WO2018101564A1 - 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법 - Google Patents

선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법 Download PDF

Info

Publication number
WO2018101564A1
WO2018101564A1 PCT/KR2017/007050 KR2017007050W WO2018101564A1 WO 2018101564 A1 WO2018101564 A1 WO 2018101564A1 KR 2017007050 W KR2017007050 W KR 2017007050W WO 2018101564 A1 WO2018101564 A1 WO 2018101564A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
load
state
power management
management system
Prior art date
Application number
PCT/KR2017/007050
Other languages
English (en)
French (fr)
Inventor
오진석
Original Assignee
한국해양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Publication of WO2018101564A1 publication Critical patent/WO2018101564A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J2003/001Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam
    • B63J2003/002Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam by using electric power

Definitions

  • the present invention relates to a battery-associated high efficiency power management system that can save energy by optimally managing the required power and power generated in ships and offshore plants.
  • Bow thrusters installed in ships and offshore plants and cargo pumps for cargo transfer are particularly high power consumption equipments, and consume a lot of power for a short period of time.
  • the generator capacity is chosen to provide a stable supply of power.
  • the capacity of the generator is calculated considering only high load for a short time, it causes the generator low load operation during the voyage which occupies the most time during the operation time. Not only does it adversely affect the power generation efficiency of the generator.
  • the present invention is to solve the above problems, in consideration of the parallel operation of the generator, the charge-discharge and battery-connected high efficiency power management system and method of the ship and offshore plant that can operate the generator load within a certain reference value It aims to provide.
  • a battery-related high efficiency power management system for a ship and a marine plant includes at least one load connected to a ship and a plurality of generators to supply main power to the load.
  • the battery-linked high efficiency power management system including a BPMS, the BPMS, the communication unit for transmitting and receiving the status value of the battery or the generator from the BMS and the PMS, respectively, and the battery, the generator or the central part from an external user Setting information input unit for receiving setting information on whether or not to request, received state value and input
  • a storage unit which maps and stores static information, a control mode selector which selects any one of a standby mode, a charging mode, a discharge mode, and a heavy load control mode based on the state value and the setting information;
  • an algorithm execution unit that executes a predetermined algorithm according to the selected mode.
  • the battery-related high-efficiency power management method of the ship and offshore plant according to another aspect of the present invention, the operation of the generator to supply the main power to the load connected to at least one or more loads, and a plurality of generators connected to the ship A power supply including a PMS for controlling the battery, a BMS connected to a predetermined battery pack to control charging and discharging of the battery in the battery pack to supply auxiliary power to the load, and a BPMS operating in conjunction with the PMS and the BMS.
  • the BPMS is based on the use of the battery and whether or not to charge and discharge the operation state of the power management system standby state, discharge state and charge state Determining any one of the, and the BMS and the PMS is the size of the remaining capacity of the battery and the load Measuring and transmitting the data to the BPMS, and controlling the BPMS to change the operation state of the power management system according to the operation state, the remaining capacity of the battery, and the load size.
  • the power is supplied through the battery at a heavy but specific peak load, which is short in use time, thereby reducing the capacity of the generator in the design or the required number of generators in operation. have.
  • FIG. 1 is a schematic configuration diagram of a battery-associated high efficiency power management system of a ship and offshore plant according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a detailed configuration of the BMS of FIG.
  • FIG. 3 is a block diagram showing a detailed configuration of the BPMS of FIG.
  • FIG. 4 is a diagram illustrating the types of data transmitted and received in a BPMS linking the BMS and the PMS of FIG. 1,
  • FIG. 5 is a schematic diagram schematically showing a battery-linked high efficiency power management method of the ship and offshore plant according to the operating state of FIG.
  • FIG. 6 is a flowchart illustrating a method of controlling to change to a standby state when the battery is discharged according to FIG. 5;
  • FIG. 7 is a flowchart illustrating a method of controlling to change to a standby state when the battery is in a charged state according to FIG. 5;
  • FIG. 8 is a flowchart illustrating an operation control method when the operation state of FIG. 1 is in a standby state.
  • FIG. 9 is a flowchart illustrating an operation control method when the operation state of FIG. 1 is in a charge state.
  • FIG. 10 is a flowchart illustrating an operation control method when the operation state of FIG. 1 is a discharge state.
  • FIG. 11 is a flowchart illustrating an operation control method when the operation state of FIG. 1 is a heavy load control state.
  • FIG. 12 is a diagram illustrating a state in which a UI regarding an operation state and changes of the power management system of FIG. 1 is displayed on a screen of a separate display device or a user terminal.
  • FIG. 1 is a schematic configuration diagram of a battery-associated high efficiency power management system of a ship and offshore plant according to an embodiment of the present invention
  • Figure 2 is a block diagram showing a detailed configuration of the battery management system (BMS) of Figure 1
  • BMS battery management system
  • Figure 1 3 is a block diagram illustrating a detailed configuration of a battery-connected power management system (BPMS) of FIG. 1
  • FIG. 4 is a type of data transmitted and received in a BPMS linking the BMS and the power management system (PMS) of FIG. 1. The figure which shows.
  • FIGS. 1 to 4 a battery-associated high efficiency power management system of a ship and an offshore plant according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • a battery-associated high efficiency power management system of a ship and an offshore plant includes a load 10, a PMS 60, a BMS 50, and a BPMS 70. It is composed.
  • the load 10 is provided with at least one connected to the ship, for example, may include a bow thruster (bow thruster) with a large power consumption in a short time.
  • a bow thruster bow thruster
  • the PMS 60 is connected to the plurality of generators 20 and controls the operation of the generator 20 to supply main power to the load 10.
  • the PMS 60 is a kind of power management system.
  • the PMS 60 forms a predetermined network for controlling the generator 20 and the load 10, and may cut off a low importance load according to priority in case of an overload or emergency.
  • the BMS 50 is connected to a predetermined battery pack 30 to control charging and discharging of the battery in the battery pack 30 to supply auxiliary power to the load 10.
  • the BMS 50 is a kind of battery management system that can measure the current state of the battery and control the charge and discharge of the battery.
  • the BMS 50 when the BMS 50 intends to discharge the battery, the BMS 50 changes a predetermined battery power in the battery pack 30 to a predetermined voltage through a DC / DC converter, and uses a grid inverter. After changing to AC power through the power switch via the power switch to the main power bus to discharge the battery.
  • the BMS 50 performs the battery charging operation by allowing the power entered through the power switch to the main power bus to be charged by the battery through the battery charger 32.
  • the BMS 50 includes a temperature sensor and a voltage sensor for measuring the current temperature and voltage of the battery pack 30 therein, and then calculates a state of charge (SOC) and a state of health (SOH) using the BPMS. Transmit to 70.
  • SOC state of charge
  • SOH state of health
  • the BMS 50 may include a BMS controller that controls the operation and change voltage of the above-described DC / DC converter, the operation of the grid inverter or the operation of the power switch.
  • the operating power of the BMS 50 may be supplied from the battery power battery additionally installed, and may be provided in a testable state without the generator 20 or the battery 30.
  • BPMS is a system that operates in conjunction with the PMS (60) and BMS (50), by using the energy storage characteristics of the battery to increase the overall power generation efficiency on board.
  • the BPMS 70 includes a communication unit 710, a setting information input unit 720, a storage unit 730, a control mode selection unit 740, and an algorithm execution unit 750 as shown in FIG. 3. Can be.
  • the communication unit 710 performs bidirectional data communication with the BMS 50 and the PMS 60 through the RS-485 Modbus (RTU) protocol, respectively, and receives the status value of the battery 30 from the BMS 50 and the PMS ( 60 may receive a state value of the generator 20.
  • RTU RS-485 Modbus
  • the BPMS 70 acts as a master
  • the BMS 50 and PMS 60 act as slaves, sending data from the slave upon master request, and sending the data to the slave when the signal value of the master changes.
  • a master-slave operation in which the changed value is transmitted may be performed.
  • the setting information input unit 720 receives setting information regarding whether the battery 30, the generator 20, or the heavy load request is received from an external user.
  • the storage unit 730 maps and stores the state value received from the communication unit 710 and the setting information input through the setting information input unit 720.
  • the control mode selector 740 selects one of a preset standby mode, a charge mode, a discharge mode, and a heavy load control mode based on the state value and the setting information.
  • the algorithm execution unit 750 executes a preset algorithm according to the mode selected by the control mode selection unit 740.
  • the BPMS 70 includes an alarm detection unit 760 that checks whether a problem occurs when performing the calculation of the algorithm execution unit 750 and corrects a related data value while generating an alarm in such a case.
  • the apparatus may further include a monitoring output unit 770 for outputting the changed data to a human machine interface (HMI) so that a user may know the changed data, and a switched mode power supply (SMPS) for supplying operating power.
  • HMI human machine interface
  • SMPS switched mode power supply
  • the data input from the PMS 60 to the BPMS 70 includes a PMS state, a generator power (No.n G / E power), and a generator voltage (No.n G / E voltage). ), Generator current (No.n G / E current), power factor of main power, parallel operation setting value (Parallel setting), parallel operation release setting value (Step out setting), PMS alarm, A heavy load request (No.n HL request), a heavy load operating state (No.n HL ON state), and a heavy load alarm (No.n HL alarm).
  • data input from the BMS 50 to the BPMS 70 may include a BMS state, a charge power, a discharge power, a battery temperature, a battery SOC, and a battery SOC. ), Battery SOH (Battery SOH) and BMS alarm (BMS alarm).
  • data output from the BPMS 70 to the BMS 60 may include a battery charge command, a battery discharge command, a battery standby command, and a charge power command. Comd) and a discharge power comd.
  • FIG. 5 is a schematic view illustrating a battery-associated high efficiency power management method of a ship and an offshore plant according to the operating state of FIG. 1, and FIG. 6 illustrates a method of controlling to change to a standby state when discharged according to FIG. 5.
  • 7 is a flowchart illustrating a method of controlling to change to a standby state when the battery is in a charged state according to FIG. 5, and
  • FIG. 8 is a flowchart illustrating an operation control method when the operating state of FIG. 1 is in a standby state.
  • 9 is a flowchart illustrating an operation control method when the operation state of FIG. 1 is a charge state
  • FIG. 10 is a flowchart illustrating an operation control method when the operation state of FIG. 1 is a discharge state
  • FIG. 11 is FIG. Is a flow chart showing an operation control method when the operation state is a heavy load control state.
  • the main power to the load 10 is connected to at least one or more loads 10 and a plurality of generators 20 connected to the ship PMS (60) for controlling the operation of the generator 20 to supply the control, and connected to a predetermined battery pack 30 to control the charge and discharge of the battery in the battery pack 30 to supply auxiliary power to the load 10
