WO2018139742A1 - 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량 - Google Patents

배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량 Download PDF

Info

Publication number
WO2018139742A1
WO2018139742A1 PCT/KR2017/012475 KR2017012475W WO2018139742A1 WO 2018139742 A1 WO2018139742 A1 WO 2018139742A1 KR 2017012475 W KR2017012475 W KR 2017012475W WO 2018139742 A1 WO2018139742 A1 WO 2018139742A1
Authority
WO
WIPO (PCT)
Prior art keywords
bms
charger
battery
battery pack
charging
Prior art date
Application number
PCT/KR2017/012475
Other languages
English (en)
French (fr)
Inventor
염길춘
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201780022323.2A priority Critical patent/CN109075403B/zh
Priority to US16/080,631 priority patent/US11322946B2/en
Priority to EP17893849.4A priority patent/EP3576213A4/en
Publication of WO2018139742A1 publication Critical patent/WO2018139742A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to a battery pack, a charging control method of the battery pack, and a vehicle including the battery pack.
  • a charger for charging a battery pack measures the voltage of the battery pack before supplying charging power to the battery pack. When the voltage of the battery pack is measured, the charger turns on a power switch for supplying power to the battery pack. If the voltage of the battery pack is not measured, the charger keeps the power switch off.
  • the battery pack must always be powered on. If the battery pack is powered on, the battery management system (BMS) included in the battery pack must also be powered on at all times.
  • BMS battery management system
  • a measurement error may occur due to a cable connected between the battery pack and the charger, thereby causing a problem in that the charging efficiency is lowered.
  • An object of the present invention is to provide a battery pack including a battery pack, a charging control method of a battery pack, and a battery pack, which can prevent loss of a battery pack due to self discharge of a BMS and improve charging efficiency.
  • a battery pack includes at least one battery module including a plurality of battery cells connected between a first terminal and a second terminal, a relay connected between the first terminal and a third terminal, and the A charge control signal connected to first to third terminals and controlling a charging operation of a charger connected to the third terminal based on battery sensing information sensing the plurality of battery cells and the at least one battery module; It includes a BMS to generate.
  • the BMS generates a charge control signal indicating one of a precharge and a normal charge based on the battery detection information, and a current supplied from the charger in the normal charge is supplied through the charger in the precharge. It can be higher than the current.
  • the BMS may be switched on from a shutdown state to a wake-up state when charging power starts to be supplied from the charger.
  • the BMS communicates with the outside via a CAN bus, and the CAN bus may be turned on in the wake-up state.
  • the BMS may control the charging operation of the charger based on the battery detection information. Can be.
  • the BMS may turn on the relay upon receiving the internal lock on signal.
  • the BMS may stop the charging operation of the charger by changing the charge control signal.
  • the BMS may shut down when it detects the full charge of the at least one battery module and detects that the current flowing in the battery pack flows for less than a predetermined threshold current for a predetermined threshold period.
  • the BMS may shut down after a predetermined period of time after detecting a defect of the at least one battery module.
  • the charging control method of a battery pack may include at least one battery module including a plurality of cells and a BMS, and may be applied to a battery pack for supplying power to a vehicle.
  • the method of controlling charging of the battery pack may include: waking up the BMS by power supplied from a charger in a shutdown state of the BMS; and in the wake-up state, a signal corresponding to a signal indicating stop of operation of the vehicle may correspond.
  • the controlling of the charging operation of the charger may include: generating, by the BMS, a charge control signal indicating one of a precharge and a normal charge based on the battery detection information, from the charger at the normal charge.
  • the current supplied may be higher than the current supplied through the charger in the precharge.
  • the controlling of the charging operation of the charger may include determining whether the at least one battery module is fully charged based on the battery sensing information, and if the at least one battery module is fully charged, the BMS. May include stopping the charging operation of the charger.
  • the controlling of the charging operation of the charger may include determining whether the at least one battery module is defective based on the battery detection information, and if the at least one battery module is defective, And stopping the charging operation of the charger.
  • the charging control method of the battery pack may further include shutting down the BMS after a predetermined period of time after the defect of the at least one battery module.
  • a vehicle includes: at least one battery module including a plurality of battery cells, and a BMS configured to generate a charge control signal based on battery detection information sensing the plurality of battery cells and the at least one battery module;
  • a battery pack comprising: a charger for supplying charging power to the battery pack according to the charging control signal, and after the charger is turned on, when receiving an internal locking signal from the charger to output an internal locking on signal to the BMS. It includes a controller.
  • the BMS wakes up by the power supplied from the charger, and when the internal lock-on signal is received within the predetermined period in the wake-up state, the BMS controls the charging operation of the charger based on the sensing information.
  • a control signal can be generated.
  • the BMS may generate a charge control signal indicating one of a precharge and a normal charge based on the battery detection information, and the charger may supply a current higher than the precharge to the battery pack in the normal charge. have.
  • the BMS detects any one of a full charge and a defect of the at least one battery module based on the battery detection information, and if the at least one battery module is any of the full charge and a defect, charging operation of the charger It is possible to generate a charge control signal to stop the.
  • the BMS When the BMS wakes up by the power supplied from the charger and receives the internal lock-on signal within a predetermined period in the wake-up state, the BMS determines whether the battery pack can be charged based on the battery detection information. The charger can be informed.
  • a battery including a battery pack, a charging control method of a battery pack, and a battery pack capable of preventing loss of the battery pack due to self discharge of the BMS and improving charging efficiency.
  • FIG. 1 is a view illustrating a partial configuration of a battery pack and a vehicle including the same according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration of a charger according to an embodiment.
  • 3 and 4 are flowcharts illustrating operations of the BMS, the charger, and the controller.
  • FIG. 1 is a view illustrating some components of a battery pack and a vehicle including the same according to an embodiment.
  • a vehicle 100 includes a battery pack 1 and another configuration 2 of a vehicle electrically connected with the battery pack.
  • Configuration 2 in FIG. 1 includes a charger 20 and a controller 30.
  • the configuration 2 shown in FIG. 1 is shown to include only some components electrically connected to the BMS 10 for convenience of description, but the invention is not limited thereto.
  • the battery pack 1 includes a BMS 10, two battery modules 11 and 12, a relay 13, and a fuse 14.
  • the battery pack 1 is illustrated as including two battery modules 11 and 12, but this is only an example for description and the invention is not limited thereto.
  • the vehicle 100 is shown to include a charger 20, the charger 20 may be implemented in a separate configuration from the vehicle 100.
  • the battery pack 1 supplies power to the vehicle 100.
  • Each of the two battery modules 11 and 12 includes a plurality of battery cells and is connected in parallel between the P + terminal and the P- terminal.
  • Each of the two battery modules 11 and 12 includes information about a plurality of cells (eg, cell voltage, cell temperature, etc.), and information about the battery module (eg, current flowing through the battery module, Voltage, temperature of the battery module, etc.) may be detected and transferred to the BMS 10.
  • information on a plurality of cells and information on a battery module are referred to as battery detection information.
  • the fuse 14 is connected between the two battery modules 11 and 12 and the B + terminal to open when excessive current flows.
  • the relay 13 is connected between the B + terminal and the P + terminal, and operates under the control of the BMS 10. For example, the switching operation is performed according to the relay signal Re_S output from the BMS 10.
  • the BMS 10 may generate a relay signal Re_S for turning on the relay 13 when a charging operation is started and power is supplied from the charger 20.
  • the BMS 10 receives the battery sensing information from each of the two battery modules 11 and 12, transmits the battery sensing information through communication with the charger 20 and the controller 30 of the vehicle 100, and the charger ( 20) and information necessary for battery management from the controller 30.
  • the communication method between the BMS 10 and the controller 30 may be CAN communication.
  • the battery pack 1 includes a COM port, and the COM port may be provided with a plurality of terminals for CAN communication and a plurality of terminals for communication between the BMS 10 and the charger 20.
  • the P + terminal of the battery pack 1 is connected to the P + terminal of the vehicle 100, and the P- terminal of the battery pack 1 is connected to the P- terminal of the vehicle 100.
  • the BMS 10 When the charger 20 is on, the BMS 10 changes from a shutdown state to a wake-up state, and when the controller 30 is internally locked, a battery received from each of the two battery modules 11 and 12
  • the charging control signal CH_C for controlling the operation of the charger 20 may be generated based on the sensing information.
  • the BMS 10 detects the states of the battery modules 11 and 12 based on the battery detection information to inform the charger 20 that the battery modules 11 and 12 are chargeable, and controls charging according to the state of charge.
  • the signal CH_C may be generated.
  • the charging control signal CH_C is a pulse width modulation signal, and the BMS 10 adjusts the on-duty ratio of the charging control signal CH_C according to the charging state.
  • the BMS 10 may generate a charge control signal CH_C having an on-duty ratio of 0% indicating full charge.
  • the BMS 10 may generate a charge control signal CH_C having an on-duty ratio of 12% indicating a precharge.
  • Precharge means that the battery pack 1 is charged to a predetermined first current according to a constant current (CC) mode.
