WO2018070779A1 - 자기유도 전원 공급 장치 - Google Patents

자기유도 전원 공급 장치 Download PDF

Info

Publication number
WO2018070779A1
WO2018070779A1 PCT/KR2017/011199 KR2017011199W WO2018070779A1 WO 2018070779 A1 WO2018070779 A1 WO 2018070779A1 KR 2017011199 W KR2017011199 W KR 2017011199W WO 2018070779 A1 WO2018070779 A1 WO 2018070779A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
switching
rectifier
coil
Prior art date
Application number
PCT/KR2017/011199
Other languages
English (en)
French (fr)
Inventor
나원산
박진표
최중현
한철승
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to CN201780068414.XA priority Critical patent/CN109937515B/zh
Priority to US16/340,335 priority patent/US10958102B2/en
Publication of WO2018070779A1 publication Critical patent/WO2018070779A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/32Circuit arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F2027/408Association with diode or rectifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings

Definitions

  • the present invention relates to a magnetic induction power supply, and more particularly to a magnetic induction power supply (ELECTROMAGNETIC INDUCTIVE POWER SUPPLY APPARATUS) to produce power by using the magnetic induction phenomenon between the line and the current transformer to supply power to the load .
  • a magnetic induction power supply ELECTROMAGNETIC INDUCTIVE POWER SUPPLY APPARATUS
  • the magnetic induction power supply includes a current transformer installed in a power line through which a large current flows, such as a transmission line and a distribution line.
  • the magnetic induction power supply converts the power acquired through the magnetic induction phenomenon from the current transformer into a direct current and supplies it to the load.
  • magnetic induction power supply has a low amount of power that can be produced in a single current transformer, it is difficult to produce the required power (that is, power consumption) when a low current flows on the line There is this.
  • the conventional magnetic induction power supply device converts the alternating current produced by the plurality of current transformers into direct current power and adds them to the load.
  • the conventional magnetic induction power supply includes a plurality of converters connected one to one with a plurality of current transformers.
  • the conventional self-induction power supply device has a problem that a loss (Loss) occurs in the process of converting the AC current produced by the current transformer into DC power, there is a problem that the power acquisition efficiency is lowered.
  • the conventional magnetic induction power supply device has a problem that the installation cost and maintenance cost increases because the number of mounting parts is increased because the converter must be installed for each current transformer.
  • the conventional self-induction power supply device is a problem that can not produce the required power (power) by the loss generated in the process of converting the DC power is induced by the current below the reference induced in the current transformer when a low current flows in the line There is this.
  • the conventional magnetic induction power supply has a problem that the component is damaged by the inrush voltage having a high voltage generated during the initial operation.
  • the present invention has been proposed to solve the above-described problems, and winding a plurality of coils having different number of turns on the current transformer core and switching such that at least one coil is connected in series with the rectifier based on the voltage induced in the current transformer. It is an object of the present invention to provide a self-induced power supply to produce power within a set range even when a voltage outside the standard is induced.
  • the present invention is to provide a self-induction power supply for switching the unit coil having the lowest number of windings in series with the rectifier in the initial operation to prevent component damage due to excessive inrush voltage during the initial operation.
  • a self-induction power supply apparatus is a current transformer having a plurality of unit coils installed on the power line to induce a voltage, a sensing unit for sensing the voltage induced in the current transformer, in the current transformer A rectifier for rectifying the induced voltage and a switching unit for switching at least one of the plurality of unit coils is connected to the rectifier based on the voltage sensed by the sensing unit.
  • the switching unit switches so that the unit coil having the lowest number of windings among the plurality of unit coils is connected to the rectifying unit during the initial driving time. After the initial driving time, the switching unit selects among the plurality of unit coils based on the voltage sensed by the sensing unit. At least one may be switched to be connected to the rectifier. In this case, the switching unit switches so that two or more unit coils of the plurality of unit coils are connected to the rectifier when the voltage sensed by the sensing unit is less than the minimum reference voltage, and the plurality of unit coils when the voltage sensed by the sensing unit exceeds the maximum reference voltage. The unit coil having the lowest number of turns may be switched to be connected to the rectifier.