  • a power management system 1 including a BMS (50), a BPMS (70) that operates in conjunction with the PMS (60) and the BMS (50).
  • the power management system 1 may have the features described above with reference to FIGS. 1 to 4, and the detailed description thereof will be omitted since the contents are overlapped.
  • the BPMS 70 determines an operation state of the power management system 1 as one of a standby state, a discharge state, and a charge state based on whether the battery is used and whether the battery is charged or discharged (S100).
  • the standby state is a state in which the battery 30 is not used
  • the discharge state is a state in which the battery 30 is discharged through the grid inverter
  • the charge state is the battery 30 using the battery charger 32. ) May be in a state of charging.
  • the BMS 50 measures the remaining capacity SOC of the battery and the magnitude of the load L R , respectively, and transmits the measured amount to the BPMS 70 (S200).
  • the BMS 50 includes a temperature sensor and a voltage sensor for measuring the current temperature and voltage of the battery pack 30 therein, and calculates a state of charge (SOC) and a state of health (SOH) using the same. It can then transmit to the BPMS 70.
  • SOC state of charge
  • SOH state of health
  • Equation 1 the magnitude of the load (L R ) can be expressed as Equation 1 below.
  • P G is the generated power
  • n G is the number of generators in operation
  • P Gmax is the maximum power of one generator.
  • the BPMS 70 receives values for the operation state determined in step S100 and the remaining capacity SOC of the battery and the size of the load L R measured in step S200, and accordingly, the power management system 1. Control to change the operation state of the (S300).
  • step S300 the BPMS 70 controls the heavy load input, the number of generator operation (parallel operation) and battery charging and discharging, etc., but in a state in which the generator load is low, the efficiency is high according to the SFC characteristics of the generator (about The battery is charged to operate at 85%) and the battery is discharged when the generator load is high and parallel operation is required, thereby supplying power to the main power bus to minimize the low load uptime caused by the generator parallel operation.
  • step S300 when the operation state is a standby state (Standby), the battery remaining capacity (SOC) is less than the predetermined minimum threshold value (40%) or the battery remaining capacity (SOC) is the reference capacity preset
  • the operation state of the power management system 1 may be changed to the charging state Charge.
  • the switch unit 40 After charging the battery of the Nth charger (where N is a natural number), if the load size L R is greater than the minimum charging load amount L Cmin and greater than 83%, the switch unit 40 is turned off to the Nth If the charger's battery stops charging (where N is a natural number) and the load size (L R ) is greater than the minimum charging load amount (L Cmin ) and less than 83%, check the heavy load operation to determine the heavy load. If not stand the load size (L R) is less than 45% copper for releasing the parallel operation of the generator To be carried out.
  • the minimum charging load amount L Cmin may be represented by Equation 2 below.
  • P cmax is the maximum power of one charger
  • n G is the number of generators in operation
  • P Gmax is the maximum power of one generator
  • step S300 when the operation state is the charge state (Charge), the battery residual capacity (SOC) exceeds the predetermined maximum threshold value (90%) or the load size (L R ) is a reference load preset
  • the operating state of the power management system 1 can be changed to the standby state (Standby).
  • the switch unit 40 of the charger in operation is sequentially turned off to stop the charging of the battery 30.
  • This may be overcharged when the remaining capacity SOC of the battery 30 exceeds the maximum threshold value (90%), and the generator 20 may operate excessively when the load amount exceeds the reference load value (85%). This is to prevent the use of (30) by stopping the use and leaving it in the standby state.
  • step S300 when the operation state is a standby state, the battery remaining capacity (SOC) exceeds the predetermined intermediate threshold value (50%) and the load size (L R ) is the reference load value (85%) If exceeded, the operating state of the power management system 1 can be changed to the discharged state.
  • SOC battery remaining capacity
  • L R load size
  • the load size L R is performed. Is less than the predetermined reference load value (85%) and less than the minimum discharge load amount (L Dcmin ), the switch unit 40 of the Nth discharger is turned off, and the size (L R ) of the load 10 is the minimum discharge load amount (L). If the Dcmin ) is greater than 90%, the parallel operation of the generator 20 is performed.
  • the minimum discharge load (L Dcmin ) can be expressed as Equation 3 below.
  • P Dcmax is the maximum power of one discharger
  • n G is the number of generators in operation
  • P Gmax is the maximum power of one generator
  • step S300 when the operation state is the discharge state (Discharge), the battery remaining capacity (SOC) is less than the minimum threshold value (40%) or the load size (L R ) is the minimum discharge load amount (L Dcmin ) If less, the operating state of the power management system 1 can be changed to the standby state (Standby).
  • the size of emergency load 10 in size after the (L R) is less than 90%, turning off the switch unit 40 of the discharger in operation, the load 10 of the (L R When is greater than 90%, performs the parallel operation of the generator 20 and change the state.
  • step S300 when receiving the heavy load request from the PMS 60 when the operation state is any one of the charging state, the standby state, discharge state, the heavy load control of the operation state of the power management system 1
  • the method may further include changing to a state.
  • the parallel operation of the generator is not released in preparation for a sudden load change due to the use of the heavy load, and in the case of the parallel operation release load rate, it is set differently according to the number of generators operating.
  • the heavy load expected required load ratio HL ER is compared with the reference load value (85%), and if the heavy load expected required load ratio HL ER does not exceed 85%, a predetermined time delay is obtained.
  • Heavy load If the heavy load expected load factor (HL ER ) is greater than 85%, the battery is discharged and the Nth discharger is turned on (where N is a natural number), if the heavy load expected load factor (HL ER ) does not exceed 85%, If all of the dischargers are on and the heavy load expected load factor (HL ER ) exceeds 85%, run the generator in parallel.
  • the heavy load expected required load factor (HL ER ) is greater than the reference load value (85%) and the battery is not in a charge / discharge state
  • the battery remaining capacity (SOC) is greater than the intermediate threshold (50%) while the battery is in standby. If it is greater than 50%, check if the Heavy Load Discharge Expected Load Rate (HL ER ) is greater than the reference load value (85%). If it is not higher than 85%, make the battery discharged and then reload it HL ER ).
  • the heavy load expected required load ratio HL ER may be expressed as Equation 4 below.
  • P HL is the requested heavy load expected power
  • P G is the generated power
  • n G is the number of generators in operation
  • P Gmax is the maximum power of one generator.
  • the battery remaining capacity (SOC) is a medium threshold value (50%) when the battery is in standby state. If it is greater than 50%, compare the heavy load expected load factor (HL DC ) with the reference load value (85%), and if the heavy load expected load factor (HL DC ) is less than 85%, discharge in the standby state.
  • Total number of generators (n G ) installed, with the number of generators running (n G ) controlled when changing to the state and when the remaining battery capacity (SOC) is less than 50% or the heavy discharge anticipated load factor (HL DC ) is more than 85%. If it is less than Gmax ), perform parallel operation of the generator in standby state, delay the fixed time and input heavy load.If the number of generators in operation is maximum (n G n Gmax ), do not input heavy load. do.
  • the heavy load discharge expected load factor HL DC may be expressed by Equation 5 below.
  • n Dcmax is the number of dischargers installed
  • P Dcmax is the maximum power of one discharger
  • n G is the number of generators in operation
  • P Gmax is the maximum power of one generator.
  • the battery-related high-efficiency power management method of the ship and offshore plant according to the present invention after the step S300 of the separate display device or user terminal connected to the operation state and changes of the power management system according to the present invention by wire or wireless
  • the method may further include displaying on the screen (S400).
  • FIG. 12 is a diagram illustrating a state in which a UI regarding an operation state and changes of the power management system of FIG. 1 is displayed on a screen of a separate display device or a user terminal.
  • the UI may include a lamp at a position corresponding to each of a discharge state, a standby state, a charge state, and a heavy load control state indicating a current operation state of the power management system.
  • arrow shaped lamps 741, 742, 743, 744, 745 and 746 indicating changes in the operating state of the power management system.
  • operation S400 when the operating state of the power management system is in a standby state, the remaining capacity of the battery is less than a predetermined minimum threshold value or the remaining capacity of the battery is reduced.
  • the size of the load is less than a predetermined reference capacity value and the size of the load is smaller than the predetermined minimum charging load amount
  • the standby state (Standby) and the charging state (Charge) in the UI The arrow-shaped lamp 741 heading toward the charging state (Charge) is controlled to turn on.
  • the operating state of the power management system is a charging state
  • the remaining capacity of the battery exceeds a predetermined maximum threshold value or the size of the load exceeds a predetermined reference load value
  • the arrow-shaped lamp 742 heading to the standby state Standby between the charging state Standby and the standby state Standby is controlled in the UI.
  • the operating state of the power management system is a standby state
  • the remaining capacity of the battery exceeds a predetermined intermediate threshold value and the size of the load exceeds the reference load value
  • the operating state of the power management system After changing to the discharged state, the UI is controlled to light the arrow-shaped lamp 744 to the discharged state (Discharge) between the standby state (Standby) and the discharge state (Discharge).
  • the operation state of the power management system is a discharge state
  • the remaining capacity of the battery is less than the minimum threshold value or the size of the load is less than the minimum discharge load amount
  • the operation state of the power management system is changed to the standby state
  • the UI-controlled lighting of the arrow-shaped lamp 743 is turned on between the discharge state (Standby) and the standby state (Standby) to the standby state (Standby).
  • the operating state of the power management system is any one of a discharge state, a standby state, and a charge state
  • the operating state of the power management system is changed to a heavy load control state.
  • the UI-controlled lamp 745 is turned on to turn on the heavy load control state (Heavy Load).
  • the user can intuitively and quickly grasp the operation status and changes of the battery-associated high efficiency power management system of the ship and offshore plant according to the present invention.
  • the capacity and operation of the generator by supplying power through the battery at a heavy but specific peak load, so that the battery used as an emergency power source in the event of a generator is mostly charged to maintain a state of charge It is possible to reduce the number and to maximize the energy efficiency as a system to increase the battery utilization by maintaining a constant load having a good efficiency through the charge and discharge of the battery.
  • the present invention can be used in the field of battery-associated high efficiency power management system that can save energy by optimally managing the required power and power generated in ships and offshore plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명은 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법에 관한 것으로서, 선박에 연결된 적어도 하나 이상의 부하와, 복수의 발전기에 연결되어 상기 부하에 주 전력을 공급하도록 상기 발전기의 동작을 제어하는 PMS와, 소정의 배터리팩에 연결되어 상기 부하에 보조 전력을 공급하도록 상기 배터리팩 내의 배터리의 충·방전을 제어하는 BMS와, 상기 PMS와 상기 BMS를 연계하여 동작하는 BPMS를 포함하는 배터리 연계형 고효율 전력관리시스템에 있어서, 상기 BPMS는, 상기 BMS 및 상기 PMS로부터 각각 상기 배터리 또는 상기 발전기의 상태값을 송수신하는 통신부와, 외부의 사용자로부터 상기 배터리, 상기 발전기 또는 중부하 요청 여부에 대한 설정정보를 입력받는 설정정보 입력부와, 수신한 상태값과 입력된 설정정보를 매핑하여 저장하는 저장부와, 상기 상태값 및 상기 설정정보에 기초하여 기설정된 대기 모드, 충전 모드, 방전 모드 및 중부하 제어모드 중 어느 하나의 모드를 선택하는 제어모드 선택부와, 선택된 모드에 따라 기설정된 알고리즘을 실행하는 알고리즘 실행부를 포함하는 것을 특징으로 한다. 이에 따라, 배터리가 대부분 충전된 상태를 유지하도록 하여 사용 시간이 짧은 중부하나 특정한 피크 부하에서 배터리를 통해 전력을 공급함으로써 발전기의 용량 및 운전 대수를 줄일 수 있다.