  • the charging start state is a state in which the minimum cell voltage is equal to or less than the first predetermined voltage at the start of charging, and when the minimum cell voltage reaches the second predetermined voltage after the start of charging, the charging start state is terminated.
  • the BMS 10 may generate a charge control signal CH_C having an on-duty ratio of 38% indicating a normal charge.
  • the normal charge distinguished from the precharge means that the battery pack 1 is charged with a predetermined second current according to the CC mode, and the second current is at a level higher than the first current.
  • the normal charge may further include charging the battery pack 1 to a predetermined voltage according to a constant voltage (CV) mode.
  • the charger 20 may control the current supplied to the battery pack 1 according to the on-duty ratio of the charge control signal CH_C.
  • the precharge may be applied not only to the charging start state but also in a state where the temperature of the battery modules 11 and 12 is out of a normal temperature range.
  • the BMS 10 may generate the charge control signal CH_C indicating a precharge out of the normal temperature range.
  • the BMS 10 may generate an on-duty charge control signal CH_C indicating a normal charge in a normal temperature range.
  • the BMS 10 may detect defects of the battery modules 11 and 12 based on the battery detection information.
  • the defects of the battery modules 11 and 12 may include a state in which an overvoltage or undervoltage cell is generated among the cells included in the battery modules 11 and 12, an overtemperature or low temperature state of the battery modules 11 and 12, and a battery pack. A state in which an overcurrent flows in (1), an overdischarge cell occurs among cells included in the battery modules 11 and 12, and various states in which the battery pack 1 cannot operate normally.
  • the BMS 10 may transmit the same to the charger 20 to stop the charging operation.
  • the BMS 10 may generate a charge control signal CH_C having an on-duty ratio of 100% and generate a relay signal Re_S for turning off the relay 13 to notify the defect.
  • the charger 20 When the plug 3 is coupled to an outlet to which external power is supplied, the charger 20 is plugged in and the charger 20 is turned on. When the charger 20 is turned on, power is supplied to the BMS 10 and the controller 30 through the P + terminal of the charger 20 for a predetermined time, and an internal lock signal I / L is transmitted to the controller 30. do. When the charger 20 receives that the battery pack 1 is in a chargeable state from the BMS 10, the charger 20 supplies the charging power to the battery pack 1 according to the charge control signal CH_C.
  • the 48 controller 30 is configured to control all operations of the vehicle, and may control the operation of the vehicle 100 in consideration of the information of the battery pack 1 received from the BMS 10.
  • the information of the battery pack 1 includes battery detection information.
  • the controller 30 and the BMS 10 may transmit and receive necessary information through CAN communication with each other.
  • the controller 30 changes from the shut down state to the wake-up state when the charger 20 is turned on, and receives the internal lock signal I / L, the internal lock signal I / L to the BMS 10. Send the output corresponding to.
  • the controller 30 stops the operation of the vehicle 100 according to the internal locking signal I / L.
  • FIG. 2 is a diagram illustrating a configuration of a charger according to an embodiment.
  • the charger 20 includes a power transfer switch 21, a power converter 22, and a charge controller 23.
  • the power transfer switch 21 switches according to the charging signal CHS received from the charging control unit 23.
  • Charger 20 turns
  • the power transfer switch 21 When on, the power transfer switch 21 may be turned on.
  • the power converter 22 receives external power and generates output power by converting the external power according to the power control signal PCS. Output power is supplied to the battery pack 10 and the controller 30 through the P + terminal during the on-period of the power transfer switch 21.
  • the charging control unit 23 When the charger 20 is plugged in, the charging control unit 23 turns on the power transfer switch 21, generates a power control signal PCS, and supplies power to the BMS 10 and the controller 30 for a predetermined period of time. Do it.
  • the charging control unit 23 turns on the power transfer switch 21 and outputs an internal locking signal I / L.
  • the charging control unit 23 receives a signal indicating that the charging state is available from the BMS 10 within a predetermined time period, the charging control unit 23 generates a power control signal PCS according to the charging control signal CH_C received from the BMS 10 to change the power.
  • the operation of the unit 22 is controlled.
  • the BMS 10 may notify the charging control unit 23 that the charging state is possible using the charging control signal CH_C.
  • the invention is not limited thereto, and the BMS 10 may generate a signal other than the charge control signal CH_C and transmit the generated signal to the charge controller 23.
  • 3 and 4 are flowcharts illustrating operations of the BMS, the charger, and the controller.
  • the BMS 10 and the controller 30 are kept in a shutdown state (S1 and S2).
  • the BMS 10 controls the relay 13 to be off
  • the controller 30 also controls the entire vehicle 100 to be off.
  • the charger 20 is maintained in a ready state (S3), and there is no power supplied from the charger 20.
  • the charger 20 is plugged in (S4), the charger 20 is turned on (S5). Power is supplied from the charger 20 to the BMS 10 and the controller 30 by the turn-on of the charger 20 for a predetermined period of time. After the charger 20 is turned on, the charger 20 outputs an internal locking signal I / L having an on level (S6).
  • the BMS 10 and the controller 30 wake up (S7, S8).
  • the BMS 10 and the controller 30 are turned on by the power supplied from the charger 20 and the communication function is also turned on.
  • the communication method between the BMS 10 and the controller 30 is a CAN communication method, and the CAN bus of the BMS 10 and the CAN bus of the controller 30 may be turned on.
  • the relay 13 is in the off state even in the wake-up state of the BMS 10.
  • the controller 30 determines whether the internal lock signal I / L of the on level is received after the wake-up (S9). As a result of the determination in step S9, when the on-level internal lock signal I / L is received, the controller 30 indicates the internal lock-on signal I / L indicating that the on-level internal lock signal I / L has been received. L_ON) is output to the BMS 10 (S10).
  • the BMS 10 determines whether the internal lock-on signal I / L_ON has been input from the controller 30 within a predetermined period (S11). As a result of the determination in step S11, if the internal lock-on signal I / L_ON is input within a predetermined period, the BMS 10 transmits to the charger 20 whether it can be charged based on the battery detection information. The BMS 10 performs a charging control operation based on the battery detection information (S13). The BMS 10 may adjust the on-duty ratio of the charge control signal CH_C during the charge control operation.
  • the charger 20 determines whether the battery pack 1 is in a chargeable state (S12). As mentioned above, the BMS 10 may inform whether charging is possible using the charging control signal CH_C. As a result of the determination in step S12, when the battery pack 1 is in a chargeable state, the charger 20 performs a charging operation according to the charging control signal CH_C (S14). During the charging operation, the charger 20 may generate a power control signal PCS according to the charge control signal CH_C to control the power supplied to the battery pack 1.
  • the BMS 10 detects a charging state based on the battery detection information (S131). Based on the detection result of step S131, the BMS 10 may adjust the charging control signal CH_C. For example, the BMS 10 may adjust the charging control signal CH_C indicating one of precharge and normal charge based on the detection result of step S131.
  • the BMS 10 determines whether the battery modules 11 and 12 are fully charged or defective based on the detection result of step S131 (S132 and S135).
  • step S132 if the battery modules 11 and 12 are full charged, the BMS 10 changes to the charge control signal CH_C indicating full charge. For example, the BMS 10 changes the on-duty ratio of the charge control signal CH_C to 0%. If the result of the determination in step S132 is not full charge, the BMS 10 maintains the charging operation. Then, the process is repeated again from step S131.
  • the BMS 10 determines whether the automatic shutdown condition is satisfied (S134).
  • the automatic shutdown condition may be a condition in which a current flowing in the battery pack 1 is maintained for a predetermined threshold period while being below a predetermined threshold current.
  • the BMS 10 is shut down in accordance with step S1.
  • the charge control signal CH_C is maintained at an on-duty ratio indicating full charge.
  • step S135 if the battery modules 11 and 12 are defective, the BMS 10 changes to the charging control signal CH_C indicating the defect. For example, the BMS 10 changes the on-duty ratio of the charge control signal CH_C to 100%. If the determination in step S 135 is not a defect, the BMS 10 maintains the charging operation. Then, the process is repeated again from step S131.
  • step S136 the BMS 10 waits for a predetermined period (S137). After step S137, the BMS 10 is shut down in accordance with step S1.
  • the charger 20 determines the charging mode according to the charging control signal CH_C (S141). For example, in step S141, one of the precharge and the normal charge is determined according to the charge control signal CH_C. The charger 20 may select one of the CC mode and the CV mode in the normal charge.
  • the charger 20 may generate a power control signal PCS to supply charging power (S142).
  • the charging control signal CH_C may be changed by any one of steps S133 and S136.
  • the charger 20 detects the charge control signal CH_C to determine whether it is fully charged or defective (S143 and S144).
  • step S143 when the charge control signal CH_C instructs full charge, the charger 20 stops supplying the charging power and enters the ready state according to step S3. As a result of the determination in step S143, when the charge control signal CH_C does not indicate full charge, step S141 is repeated again.
  • step S144 when the charge control signal CH_C indicates a defect, the charger 20 stops supplying the charging power, and becomes ready in accordance with step S3. As a result of the determination in step S143, when the charge control signal CH_C does not indicate full charge, step S141 is repeated again.
  • step S141 may be continuously performed.
  • the connection between the battery pack and the charger can be minimized to prevent unnecessary power consumption.
  • the BMS used in the battery pack is not always powered on, thereby minimizing unnecessary self discharge that may occur in the battery pack.
  • by controlling the charging mode of the charger in the BMS adjacent to the battery cell it is possible to control the charging power more accurately and quickly. Then, the charging efficiency can be maximized and the usability of the battery can be maximized.

