to charge the electric vehicle with the reference current, which is the maximum current that the electric vehicle charger can supply, an environment that can effectively shorten the charging time of the electric vehicle and increase user convenience when using the electric vehicle charger. provides.
- the present invention controls the allowable charging current of the electric vehicle charger when the charging current charged in the electric vehicle does not reach the reference current that can be supplied by the electric vehicle charger, thereby controlling the difference between the actual charging current of the electric vehicle and the reference current of the electric vehicle charger. By minimizing , it provides an environment that improves the charging efficiency of electric vehicle chargers and shortens the charging time of electric vehicles.
- the embodiments of the present invention described above are not only implemented through devices and methods, but can also be implemented through programs that implement functions corresponding to the configurations of the embodiments of the present invention or recording media on which the programs are recorded. These recording media can be executed not only on servers but also on user terminals.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 발명에 따른 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법은 전기자동차의 충전 전압 및 제1 실제 충전 전류를 모니터링하는 단계, 상기 전기자동차의 제1 실제 충전 전류를 전기자동차 충전기에서 공급 가능한 기준 전류와 비교하는 단계, 상기 전기자동차의 제1 실제 충전 전류와 상기 전기자동차 충전기의 기준 전류가 상이한 경우, 상기 전기자동차에 충전 전류를 공급하는 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 변화시키는 단계, 그리고 상기 소정값 만큼 변화된 제2 충전 허용 전류를 상기 전기자동차에 전송하고, 상기 제2 충전 허용 전류에 따른 상기 전기자동차의 제2 실제 충전 전류를 측정하여 상기 기준 전류와 비교하는 단계를 포함한다. 이를 통해서, 본 발명은 전기자동차의 충전 시간을 단축시키고, 전기자동차 충전기의 충전 효율을 향상시켜 충전시설 부족에 따른 문제를 해결할 수 있는 효과를 제공한다.
Description
본 발명은 전기자동차의 충전 시간을 단축시키고 전기자동차 충전기의 충전 효율을 향상시킬 수 있는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 에 관한 것이다.
최근 환경문제가 지속적으로 대두되고 있는 추세에서 탄소중립 실현 정책과 대기 환경 오염에 대한 범국민적인 인식증가 및 고유가에 따라 전기자동차에 대한 수요가 급격히 증대되고 있는 상황이다.
또한, 최근에는 전기자동차의 수요 증대에 따라 전기자동차의 충전기 보급 또한 급격하게 증가하고 있다.
하지만, 최근에는 전기자동차의 베터리 용량이 커졌고 이로 인해서 전기자동차의 충전 시간이 더욱 길어지는 문제점이 발생하고 있다. 그리고, 최근에는 전기자동차의 충전 시간을 단축하기 위해 전기자동차 충전기의 공급 전력 용량을 증가 시키고 있으나, 차종별로 다른 충전전력의 차이로 인해서 공급 전력의 100%를 활용하지 못하고 있는 실정이다.
이로 인해서 전기자동차의 충전 시간이 길어짐에 따라 충전기의 점유 시간이 증가하여 이웃 간에 불화가 발생하고, 충전사업자 입장에서도 전기자동차 충전기의 점유시간 증가에 따라 충전 수익률이 감소하는 어려움이 있다.
따라서, 최근에는 전기 자동차의 충전 시간을 단축할 수 있는 방안이 필요한 실정이다.
이 배경기술 부분에 기재된 사항은 발명의 배경에 대한 이해를 증진하기 위하여 작성된 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.
본 발명은 전기자동차의 실제 충전 전류를 모니터링하여 전기자동차 충전기의 기준 전류와 비교하고, 비교 결과를 기초로 전기자동차 충전기에서 전기자동차로 전달하는 충전 허용 전류를 조절하며, 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류의 차이가 설정값 이내가 될 때까지 반복하여 전기자동차의 충전 시간을 단축시킬 수 있는 충전전류 제어 방법을 제안하고자 한다.
본 발명의 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법은 전기자동차의 충전 전압 및 제1 실제 충전 전류를 모니터링하는 단계, 상기 전기자동차의 제1 실제 충전 전류를 전기자동차 충전기에서 공급 가능한 기준 전류와 비교하는 단계, 상기 전기자동차의 제1 실제 충전 전류와 상기 전기자동차 충전기의 기준 전류가 상이한 경우, 상기 전기자동차에 충전 전류를 공급하는 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 변화시키는 단계, 그리고 상기 소정값 만큼 변화된 제2 충전 허용 전류를 상기 전기자동차에 전송하고, 상기 제2 충전 허용 전류에 따른 상기 전기자동차의 제2 실제 충전 전류를 측정하여 상기 기준 전류와 비교하는 단계를 포함한다.
상기 제1 충전 허용 전류를 소정값 만큼 변화시키는 단계는, 상기 전기자동차의 제1 실제 충전 전류가 상기 전기자동차 충전기의 기준 전류 보다 작은 경우, 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 증가시키는 단계를 포함할 수 있다.
상기 제1 충전 허용 전류를 소정값 만큼 변화시키는 단계는, 상기 전기자동차의 제1 실제 충전 전류가 상기 전기자동차 충전기의 기준 전류 보다 큰 경우, 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 감소시키는 단계를 포함할 수 있다.