Description

선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법
본 발명은 선박 및 해양플랜트에서 필요한 요구전력 및 발전전력을 최적으로 관리하여 에너지를 절감할 수 있는 배터리 연계형 고효율 전력관리시스템에 관한 것이다.
선박 및 해양플랜트에 설치되는 바우스러스터(bow thruster) 및 화물이송을 위한 카고 펌프(cargo pump) 등은 탑재 장비 중에서 전력 소비가 특히 큰 장비로 짧은 사용시간 동안 많은 전력을 소모하게 된다. 이러한 장비가 사용되는 전력시스템에서 발전기의 용량은 전력을 안정적으로 공급할 수 있도록 선정된다.
만약 단기간의 높은 부하만을 고려하여 발전기의 용량 산정을 하는 경우, 운항시간 중 가장 많은 시간을 차지하는 항해 시에 발전기 저부하 운전을 초래하게 되는데, 이러한 발전기 저부하 운전은 저온부식 등으로 인해 발전기 수명에 나쁜 영향을 미칠 뿐 아니라 발전기의 전력생산 효율을 감소시키게 된다.
게다가, 종래의 전력시스템의 경우, 발전기의 충·방전량이 발전기의 50%로 일정하게 고정되므로, 충·방전 동작에 따라 고부하 운전을 유지하기가 불리하다는 문제점이 있다.
본 발명은 상기의 문제점을 해결하기 위한 것으로, 발전기의 병렬운전을 고려하여 충·방전되며 발전기 부하를 일정 기준치 내의 상태로 동작시킬 수 있는 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명의 일면에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템은, 선박에 연결된 적어도 하나 이상의 부하와, 복수의 발전기에 연결되어 상기 부하에 주 전력을 공급하도록 상기 발전기의 동작을 제어하는 PMS와, 소정의 배터리팩에 연결되어 상기 부하에 보조 전력을 공급하도록 상기 배터리팩 내의 배터리의 충방전을 제어하는 BMS와, 상기 PMS와 상기 BMS를 연계하여 동작하는 BPMS를 포함하는 배터리 연계형 고효율 전력관리시스템에 있어서, 상기 BPMS는, 상기 BMS 및 상기 PMS로부터 각각 상기 배터리 또는 상기 발전기의 상태값을 송수신하는 통신부와, 외부의 사용자로부터 상기 배터리, 상기 발전기 또는 중부하 요청 여부에 대한 설정정보를 입력받는 설정정보 입력부와, 수신한 상태값과 입력된 설정정보를 매핑하여 저장하는 저장부와, 상기 상태값 및 상기 설정정보에 기초하여 기설정된 대기 모드, 충전 모드, 방전 모드 및 중부하 제어모드 중 어느 하나의 모드를 선택하는 제어모드 선택부와, 선택된 모드에 따라 기설정된 알고리즘을 실행하는 알고리즘 실행부를 포함하는 것을 특징으로 한다.
또한, 본 발명의 다른 일면에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법은, 선박에 연결된 적어도 하나 이상의 부하와, 복수의 발전기에 연결되어 상기 부하에 주 전력을 공급하도록 상기 발전기의 동작을 제어하는 PMS와, 소정의 배터리팩에 연결되어 상기 부하에 보조 전력을 공급하도록 상기 배터리팩 내의 배터리의 충방전을 제어하는 BMS와, 상기 PMS와 상기 BMS를 연계하여 동작하는 BPMS를 포함하는 전력관리시스템을 이용한 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법에 있어서, 상기 BPMS가 상기 배터리의 사용 여부 및 충방전 여부에 기초하여 상기 전력관리시스템의 동작 상태를 대기 상태, 방전 상태 및 충전 상태 중 어느 하나로 판단하는 단계와, 상기 BMS 및 상기 PMS가 상기 배터리의 잔존용량과 상기 부하의 크기를 각각 측정하여 상기 BPMS로 송신하는 단계와, 상기 BPMS가 상기 동작 상태와 상기 배터리의 잔존용량 및 상기 부하 크기에 따라 상기 전력관리시스템의 동작 상태를 변경하도록 제어하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 배터리가 대부분 충전된 상태를 유지하도록 하여 사용 시간이 짧은 중부하나 특정한 피크 부하에서 배터리를 통해 전력을 공급함으로써 설계 시 발전기의 용량을 줄이거나 운항 중 발전기의 필요 운전 대수를 줄일 수 있다.
또한, 본 발명에 따르면, 배터리의 충·방전을 통해 발전기를 좋은 효율을 가지는 일정 부하로 유지하고, 배터리 활용을 높이는 시스템으로 에너지 효율을 극대화할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템의 개략적인 구성도이고,
도 2는 도 1의 BMS의 세부 구성을 나타낸 블록도이고,
도 3은 도 1의 BPMS의 세부 구성을 나타낸 블록도이고,
도 4는 도 1의 BMS 및 PMS 사이를 연계하는 BPMS에서 송수신되는 데이터의 종류를 나타낸 도면이고,
도 5는 도 1의 동작 상태에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법을 개략적으로 나타낸 개략도이고,
도 6은 도 5에 따라 방전 상태일 때 대기 상태로 변경하도록 제어하는 방법을 상세히 나타낸 순서도이고,
도 7은 도 5에 따라 충전 상태일 때 대기 상태로 변경하도록 제어하는 방법을 상세히 나타낸 순서도이고,
도 8은 도 1의 동작 상태가 대기 상태일 때의 동작 제어 방법을 나타낸 순서도이고,
도 9는 도 1의 동작 상태가 충전 상태일 때의 동작 제어 방법을 나타낸 순서도이고,
도 10은 도 1의 동작 상태가 방전 상태일 때의 동작 제어 방법을 나타낸 순서도이고,
도 11은 도 1의 동작 상태가 중부하 제어 상태일 때의 동작 제어 방법을 나타낸 순서도이고,
도 12는 도 1의 전력관리시스템의 동작 상태 및 변경 사항에 관한 UI를 별도의 디스플레이장치 또는 사용자 단말기의 화면에 표시한 상태를 나타낸 도면이다.
이상과 같은 본 발명에 대한 해결하려는 과제, 과제의 해결수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시예 및 도면에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
도 1은 본 발명의 일 실시예에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템의 개략적인 구성도이고, 도 2는 도 1의 BMS(Battery Management System)의 세부 구성을 나타낸 블록도이고, 도 3은 도 1의 BPMS(Battery-connected Power Management System)의 세부 구성을 나타낸 블록도이고, 도 4는 도 1의 BMS 및 PMS(Power Management System) 사이를 연계하는 BPMS에서 송수신되는 데이터의 종류를 나타낸 도면이다.
이하, 도 1 내지 도 4를 참조하여 본 발명의 일 실시예에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템에 대해 설명하도록 한다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템은 크게 부하(10), PMS(60), BMS(50) 및 BPMS(70)를 포함하여 구성된다.
부하(10)는 적어도 하나 이상으로 마련되어 선박에 연결되며, 예컨대, 단시간에 전력소모가 큰 바우스러스터(bow thruster)를 포함할 수 있다.
PMS(60)는 복수의 발전기(20)에 연결되어 부하(10)에 주 전력을 공급하도록 발전기(20)의 동작을 제어한다.