Abstract

배터리 팩은, 제1 단자와 제2 단자 사이에 연결되어 있는 복수의 배터리 셀을 포함하는 적어도 하나의 배터리 모듈, 상기 제1 단자와 제3 단자 사이에 연결되어 있는 릴레이, 및 상기 제1 내지 제3 단자에 연결되어 있고, 상기 복수의 배터리 셀 및 상기 적어도 하나의 배터리 모듈을 감지한 배터리 감지 정보에 기초하여 상기 제3 단자에 연결되어 있는 충전기의 충전 동작을 제어하는 충전 제어 신호를 생성하는 BMS를 포함한다.

Description

배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량
본 개시는 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량에 관한 것이다.
일반적으로, 배터리 팩을 충전하기 위한 충전기는 배터리 팩에 충전 전력을 공급하기 전에, 배터리 팩의 전압을 측정한다. 배터리 팩의 전압이 측정되면, 충전기는 배터리 팩에 전력을 공급하기 위한 전력 스위치를 턴 온 한다. 배터리 팩의 전압이 측정되지 않으면, 충전기는 전력 스위치를 오프 상태로 유지한다.
이를 위해서, 배터리 팩이 항상 파워 온(power on) 되어 있어야 한다. 배터리 팩이 파워 온 상태면, 배터리 팩에 포함된 배터리 관리 시스템(Battery Management System, BMS)도 항상 파워 온 되어 있어야 한다.
그러면, 배터리 팩의 자가 방전이 항상발생 하여 배터리 팩으로부터 불필요한 방전이 발생한다. 이와 같은 상황이 장기간 유지되면, BMS를 통한 자가방전이 발생하여 배터리 팩이 망실될 수 있다.
또한, 충전기에서 배터리 팩의 상태를 감지하는 경우, 배터리 팩과 충전기 간에 연결된 케이블로 인해 측정 오차가 발생하여 충전 효율이 저하되는 문제가 발생할 수 있다.
BMS의 자가 방전에 의한 배터리 팩의 망실을 방지하고, 충전 효율을 개선할 수 있는 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량을 제공하고자 한다.
한 특징에 따른 배터리 팩은, 제1 단자와 제2 단자 사이에 연결되어 있는 복수의 배터리 셀을 포함하는 적어도 하나의 배터리 모듈, 상기 제1 단자와 제3 단자 사이에 연결되어 있는 릴레이, 및 상기 제1 내지 제3 단자에 연결되어 있고, 상기 복수의 배터리 셀 및 상기 적어도 하나의 배터리 모듈을 감지한 배터리 감지 정보에 기초하여 상기 제3 단자에 연결되어 있는 충전기의 충전 동작을 제어하는 충전 제어 신호를 생성하는 BMS를 포함한다.
상기 BMS는, 상기 배터리 감지 정보에 기초하여 프리챠지 및 정상챠지 중 어느 하나를 지시하는 충전 제어 신호를 생성하고, 상기 정상챠지에서 상기 충전기로부터 공급되는 전류가 상기 프리챠지에서 상기 충전기를 통해 공급되는 전류보다 높을 수 있다.
상기 BMS는, 상기 충전기로부터 충전 전력이 공급되기 시작하면 셧다운 상태에서 웨이크-업상태로 변경하여 온 될 수 있다.
상기 BMS는 CAN 버스를 통해 외부와 통신하고, 상기 웨이크-업 상태에서 상기CAN 버스가 온 될 수 있다.
상기 BMS는, 상기 웨이크-업상태에서 상기 배터리 팩을 포함하는 차량의 동작 정지를 지시하는 신호에 대응하는 내부 잠김 온 신호를 수신하면, 상기 배터리 감지 정보에 기초하여 상기 충전기의 충전 동작을 제어할 수 있다.
상기 BMS는, 상기 내부 잠김 온 신호를 수신하면, 상기 릴레이를 온 시킬 수 있다.
상기 BMS는, 상기 배터리 감지 정보에 기초하여 상기 적어도 하나의 배터리 모듈의 만충전 및 결함 중 어느 하나를 감지하면, 상기 충전 제어 신호를 변경하여 상기 충전기의 충전 동작을 정지시킬 수 있다.
상기 BMS는, 상기 적어도 하나의 배터리 모듈의 만충전을 감지한 후, 상기 배터리 팩에 흐르는 전류가 소정의 임계 전류 이하로 소정의 임계 기간 동안 흐르는 것을 감지하면, 셧다운할 수 있다.
상기 BMS는, 상기 적어도 하나의 배터리 모듈의 결함을 감지한 후, 소정 기간 경과 후 셧다운할 수 있다.
다른 특징에 따른 배터리 팩의 충전 제어 방법은, 복수의 셀을 포함하는 적어도 하나의 배터리 모듈 및 BMS를 포함하고, 차량에 전력을 공급하는 배터리 팩에 적용될 수 있다. 상기 배터리 팩의 충전 제어 방법은, 상기 BMS의셧다운 상태에서 충전기로부터 공급되는 전력에 의해 상기 BMS가 웨이크-업 하는 단계, 상기 웨이크-업 상태에서, 상기 차량의 동작 정지를 지시하는 신호에 대응하는 내부 잠김 온 신호를 상기 BMS가 상기 차량의 제어기로부터 수신하는 단계, 상기 내부 잠김 온 신호를 수신한 후, 상기 BMS가 상기 복수의 배터리 셀 및 상기 적어도 하나의 배터리 모듈을 감지한 배터리 감지 정보에 기초하여 상기 충전기의 충전 동작을 제어하는 단계를 포함한다.
상기 충전기의 충전 동작을 제어하는 단계는, 상기 BMS가 상기 배터리 감지 정보에 기초하여 프리챠지 및 정상챠지 중 어느 하나를 지시하는 충전 제어 신호를 생성하는 단계를 포함하고, 상기 정상챠지에서 상기 충전기로부터공급되는 전류가 상기 프리챠지에서 상기 충전기를 통해 공급되는 전류보다 높을 수 있다.
상기 충전기의 충전 동작을 제어하는 단계는, 상기 BMS가 상기 배터리 감지 정보에 기초하여 상기 적어도 하나의 배터리 모듈의 만충전 여부를 판단하는 단계, 및 상기 적어도 하나의 배터리 모듈이 만충전이면, 상기 BMS가 상기 충전기의 충전 동작을 정지시키는 단계를 포함할 수 있다.
상기 배터리 팩의 충전 제어 방법에 있어서, 상기 적어도 하나의 배터리 모듈의 만충전 이후, 상기 배터리 팩에 흐르는 전류가 소정의 임계 전류 이하로 소정의 임계 기간 동안 흐르면, 상기 BMS가 셧다운 하는 단계를 더 포함할 수 있다.
상기 충전기의 충전 동작을 제어하는 단계는, 상기 BMS가 상기 배터리 감지 정보에 기초하여 상기 적어도 하나의 배터리 모듈의 결함 여부를 판단하는 단계, 및 상기 적어도 하나의 배터리 모듈이 결함이면, 상기 BMS가 상기 충전기의 충전 동작을 정지시키는 단계를 포함할 수 있다.
상기 배터리 팩의 충전 제어 방법은, 상기 적어도 하나의 배터리 모듈의 결함 이후, 소정 기간 경과 후 상기 BMS가 셧다운 하는 단계를 더 포함할 수 있다.