상기 전기자동차의 제2 실제 충전 전류를 측정하여 상기 기준 전류와 비교하는 단계는, 상기 제1 실제 충전 전류와 상기 제2 실제 충전 전류의 차이인 제1 전류 변화량을 계산하고, 상기 제1 충전 허용 전류와 제2 충전 허용 전류의 차이인 제2 전류 변화량을 계산하며, 상기 제1 변화량과 상기 제2 변화량을 이용하여 제3 충전 허용 전류를 연산하는 단계를 포함할 수 있다.
상기 제3 충전 허용 전류를 연산하는 단계는, 상기 기준 전류와 제2 실제 충전 전류의 전류 차이값을 계산하는 단계, 그리고 실제 충전 전류의 제1 전류 변화량을 충전 허용 전류의 제2 전류 변화량으로 나누어 전류 변화량비를 계산하는 단계를 포함할 수 있다.
상기 제3 충전 허용 전류를 연산하는 단계는, 상기 전류 차이값을 상기 전류 변화량비로 나누어 제3 전류 변화량을 도출하며, 상기 제3 전류 변화량을 상기 제2 충전 허용 전류와 합산하여 제3 충전 허용 전류를 연산하는 단계를 더 포함할 수 있다.
상기 전기자동차 충전기의 상기 제3 충전 허용 전류를 상기 전기자동차에 전송하고, 상기 전기자동차의 실제 충전 전류와 상기 전기자동차 충전기의 기준 전류의 차이가 설정값 이내가 될 때까지 상기 단계들을 반복하는 단계를 더 포함할 수 있다.
상기 충전 전압 및 제1 실제 충전 전류를 모니터링하는 단계는, 상기 전기자동차의 충전 전압이 기설정된 정격 전압 이내일 수 있다.
상기 전기자동차 충전기의 충전 허용 전류는, 상기 전기자동차 충전기에서 상기 전기자동차로 전달하는 충전 허용 전류의 전류값을 포함하며, 상기 전기 자동차는 상기 충전 허용 전류의 전류값을 초과하여 상기 전기자동차 충전기로부터 충전 전류를 인출하지 못할 수 있다.
본 발명에 따르면, 전기자동차의 충전 전압 및 제1 실제 충전 전류를 모니터링하고, 전기자동차의 제1 실제 충전 전류와 전기자동차 충전기의 기준 전류를 비교하여 전기자동차에 충전 전류를 공급하는 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 변화시키며, 소정값 만큼 변화된 제2 충전 허용 전류를 전기자동차에 전송한 후 전기자동차의 제2 실제 충전 전류를 변화시켜 전기자동차가 공급 가능한 최대 전류인 기준 전류로 전기자동차를 충전시킴으로써, 전기자동차의 충전 시간을 효과적으로 단축시키고, 전기자동차 충전기를 사용하는 사용자 편의를 증대시킬 수 있는 환경을 제공한다.
또한, 본 발명은 전기자동차에서 충전되는 충전 전류가 전기자동차 충전기에서 공급 가능한 기준 전류에 미치지 못할 때 전기자동차 충전기의 충전 허용 전류를 제어하여 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류의 차이를 최소화함으로써, 전기자동차 충전기의 충전 효율을 향상시키고 전기자동차의 충전 시간을 단축할 수 있는 환경을 제공한다.
도 1은 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전전류 제어 시스템의 개략적인 구성을 나타낸 도면이다.
도 2는 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전 전류 제어 장치의 구성을 간략히 도시한 도면이다.
도 3은 본 발명의 한 실시예에 따라 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류를 비교하고, 비교 결과에 따라 전기자동차 충전기의 충전 허용 전류를 변화시켜 전기자동차를 충전하는 과정을 간략히 도시한 흐름도이다.
도 4는 본 발명의 한 실시예에 따라 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류를 비교하여 전기자동차 충전기의 충전 허용 전류를 변화시키는 과정을 간략히 도시한 흐름도이다.
도 5는 본 발명의 한 실시예에 따라 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류를 비교하여 전기자동차 충전기의 충전 허용 전류를 변화시키고, 실제 충전 전류의 전류 변화량과 충전 허용 전류의 전류 변화량을 이용하여 최적의 충전 허용 전류를 도출하는 과정을 간략히 도시한 흐름도이다.
도 6은 본 발명의 한 실시예에 따라 전기자동차 충전기의 충전 허용 전류를 제어하여 전기자동차의 실제 충전 전류가 전기자동차 충전기의 기준 전류에 가깝게 충전되도록 제어하는 예를 도시한 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
이제 도 1 내지 도 6을 참고하여 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법에 대하여 상세하게 설명한다.
도 1은 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전전류 제어 시스템의 개략적인 구성을 나타낸 도면이다. 이때, 전기자동차의 충전 시간 단축을 위한 충전전류 제어 시스템(10)은 본 발명의 실시예에 따른 설명을 위해 필요한 개략적인 구성만을 도시할 뿐 이러한 구성에 국한되는 것은 아니다.