여기서, PMS(60)는 일종의 전력 관리 시스템으로서, 발전기(20) 및 부하(10) 제어를 위한 소정의 네트워크를 구성하며 과부하나 비상사태 발생 시 우선순위에 따라 중요도가 낮은 부하를 차단할 수 있다.
BMS(50)는 소정의 배터리팩(30)에 연결되어 부하(10)에 보조 전력을 공급하도록 배터리팩(30) 내 배터리의 충·방전을 제어한다.
여기서, BMS(50)는 일종의 배터리 관리 시스템으로서, 배터리의 현재 상태 측정과 배터리의 충·방전 제어를 수행할 수 있다.
구체적으로, 도 2를 참조하면, BMS(50)는 배터리를 방전하고자 하는 경우엔, 배터리팩(30) 내의 소정의 배터리 전력을 DC/DC컨버터를 통해 일정 전압으로 변경하고 그리드 인버터(grid inverter)를 통해 AC전력으로 변경한 후, 전력 스위치를 거쳐 메인 전력 버스에 이를 공급함으로써 배터리 방전 동작을 수행한다.
또한, BMS(50)는 배터리를 충전하고자 하는 경우엔, 메인 전력 버스에 전력 스위치를 통해 들어온 전력이 배터리 충전부(32)를 거쳐 배터리로 충전되도록 함으로써 배터리 충전 동작을 수행한다.
또한, BMS(50)는 내부에 배터리팩(30)의 현재 온도 및 전압을 측정하는 온도 센서 및 전압 센서를 포함하며 이를 이용해 SOC(State Of Charge) 및 SOH(State Of Health)를 산출한 후 BPMS(70)로 송신한다.
또한, BMS(50)는 전술한 DC/DC컨버터의 작동 및 변경 전압이나 그리드 인버터의 작동이나 전력 스위치의 작동을 제어하는 BMS제어기를 포함할 수 있다.
이때, BMS(50)의 동작 전원은 추가로 설치한 배터리 전원용 배터리로부터 공급받도록 하여, 발전기(20)나 배터리(30) 없이도 테스트 가능한 상태로 마련될 수 있다.
BPMS(70)는 PMS(60)와 BMS(50)를 연계하여 동작하는 시스템으로서, 배터리의 에너지 저장특성을 활용하여 선내 전체 발전효율을 높일 수 있도록 하기 위한 것이다.
여기서, BPMS(70)는 도 3에 도시된 바와 같이 크게 통신부(710), 설정정보 입력부(720), 저장부(730), 제어모드 선택부(740) 및 알고리즘 실행부(750)를 포함할 수 있다.
통신부(710)는 RS-485 Modbus(RTU) 프로토콜을 통해 BMS(50) 및 PMS(60)와 각각 양방향 데이터 통신을 수행하되, BMS(50)로부터 배터리(30)의 상태값을 수신하고 PMS(60)로부터 발전기(20)의 상태값을 수신할 수 있다.
예컨대, BPMS(70)는 마스터(master)로 작용하고 BMS(50) 및 PMS(60)는 슬레이브(slave)로 작용하여 마스터 요청 시에 슬레이브에서 데이터를 송부하고, 마스터의 신호 값이 바뀌면 슬레이브로 바뀐 값이 전송되는 마스터 슬레이브 동작(master-slave operation)을 수행할 수 있다.
설정정보 입력부(720)는 외부의 사용자로부터 배터리(30), 발전기(20) 또는 중부하 요청 여부에 대한 설정정보를 입력받는다.
저장부(730)는 통신부(710)에서 수신한 상태값과 설정정보 입력부(720)를 통해 입력된 설정정보를 매핑하여 저장한다.
제어모드 선택부(740)는 상기 상태값 및 상기 설정정보에 기초하여 기설정된 대기 모드, 충전 모드, 방전 모드 및 중부하 제어모드 중 어느 하나의 모드를 선택한다.
알고리즘 실행부(750)는 제어모드 선택부(740)에 의해 선택된 모드에 따라 기설정된 알고리즘을 실행한다.
또한, 본 발명의 일 실시예에 따른 BPMS(70)는, 알고리즘 실행부(750)의 계산 수행 시 문제 발생 여부를 확인하여 그러한 경우 알람을 발생시키면서 관련 데이터값을 수정하는 알람 검출부(760)와, 사용자가 변경된 데이터를 알 수 있도록 HMI(Human Machine Interface)로 출력하는 모니터링 출력부(770)와, 동작 전원을 공급하는 SMPS(Switched Mode Power Supply)를 더 포함할 수도 있다.
이때, BMS(50) 및 PMS(60) 사이를 연계하는 BPMS(70)를 통해 송수신되는 데이터의 종류는 도 4에 도시된 바와 같다.
도 4를 참조하면, PMS(60)에서 BPMS(70)로 입력되는 데이터는, PMS 상태(PMS state), 발전기 전력(No.n G/E power), 발전기 전압(No.n G/E voltage), 발전기 전류(No.n G/E current), 메인 전력의 역률(Power factor), 병렬운전 설정값(Parallel setting), 병렬운전해제 설정값(Step out setting), PMS 알람(PMS alarm), 중부하 요청(No.n HL request), 중부하 동작 상태(No.n HL ON state) 및 중부하 알람(No.n HL alarm)을 포함한다.
또한, BMS(50)에서 BPMS(70)로 입력되는 데이터는, BMS 상태(BMS state), 충전 전력(Charger power), 방전 전력(Discharge power), 배터리 온도(Battery Temp), 배터리 SOC(Battery SOC), 배터리 SOH(Battery SOH) 및 BMS 알람(BMS alarm)을 포함한다.
한편, BPMS(70)에서 알고리즘 수행에 따른 계산을 완료한 경우, BPMS(70)에서 PMS(60)로 출력되는 데이터는, 발전기 동작(No.n G/E start), 발전기 정지(No.n G/E stop), ACB 동작(No.n ACB(Air Circuit Breaker) ON), ACB 정지(No.n ACB OFF), 발전기 부하 분담 명령(G/E load sharing Comd), 중부하 동작(No.n HL ON) 및 중부하 요청 해제(No.n HL request OFF)를 포함한다.
또한, BPMS(70)에서 BMS(60)로 출력되는 데이터는, 배터리 충전 명령(Battery charge Comd), 배터리 방전 명령(Battery discharge Comd), 배터리 대기 명령(Battery standby Comd), 충전 전력 명령(Charge power Comd) 및 방전 전력 명령(Discharge power Comd)를 포함한다.
도 5는 도 1의 동작 상태에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법을 개략적으로 나타낸 개략도이고, 도 6은 도 5에 따라 방전 상태일 때 대기 상태로 변경하도록 제어하는 방법을 상세히 나타낸 순서도이고, 도 7은 도 5에 따라 충전 상태일 때 대기 상태로 변경하도록 제어하는 방법을 상세히 나타낸 순서도이고, 도 8은 도 1의 동작 상태가 대기 상태일 때의 동작 제어 방법을 나타낸 순서도이고, 도 9는 도 1의 동작 상태가 충전 상태일 때의 동작 제어 방법을 나타낸 순서도이고, 도 10은 도 1의 동작 상태가 방전 상태일 때의 동작 제어 방법을 나타낸 순서도이고, 도 11은 도 1의 동작 상태가 중부하 제어 상태일 때의 동작 제어 방법을 나타낸 순서도이다.
본 발명의 일 실시예에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법은, 선박에 연결된 적어도 하나 이상의 부하(10)와, 복수의 발전기(20)에 연결되어 부하(10)에 주 전력을 공급하도록 발전기(20)의 동작을 제어하는 PMS(60)와, 소정의 배터리팩(30)에 연결되어 부하(10)에 보조 전력을 공급하도록 배터리팩(30) 내의 배터리의 충방전을 제어하는 BMS(50)와, PMS(60)와 BMS(50)를 연계하여 동작하는 BPMS(70)를 포함하는 전력관리시스템(1)을 이용하여 구현될 수 있다.