또 다른 특징에 따른 차량은, 복수의 배터리 셀을 포함하는 적어도 하나의 배터리 모듈, 및 상기 복수의 배터리 셀 및 상기 적어도 하나의 배터리 모듈을 감지한 배터리 감지 정보에 기초하여 충전 제어 신호를 생성하는 BMS를 포함하는 배터리 팩, 상기 충전 제어 신호에 따라 상기 배터리 팩에 충전 전력을 공급하는 충전기, 및 상기 충전기가 온 된 후, 상기 충전기로부터 내부 잠김 신호를 수신하면 내부 잠김 온 신호를 상기 BMS로 출력하는 제어기를 포함한다.
상기 BMS는, 상기 충전기로부터 공급되는 전력에 의해 웨이크-업하고, 상기 웨이크-업 상태에서 상기 내부 잠김 온 신호를 소정 기간 내에 수신하면, 상기 감지 정보에 기초하여 상기 충전기의 충전 동작을 제어하는 충전 제어 신호를 생성할 수 있다.
상기 BMS는, 상기 배터리 감지 정보에 기초하여 프리챠지 및 정상챠지 중 어느 하나를 지시하는 충전 제어 신호를 생성하고, 상기 충전기는, 상기 정상챠지에서상기 프리챠지 보다 높은 전류를 상기 배터리 팩에 공급할 수 있다.
상기 BMS는, 상기 배터리 감지 정보에 기초하여 상기 적어도 하나의 배터리 모듈의 만충전 및 결함 중 어느 하나를 감지하고, 상기 적어도 하나의 배터리 모듈이 만충전 및 결함 중 어느 하나이면, 상기 충전기의 충전 동작을 정지시키는 충전 제어 신호를 생성할 수 있다.
상기 BMS는, 상기 충전기로부터 공급되는 전력에 의해 웨이크-업하고, 상기 웨이크-업 상태에서 상기 내부 잠김 온 신호를 소정 기간 내에 수신하면, 상기 배터리 감지 정보에 기초하여 상기 배터리 팩의 충전 가능 여부를 상기 충전기에 알릴 수 있다.
BMS의 자가 방전에 의한 배터리 팩의 망실을 방지하고, 충전 효율을 개선할 수 있는 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량을 제공한다.
도 1은 실시 예에 따른 배터리 팩 및 이를 포함하는 차량의 일부 구성을 나타낸 도면이다.
도 2는 실시 예에 따른 충전기의 구성을 나타낸 도면이다.
도 3 및 도 4는 BMS, 충전기, 및 제어기의 동작을 나타낸 순서도이다.
아래에서는 첨부한 도면을 참고로 하여본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는경우도 포함한다. 또한어떤 부분이 어떤구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을의미한다.
도 1은 실시 예에따른 배터리 팩 및 이를 포함하는 차량의 일부 구성을 나타낸 도면이다.
도 1에 도시된 바와같이, 실시 예에따른 차량(100)은 배터리 팩(1) 및 배터리 팩과 전기적으로 연결된 차량의 다른 구성(2)을 포함한다. 도 1에서 구성(2)은 충전기(20) 및 제어기(30)를 포함한다. 도 1에 도시된 구성(2)은 설명의 편의를 위해 BMS(10)와 전기적으로 연결된 일부 구성만을 포함하는 것으로 도시되어 있으나, 발명이 이에 한정되는 것은 아니다.
배터리 팩(1)은 BMS(10), 두 개의 배터리 모듈(11, 12), 릴레이(13), 및 퓨즈(14)를 포함한다. 도 1에서, 배터리 팩(1)이 두 개의 배터리 모듈(11, 12)를 포함하는 것으로 도시되어 있으나, 이는 설명을 위한 예시일 뿐, 발명이 이에 한정되는 것은 아니다. 또한, 차량(100)이 충전기(20)를 포함하는 것으로 도시되어 있으나, 충전기(20)는 차량(100)과 별도의 구성으로 구현될 수 있다.
배터리 팩(1)은 차량(100)에 전력을 공급한다. 두 개의 배터리 모듈(11, 12) 각각은 복수의 배터리 셀을 포함하고, P+ 단자와 P- 단자 사이에 병렬로 연결되어 있다. 두 개의 배터리 모듈(11, 12) 각각은 복수의 셀에 대한 정보(예를 들어, 셀 전압, 셀 온도 등), 및 배터리 모듈에 대한 정보(예를 들어, 배터리 모듈에 흐르는 전류, 배터리 모듈의 전압, 배터리 모듈의 온도등)를 감지하여 BMS(10)에 전달할 수 있다. 이하, 복수의 셀에 대한 정보 및 배터리 모듈에 대한 정보를 배터리 감지 정보라 한다.
퓨즈(14)는 두 개의 배터리 모듈(11, 12)과 B+ 단자 사이에 연결되어 과도한 전류가 흐를 때 오픈될 수 있다.
릴레이(13)는 B+ 단자와 P+ 단자 사이에 연결되어 있고, BMS(10)의 제어에 따라 동작한다. 예를 들어, BMS(10)로부터 출력되는 릴레이 신호(Re_S)에 따라 스위칭 동작한다. BMS(10)는 충전 동작이 시작되어 충전기(20)로부터 전력이 공급될 때, 릴레이(13)를 턴 온 시키는 릴레이 신호(Re_S)를 생성할 수 있다.
BMS(10)는 두 개의 배터리 모듈(11, 12) 각각으로부터 배터리 감지 정보를 수신하고, 차량(100)의 충전기(20) 및 제어기(30)와 통신을 통해 배터리 감지 정보를 송신하고, 충전기(20) 및 제어기(30)로부터 배터리 관리에 필요한 정보를 수신할 수 있다. 예를 들어, BMS(10)와 제어기(30) 사이의 통신 방식은 CAN 통신일 수 있다.
배터리 팩(1)은 COM 포트를 포함하고, COM 포트에는 CAN 통신을 위한 복수의 단자들 및 BMS(10)와 충전기(20) 사이의 통신을 위한 복수의 단자들이 구비될 수 있다. 배터리 팩(1)의 P+ 단자는 차량(100)의 P+ 단자에 연결되어 있고, 배터리 팩(1)의 P- 단자는 차량(100)의 P- 단자에 연결되어 있다.
충전기(20)가 온 되었을 때, BMS(10)는 셧다운 상태에서 웨이크-업 상태로 변동하고, 제어기(30)가 내부 잠김 상태가 되면, 두 개의 배터리 모듈(11, 12) 각각으로부터 수신된 배터리 감지 정보에 기초해 충전기(20)의 동작을 제어하는 충전 제어 신호(CH_C)를 생성할 수 있다.
BMS(10)는 배터리 감지 정보에 기초해 배터리 모듈들(11, 12)의 상태를 감지하여 배터리 모듈들(11, 12)이 충전 가능한 상태임을 충전기(20)에 알리고, 충전 상태에 따라 충전 제어 신호(CH_C)를 생성할 수 있다. 충전 제어 신호(CH_C)는 펄스 폭 변조 신호(pulse width modulation signal)로, BMS(10)는 충전 상태에 따라 충전 제어 신호(CH_C)의 온-듀티비를 조절한다.
예를 들어, 배터리 모듈들(11, 12) 모두가 만충전 상태이면, BMS(10)는 만충전을 지시하는 온-듀티비 0%의 충전 제어 신호(CH_C)를 생성할 수 있다.