도 1을 참조하면, 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전전류 제어 시스템(10)은 전기자동차(30)의 실제 충전 전류를 모니터링하여 전기자동차 충전기(20)의 기준 전류와 비교하고, 전기자동차 충전기(20)에서 전기자동차(30)로 전달하는 충전 허용 전류를 조절하여 전기자동차(30)의 충전 시간을 단축시킬 수 있는 시스템을 포함한다.
예를 들어, 전기자동차 충전기(20)는 전기자동차(30)에 정상적인 범위 내의 전압 및 전류를 인가하였으나, 전기자동차(30)에서 충전되는 실제 충전 전류가 전기자동차 충전기(20)에서 공급 가능한 기준 전류에 미치지 못할 수 있다.
완속충전기의 경우, 입력 전원에 220V 미만의 전압이 인가되면 충전 전류가 전압에 비례하여 감소하고, 일반적으로 선로 상태, 온도 등의 환경적인 요인으로 220V 이하의 전압이 인가될 수 있다. 그리고, 전기자동차(30)는 전기자동차 충전기(20)에서 보내는 충전 허용 전류보다 인위적으로 낮추어 전류를 인출하고, 이는 차종별로 그 정도가 다를 수 있다.
이때, 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전 전류 제어 장치(100)는 전기자동차(30)의 충전 전압 및 제1 실제 충전 전류를 모니터링하고, 전기자동차(30)의 제1 실제 충전 전류를 전기자동차 충전기(20)에서 공급 가능한 기준 전류와 비교한 후, 상기 전기자동차(30)의 제1 실제 충전 전류와 상기 전기자동차 충전기(20)의 기준 전류가 상이한 경우, 상기 전기자동차(30)에 충전 전류를 공급하는 상기 전기자동차 충전기(20)의 제1 충전 허용 전류를 소정값 만큼 변화시킬 수 있다.
즉, 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전 전류 제어 장치(100)는 전기자동차 충전기(20)의 충전 허용 전류를 제어하여 전기자동차(30)의 실제 충전 전류와 전기자동차 충전기(20)의 기준 전류 간의 차이를 최소화 하여 전기자동차(30)의 충전 시간을 단축시킬 수 있다.
이를 통해서 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전 전류 제어 장치(100)는 전기자동차(30)의 충전 시간을 단축시켜 전기자동차 충전기(20)를 사용하는 사용자들의 편의를 증대시킬 수 있으며, 친환경 전기자동차 보급 향상에 기여할 수 있는 환경을 제공한다.
도 2는 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전 전류 제어 장치의 구성을 간략히 도시한 도면이다. 이때, 충전전류 제어 장치(100)는 본 발명의 실시예에 따른 설명을 위해 필요한 개략적인 구성만을 도시할 뿐 이러한 구성에 국한되는 것은 아니다.
도 2를 참조하면, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 제어 모듈(110), 모니터링 모듈(120), 전류 비교 모듈(130), 전류 연산 모듈(140), 충전 허용 전류 제어 모듈(150), 그리고 통신모듈(160)을 포함한다.
상기 제어 모듈(110)은 전기자동차(30)의 충전 전압 및 제1 실제 충전 전류를 모니터링하고, 전기자동차(30)의 충전 전압이 기설정된 정격 전압 이내인 경우에 전기자동차(30)의 제1 실제 충전 전류를 전기자동차 충전기(20)에서 공급 가능한 기준 전류와 비교하고, 비교 결과 상기 전기자동차(30)의 제1 실제 충전 전류와 상기 전기자동차 충전기(20)의 기준 전류가 상이한 경우, 상기 전기자동차(30)에 충전 전류를 공급하는 상기 전기자동차 충전기(20)의 제1 충전 허용 전류를 소정값 만큼 변화시킬 수 있도록 상기 각부의 동작을 제어할 수 있다.
또한, 상기 제어 모듈(110)은 소정값 만큼 변화된 제2 충전 허용 전류를 상기 전기자동차(30)에 전송하고, 상기 제2 충전 허용 전류에 따른 상기 전기자동차(30)의 제2 실제 충전 전류를 측정하는 과정을 반복하여 상기 전기자동차(30)의 충전 시간을 단축시킬 수 있는 최적의 충전 허용 전류를 도출할 수 있도록 상기 각부의 동작을 제어할 수 있다.
상기 모니터링 모듈(120)은 전기자동차(30)의 실제 충전 전압 및 제1 실제 충전 전류를 모니터링한다. 여기서, 실제 충전 전류는 전기자동차 충전기(20)에서 전기자동차(30)로 전송되는 실제 전류값을 포함하며, 전기자동차 충전기(20) 또는 전기자동차(30) 내에서 충전 전력량 계측을 통해 얻어진 값을 포함할 수 있다.
상기 전류 비교 모듈(130)은 상기 전기자동차(30)의 제1 실제 충전 전류를 전기자동차 충전기(20)에서 공급 가능한 기준 전류와 비교할 수 있다. 여기서, 기준 전류는 전기자동차 충전기가 공급 가능한 전류 값을 포함할 수 있다.
상기 전류 비교 모듈(130)은 본 발명의 한 실시예에 따라 비교부(132)를 포함할 수 있다.
상기 비교부(132)는 전기자동차 충전기(20)의 제1 충전 허용 전류에 따른 상기 전기자동차(30)의 제1 실제 충전 전류를 전기자동차 충전기(20)에서 공급 가능한 기준 전류와 비교할 수 있다.