이때, 전력관리시스템(1)은 도 1 내지 도 4를 참조하여 전술한 바와 같은 특징을 가질 수 있으며, 내용상 중복되므로 이에 대한 자세한 설명은 생략하도록 한다.
이하, 전술한 도면들을 참조하여 본 발명의 일 실시예에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법에 대해 설명하도록 한다.
먼저, BPMS(70)가 배터리의 사용 여부 및 충·방전 여부에 기초하여 전력관리시스템(1)의 동작 상태를 대기 상태, 방전 상태 및 충전 상태 중 어느 하나로 판단한다(S100).
상기 S100단계에서, 대기 상태는 배터리(30)를 사용하지 않는 상태이고, 방전 상태는 그리드 인버터를 통하여 배터리(30)를 방전시키는 상태이며, 충전 상태는 배터리 충전부(32)를 이용하여 배터리(30)를 충전하는 상태일 수 있다.
다음으로, BMS(50)가 배터리의 잔존용량(SOC)과 부하의 크기(LR)를 각각 측정하여 BPMS(70)로 송신한다(S200).
상기 S200단계에서, BMS(50)는 내부에 배터리팩(30)의 현재 온도 및 전압을 측정하는 온도 센서 및 전압 센서를 포함하며 이를 이용해 SOC(State Of Charge) 및 SOH(State Of Health)를 산출한 후 BPMS(70)로 송신할 수 있다.
이때, 부하의 크기(LR)는 아래의 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2017007050-appb-M000001
여기서, PG는 발전 전력, nG는 작동 중인 발전기 대수, PGmax는 발전기 1대의 최대 전력을 나타낸다.
다음으로, BPMS(70)가 S100단계에 판단된 동작 상태와 S200단계에 측정된 배터리의 잔존용량(SOC) 및 부하의 크기(LR)에 대한 값을 수신한 후 이에 따라 전력관리시스템(1)의 동작 상태를 변경하도록 제어한다(S300).
상기 S300단계에서, BPMS(70)는 중부하 투입, 발전기 운전대수(병렬운전) 및 배터리 충·방전 등을 통합 제어하되, 발전기 부하가 낮은 상태에서는 발전기의 SFC 특성에 따라 효율이 높은 구간(약 85%)에서 운전할 수 있도록 배터리를 충전하고, 발전기 부하가 높아 병렬운전이 필요할 때 배터리를 방전함으로써, 전력을 메인 전력 버스에 공급하여 발전기 병렬운전으로 인한 저부하 가동시간을 최소화하도록 동작한다.
구체적으로, 상기 S300단계에서, 상기 동작 상태가 대기 상태(Standby)일 때, 배터리 잔존용량(SOC)이 기설정된 최소 임계값(40%) 미만이거나 혹은 배터리 잔존용량(SOC)이 기설정된 기준 용량값(85%) 미만이고 부하 크기(LR)가 기설정된 최소 충전 부하량(LCmin)보다 작은 경우, 전력관리시스템(1)의 동작 상태를 충전 상태(Charge)로 변경할 수 있다.
이와 관련하여, 상기 대기 상태에서는, 도 8에 도시된 바와 같이, 부하의 크기(LR)가 기설정된 기준 부하값(85%)보다 큰 90%를 넘으면 발전기의 병렬 운전을 수행하고, 부하의 크기(LR)가 90%를 넘지 않는 경우엔 중부하 동작 여부를 확인하여, 중부하가 동작하지 않으면서 부하의 크기(LR)가 45% 미만이면 발전기의 병렬운전을 해제하는 동작을 수행한다.
또한, 상기 충전 상태에서는, 도 9에 도시된 바와 같이, 배터리의 잔존용량(SOC)이 최소 임계값(40%) 미만이고 부하의 크기(LR)가 최소 충전 부하량(LCmin)보다 크면 발전기의 병렬 운전을 수행하고, 배터리의 잔존용량(SOC)은 최소 임계값(40%) 이상이고 부하의 크기(LR)가 최소 충전 부하량(LCmin) 이하인 경우엔 스위치부(40)를 온 하여 N번째 충전기의 배터리의 충전을 수행한 후(여기서, N은 자연수), 부하의 크기(LR)가 최소 충전 부하량(LCmin)보다 크고 83%보다도 크면 스위치부(40)를 오프하여 N번째 충전기의 배터리의 충전을 중단시키고(여기서, N은 자연수), 부하의 크기(LR)가 최소 충전 부하량(LCmin)보다 크고 83% 이하인 경우엔 중부하 동작 여부를 확인하여, 중부하가 동작하지 않으면서 부하 크기(LR)가 45% 미만이면 발전기의 병렬 운전을 해제하는 동작을 수행한다.
이때, 최소 충전 부하량(LCmin)은 아래의 수학식 2와 같이 나타낼 수 있다.
Figure PCTKR2017007050-appb-M000002
여기서, Pcmax 는 충전기 1대의 최대 전력, nG는 작동 중인 발전기 대수, PGmax는 발전기 1대의 최대 전력을 나타낸다.
한편, 상기 S300단계에서, 상기 동작 상태가 충전 상태(Charge)일 때, 배터리 잔존용량(SOC)이 기설정된 최대 임계값(90%)을 초과하거나 혹은 부하 크기(LR)가 기설정된 기준 부하값(85%)을 초과하는 경우, 전력관리시스템(1)의 동작 상태를 대기 상태(Standby)로 변경할 수 있다.
이 경우, 도 7에 도시된 바와 같이, 동작 중인 충전기의 스위치부(40)를 순차적으로 오프하여 배터리(30)의 충전을 중지하도록 한다.
이는 배터리(30)의 잔존용량(SOC)이 최대 임계값(90%)을 넘으면 과충전될 수 있고, 부하량이 기준 부하값(85%)을 넘으면 발전기(20)가 과다하게 동작할 수 있으므로, 배터리(30)의 사용을 중지하고 대기 상태로 둠으로써 이를 방지하기 위한 것이다.
한편, 상기 S300단계에서, 상기 동작 상태가 대기 상태일 때, 배터리 잔존용량(SOC)이 기설정된 중간 임계값(50%)을 초과하고 부하 크기(LR)가 기준 부하값(85%)을 초과하는 경우, 전력관리시스템(1)의 동작 상태를 방전 상태로 변경할 수 있다.
이와 관련하여, 상기 방전 상태에서는, 도 10에 도시된 바와 같이, N번째 방전기(여기서, N은 자연수)의 스위치부(40)를 온 하여 배터리의 방전을 수행한 후, 부하 크기(LR)가 기설정된 기준 부하값(85%) 미만이면서 최소 방전 부하량(LDcmin) 미만이면 N번째 방전기의 스위치부(40)를 오프시키고, 부하(10)의 크기(LR)가 최소 방전 부하량(LDcmin) 이상이면서 90%보다 큰 경우엔 발전기(20)의 병렬운전을 수행한다.
이때, 최소 방전 부하량(LDcmin)은 아래의 수학식 3과 같이 나타낼 수 있다.
Figure PCTKR2017007050-appb-M000003
여기서, PDcmax는 방전기 1대의 최대 전력, nG는 작동 중인 발전기 대수, PGmax는 발전기 1대의 최대 전력을 나타낸다.
또한, 상기 대기 상태는 도 8을 참조하여 전술한 바와 같으므로 생략할 수 있다.
한편, 상기 S300단계에서, 상기 동작 상태가 방전 상태(Discharge)일 때, 배터리 잔존용량(SOC)이 최소 임계값(40%) 미만이거나 혹은 부하 크기(LR)가 최소 방전 부하량(LDcmin) 미만인 경우, 전력관리시스템(1)의 동작 상태를 대기 상태(Standby)로 변경할 수 있다.
이 경우, 도 6을 참조하면, 만일 부하(10)의 크기(LR)가 90%보다 작으면, 동작 중인 방전기의 스위치부(40)를 오프한 후, 부하(10)의 크기(LR)가 90%보다 커지면, 발전기(20)의 병렬 운전을 수행하고 상태를 변경한다.
한편, 상기 S300단계는, 상기 동작 상태가 충전 상태, 대기 상태 및 방전 상태 중 어느 하나일 때 PMS(60)로부터 중부하 요청을 수신하는 경우, 전력관리시스템(1)의 동작 상태를 중부하 제어 상태로 변경하는 단계를 더 포함할 수도 있다.