  • the self-induction power supply is switched by switching at least one of the plurality of unit coils having different number of windings in series with the rectifier in accordance with the voltage induced in the power line, the power induction ratio according to the current change of the power line By adjusting the effect, it is possible to provide a constant power to the load.
  • the magnetic induction power supply switches at least one of a plurality of unit coils having different number of windings in series connection with the rectifier according to the voltage induced in the power line, so that the current out of the reference (that is, the current below the reference, There is an effect that can produce power within the range required by the load in the state that the current exceeding the reference).
  • the self-induction power supply switches so that a plurality of unit coils are connected in series with the rectifier when the voltage induced from the power line is less than the reference, thereby supplying power within the range required by the load even when the voltage induced from the power line is low. It has an effect.
  • the magnetic induction power supply switches so that the unit coil having the lowest number of windings among the plurality of unit coils is connected in series with the rectifier when the voltage induced in the power line exceeds the reference, so that the load is required even when the voltage induced in the power line is excessive. There is an effect that can supply power within the range.
  • the magnetic induction power supply device induces a constant power even in the current change of the power line, thereby reducing the complexity or capacity of the rectifier, it is easy to implement the optimum system, there is an effect that can reduce the manufacturing cost.
  • the self-induction power supply is switched to the unit coil having the minimum number of turns for the set time during the initial operation, thereby lowering the inrush voltage of the high voltage generated during the initial operation to prevent the component from being damaged by the inflow voltage. There is an effect that can be prevented.
  • the magnetic induction power supply stabilizes the input voltage, thereby reducing the voltage loss and increasing the power acquisition efficiency.
  • the self-induction power supply device controls the switching unit in accordance with the voltage induced from the power line to connect at least one of the plurality of unit coils in series, thereby providing a normal operation section (that is, a section in which the induced voltage is greater than or equal to the minimum reference voltage and less than or equal to the maximum reference voltage). ), Effective energy control is possible.
  • FIG. 1 is a view for explaining a magnetic induction power supply apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the sensing unit of FIG.
  • the magnetic induction power supply device 100 includes a current transformer 110, a sensing unit 120, a switching unit 130, and a rectifying unit 140.
  • the current transformer 110 is installed in the power line 200 through which a large current flows, and induces a voltage (or current or power) from the large current flowing through the power line 200.
  • the current transformer 110 is formed in a structure detachable to the power line 200, such as a clamp type. In an example, the current transformer 110 divides the core 112 therein into two parts so as to easily attach and detach the power line 200 to form an upper core and a lower core.
  • a plurality of unit coils 114 are wound around the core 112. In this case, at least two unit coils of the plurality of unit coils 114 may be wound to have different number of windings.
  • the current transformer 110 includes a core 112 and a first unit coil 114a and a second unit coil 114b formed to have a different number of turns while winding the core 112.
  • the current transformer 110 is described as including a first unit coil 114a and a second unit coil 114b, but the present invention is not limited thereto. 110 may be configured to include three or more unit coils 114.
  • Core 112 comprises an upper core and a lower core.
  • a first unit coil 114a and a second unit coil 114b are formed in at least one of the upper core and the lower core.
  • the first unit coil 114a is configured of a coil winding the core 112 a plurality of times.
  • the surface of the first unit coil 114a may be coated with an insulator.
  • the second unit coil 114b is configured of a coil wound multiple times.
  • the second unit coil 114b may be wound at a different position from the first unit coil 114a or may be wound at the same position in duplicate.
  • the surface of the second unit coil 114b may be coated with an insulator.
  • the first unit coil 114a and the second unit coil 114b are formed to have a turns ratio of about 3: 1.
  • the first unit coil 114a is configured as a coil winding 150 times the core 112
  • the second unit coil 114b is configured as a coil winding 50 times the core 112.
  • both ends of the first unit coil 114a and the second unit coil 114b are connected to the switching unit 130.
  • the sensing unit 120 senses the voltage induced by the current transformer 110.
  • the sensing unit 120 is connected to the rectifier 140 in parallel to sense the voltage induced in the current transformer 110.
  • the sensing unit 120 transmits the sensed voltage to the switching unit 130.