또한, 비교부(132)는 전기자동차 충전기(20)의 상기 제2 충전 허용 전류에 따른 상기 전기자동차(30)의 제2 실제 충전 전류를 측정하여 상기 기준 전류와 비교할 수 있다.
여기서, 상기 충전 허용 전류는 상기 전기자동차 충전기(20)에서 상기 전기자동차(30)로 전달하는 충전 허용 전류의 전류값을 포함할 수 있다. 그리고, 상기 전기 자동차(30)는 상기 충전 허용 전류의 전류값을 초과하여 상기 전기자동차 충전기(20)로부터 충전 전류를 인출할 수 없다.
상기 전류 연산 모듈(140)은 상기 제1 실제 충전 전류와 상기 제2 실제 충전 전류의 차이인 제1 전류 변화량을 계산하고, 상기 제1 충전 허용 전류와 제2 충전 허용 전류의 차이인 제2 전류 변화량을 계산할 수 있다. 그리고, 상기 전류 연산 모듈(140)은 상기 제1 변화량과 상기 제2 변화량을 이용하여 제3 충전 허용 전류를 연산할 수 있다.
예를 들어, 상기 전류 연산 모듈(140)은 상기 기준 전류와 제2 실제 충전 전류의 전류 차이값을 계산할 수 있다. 그리고, 상기 전류 연산 모듈(140)은 전기자동차(30)에서 계측된 실제 충전 전류의 제1 전류 변화량을 전기자동차 충전기(20)에서 제공하는 충전 허용 전류의 제2 전류 변화량으로 나누어 전류 변화량비를 계산할 수 있다.
*그리고, 상기 전류 연산 모듈(140)은 상기 전류 차이값을 상기 전류 변화량비로 나누어 제3 전류 변화량을 도출하며, 상기 제3 전류 변화량을 상기 제2 충전 허용 전류와 합산하여 제3 충전 허용 전류를 도출할 수 있다.
상기 전류 연산 모듈(140)은 본 발명의 한 실시예에 따라 연산부(142)를 포함할 수 있다.
상기 연산부(142)는 상기 제1 실제 충전 전류와 상기 제2 실제 충전 전류의 차이인 제1 전류 변화량을 계산하고, 상기 제1 충전 허용 전류와 제2 충전 허용 전류의 차이인 제2 전류 변화량을 계산할 수 있다. 그리고, 상기 연산부(142)는 상기 기준 전류와 제2 실제 충전 전류의 전류 차이값을 계산할 수 있다.
그리고, 상기 연산부(142)는 전기자동차(30)에서 계측된 실제 충전 전류의 제1 전류 변화량을 전기자동차 충전기(20)에서 제공하는 충전 허용 전류의 제2 전류 변화량으로 나누어 전류 변화량비를 계산할 수 있다.
그리고, 상기 연산부(142)는 상기 전류 차이값을 상기 전류 변화량비로 나누어 제3 전류 변화량을 도출하며, 상기 제3 전류 변화량과 상기 제2 충전 허용 전류를 합산하여 제3 충전 허용 전류를 연산할 수 있다.
상기 전류 비교 모듈(130)의 비교 결과 상기 전기자동차(30)의 제1 실제 충전 전류와 상기 전기자동차 충전기(20)의 기준 전류가 상이한 경우, 상기 충전 허용 전류 제어 모듈(150)은 상기 전기자동차에 충전 전류를 공급하는 상기 전기자동차 충전기(20)의 충전 허용 전류를 상기 제1 충전 허용 전류에서 상기 전류 연산 모듈(140)에서 연산된 제2 충전 허용 전류 또는 제3 충전 허용 전류로 변화시킬 수 있다.
상기 충전 허용 전류 제어 모듈(150)은 상기 전기자동차(30)의 제1 실제 충전 전류가 상기 전기자동차 충전기(20)의 기준 전류 보다 작은 경우, 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 증가시킬 수도 있다.
또한, 상기 충전 허용 전류 제어 모듈(150)은 상기 전기자동차(30)의 제1 실제 충전 전류가 상기 전기자동차 충전기(20)의 기준 전류 보다 큰 경우, 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 감소시킬 수도 있다.
상기 통신모듈(160)은 전기자동차 충전기(20) 및 전기자동차(30)와 각종 데이터를 송수신 할 수 있다. 상기 통신모듈(160)은 상기 전기자동차(30)의 제1 실제 충전 전류 내지 제3 실제 충전 전류를 상기 전기자동차(30)로부터 수신할 수 있다. 그리고, 상기 통신 모듈(160)은 상기 제1 충전 허용 전류 내지 제3 충전 전류를 전기자동차 충전기(20) 또는 전기자동차(30)에 전송할 수 있다
예를 들어, 상기 통신모듈(160)은 소정값 만큼 변화된 충전 허용 전류를 상기 전기자동차 충전기(20) 또는 전기자동차(30)에 전송하고, 이에 따라 상기 전기자동차(30)에서 계측된 실제 충전 전류를 전기자동차 충전기(20)에 전달할 수 있다.