이러한 중부하 동작 중에는 중부하 사용에 따른 급격한 부하 변동을 대비하여 발전기의 병렬운전을 해제하지 않고, 병렬 운전 해제 부하율의 경우 동작하는 발전기의 대수에 따라 다르게 설정한다.
이 경우, 도 11을 참조하면, 먼저, 중부하 예상 필요 부하율(HLER)과 기준 부하값(85%)을 비교하여, 중부하 예상 필요 부하율(HLER)이 85%를 넘지 않으면 일정 시간 지연시킨 후 중부하를 투입한다. 만일 중부하 예상 필요 부하율(HLER)이 85% 이상일 때, 배터리가 방전 상태이고 중부하 예상 필요 부하율(HLER)이 85%를 넘지 않으면 N번째 방전기를 온 하고(여기서, N은 자연수), 모든 방전기가 켜진 상태에서 중부하 예상 필요 부하율(HLER)이 85%를 넘을 경우엔 발전기의 병렬운전을 수행한다.
또한, 중부하 예상 필요 부하율(HLER)이 기준 부하값(85%)보다 크고 배터리가 방전상태가 아닌 경우, 배터리가 충전 상태인지를 확인하여, 배터리가 충전상태이면 충전 전력을 최소로 하고 대기상태로 변화시킨 후 다시 중부하 예상 부하율(HLER)이 85%를 넘는지를 확인한다.
또한, 중부하 예상 필요 부하율(HLER)이 기준 부하값(85%)보다 크고 배터리가 충방전상태가 아닌 경우, 배터리가 대기상태에서 배터리 잔존용량(SOC)이 중간 임계값(50%)보다 큰지를 확인하여, 50%보다 크면 중부하 방전 예상 부하율(HLER)이 기준 부하값(85%)보다 큰지 확인하고, 85%를 넘지 않으면 배터리를 방전상태로 만든 후 다시 중부하 예상 필요 부하율(HLER)을 확인한다.
이때, 중부하 예상 필요 부하율(HLER)은 아래의 수학식 4와 같이 나타낼 수 있다.
Figure PCTKR2017007050-appb-M000004
여기서, PHL은 요청된 중부하의 예상 전력, PG는 발전 전력, nG는 작동 중인 발전기 대수, PGmax는 발전기 1대의 최대전력을 나타낸다.
또한, 중부하 예상 필요 부하율(HLER)이 기준 부하값(85%)보다 크고 배터리가 충·방전 상태가 아닌 경우, 배터리가 대기상태에서 배터리 잔존용량(SOC)이 중간 임계값(50%)보다 큰지를 확인하여, 50%보다 크면 중부하 방전 예상 부하율(HLDC)과 기준 부하값(85%)을 비교하여, 중부하 방전 예상 부하율(HLDC)이 85%보다 작으면 대기 상태에서 방전 상태로 변경하도록 제어하고, 배터리 잔존용량(SOC)이 50%보다 작거나 중부하 방전 예상 부하율(HLDC)이 85% 이상일 때, 작동 중인 발전기 대수(nG)가 설치된 발전기의 총 대수(nGmax)보다 적으면 대기 상태에 있는 발전기의 병렬 운전을 수행하고 일정 시간 지연시킨 후 중부하를 투입하고, 작동 중인 발전기 대수가 최대인 경우(nG = nGmax)엔 중부하를 투입하지 않도록 제어한다.
이때, 중부하 방전 예상 부하율(HLDC)은 아래의 수학식 5와 같이 나타낼 수 있다.
Figure PCTKR2017007050-appb-M000005
여기서, nDcmax는 설치되어 있는 방전기 개수, PDcmax는 방전기 1대의 최대 전력, nG는 작동 중인 발전기 대수,PGmax는 발전기 1대의 최대 전력을 나타낸다.
한편, 본 발명에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법은, 상기 S300단계 이후에 본 발명에 따른 전력관리시스템의 동작 상태 및 변경 사항을 유무선으로 연결된 별도의 디스플레이장치 또는 사용자 단말기의 화면에 표시하는 단계(S400)를 더 포함할 수도 있다.
도 12는 도 1의 전력관리시스템의 동작 상태 및 변경 사항에 관한 UI를 별도의 디스플레이장치 또는 사용자 단말기의 화면에 표시한 상태를 나타낸 도면이다.
여기서, 상기 UI는, 상기 전력관리시스템의 현재 동작 상태를 나타내는 방전 상태(Discharge), 대기 상태(Standby), 충전 상태(Charge) 및 중부하 제어 상태(Heavy Load) 각각에 대응하는 위치에 있는 램프와, 상기 전력관리시스템의 동작 상태의 변경 사항을 나타내는 화살표 형상의 램프(741,742,743,744,745,746)를 포함하여 구성된다.
예컨대, 도 5 및 도 12를 참조하여 설명하면, S400단계에서는, 상기 전력관리시스템의 동작 상태가 대기 상태일 때, 상기 배터리의 잔존용량이 기설정된 최소 임계값 미만이거나 혹은 상기 배터리의 잔존용량이 기설정된 기준 용량값 미만이고 상기 부하의 크기가 기설정된 최소 충전 부하량보다 작은 경우, 상기 전력관리시스템의 동작 상태를 충전 상태로 변경한 후, 상기 UI에서 대기 상태(Standby)와 충전 상태(Charge) 사이에서 충전 상태(Charge)로 향하는 화살표 형상의 램프(741)에 불이 켜지도록 제어한다.
또한, 상기 전력관리시스템의 동작 상태가 충전 상태일 때, 상기 배터리의 잔존용량이 기설정된 최대 임계값을 초과하거나 혹은 상기 부하의 크기가 기설정된 기준 부하값을 초과하는 경우, 상기 전력관리시스템의 동작 상태를 대기 상태로 변경한 후, 상기 UI에서 충전 상태(Charge)와 대기 상태(Standby) 사이에서 대기 상태(Standby)로 향하는 화살표 형상의 램프(742)에 불이 켜지도록 제어한다.
또한, 상기 전력관리시스템의 동작 상태가 대기 상태일 때, 상기 배터리의 잔존용량이 기설정된 중간 임계값을 초과하고 상기 부하의 크기가 상기 기준 부하값을 초과하는 경우, 상기 전력관리시스템의 동작 상태를 방전 상태로 변경한 후, 상기 UI에서 대기 상태(Standby)와 방전 상태(Discharge) 사이에서 방전 상태(Discharge)로 향하는 화살표 형상의 램프(744)에 불이 켜지도록 제어한다.
또한, 상기 전력관리시스템의 동작 상태가 방전 상태일 때, 상기 배터리의 잔존용량이 최소 임계값 미만이거나 혹은 상기 부하의 크기가 최소 방전 부하량 미만인 경우, 상기 전력관리시스템의 동작 상태를 대기 상태로 변경한 후, 상기 UI에서 방전 상태(Discharge)와 대기 상태(Standby) 사이에서 대기 상태(Standby)로 향하는 화살표 형상의 램프(743)에 불이 켜지도록 제어한다.
또한, 상기 전력관리시스템의 동작 상태가 방전 상태, 대기 상태 및 충전 상태 중 어느 하나일 때, 상기 PMS로부터 중부하 요청을 수신하는 경우, 상기 전력관리시스템의 동작 상태를 중부하 제어 상태로 변경한 후, 상기 UI에서 중부하 제어 상태(Heavy Load)로 향하는 화살표 형상의 램프(745)에 불이 켜지도록 제어한다.
이 경우, 본 발명에 따른 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템의 동작 상태 및 변경 사항을 사용자가 직관적으로 신속하게 파악할 수 있게 된다.
이에 따라, 본 발명에 의하면, 발전기의 이상 사태 시 비상 전원으로 사용되는 배터리가 대부분 충전된 상태를 유지하도록 하여 사용 시간이 짧은 중부하나 특정한 피크 부하에서 배터리를 통해 전력을 공급함으로써 발전기의 용량 및 운전 대수를 줄일 수 있고, 배터리의 충·방전을 통해 발전기를 좋은 효율을 가지는 일정 부하로 유지하여 배터리 활용을 높이는 시스템으로 에너지 효율을 극대화할 수 있는 효과가 있다.
이상, 바람직한 실시예를 통하여 본 발명에 관하여 상세히 설명하였으나, 본 발명은 이에 한정되는 것은 아니며 특허청구범위 내에서 다양하게 실시될 수 있다.
본 발명은 선박 및 해양플랜트에서 필요한 요구전력 및 발전전력을 최적으로 관리하여 에너지를 절감할 수 있는 배터리 연계형 고효율 전력관리시스템 분야에 이용가능하다.