  • the sensing unit 120 may generate a switching signal based on the sensed voltage and transmit the switching signal to the switching unit 130.
  • the sensing unit 120 may be disposed between the rectifier 140 and the load 300 to sense a constant voltage (that is, a voltage supplied to the load).
  • the rectifier 140 shown in FIG. 1 is configured to convert the voltage induced by the current transformer 110 into a DC voltage, and in actual configuration, the rectifier 140 converts the voltage from the rectifier 140 between the sensing unit 120 and the load 300.
  • a DC-DC converter (not shown) for converting the DC voltage thus obtained into a voltage required by the load is disposed.
  • the voltage value sensed by the sensing unit 120 refers to the value of the DC voltage obtained by converting the AC voltage induced by the current transformer 110 by the rectifier 140.
  • FIG. 1 illustrates that the sensing unit 120 is disposed between the rectifying unit 140 and the load 300 to be connected in parallel with the rectifying unit 140
  • the sensing unit 120 is not limited thereto. It is also possible to sense the value of the AC voltage (that is, the voltage induced in the current transformer 110) disposed between the 130 and the rectifier 140 applied through the switching unit.
  • the switching unit 130 may connect at least one of the plurality of unit coils 114 to the rectifier 140 in series based on whether the magnetic induction power supply 100 is initially driven and the voltage sensed by the sensing unit 120. Switch.
  • the switching unit 130 has a unit coil 114 having the lowest number of turns among the plurality of unit coils 114 during a set time (for example, about 1 minute) at the time of initial driving of the magnetic induction power supply device 100.
  • the switch is connected to the rectifier 140 in series.
  • the switching unit 130 switches so that the unit coil 114 having the lowest number of windings among the plurality of unit coils 114 is connected in series to the rectifier 140 during the set time at the initial driving time, and is below the maximum reference voltage.
  • the voltage is applied to the rectifier 140.
  • the switching unit 130 has no voltage detected by the sensing unit 120, or when the power of the self-induction power supply 100 is turned off, the unit coil 114 having the lowest number of windings in series with the rectifier 140 Switching to connect can also be set as default.
  • the switching unit 130 maintains the voltage applied to the rectifying unit 140 below the maximum reference voltage to prevent breakage of the elements constituting the self-induction power supply device 100 and the load 300.
  • the switching unit 130 has at least one of the plurality of unit coils 114 and the rectifier 140 based on the voltage detected by the sensing unit 120 after a predetermined time after the initial driving of the magnetic induction power supply device 100. Switch to series connection.
  • the switching unit 130 switches the plurality of unit coils 114 to be connected to the rectifier 140 in series, so that all of the induced currents in the current transformer 110 are changed.
  • the voltage is applied to the rectifier 140.
  • the switching unit 130 is switched so that the unit coil 114 of a portion (that is, two or more) of the plurality of unit coils 114 are connected in series with the rectifier 140 so that a voltage equal to or greater than the minimum reference voltage is applied to the rectifier 140. It can also be applied to.
  • the unit coil 114 having the highest number of turns among the plurality of unit coils 114 includes the rectifier 140. Switching in series so as to be connected in series, the voltage induced in the unit coil 114 of the highest winding number is applied to the rectifier 140.
  • the switching unit 130 may connect the unit coil 114 having the lowest number of turns among the plurality of unit coils 114 to the rectifier 140 in series. By switching, the voltage induced in the single coil of the lowest number of turns is applied to the rectifier 140.
  • the current transformer 110 includes a first unit coil 114a and a second unit coil 114b wound around the core 112 and spaced apart from each other.
  • the switching unit 130 may include a plurality of input terminals 132a to 132d connected to the first unit coil 114a and the second unit coil 114b. And a pair of output terminals 134a and 134b connected to the rectifier 140 and a plurality of changeover switches 136a to 136c.
  • the switching unit 130 is connected to the first input terminal 132a connected to one end (first end) of the first unit coil 114a and the other end (second end) of the first unit coil 114a.
  • the fourth input terminal 132d may be included.
  • one end of the first unit coil 114a corresponds to the first end of the first unit coil described in the claims, and the other end of the first unit coil 114a corresponds to the second end of the first unit coil described in the claims. do.