배터리 모듈들(11, 12)의 충전 시작 상태에서, BMS(10)는 프리챠지(pre-charge)를 지시하는 온-듀티비 12%의 충전 제어 신호(CH_C)를 생성할 수 있다. 프리챠지는 CC(Constant Current) 모드에 따라 배터리 팩(1)이 소정의 제1 전류로 충전되는 것을 의미한다. 충전 시작 상태란, 충전 시작 시점에 최소 셀 전압이 소정의 제1 전압 이하인 상태로, 충전 시작 후에 최소 셀 전압이 소정의 제2 전압에 도달할 때, 충전 시작 상태가 종료된다.
충전 시작 상태가 종료된 후, BMS(10)는 정상챠지(normal charge)를 지시하는 온-듀티비 38%의 충전 제어 신호(CH_C)를 생성할 수 있다. 프리챠지와 구분되는 정상챠지(normal charge)는 CC 모드에 따라 소정의 제2 전류로 배터리 팩(1)이 충전되는 것을 의미하고, 제2 전류는 제1 전류보다 높은 레벨이다. 정상챠지는 CV(Constant Voltage) 모드에 따라 소정 전압으로 배터리 팩(1)이 충전되는 것을 더 포함할 수 있다.
충전기(20)는 충전 제어 신호(CH_C)의 온-듀티비에 따라 배터리 팩(1)으로 공급되는 전류를 제어할 수 있다.
프리챠지는 충전 시작 상태뿐만 아니라, 배터리 모듈들(11, 12)의 온도가 소정이 정상 온도 범위를 벗어난 상태에서도 적용될 수 있다. BMS(10)는 정상 온도 범위를 벗어난 상태에서 프리챠지를 지시하는 충전 제어 신호(CH_C)를 생성할 수 있다. BMS(10)는 정상 온도 범위에서 정상챠지를 지시하는 온-듀티비의 충전 제어 신호(CH_C)를 생성할 수 있다.
BMS(10)는 배터리 감지 정보에 기초하여 배터리 모듈들(11, 12)의 결함을 감지할 수 있다. 배터리 모듈들(11, 12)의 결함은 배터리 모듈들(11, 12)에 포함된 셀들 중 과전압 또는 저전압인 셀이 발생한 상태, 배터리 모듈들(11, 12)의 과온 또는 저온인 상태, 배터리 팩(1)에 과전류가 흐르는 상태, 배터리 모듈들(11, 12)에 포함된 셀들 중 과방전 셀이 발생한 상태등 배터리 팩(1)이 정상 동작할 수 없는 다양한 상태를 포함한다. BMS(10)가 배터리 모듈들(11, 12)의 결함을 감지하면 이를 충전기(20)에 전송하여 충전 동작을 정지시킬 수 있다. 이 때, BMS(10)는 결함을 알리기 위해서, 온-듀티비 100%의 충전 제어 신호(CH_C)를 생성하고, 릴레이(13)를 턴 오프 시키는 릴레이 신호(Re_S)를 생성할 수 있다.
플러그(3)가 외부 전력이 공급되는 콘센트에 결합되면, 충전기(20)는 플러그인 되고, 충전기(20)는 턴 온 된다. 충전기(20)가 턴 온 되면, 충전기(20)의 P+ 단자를 통해 전력이 BMS(10) 및 제어기(30)에 소정 기간 공급되고, 제어기(30)에 내부 잠김 신호(I/L)가 전송된다. 충전기(20)는 BMS(10)로부터 배터리 팩(1)이 충전 가능한 상태임을 전달 받으면, 충전 제어 신호(CH_C)에 따라 충전 전력을 배터리 팩(1)에 공급한다.
48제어기(30)는 챠량의 모든 동작을 제어하는 구성으로, BMS(10)로부터 수신되는 배터리 팩(1)의 정보를 고려하여 차량(100)의 운행을 제어할 수 있다. 배터리 팩(1)의 정보는 배터리 감지 정보를 포함한다. 제어기(30)와 BMS(10)는 서로 CAN 통신을 통해 필요한 정보를 송수신할 수 있다.
제어기(30)는 충전기(20)가 온 되었을 때, 셧다운 상태에서 웨이크-업상태로 변동하고, 내부 잠김 신호(I/L)를 수신하면, BMS(10)로 내부 잠김 신호(I/L)에 대응하는 출력을 전송한다. 내부 잠김 신호(I/L)에 따라 제어기(30)는 차량(100)의 동작을 정지 시킨다.
도 2는 실시 예에 따른 충전기의 구성을 나타낸 도면이다.
도 2에 도시된 바와 같이, 충전기(20)는 전력 전달 스위치(21), 전력 변환부(22), 및 충전 제어부(23)를 포함한다.
전력 전달 스위치(21)은 충전 제어부(23)로부터 수신되는 충전 신호(CHS)에 따라 스위칭 동작한다. 충전기(20)가 턴
온 되면, 전력 전달 스위치(21)는 턴 온 될 수 있다.
전력 변환부(22)는 외부 전력을 공급받고, 전력 제어 신호(PCS)에 따라 외부 전력을 변환하여 출력 전력을 생성한다. 출력 전력은 전력 전달 스위치(21)의 온 기간 동안 P+ 단자를 통해 배터리 팩(10) 및 제어기(30)에 공급된다.
충전 제어부(23)는 충전기(20)가 플러그인 되면, 전력 전달 스위치(21)를 턴 온 시키고, 전력 제어 신호(PCS)를 생성하여 BMS(10) 및 제어기(30)로 소정 기간 동안 전력을 공급하도록 한다. 충전 제어부(23)는 전력 전달 스위치(21)를 턴 온 시킨 후, 내부 잠김 신호(I/L)를 출력한다. 충전 제어부(23)는 소정 기간 내에 BMS(10)로부터 충전 가능 상태임을 알리는 신호를 수신하면, BMS(10)로부터 수신되는 충전 제어 신호(CH_C)에 따라 전력 제어 신호(PCS)를 생성하여 전력 변화부(22)의 동작을 제어한다.
실시 예에서, BMS(10)는 충전 제어 신호(CH_C)를 이용하여 충전 제어부(23)로 충전 가능 상태임을 알릴 수 있다. 발명이 이에 한정되는 것은 아니고, BMS(10)는 충전 제어 신호(CH_C) 이외의 다른 신호를 생성하여 충전 제어부(23)로 전송할 수 있다.
이하, 도 3 및 도 4를 참조하여 실시 예에 따른BMS(10), 충전기(20), 및 제어기(30)의 동작을 설명한다.
도 3 및 도 4는 BMS, 충전기, 및 제어기의 동작을 나타낸 순서도이다.
도 3에 도시된 바와 같이, 실시 예에 따른 BMS(10) 및 제어기(30)는 동작하지 않을 때, 셧다운 상태로 유지된다(S1, S2). 셧다운 상태에서, BMS(10)는 릴레이(13)를 오프로 제어하고, 제어기(30) 역시 차량(100) 전체를 오프로 제어한다.
충전기(20)는 준비 상태로 유지되고(S3), 충전기(20)로부터 공급되는 전력은 없다. 충전기(20)가 플러그인 되고(S4), 충전기(20)는 턴 온 된다(S5). 충전기(20)의 턴 온에 의해 소정 기간 동안 충전기(20)로부터 BMS(10) 및 제어기(30)로 전력이 공급된다. 충전기(20)는 턴 온 된 후, 온 레벨의 내부 잠김 신호(I/L)를 출력한다(S6).