Claims (7)

  1. 선박에 연결된 적어도 하나 이상의 부하와, 복수의 발전기에 연결되어 상기 부하에 주 전력을 공급하도록 상기 발전기의 동작을 제어하는 PMS와, 소정의 배터리팩에 연결되어 상기 부하에 보조 전력을 공급하도록 상기 배터리팩 내의 배터리의 충방전을 제어하는 BMS와, 상기 PMS와 상기 BMS를 연계하여 동작하는 BPMS를 포함하는 배터리 연계형 고효율 전력관리시스템에 있어서,
    상기 BPMS는,
    상기 BMS 및 상기 PMS로부터 각각 상기 배터리 또는 상기 발전기의 상태값을 송수신하는 통신부;
    외부의 사용자로부터 상기 배터리, 상기 발전기 또는 중부하 요청 여부에 대한 설정정보를 입력받는 설정정보 입력부;
    수신한 상태값과 입력된 설정정보를 매핑하여 저장하는 저장부;
    상기 상태값 및 상기 설정정보에 기초하여 기설정된 대기 모드, 충전 모드, 방전 모드 및 중부하 제어모드 중 어느 하나의 모드를 선택하는 제어모드 선택부; 및
    선택된 모드에 따라 기설정된 알고리즘을 실행하는 알고리즘 실행부;를 포함하는 것을 특징으로 하는 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템.
  2. 선박에 연결된 적어도 하나 이상의 부하와, 복수의 발전기에 연결되어 상기 부하에 주 전력을 공급하도록 상기 발전기의 동작을 제어하는 PMS와, 소정의 배터리팩에 연결되어 상기 부하에 보조 전력을 공급하도록 상기 배터리팩 내의 배터리의 충방전을 제어하는 BMS와, 상기 PMS와 상기 BMS를 연계하여 동작하는 BPMS를 포함하는 전력관리시스템을 이용한 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법에 있어서,
    상기 BPMS가 상기 배터리의 사용 여부 및 충·방전 여부에 기초하여 상기 전력관리시스템의 동작 상태를 대기 상태, 방전 상태 및 충전 상태 중 어느 하나로 판단하는 단계;
    상기 BMS 및 상기 PMS가 상기 배터리의 잔존용량과 상기 부하의 크기를 각각 측정하여 상기 BPMS로 송신하는 단계; 및
    상기 BPMS가 상기 동작 상태와 상기 배터리의 잔존용량 및 상기 부하 크기에 따라 상기 전력관리시스템의 동작 상태를 변경하도록 제어하는 단계;를 포함하는 것을 특징으로 하는 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법.
  3. 제2항에 있어서,
    상기 제어하는 단계는,
    상기 동작 상태가 대기 상태일 때, 상기 배터리의 잔존용량이 기설정된 최소 임계값 미만이거나 혹은 상기 배터리의 잔존용량이 기설정된 기준 용량값 미만이고 상기 부하의 크기가 기설정된 최소 충전 부하량보다 작은 경우, 상기 전력관리시스템의 동작 상태를 충전 상태로 변경하는 것을 특징으로 하는 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법.
  4. 제2항에 있어서,
    상기 제어하는 단계는,
    상기 동작 상태가 충전 상태일 때, 상기 배터리의 잔존용량이 기설정된 최대 임계값을 초과하거나 혹은 상기 부하의 크기가 기설정된 기준 부하값을 초과하는 경우, 상기 전력관리시스템의 동작 상태를 대기 상태로 변경하는 것을 특징으로 하는 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법.
  5. 제2항에 있어서,
    상기 제어하는 단계는,
    상기 동작 상태가 대기 상태일 때, 상기 배터리의 잔존용량이 기설정된 중간 임계값을 초과하고 상기 부하의 크기가 상기 기준 부하값을 초과하는 경우, 상기 전력관리시스템의 동작 상태를 방전 상태로 변경하는 것을 특징으로 하는 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법.
  6. 제2항에 있어서,
    상기 제어하는 단계는,
    상기 동작 상태가 방전 상태일 때, 상기 배터리의 잔존용량이 최소 임계값 미만이거나 혹은 상기 부하의 크기가 최소 방전 부하량 미만인 경우, 상기 전력관리시스템의 동작 상태를 대기 상태로 변경하는 것을 특징으로 하는 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법.
  7. 제2항에 있어서,
    상기 PMS로부터 중부하 요청을 수신하는 경우, 상기 전력관리시스템의 동작 상태를 중부하 제어 상태로 변경하는 단계를 더 포함하는 것을 특징으로 하는 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리방법.
PCT/KR2017/007050 2016-11-30 2017-07-03 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법 WO2018101564A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0160921 2016-11-30
KR1020160160921A KR101872809B1 (ko) 2016-11-30 2016-11-30 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2018101564A1 true WO2018101564A1 (ko) 2018-06-07