  • One end of the second unit coil 114b corresponds to the first end of the second unit coil described in the claims, and the other end of the second unit coil 114b corresponds to the second end of the second unit coil described in the claims.
  • the switching unit 130 may include a first output terminal 134a and a second output terminal 134b respectively connected to two connection lines connected to the rectifier 140.
  • the switching unit 130 switches the first switching terminal 136a and the second output terminal 134b to switch the first output terminal 134a to the first input terminal 132a or the third input terminal 132c.
  • the third changeover switch 136c for switching the connection of the second input switch 136b, the second input terminal 132b, and the second input terminal 132b to the input terminal 132b or the fourth input terminal 132d. ) May be included.
  • the switching unit 130 switches the connection between the input terminal and the output terminal based on the voltage induced in the current transformer 110 or whether the magnetic induction power supply 100 is initially driven to form the first unit coil of the current transformer 110 ( At least one of the 114a) and the second unit coil 114b is connected in series with the rectifier 140.
  • both voltages induced in the first unit coil 114a and the second unit coil 114b may be reduced. Must be applied to the rectifier 140.
  • the switching unit 130 switches the third switching switch 136c to connect the first unit coil 114a and the second unit coil 114b in series, and the first switching switch.
  • 136a switches to be connected to the first input terminal 132a and the first output terminal 134a
  • a second changeover switch 136b is connected to the fourth input terminal 132d and the second output terminal 134b. Switching is performed such that the first unit coil 114a and the second unit coil 114b are connected in series with the rectifier 140.
  • a voltage induced in the coil configured by connecting the first unit coil 114a and the second unit coil 114b in series is applied to the rectifier 140.
  • the switching unit 130 switches the first changeover switch 136a to be connected to the first input terminal 132a and the first output terminal 134a, and the second changeover switch ( 136b is switched to be connected to the second input terminal 132b and the second output terminal 134b to apply the voltage induced in the first unit coil 114a having a relatively high number of turns to the rectifier 140. do.
  • the switching unit 130 switches the first changeover switch 136a to be connected to the third input terminal 132c and the first output terminal 134a, and the second changeover switch ( 136b is switched to be connected to the fourth input terminal 132d and the second output terminal 134b to apply the voltage induced in the second unit coil 114b having a relatively low number of turns to the rectifier 140. do.
  • the switching unit 130 is switched so that the first changeover switch 136a is connected to the third input terminal 132c and the first output terminal 134a during the initial time of the self-induction power supply 100.
  • the second changeover switch 136b is switched to be connected to the fourth input terminal 132d and the second output terminal 134b, so that the voltage induced in the second unit coil 114b having a relatively low number of turns can be obtained. To be applied to the rectifier 140.
  • the switching unit 130 may prevent damage to the device by applying a voltage within the set range to the rectifier 140 irrespective of the voltage induced in the current transformer 110.
  • the rectifier 140 rectifies the voltage applied from the switching unit 130 through the connection lines, converts the voltage into DC, and supplies the rectified voltage to the load 300.
  • the rectifier 140 may be configured as a full wave rectifier circuit or a half wave rectifier circuit composed of a plurality of diodes.
  • the rectifier 140 converts the voltage induced in at least one of the first unit coil 114a and the second unit coil 114b into a direct current and supplies the load 300 to the load 300 according to the switching driving of the switching unit 130.
  • the self-induction power supply unit switches at least one of a plurality of unit coils having different number of windings in series with the rectifier in accordance with the voltage induced in the power line, thereby changing the power induction rate according to the current change of the power line.
  • the magnetic induction power supply switches at least one of a plurality of unit coils having different number of windings in series connection with the rectifier according to the voltage induced in the power line, so that the current out of the reference (that is, the current below the reference, There is an effect that can produce power within the range required by the load in the state that the current exceeding the reference).
  • the self-induction power supply switches so that a plurality of unit coils are connected in series with the rectifier when the voltage induced from the power line is less than the reference, thereby supplying power within the range required by the load even when the voltage induced from the power line is low. It has an effect.