그러면, BMS(10) 및 제어기(30)는 웨이크-업 된다(S7, S8). 웨이크-업 상태에서, BMS(10) 및 제어기(30)는 충전기(20)로부터 공급되는 전력에 의해 온 되고, 통신 기능도 온 된다. 예를 들어, BMS(10)와 제어기(30) 간의 통신 방식은 CAN 통신 방식으로, BMS(10)의 CAN 버스와 제어기(30)의 CAN 버스가 온 될 수 있다. BMS(10)의 웨이크-업상태에서도 릴레이(13)는 오프 상태이다.
제어기(30)는 웨이크-업 이후 온 레벨의 내부 잠김 신호(I/L)를 수신하였는지 판단한다(S9). 단계 S9의 판단 결과, 온 레벨의 내부 잠김 신호(I/L)가 수신되면, 제어기(30)는 온 레벨의 내부 잠김 신호(I/L)를 수신하였음을 지시하는 내부 잠김 온 신호(I/L_ON)를 BMS(10)에 출력한다(S10).
BMS(10)가 웨이크-업된 후, BMS(10)는 제어기(30)으로부터 소정 기간 내에 내부 잠김 온 신호(I/L_ON)가 입력되었는지 판단한다(S11). 단계 S11의 판단 결과, 내부 잠김 온 신호(I/L_ON)가 소정 기간 내에 입력되면, BMS(10)는 배터리 감지 정보에 기초하여 충전 가능 여부를 충전기(20)에 전송한다. BMS(10)는 배터리 감지 정보에 기초하여 충전 제어 동작을 수행한다(S13). BMS(10)는 충전 제어 동작시 충전 제어 신호(CH_C)의 온-듀티비를 조절할 수 있다.
충전기(20)는 배터리 팩(1)이 충전 가능 상태인지 판단한다(S12). 앞서 언급한 바와 같이, BMS(10)는 충전 제어 신호(CH_C)를 이용하여 충전 가능 여부를 알려 줄 수 있다. 단계 S12의 판단 결과, 배터리 팩(1)이 충전 가능 상태이면, 충전기(20)는 충전 제어 신호(CH_C)에 따라 충전 동작을 수행한다(S14). 충전기(20)는 충전 동작 시, 충전 제어 신호(CH_C)에 따라 전력 제어 신호(PCS)를 생성하여 배터리 팩(1)으로 공급되는 전력을 제어할 수 있다.
도 4에 도시된 바와 같이, 충전 제어 동작 단계(S13)에서, BMS(10)는 배터리 감지 정보에 기초하여 충전 상태를 감지한다(S131). 단계S131의 감지 결과를 기초로, BMS(10)는 충전 제어 신호(CH_C)를 조절할 수 있다. 예를 들어, BMS(10)는 단계 S131의 감지 결과에 기초하여 프리챠지 및 정상챠지 중 어느 하나를 지시하는 충전 제어 신호(CH_C)로 조절할 수 있다.
또한, BMS(10)는 단계 S131의 감지 결과에 기초하여 배터리 모듈들(11, 12)이 만충전 및 결함 여부를 판단한다(S132, S135).
단계 S132의 판단 결과, 배터리 모듈들(11, 12)가 만충전이면, BMS(10)는 만충전을 지시하는 충전 제어 신호(CH_C)로 변경한다. 예를 들어, BMS(10)는 충전 제어 신호(CH_C)의 온-듀티비를 0%로 변경한다. 단계S132의 판단 결과 만충전이 아닌 경우, BMS(10)는 충전 동작을 유지시킨다. 그러면, 다시 단계S131부터 반복된다.
단계 S133 이후, BMS(10)는 자동 셧다운 조건을 만족하는지 판단한다(S134). 자동 셧다운 조건은 배터리 팩(1)에 흐르는 전류가 소정의 임계 전류 이하인 상태로 소정의 임계 기간 동안 유지되는 조건일 수 있다. 단계 S134의 판단 결과, 자동 셧다운 조건이 만족되면, 단계 S1에 따라 BMS(10)는 셧다운 된다. 단계 S134의 판단 결과, 자동 셧다운 조건이 만족되지 않으면, 충전 제어 신호(CH_C)는 만충전을 지시하는 온-듀티비로 유지된다.
단계 S135의 판단 결과, 배터리 모듈들(11, 12)가 결함이면, BMS(10)는 결함을 지시하는 충전 제어 신호(CH_C)로 변경한다. 예를 들어, BMS(10)는 충전 제어 신호(CH_C)의 온-듀티비를 100%로 변경한다. 단계S135의 판단 결과 결함이 아닌 경우, BMS(10)는 충전 동작을 유지시킨다. 그러면, 다시 단계S131부터 반복된다.
단계 S136 이후, BMS(10)는 소정 기간 동안 대기한다(S137). 단계 S137 이후, 단계 S1에 따라 BMS(10)는 셧다운 된다.
도 4에 도시된 바와 같이, 충전 동작 단계(S14)에서, 충전기(20)는 충전 제어 신호(CH_C)에 따라 충전 모드를 결정한다(S141). 예를 들어, 단계 S141에서, 프리챠지 및 정상챠지 중 하나가 충전 제어 신호(CH_C)에 따라 결정된다. 충전기(20)는 정상챠지에서 CC 모드 및 CV 모드 중 어느 하나를 선택할 수 있다.
단계 S141에서 결정된 충전 모드에 따라, 충전기(20)는 전력 제어 신호(PCS)를 생성하여 충전 전력을 공급할 수 있다(S142).
앞서 언급한 바와 같이, 단계 S133 및 S136 중 어느 하나에 의해 충전 제어 신호(CH_C)가 변경될 수 있다. 충전기(20)는 충전 제어 신호(CH_C)를 감지하여 만충전 및 결함여부를 판단한다(S143, S144).
단계 S143의 판단 결과, 충전 제어 신호(CH_C)가 만충전을 지시하는 경우, 충전기(20)는 충전 전력 공급을 멈추고, 단계 S3에 따라 준비 상태로 된다. 단계 S143의 판단 결과, 충전 제어 신호(CH_C)가 만충전을 지시하지 않는 경우, 다시 단계 S141가 반복된다.
단계 S144의 판단 결과, 충전 제어 신호(CH_C)가 결함을 지시하는 경우, 충전기(20)는 충전기(20)는 충전 전력 공급을 멈추고, 단계 S3에 따라 준비 상태로 된다. 단계 S143의 판단 결과, 충전 제어 신호(CH_C)가 만충전을 지시하지 않는 경우, 다시 단계S141가 반복된다.
충전기(20)는 충전 제어 신호(CH_C)를 감지하여 충전 모드를 결정해야 하므로, 단계 S141는 지속적으로 수행될 수 있다.
이와 같이 실시 예에 따르면, 배터리 팩과 충전기간의 연결을 최소화하여, 불필요한 소비 전력을 방지할 수 있다. 또한, 실시 예에 따르면, 배터리 팩에 사용되는 BMS가 항상 파워 온(power on)되지 않아, 배터리 팩에서 발생할 수 있는 불필요한 자가 방전을 최소화할 수 있다. 아울러, 배터리 셀에 인접한 BMS에서 충전기의 충전 모드를 제어 함으로써, 보다 정확하고 빠르게 충전 전력을 제어할 수 있다. 그러면, 충전 효율이 최대화되고, 배터리의 사용성을 극대화 할 수 있다.
이상에서 복수의 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는본 발명의 기본개념을 이용한 당업자의 여러 변형 및 개량 형태 또한본 발명의 권리범위에 속하는 것이다.