Family

ID=62241663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007050 WO2018101564A1 (ko) 2016-11-30 2017-07-03 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법

Country Status (2)

Country Link
KR (1) KR101872809B1 (ko)
WO (1) WO2018101564A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109018291A (zh) * 2018-07-24 2018-12-18 李继祎 一种船舶供电系统及控制方法
RU200606U1 (ru) * 2019-10-20 2020-11-02 Общество с ограниченной ответственностью "Системы накопления энергии" Контроллер аккумуляторной батареи

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102605386B1 (ko) * 2019-08-14 2023-11-22 삼성중공업 주식회사 선박
KR102606576B1 (ko) * 2019-10-24 2023-11-27 삼성중공업(주) 선박 에너지 관리 시스템 및 방법
KR102629112B1 (ko) * 2019-11-15 2024-01-24 삼성중공업 주식회사 선박 및 상기 선박의 전력망을 테스트하는 장치
KR102418517B1 (ko) * 2021-02-24 2022-07-07 한국해양대학교 산학협력단 Soc-soh기반 선박 배터리 제어 관리 시스템
KR102599723B1 (ko) * 2021-11-30 2023-11-07 한국해양대학교 산학협력단 부하영역 추적형 선박 배터리 관리 시스템
KR102628518B1 (ko) * 2021-12-29 2024-01-23 한화오션 주식회사 배터리 상태에 따른 전력 공급 제어 방법 및 그 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090156068A1 (en) * 2007-12-12 2009-06-18 Foss Maritime Company Hybrid propulsion systems
KR20140003041A (ko) * 2012-06-29 2014-01-09 제주대학교 산학협력단 비용절감형 전력 사용량 제어장치 및 그 방법
KR20150107258A (ko) * 2014-03-13 2015-09-23 대우조선해양 주식회사 에너지 하베스팅을 적용한 선박의 배터리 모니터링 시스템
KR20160050246A (ko) * 2014-10-29 2016-05-11 현대중공업 주식회사 부유식 해양 플랜트에서의 로컬 장비 전력 관리 시스템
KR101645703B1 (ko) * 2015-04-17 2016-08-04 삼성중공업 주식회사 배터리를 포함하는 선박

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025799A (ja) * 2009-07-23 2011-02-10 Ihi Marine United Inc 給電システム及び電気推進船
KR101290290B1 (ko) 2011-11-24 2013-07-26 한국해양대학교 산학협력단 선박의 에너지 관리방법
KR20150143902A (ko) * 2014-06-13 2015-12-24 삼성중공업 주식회사 전력 배전 및 제어 시스템
KR101631150B1 (ko) 2014-09-25 2016-06-17 한국해양대학교 산학협력단 선박용 전력 관리 방법
JP6107875B2 (ja) * 2015-04-23 2017-04-05 富士電機株式会社 電気推進システムの発電機制御方式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090156068A1 (en) * 2007-12-12 2009-06-18 Foss Maritime Company Hybrid propulsion systems
KR20140003041A (ko) * 2012-06-29 2014-01-09 제주대학교 산학협력단 비용절감형 전력 사용량 제어장치 및 그 방법
KR20150107258A (ko) * 2014-03-13 2015-09-23 대우조선해양 주식회사 에너지 하베스팅을 적용한 선박의 배터리 모니터링 시스템
KR20160050246A (ko) * 2014-10-29 2016-05-11 현대중공업 주식회사 부유식 해양 플랜트에서의 로컬 장비 전력 관리 시스템
KR101645703B1 (ko) * 2015-04-17 2016-08-04 삼성중공업 주식회사 배터리를 포함하는 선박

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109018291A (zh) * 2018-07-24 2018-12-18 李继祎 一种船舶供电系统及控制方法
RU200606U1 (ru) * 2019-10-20 2020-11-02 Общество с ограниченной ответственностью "Системы накопления энергии" Контроллер аккумуляторной батареи

Also Published As

Publication number Publication date
KR20180061585A (ko) 2018-06-08
KR101872809B1 (ko) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2018101564A1 (ko) 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법
WO2018139742A1 (ko) 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량
WO2018139740A1 (ko) 배터리 팩, 배터리 팩의 관리 방법, 및 배터리 팩을 포함하는 차량
WO2012091402A2 (ko) 배터리 시스템 관리 장치 및 방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2012165879A2 (en) Secondary battery management system and method for exchanging battery cell information
WO2012018206A2 (ko) 전기자동차의 배터리 제어장치 및 그 제어방법
WO2013035963A1 (ko) 충전 전압을 적응적으로 가변시키는 배터리 충전 장치 및 그의 배터리 충전 제어방법
WO2012005464A2 (ko) 배터리 전원 공급 장치 및 그 전력 제어 방법
EP2614571A1 (en) Energy storage system and controlling method of the same
WO2018016735A1 (ko) 배터리 시스템
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
JPWO2012124221A1 (ja) 通信システムおよび蓄電池システム
KR20170140640A (ko) 배터리 시스템
WO2018105875A1 (ko) 전력 변환 장치 및 이를 포함하는 무정전 전원 공급 장치
TW201108541A (en) System for protection of battery pack and method for charging and discharging thereof
WO2017090978A1 (ko) 배터리 팩 상태 병렬 모니터링 장치
KR20150044283A (ko) 동기화된 유닛들 가진 통신 시스템 및 그 유닛들의 동기화 방법
WO2018190512A1 (ko) 에너지 저장 장치의 과방전 방지 및 재기동 장치 및 방법
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2020013614A1 (ko) Ess 충방전 운전 방법
WO2017047963A1 (ko) 차량 상시전원과 연결된 모바일단말의 배터리 완전 충전 감지 장치
WO2019151656A1 (ko) Ess 출력 분배 방법 및 장치
WO2013133555A1 (ko) 무선 제어 방식의 배터리 에너지 저장장치
WO2022197040A1 (ko) 전기자동차의 충전 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876158

Country of ref document: EP

Kind code of ref document: A1