  • the magnetic induction power supply switches so that the unit coil having the lowest number of windings among the plurality of unit coils is connected in series with the rectifier when the voltage induced in the power line exceeds the reference, so that the load is required even when the voltage induced in the power line is excessive. There is an effect that can supply power within the range.
  • the magnetic induction power supply device induces a constant power even in the current change of the power line, thereby reducing the complexity or capacity of the rectifier, it is easy to implement the optimum system, there is an effect that can reduce the manufacturing cost.
  • the self-induction power supply is switched to the unit coil having the minimum number of turns for the set time during the initial operation, thereby lowering the inrush voltage of the high voltage generated during the initial operation to prevent the component from being damaged by the inflow voltage. There is an effect that can be prevented.
  • the magnetic induction power supply stabilizes the input voltage, thereby reducing the voltage loss and increasing the power acquisition efficiency.
  • the self-induction power supply device controls the switching unit in accordance with the voltage induced from the power line to connect at least one of the plurality of unit coils in series, thereby providing a normal operation section (that is, a section in which the induced voltage is greater than or equal to the minimum reference voltage and less than or equal to the maximum reference voltage). ), Effective energy control is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

변류기 코어에 서로 다른 권선 수를 갖는 복수의 코일을 권선하고 변류기에서 유도되는 전압을 근거로 적어도 하나의 코일이 정류부와 직렬 연결되도록 스위칭하여 기준을 벗어나는 전압이 유도되는 상태에서도 설정 범위 이내의 전력을 생산하도록 한 자기유도 전원 공급 장치를 제시한다. 제시된 자기유도 전원 공급 장치는 전력선에 설치되어 전압을 유도하는 복수의 단위 코일을 구비한 변류기, 변류기에서 유도되는 전압을 감지하는 센싱부, 변류기에서 유도된 전압을 정류하는 정류부 및 센싱부에서 감지한 전압을 근거로 복수의 단위 코일 중 적어도 하나가 정류부와 연결되도록 스위칭하는 스위칭부를 포함한다.

Description

자기유도 전원 공급 장치
본 발명은 자기유도 전원 공급 장치에 관한 것으로, 더욱 상세하게는 선로와 변류기 간의 자기유도 현상을 이용해 전력을 생산하여 부하로 전원을 공급하는 자기유도 전원 공급 장치(ELECTROMAGNETIC INDUCTIVE POWER SUPPLY APPARATUS)에 관한 것이다.
최근 자기유도 현상을 이용한 전원 공급 방식에 대한 관심이 증가함에 따라 다양한 형태의 자기유도 전원 공급 장치가 개발되고 있다.
자기유도 방식의 전원 공급 장치는 송전선로, 배전 선로 등과 같이 대용량 전류가 흐르는 전력선에 설치되는 변류기를 포함한다. 자기유도 방식 전원 공급 장치는 변류기에서 자기유도 현상을 통해 취득한 전력을 직류로 변환하여 부하로 공급한다.
종래의 자기유도 방식의 전원 공급 장치(이하, 자기유도 전원 공급 장치)는 단일 변류기에서 생산할 수 있는 전력량이 낮기 때문에 선로에 낮은 전류가 흐르는 경우 요구되는 전력(즉, 소비전력)을 생산하기 어려운 문제점이 있다.
이를 보완하기 위해 복수의 변류기를 이용한 자기유도 전원 공급 장치가 개발되었다. 종래의 자기유도 전원 공급 장치는 복수의 변류기에서 생산한 교류 전류를 직류 전력으로 변환한 후 이를 합산하여 부하로 공급한다.
이를 위해, 종래의 자기유도 전원 공급 장치는 복수의 변류기와 일 대 일로 연결되는 복수의 컨버터를 포함하여 구성된다.
이때, 종래의 자기유도 전원 공급 장치는 변류기에서 생산한 교류 전류를 직류 전력으로 변환하는 과정에서 손실(Loss)이 발생하여, 전력 취득 효율이 저하되는 문제점이 있다.
또한, 종래의 자기유도 전원 공급 장치는 변류기별로 컨버터를 설치해야 하기 때문에 실장 부품 수량이 증가하여 설치 비용 및 유지 보수 비용이 증가하는 문제점이 있다.