Claims (20)

  1. 제1 단자와 제2 단자 사이에 연결되어 있는 복수의 배터리 셀을 포함하는 적어도 하나의 배터리 모듈,
    상기 제1 단자와 제3 단자 사이에 연결되어 있는 릴레이, 및
    상기 제1 내지 제3 단자에 연결되어 있고, 상기 복수의 배터리 셀 및 상기 적어도 하나의 배터리 모듈을 감지한 배터리 감지 정보에 기초하여 상기 제3 단자에 연결되어 있는 충전기의 충전 동작을 제어하는 충전 제어 신호를 생성하는 BMS를 포함하는
    배터리 팩.
  2. 제1항에 있어서,
    상기 BMS는,
    상기 배터리 감지 정보에 기초하여 프리챠지 및 정상챠지 중 어느 하나를 지시하는 충전 제어 신호를 생성하고,
    상기 정상챠지에서 상기 충전기로부터 공급되는 전류가 상기 프리챠지에서 상기 충전기를 통해 공급되는 전류보다 높은 배터리 팩.
  3. 제1항에 있어서,
    상기 BMS는,
    상기 충전기로부터 충전 전력이 공급되기 시작하면 셧다운 상태에서 웨이크-업상태로 변경하여 온 되는 배터리 팩.
  4. 제3항에 있어서,
    상기 BMS는 CAN 버스를 통해 외부와 통신하고, 상기 웨이크-업 상태에서 상기CAN 버스가 온 되는 배터리 팩.
  5. 제3항에 있어서,
    상기 BMS는,
    상기 웨이크-업 상태에서 상기 배터리 팩을 포함하는 차량의 동작 정지를 지시하는 신호에 대응하는 내부 잠김 온 신호를 수신하면, 상기 배터리 감지 정보에 기초하여 상기 충전기의 충전 동작을 제어하는 배터리 팩.
  6. 제5항에 있어서,
    상기 BMS는,
    상기 내부 잠김 온 신호를 수신하면, 상기 릴레이를 온 시키는 배터리 팩.
  7. 제1항에 있어서,
    상기 BMS는,
    상기 배터리 감지 정보에 기초하여 상기 적어도 하나의 배터리 모듈의 만충전 및 결함 중 어느 하나를 감지하면, 상기 충전 제어 신호를 변경하여 상기 충전기의 충전 동작을 정지시키는 배터리 팩.
  8. 제7항에 있어서,
    상기 BMS는,
    상기 적어도 하나의 배터리 모듈의 만충전을 감지한 후, 상기 배터리 팩에 흐르는 전류가 소정의 임계 전류 이하로 소정의 임계 기간 동안 흐르는 것을 감지하면, 셧다운하는 배터리 팩.
  9. 제7항에 있어서,
    상기 BMS는,
    상기 적어도 하나의 배터리 모듈의 결함을 감지한 후, 소정 기간 경과 후 셧다운하는 배터리 팩.
  10. 복수의 셀을 포함하는 적어도 하나의 배터리 모듈 및 BMS를 포함하고, 차량에 전력을 공급하는 배터리 팩의 충전 제어 방법에 있어서,
    상기 BMS의 셧다운 상태에서 충전기로부터 공급되는 전력에 의해 상기 BMS가 웨이크-업 하는 단계,
    상기 웨이크-업 상태에서, 상기 차량의 동작 정지를 지시하는 신호에 대응하는 내부 잠김 온 신호를 상기 BMS가상기 차량의 제어기로부터 수신하는 단계, 및
    상기 내부 잠김 온 신호를 수신한 후, 상기 BMS가 상기 복수의 배터리 셀 및 상기 적어도 하나의 배터리 모듈을 감지한 배터리 감지 정보에 기초하여 상기 충전기의 충전 동작을 제어하는 단계를 포함하는 배터리 팩의 충전 제어 방법.
  11. 제10항에 있어서,
    상기 충전기의 충전 동작을 제어하는 단계는,
    상기 BMS가 상기 배터리 감지 정보에 기초하여 프리챠지 및 정상챠지 중 어느 하나를 지시하는 충전 제어 신호를 생성하는 단계를 포함하고,
    상기 정상챠지에서 상기 충전기로부터 공급되는 전류가 상기 프리챠지에서 상기 충전기를 통해 공급되는 전류보다 높은 배터리 팩의 충전 제어 방법.
  12. 제10항에 있어서,
    상기 충전기의 충전 동작을 제어하는 단계는,
    상기 BMS가 상기 배터리 감지 정보에 기초하여 상기 적어도 하나의 배터리 모듈의 만충전 여부를 판단하는 단계, 및
    상기 적어도 하나의 배터리 모듈이 만충전이면, 상기 BMS가 상기 충전기의 충전 동작을 정지시키는 단계를 포함하는 배터리 팩의 충전 제어 방법.
  13. 제12항에 있어서,
    상기 적어도 하나의 배터리 모듈의 만충전 이후, 상기 배터리 팩에 흐르는 전류가 소정의 임계 전류 이하로 소정의 임계 기간 동안 흐르면, 상기 BMS가 셧다운 하는 단계를 더 포함하는 배터리 팩의 충전 제어 방법.
  14. 제10항에 있어서,
    상기 충전기의 충전 동작을 제어하는 단계는,
    상기 BMS가 상기 배터리 감지 정보에 기초하여 상기 적어도 하나의 배터리 모듈의 결함 여부를 판단하는 단계, 및
    상기 적어도 하나의 배터리 모듈이 결함이면, 상기 BMS가상기 충전기의 충전 동작을 정지시키는 단계를 포함하는 배터리 팩의 충전 제어 방법.
  15. 제14항에 있어서,
    상기 적어도 하나의 배터리 모듈의 결함 이후, 소정 기간 경과 후 상기 BMS가 셧다운 하는 단계를 더 포함하는 배터리 팩의 충전 제어 방법.
  16. 복수의 배터리 셀을 포함하는 적어도 하나의 배터리 모듈, 및 상기 복수의 배터리 셀 및 상기 적어도 하나의 배터리 모듈을 감지한 배터리 감지 정보에 기초하여 충전 제어 신호를 생성하는 BMS를 포함하는 배터리 팩,
    상기 충전 제어 신호에 따라 상기 배터리 팩에 충전 전력을 공급하는 충전기, 및
    상기 충전기가 온 된 후, 상기 충전기로부터 내부 잠김 신호를 수신하면 내부 잠김 온 신호를 상기 BMS로 출력하는 제어기를 포함하는 차량.
  17. 제16항에 있어서,
    상기 BMS는,
    상기 충전기로부터 공급되는 전력에 의해 웨이크-업 하고, 상기 웨이크-업 상태에서 상기 내부 잠김 온 신호를 소정 기간 내에 수신하면, 상기 감지 정보에 기초하여 상기 충전기의 충전 동작을 제어하는 충전 제어 신호를 생성하는 차량.
  18. 제16항에 있어서,
    상기 BMS는,
    상기 배터리 감지 정보에 기초하여 프리챠지 및 정상챠지 중 어느 하나를 지시하는 충전 제어 신호를 생성하고,
    상기 충전기는,
    상기 정상챠지에서 상기 프리챠지 보다 높은 전류를 상기 배터리 팩에 공급하는 차량.
  19. 제16항에 있어서,
    상기 BMS는,
    상기 배터리 감지 정보에 기초하여 상기 적어도 하나의 배터리 모듈의 만충전 및 결함 중 어느 하나를 감지하고, 상기 적어도 하나의 배터리 모듈이 만충전 및 결함 중 어느 하나이면, 상기 충전기의 충전 동작을 정지시키는 충전 제어 신호를 생성하는 차량.
  20. 제16항에 있어서,
    상기 BMS는,
    상기 충전기로부터 공급되는 전력에 의해 웨이크-업 하고, 상기 웨이크-업 상태에서 상기 내부 잠김 온 신호를 소정 기간 내에 수신하면, 상기 배터리 감지 정보에 기초하여 상기 배터리 팩의 충전 가능 여부를 상기 충전기에 알리는 차량.
PCT/KR2017/012475 2017-01-24 2017-11-06 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량 WO2018139742A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780022323.2A CN109075403B (zh) 2017-01-24 2017-11-06 电池组、控制电池组的充电的方法和包括电池组的车辆
US16/080,631 US11322946B2 (en) 2017-01-24 2017-11-06 Battery pack, method for controlling charging of battery pack, and vehicle comprising battery pack
EP17893849.4A EP3576213A4 (en) 2017-01-24 2017-11-06 BATTERY PACK, METHOD FOR CONTROLLING THE CHARGE OF THE BATTERY PACK, AND VEHICLE COMPRISING THE BATTERY PACK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170011180A KR102345506B1 (ko) 2017-01-24 2017-01-24 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량
KR10-2017-0011180 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018139742A1 true WO2018139742A1 (ko) 2018-08-02

Family

ID=62979569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012475 WO2018139742A1 (ko) 2017-01-24 2017-11-06 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량

Country Status (5)