이와 같이, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 전기자동차(30)의 실제 충전 전류에 따른 상기 전기자동차 충전기(20)의 최적 충전 허용 전류를 연산하여 상기 전기자동차 충전기(20) 및 전기자동차(30)에 전송하고, 상기 전기자동차(30)의 실제 충전 전류와 상기 전기자동차 충전기(20)의 기준 전류의 차이가 설정값 이내가 될 때까지 상기 단계들을 반복하여 전기자동차(30)의 충전 시간을 단축시킬 수 있는 환경을 제공한다.
도 3은 본 발명의 한 실시예에 따라 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류를 비교하고, 비교 결과에 따라 전기자동차 충전기의 충전 허용 전류를 변화시켜 전기자동차를 충전하는 과정을 간략히 도시한 흐름도이다. 이때, 이하의 흐름도는 도 1 내지 도 2의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 3을 참조하면, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 전기자동차 충전기의 제1 허용 전류에 따른 전기자동차의 충전 전압 및 제1 실제 충전 전류를 모니터링할 수 있다(S110).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 전기자동차의 제1 실제 충전 전류를 전기자동차 충전기에서 공급 가능한 기준 전류와 비교할 수 있다(S120).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 전기자동차의 제1 실제 충전 전류가 상기 전기자동차 충전기의 기준 전류와 상이한 경우, 상기 전기자동차에 충전 전류를 공급하는 상기 전기자동차 충전기의 제2 충전 허용 전류를 연산하고, 연산된 제2 충전 허용 전류를 전기자동차 충전기 또는 전기자동차에 전송할 수 있다(S130).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 제2 충전 허용 전류에 따른 상기 전기자동차의 제2 실제 충전 전류를 재측정하여 상기 기준 전류와 비교할 수 있다.
또한, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 전기자동차의 제2 실제 충전 전류가 상기 전기자동차 충전기의 기준 전류와 상이한 경우, 상기 제1 실제 충전 전류와 상기 제2 실제 충전 전류의 차이인 제1 전류 변화량을 계산하고, 상기 제1 충전 허용 전류와 제2 충전 허용 전류의 차이인 제2 전류 변화량을 계산할 수 있다(S140).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 제1 변화량과 상기 제2 변화량을 이용하여 최적의 제3 충전 허용 전류를 연산할 수 있다(S150).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 기준 전류와 제2 실제 충전 전류의 전류 차이값을 계산하고, 실제 충전 전류의 제1 전류 변화량을 충전 허용 전류의 제2 전류 변화량으로 나누어 전류 변화량비를 계산할 수 있다.
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 전류 차이값을 상기 전류 변화량비로 나누어 제3 전류 변화량을 도출하며, 상기 제3 전류 변화량을 상기 제2 충전 허용 전류와 합산하여 제3 충전 허용 전류를 연산할 수 있다.
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 제3 충전 허용 전류를 전기자동차 충전기 또는 전기자동차에 전송하여 전기자동차의 충전 시간을 단축시킬 수 있다(S160).
도 4는 본 발명의 한 실시예에 따라 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류를 비교하여 전기자동차 충전기의 충전 허용 전류를 변화시키는 과정을 간략히 도시한 흐름도이다. 이때, 이하의 흐름도는 도 1 내지 도 2의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 4를 참조하면, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 전기자동차의 충전이 시작되면 전기자동차 충전기의 충전 허용 전류에 따른 전기자동차의 충전 전압을 모니터링할 수 있다(S202 및 S204).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 전기자동차의 계량부에서 측정된 충전 전압이 정격 전압 이내로 동작 중인 경우 전기자동차 충전기의 충전 허용 전류에 따른 전기자동차의 실제 충전 전류를 모니터링할 수 있다(S206 및 S208).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 전기자동차의 실제 충전 전류가 전기자동차 충전기의 기준 전류 이하이고, 기설정된 기준 전류 범위를 벗어나면 상기 실제 충전 전류와 상기 기준 전류를 비교할 수 있다(S210).
예를 들어, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 실제 충전 전류가 상기 기준 전류보다 작으면 전기자동차 충전기의 충전 허용 전류를 일정량 만큼 증가 시키고, 그렇지 않으면 전기자동차 충전기의 충전 허용 전류를 일정량 만큼 감소시키도록 제어할 수 있다(S212 및 S214).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 변화된 충전 허용 전류를 전기자동차 또는 전기자동차 충전기로 전송하고, 전기자동차의 실제 충전 전류가 전기자동차 충전기에서 공급 가능한 기준 전류 범위 내에서 충전되도록 반복하여 제어함으로써, 전기자동차의 충전 시간을 단축시킬 수 있는 환경을 제공한다.
도 5는 본 발명의 한 실시예에 따라 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류를 비교하여 전기자동차 충전기의 충전 허용 전류를 변화시키고, 실제 충전 전류의 전류 변화량과 충전 허용 전류의 전류 변화량을 이용하여 최적의 충전 허용 전류를 도출하는 과정을 간략히 도시한 흐름도이다. 이때, 이하의 흐름도는 도 1 내지 도 2의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 5를 참조하면, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 전기자동차의 충전이 시작되면 전기자동차 충전기의 충전 허용 전류에 따른 전기자동차의 실제 충전 전압 및 실제 충전 전류를 모니터링할 수 있다(S302 및 S304).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 실제 충전 시 인가되는 전기자동차의 실제 충전 전압이 정격 전압 이내로 동작 중인 경우, 전기자동차의 실제 충전 전류가 전기자동차 충전기의 기준 전류 이하로 기준 전류 범위를 벗어나는지 여부를 모니터링할 수 있다(S306 및 S308).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 실제 충전 전류와 상기 기준 전류의 비교 결과, 상기 실제 충전 전류가 상기 기준 전류 보다 작으면 전기자동차 충전기의 충전 허용 전류를 일정량 증가 시키고, 그렇지 않으면 전기자동차 충전기의 충전 허용 전류를 일정량 만큼 감소 시키도록 제어할 수 있다(S310 내지 S314).