또한, 종래의 자기유도 전원 공급 장치는 선로에 낮은 전류가 흐르는 경우 변류기에 유도되는 기준 이하의 전류가 유도되어 직류 전력을 변환하는 과정에서 발생하는 손실에 의해 필요한 전력(전원)을 생산할 수 없는 문제점이 있다.
또한, 종래의 자기유도 전원 공급 장치는 초기 동작시 발생하는 높은 전압을 갖는 유입 전압(Inrush Voltage)에 의해 부품이 손상되는 문제점이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 변류기 코어에 서로 다른 권선 수를 갖는 복수의 코일을 권선하고 변류기에서 유도되는 전압을 근거로 적어도 하나의 코일이 정류부와 직렬 연결되도록 스위칭하여 기준을 벗어나는 전압이 유도되는 상태에서도 설정 범위 이내의 전력을 생산하도록 한 자기유도 전원 공급 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 초기 구동시 설정시간 동안 가장 낮은 권선 수를 갖는 단위 코일이 정류부와 직렬 연결되도록 스위칭하여 초기 구동시 과도한 유입 전압에 의한 부품 손상을 방지하도록 한 자기유도 전원 공급 장치를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 자기유도 전원 공급 장치는 전력선에 설치되어 전압을 유도하는 복수의 단위 코일을 구비한 변류기, 변류기에서 유도되는 전압을 감지하는 센싱부, 변류기에서 유도된 전압을 정류하는 정류부 및 센싱부에서 감지한 전압을 근거로 복수의 단위 코일 중 적어도 하나가 정류부와 연결되도록 스위칭하는 스위칭부를 포함한다.
스위칭부는 초기 구동시 설정시간 동안 복수의 단위 코일 중 가장 낮은 권선수를 갖는 단위 코일이 정류부와 연결되도록 스위칭하고, 초기 구동 후 설정시간이 지나면 센싱부에서 감지한 전압을 근거로 복수의 단위 코일 중 적어도 하나가 정류부와 연결되도록 스위칭할 수 있다. 이때, 스위칭부는 센싱부에서 감지한 전압이 최소 기준 전압 미만이면 복수의 단위 코일 중 둘 이상의 단위 코일들이 정류부와 연결되도록 스위칭하고, 센싱부에서 감지한 전압이 최대 기준 전압을 초과하면 복수의 단위 코일 중 가장 낮은 권선수를 갖는 단위 코일이 정류부와 연결되도록 스위칭할 수 있다.
본 발명에 의하면, 자기유도 전원 공급 장치는 전력선에서 유도된 전압에 따라 서로 다른 권선 수를 갖는 복수의 단위 코일을 중 적어도 하나가 정류부와 직렬 연결되도록 스위칭함으로써, 전력선의 전류 변화에 따라 전력유도 비율을 조정하여 일정한 전력을 부하로 제공할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선에서 유도된 전압에 따라 서로 다른 권선 수를 갖는 복수의 단위 코일을 중 적어도 하나가 정류부와 직렬 연결되도록 스위칭함으로써, 기준을 벗어나는 전류(즉, 기준 미만의 전류, 기준 초과의 전류)가 유도되는 상태에서 부하에서 요구되는 범위 이내의 전력을 생산할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선에서 유도된 전압이 기준 미만이면 복수의 단위 코일이 정류부와 직렬 연결되도록 스위칭함으로써, 전력선에서 유도된 전압이 낮은 상태에서도 부하에서 요구되는 범위 이내의 전력을 공급할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선에서 유도된 전압이 기준을 초과하면 복수의 단위 코일 중 권선 수가 가장 낮은 단위 코일이 정류부와 직렬 연결되도록 스위칭함으로써, 전력선에서 유도된 전압이 과도한 상태에서도 부하에서 요구되는 범위 이내의 전력을 공급할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선의 전류 변화에도 일정한 전력을 유도함으로써, 정류부의 복잡도 또는 용량을 감소시키므로, 최적 시스템의 구현이 용이하며, 제조비용을 감소시킬 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 초기 구동시 설정시간 동안 최소 권선 수를 갖는 단위 코일로 스위칭함으로써, 초기 동작시 발생하는 높은 전압의 유입 전압(Inrush Voltage)을 낮춰 유입 전압에 의해 부품이 손상되는 것을 방지할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 입력 전압을 안정화함으로써, 전압 손실이 감소되어 전원 취득 효율이 증가하는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선에서 유도된 전압에 따라 스위칭부를 제어하여 복수의 단위 코일 중 적어도 하나를 직렬 연결함으로써, 정상 동작 구간(즉, 유도된 전압이 최소 기준 전압 이상 최대 기준 전압 이하인 구간)에서 효율적인 에너지 컨트롤이 가능한 효과가 있다.