Country Link
US (1) US11322946B2 (ko)
EP (1) EP3576213A4 (ko)
KR (1) KR102345506B1 (ko)
CN (1) CN109075403B (ko)
WO (1) WO2018139742A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114370A (zh) * 2019-12-17 2020-05-08 深圳市康凯斯信息技术有限公司 一种应用于电动车的充电管理方法、装置和设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211587A (zh) * 2018-11-21 2020-05-29 联正电子(深圳)有限公司 一种均衡电路、充电装置及储能装置
KR20200090514A (ko) * 2019-01-21 2020-07-29 주식회사 엘지화학 BMS(Battery Manager System), ECU(Electronic Control Unit), 그리고 BMS와 ECU 간의 통신 방법
KR102183605B1 (ko) * 2019-01-31 2020-11-27 주식회사 오토스원 모듈형 배터리 팩 포터블 충전 시스템 및 그 충전 방법, 이를 이용한 모듈형 배터리 팩 충전 스테이션
USD929338S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929337S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929334S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD1013634S1 (en) 2019-09-05 2024-02-06 Techtronic Cordless Gp Battery pack
USD929336S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD953268S1 (en) 2019-09-05 2022-05-31 Techtronic Cordless Gp Electrical interface
USD929339S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
USD929335S1 (en) 2019-09-05 2021-08-31 Techtronic Cordless Gp Electrical interface
DE102019124873A1 (de) * 2019-09-16 2021-03-18 Jungheinrich Aktiengesellschaft Flurförderzeug mit einem elektrischen Energiespeicher
CA3150313A1 (en) * 2019-09-23 2021-04-01 Anthony Cooper DUAL CAN MESSAGING BATTERY MANAGEMENT SYSTEM
CN112878415B (zh) * 2021-03-31 2022-10-11 三一重机有限公司 电动挖掘机电源模块控制方法、系统及电动挖掘机
CN113276720A (zh) * 2021-05-08 2021-08-20 国网电动汽车服务有限公司 一种基于bms报文监视的电动汽车安全充电系统和方法
CN114039399B (zh) * 2022-01-10 2022-03-25 苏州贝克微电子股份有限公司 一种低功耗的电池管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081704A (ja) * 2008-09-25 2010-04-08 Toyota Motor Corp 充電制御装置
KR20110132977A (ko) * 2010-06-03 2011-12-09 정윤이 배터리 팩 그리고 배터리 팩의 충전 방법
KR101182890B1 (ko) * 2010-12-01 2012-09-13 삼성에스디아이 주식회사 배터리 팩 충전 제어 시스템
KR20130010799A (ko) * 2011-07-19 2013-01-29 엘지전자 주식회사 휴대 전자기기 및 이의 제어방법
KR20130078954A (ko) * 2012-01-02 2013-07-10 현대모비스 주식회사 Bms와 충전기 그리고 이들을 포함하는 차량용 충전시스템, 및 이의 제어방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254227B2 (ja) * 2002-11-28 2009-04-15 ソニー株式会社 バッテリーパック
JP2007520180A (ja) * 2003-10-14 2007-07-19 ブラック アンド デッカー インク 電池パックの障害状態からの保護を提供するべく適合された二次電池、電動工具、充電器、及び電池パック用の保護方法、保護回路、及び保護装置
JP4059838B2 (ja) * 2003-11-14 2008-03-12 ソニー株式会社 バッテリパック、バッテリ保護処理装置、およびバッテリ保護処理装置の制御方法
KR20100065557A (ko) 2008-12-08 2010-06-17 천창열 전지관리장치의 충전기 감지회로
EP2559588B1 (en) * 2010-06-04 2017-11-08 Honda Motor Co., Ltd. Control apparatus for vehicle
US8698458B2 (en) 2010-07-08 2014-04-15 Samsung Sdi Co., Ltd. Battery pack having boosting charge function and method thereof
KR101413251B1 (ko) 2010-08-13 2014-06-27 주식회사 엘지화학 2차 전지 관리 장치
DE102010062249A1 (de) * 2010-12-01 2012-06-21 Zf Friedrichshafen Ag Vorrichtung zur Verwendung in einem elektrischen Antriebssystem und Verfahren zum Betrieb einer solchen
KR101192010B1 (ko) * 2011-02-10 2012-10-16 삼성에스디아이 주식회사 배터리의 충전 제어 시스템 및 그를 포함하는 배터리 팩
US9077053B2 (en) * 2011-07-20 2015-07-07 Milwaukee Electric Tool Corporation Battery charger including multiple charging ports on surfaces forming an apex
CN104145399B (zh) * 2012-02-29 2016-11-02 Nec能源元器件株式会社 电池控制系统和电池组
KR101420340B1 (ko) 2012-03-23 2014-07-16 삼성에스디아이 주식회사 차량 운행 시스템, 및 이의 제어방법
US9130381B2 (en) * 2013-08-05 2015-09-08 O2Micro Inc. Systems and methods for identifying and monitoring a battery charger
JP6134397B2 (ja) * 2014-02-14 2017-05-24 株式会社日立製作所 電池制御システム、電池システム
CN105024411B (zh) * 2014-04-17 2017-03-15 中国科学院沈阳自动化研究所 一种智能动力锂离子电池管理系统及其充电控制方法
US9573476B2 (en) * 2014-06-09 2017-02-21 GM Global Technology Operations LLC Method and apparatus for controller wakeup using control pilot signal from charge port
JP6791123B2 (ja) * 2015-03-25 2020-11-25 株式会社Gsユアサ 蓄電素子の監視装置、蓄電装置および蓄電素子の監視方法
JP6703248B2 (ja) * 2015-05-20 2020-06-03 富士通クライアントコンピューティング株式会社 二次電池および制御回路
CN105515094A (zh) * 2015-12-04 2016-04-20 合肥工业大学 一种电池管理系统充电唤醒电路
US10618692B2 (en) * 2016-03-09 2020-04-14 Makita Corporation Stackable cases
KR102283791B1 (ko) * 2016-08-23 2021-07-30 삼성에스디아이 주식회사 배터리 보호 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081704A (ja) * 2008-09-25 2010-04-08 Toyota Motor Corp 充電制御装置
KR20110132977A (ko) * 2010-06-03 2011-12-09 정윤이 배터리 팩 그리고 배터리 팩의 충전 방법
KR101182890B1 (ko) * 2010-12-01 2012-09-13 삼성에스디아이 주식회사 배터리 팩 충전 제어 시스템
KR20130010799A (ko) * 2011-07-19 2013-01-29 엘지전자 주식회사 휴대 전자기기 및 이의 제어방법
KR20130078954A (ko) * 2012-01-02 2013-07-10 현대모비스 주식회사 Bms와 충전기 그리고 이들을 포함하는 차량용 충전시스템, 및 이의 제어방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576213A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114370A (zh) * 2019-12-17 2020-05-08 深圳市康凯斯信息技术有限公司 一种应用于电动车的充电管理方法、装置和设备

Also Published As

Publication number Publication date
EP3576213A1 (en) 2019-12-04
CN109075403B (zh) 2022-06-10
KR20180087013A (ko) 2018-08-01
KR102345506B1 (ko) 2021-12-29
US20190067957A1 (en) 2019-02-28
US11322946B2 (en) 2022-05-03
EP3576213A4 (en) 2020-06-24
CN109075403A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2018139742A1 (ko) 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량
WO2018139740A1 (ko) 배터리 팩, 배터리 팩의 관리 방법, 및 배터리 팩을 포함하는 차량
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2012020902A1 (ko) 2차 전지 관리 장치
WO2019103364A1 (ko) 무선 배터리 관리 시스템 및 그것을 이용하여 배터리팩을 보호하는 방법
WO2011102576A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2016017963A1 (ko) 전기 자동차의 급속 충전 제어 장치
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2019088558A1 (ko) 배터리 팩
WO2012005464A2 (ko) 배터리 전원 공급 장치 및 그 전력 제어 방법
WO2015056999A1 (ko) 동기화된 유닛들 가진 통신 시스템 및 그 유닛들의 동기화 방법
WO2014123350A1 (ko) 저발열 무선 전력 수신 장치 및 방법
WO2022092612A1 (ko) 충전 관리 장치, 충전 관리 방법, 및 전기 차량
WO2017047963A1 (ko) 차량 상시전원과 연결된 모바일단말의 배터리 완전 충전 감지 장치
WO2018190512A1 (ko) 에너지 저장 장치의 과방전 방지 및 재기동 장치 및 방법
WO2017090978A1 (ko) 배터리 팩 상태 병렬 모니터링 장치
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2022197040A1 (ko) 전기자동차의 충전 장치 및 방법
WO2015152482A1 (ko) 차량용 전원 제어 장치 및 그 방법
WO2023038289A1 (ko) 배터리 관리 장치 및 그것의 동작 방법
WO2018074808A1 (ko) 충전전압 공급장치 및 공급방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893849

Country of ref document: EP

Effective date: 20190826