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 전기자동차의 계량부에서 측정된 실제 충전 전류를 이용하여 실제 충전 전류의 제1 전류 변화량을 연산하고, 이를 이용하여 최적 충전 허용 전류를 연산할 수 있다(S316 내지 S318).
예를 들어, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 제1 실제 충전 전류와 상기 제2 실제 충전 전류의 차이인 제1 전류 변화량을 계산하고, 상기 제1 충전 허용 전류와 제2 충전 허용 전류의 차이인 제2 전류 변화량을 계산할 수 있다. 그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 제1 변화량과 상기 제2 변화량을 이용하여 제3 충전 허용 전류를 연산할 수 있다.
또한, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 기준 전류와 제2 실제 충전 전류의 전류 차이값을 계산하고, 실제 충전 전류의 제1 전류 변화량을 충전 허용 전류의 제2 전류 변화량으로 나누어 전류 변화량비를 계산할 수 있다. 그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 상기 전류 차이값을 상기 전류 변화량비로 나누어 제3 전류 변화량을 도출하며, 상기 제3 전류 변화량을 상기 제2 충전 허용 전류와 합산하여 제3 충전 허용 전류를 연산할 수 있다.
그리고, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 변화된 충전 허용 전류를 전기자동차 또는 전기자동차 충전기로 전송하고, 전기자동차의 실제 충전 전류가 전기자동차 충전기에서 공급 가능한 기준 전류 범위 내에서 충전되도록 반복하여 제어함으로써, 전기자동차의 충전 시간을 단축시킬 수 있는 환경을 제공한다.
도 6은 본 발명의 한 실시예에 따라 전기자동차 충전기의 충전 허용 전류를 제어하여 전기자동차의 실제 충전 전류가 전기자동차 충전기의 기준 전류에 가깝게 충전되도록 제어하는 예를 도시한 도면이다.
도 6을 참조하면, t0 내지 t1 구간과 같이 전기자동차 충전기의 충전 허용 전류가 기준 전류와 같고 전기자동차의 실제 충전 전류가 기준 전류를 초과하지 않는 경우, 전기자동차의 실제 충전 전류가 기준전류 보다 작아 전기자동차의 충전 속도가 느려질 수 있다.
본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 전기자동차의 실제 충전 전류를 모니터링하여 기준 전류 이하로 충전되면 전기자동차 충전기에서 전송하는 충전 허용 전류를 제어할 수 있다. 예를 들어, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 t1 내지 t2 구간에서와 같이, 충전 허용 전류를 점진적으로 증가시켜 전기자동차의 실제 충전 전류가 기준 전류에 가깝게 충전되도록 제어할 수 있다.
따라서, 본 발명의 한 실시예에 따른 충전전류 제어 장치(100)는 t2 내지 t3 구간에서와 같이, 전기자동차 충전기의 충전 허용 전류를 기준 전류 보다 높게 설정하여 전기자동차의 실제 실제 충전 전류가 전기자동차 충전기에서 공급 할 수 있는 최대 전류인 기준 전류로 충전되도록 할 수 있다.
이와 같이, 본 발명의 한 실시예에 따른 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법은 전기자동차의 충전 전압 및 제1 실제 충전 전류를 모니터링하고, 전기자동차의 제1 실제 충전 전류와 전기자동차 충전기의 기준 전류를 비교하여 전기자동차에 충전 전류를 공급하는 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 변화시키며, 소정값 만큼 변화된 제2 충전 허용 전류를 전기자동차에 전송한 후 전기자동차의 제2 실제 충전 전류를 변화시켜 전기자동차 충전기가 공급 가능한 최대 전류인 기준 전류로 전기자동차를 충전시킴으로써, 전기자동차의 충전 시간을 효과적으로 단축시키고, 전기자동차 충전기를 사용하는 사용자 편의를 증대시킬 수 있는 환경을 제공한다.
또한, 본 발명은 전기자동차에서 충전되는 충전 전류가 전기자동차 충전기에서 공급 가능한 기준 전류에 미치지 못할 때 전기자동차 충전기의 충전 허용 전류를 제어하여 전기자동차의 실제 충전 전류와 전기자동차 충전기의 기준 전류의 차이를 최소화함으로써, 전기자동차 충전기의 충전 효율을 향상시키고 전기자동차의 충전 시간을 단축할 수 있는 환경을 제공한다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다. 이러한 기록 매체는 서버뿐만 아니라 사용자 단말에서도 실행될 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
Claims (9)
- 전기자동차의 충전 전압 및 제1 실제 충전 전류를 모니터링하는 단계,상기 전기자동차의 제1 실제 충전 전류를 전기자동차 충전기에서 공급 가능한 기준 전류와 비교하는 단계,상기 전기자동차의 제1 실제 충전 전류와 상기 전기자동차 충전기의 기준 전류가 상이한 경우, 상기 전기자동차에 충전 전류를 공급하는 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 변화시키는 단계, 그리고상기 소정값 만큼 변화된 제2 충전 허용 전류를 상기 전기자동차에 전송하고, 상기 제2 충전 허용 전류에 따른 상기 전기자동차의 제2 실제 충전 전류를 측정하여 상기 기준 전류와 비교하는 단계를 포함하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
- 제1항에서,상기 제1 충전 허용 전류를 소정값 만큼 변화시키는 단계는,상기 전기자동차의 제1 실제 충전 전류가 상기 전기자동차 충전기의 기준 전류 보다 작은 경우, 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 증가시키는 단계를 포함하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
- 제1항에서,상기 제1 충전 허용 전류를 소정값 만큼 변화시키는 단계는,상기 전기자동차의 제1 실제 충전 전류가 상기 전기자동차 충전기의 기준 전류 보다 큰 경우, 상기 전기자동차 충전기의 제1 충전 허용 전류를 소정값 만큼 감소시키는 단계를 포함하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
- 제2항 또는 제3항에서,상기 전기자동차의 제2 실제 충전 전류를 측정하여 상기 기준 전류와 비교하는 단계는,상기 제1 실제 충전 전류와 상기 제2 실제 충전 전류의 차이인 제1 전류 변화량을 계산하고, 상기 제1 충전 허용 전류와 제2 충전 허용 전류의 차이인 제2 전류 변화량을 계산하며, 상기 제1 변화량과 상기 제2 변화량을 이용하여 제3 충전 허용 전류를 연산하는 단계를 포함하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
- 제4항에서,상기 제3 충전 허용 전류를 연산하는 단계는,상기 기준 전류와 제2 실제 충전 전류의 전류 차이값을 계산하는 단계, 그리고실제 충전 전류의 제1 전류 변화량을 충전 허용 전류의 제2 전류 변화량으로 나누어 전류 변화량비를 계산하는 단계를 포함하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
- 제5항에서,상기 제3 충전 허용 전류를 연산하는 단계는,상기 전류 차이값을 상기 전류 변화량비로 나누어 제3 전류 변화량을 도출하며, 상기 제3 전류 변화량을 상기 제2 충전 허용 전류와 합산하여 제3 충전 허용 전류를 연산하는 단계를 더 포함하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
- 제6항에서,상기 전기자동차 충전기의 상기 제3 충전 허용 전류를 상기 전기자동차에 전송하고, 상기 전기자동차의 실제 충전 전류와 상기 전기자동차 충전기의 기준 전류의 차이가 설정값 이내가 될 때까지 상기 단계들을 반복하는 단계를 더 포함하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
- 제1항에서,상기 충전 전압 및 제1 실제 충전 전류를 모니터링하는 단계는,상기 전기자동차의 충전 전압이 기설정된 정격 전압 이내인 것을 특징으로 하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
- 제1항에서,상기 전기자동차 충전기의 충전 허용 전류는,상기 전기자동차 충전기에서 상기 전기자동차로 전달하는 충전 허용 전류의 전류값을 포함하며, 상기 전기 자동차는 상기 충전 허용 전류의 전류값을 초과하여 상기 전기자동차 충전기로부터 충전 전류를 인출하지 못하는 것을 특징으로 하는 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220145687A KR102508333B1 (ko) | 2022-11-04 | 2022-11-04 | 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 |
KR10-2022-0145687 | 2022-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024096272A1 true WO2024096272A1 (ko) | 2024-05-10 |
Family
ID=85570515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/012026 WO2024096272A1 (ko) | 2022-11-04 | 2023-08-14 | 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102508333B1 (ko) |
WO (1) | WO2024096272A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102508333B1 (ko) * | 2022-11-04 | 2023-03-10 | 씨에스테크놀로지 주식회사 | 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 |
KR102609652B1 (ko) * | 2023-06-01 | 2023-12-05 | 주식회사 이지트로닉스 | 저전압 현상 방지 기능을 포함하는 충전 시스템 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160023020A (ko) * | 2014-08-20 | 2016-03-03 | 엘에스전선 주식회사 | 전기 이동 수단용 멀티 충전 장치 및 멀티 충전 방법 |
JP2017500826A (ja) * | 2013-11-04 | 2017-01-05 | アルカテル−ルーセント | レシーバ方法によるビーム形成重みのセットの決定をサポートするためのトランスミッタ方法、レシーバ方法、トランスミッタ装置、レシーバ装置、およびそのネットワーク・ノード |
KR20200136854A (ko) * | 2019-05-28 | 2020-12-08 | 쌍용자동차 주식회사 | 전기차의 완속 충전시간 단축을 위한 충전 제어장치 |
KR20210044355A (ko) * | 2019-10-14 | 2021-04-23 | 한국자동차연구원 | 최대 전력사용이 가능한 전기자동차 충전 장치 및 방법 |
KR102450203B1 (ko) * | 2021-08-13 | 2022-10-04 | 김진우 | 전기차 충전을 위한 가변형 전력제어 시스템 |
KR102508333B1 (ko) * | 2022-11-04 | 2023-03-10 | 씨에스테크놀로지 주식회사 | 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101181109B1 (ko) * | 2010-11-12 | 2012-09-14 | 기아자동차주식회사 | 배터리 충전 전류 제어 방법 |
KR20140083532A (ko) * | 2012-12-26 | 2014-07-04 | 현대중공업 주식회사 | 전기 자동차용 충전기의 과충전 방지 충전 시스템 및 방법 |
JP6020247B2 (ja) * | 2013-02-20 | 2016-11-02 | 株式会社豊田自動織機 | 充電システム |
JP6324248B2 (ja) * | 2014-07-17 | 2018-05-16 | 日立オートモティブシステムズ株式会社 | 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法 |
-
2022
- 2022-11-04 KR KR1020220145687A patent/KR102508333B1/ko active IP Right Grant
-
2023
- 2023-08-14 WO PCT/KR2023/012026 patent/WO2024096272A1/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017500826A (ja) * | 2013-11-04 | 2017-01-05 | アルカテル−ルーセント | レシーバ方法によるビーム形成重みのセットの決定をサポートするためのトランスミッタ方法、レシーバ方法、トランスミッタ装置、レシーバ装置、およびそのネットワーク・ノード |
KR20160023020A (ko) * | 2014-08-20 | 2016-03-03 | 엘에스전선 주식회사 | 전기 이동 수단용 멀티 충전 장치 및 멀티 충전 방법 |
KR20200136854A (ko) * | 2019-05-28 | 2020-12-08 | 쌍용자동차 주식회사 | 전기차의 완속 충전시간 단축을 위한 충전 제어장치 |
KR20210044355A (ko) * | 2019-10-14 | 2021-04-23 | 한국자동차연구원 | 최대 전력사용이 가능한 전기자동차 충전 장치 및 방법 |
KR102450203B1 (ko) * | 2021-08-13 | 2022-10-04 | 김진우 | 전기차 충전을 위한 가변형 전력제어 시스템 |
KR102508333B1 (ko) * | 2022-11-04 | 2023-03-10 | 씨에스테크놀로지 주식회사 | 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR102508333B1 (ko) | 2023-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024096272A1 (ko) | 전기자동차의 충전 시간 단축을 위한 충전전류 제어 방법 | |
WO2018139742A1 (ko) | 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량 | |
WO2018021664A1 (ko) | 배터리 밸런싱 장치 및 방법 | |
WO2011152639A2 (ko) | 배터리 팩 그리고 배터리 팩의 충전 방법 | |
WO2018139740A1 (ko) | 배터리 팩, 배터리 팩의 관리 방법, 및 배터리 팩을 포함하는 차량 | |
WO2018101564A1 (ko) | 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법 | |
WO2018074809A1 (ko) | 셀 밸런싱 시스템 및 제어방법 | |
WO2018186527A1 (ko) | 배전선로에 연계된 변압기의 부하량에 기초한 전주에 설치된 전기차 충전 장치, 전기차 충전 시스템 및 전주에 설치된 전기차 충전 장치 제어 방법 | |
WO2019103412A1 (ko) | 배터리 장치 및 배터리 온도 조절방법 | |
WO2020149537A1 (ko) | 배터리 충전 시스템 및 배터리 충전 방법 | |
WO2014123350A1 (ko) | 저발열 무선 전력 수신 장치 및 방법 | |
WO2016032131A1 (ko) | Dc-dc 전압 변환기의 입력 파워 한도를 조절하기 위한 파워 제어 시스템 및 방법 | |
WO2023068519A1 (ko) | 배터리 랙 및 태양광 모듈을 포함하는 에너지 저장 시스템 및 에너지 저장 시스템 운영 방법 | |
WO2016064224A1 (ko) | 전류 제어 장치 및 방법 | |
WO2022098012A1 (ko) | 배터리 관리 방법 및 이를 이용한 배터리 시스템 | |
WO2012086865A1 (ko) | 전력 제어 장치 및 전력 제어 방법 | |
WO2021049752A1 (ko) | 절전형 배터리 관리 장치 및 방법 | |
CN113765177A (zh) | 一种电池模块和充电系统 | |
WO2013047973A1 (ko) | 외부 배터리 셀을 이용하여 셀 밸런싱을 수행하는 전원 공급 장치 및 그의 셀 밸런싱 방법 | |
WO2023191267A1 (ko) | 분산전력 공유형 전기차 충전시스템 | |
WO2015046656A1 (ko) | 전기자동차의 경제충전 장치 및 방법 | |
WO2022019516A1 (ko) | 배터리 장치, 배터리 관리 시스템 및 측정 전압 보상 방법 | |
WO2023158015A1 (ko) | 병렬 연결된 다수의 배터리들의 에너지를 균등화하는 장치 및 방법 | |
WO2018080236A2 (ko) | 유무선충전모듈 중 더욱 신속한 충전이 가능한 충전모듈을 선택하여 충전하는 전기자동차 및 그 충전장치 | |
WO2019135417A1 (ko) | 프리차지 전류 제어 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885969 Country of ref document: EP Kind code of ref document: A1 |