도 1은 본 발명의 실시예에 따른 자기유도 전원 공급 장치를 설명하기 위한 도면.
도 2는 도 1의 센싱부를 설명하기 위한 도면.
도 3 내지 도 7은 도 1의 스위칭부를 설명하기 도면.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1을 참조하면, 자기유도 전원 공급 장치(100)는 변류기(110), 센싱부(120), 스위칭부(130) 및 정류부(140)를 포함하여 구성된다.
변류기(110)는 대용량 전류가 흐르는 전력선(200)에 설치되어, 전력선(200)에 흐르는 대용량 전류로부터 전압(또는 전류, 전력)을 유도한다. 변류기(110)는 클램프 타입 등과 같이 전력선(200)에 탈부착 가능한 구조로 형성된다. 일례로, 변류기(110)는 전력선(200)에 탈부착이 용이하도록 그 내부의 코어(112)를 2 분할하여 상부 코어 및 하부 코어를 구성한다.
코어(112)에는 복수의 단위 코일(114)이 권선된다. 이때, 복수의 단위 코일(114) 중 적어도 2개의 단위 코일은 서로 다른 권선 수를 갖도록 권선된다.
일례로, 변류기(110)를 코어(112), 코어(112)를 권회하되 서로 다른 권선수를 갖도록 형성된 제1 단위 코일(114a) 및 제2 단위 코일(114b)을 구비한다. 여기서, 자기유도 전원 공급 장치(100)를 용이하게 설명하기 위해, 변류기(110)가 제1 단위 코일(114a) 및 제2 단위 코일(114b)을 포함하는 것으로 설명하였으나, 이에 한정되지 않고 변류기(110)가 3개 이상의 단위 코일(114)을 포함하여 구성될 수도 있다.
코어(112)는 상부 코어 및 하부 코어를 포함하여 구성된다. 이때, 상부 코어 및 하부 코어 중 적어도 하나에는 제1 단위 코일(114a) 및 제2 단위 코일(114b)이 형성된다.
제1 단위 코일(114a)은 코어(112)를 복수회 권선하는 코일로 구성된다. 이때, 제1 단위 코일(114a)의 표면은 절연물로 코팅될 수 있다.
제2 단위 코일(114b)은 복수회 권선하는 코일로 구성된다. 제2 단위 코일(114b)은 제1 단위 코일(114a)과 다른 위치에 권선되거나, 동일 위치에 중복되어 권선될 수 있다. 이때, 제2 단위 코일(114b)의 표면은 절연물로 코팅될 수 있다.
한편, 제1 단위 코일(114a)과 제2 단위 코일(114b)은 대략 3:1 정도의 권선비를 갖도록 형성된다. 일례로, 제1 단위 코일(114a)이 코어(112)를 150회 권선하는 코일로 구성되는 경우, 제2 단위 코일(114b)은 코어(112)를 50회 권선하는 코일로 구성된다.
이때, 제1 단위 코일(114a) 및 제2 단위 코일(114b)의 양단은 스위칭부(130)에 연결된다.
센싱부(120)는 변류기(110)에서 유도된 전압을 감지한다. 이때, 센싱부(120)는 정류부(140)에 병렬로 연결되어 변류기(110)에 유도된 전압을 감지한다. 센싱부(120)는 감지한 전압을 스위칭부(130)로 전송한다. 여기서, 센싱부(120)는 감지한 전압을 근거로 스위칭 신호를 생성하여 스위칭부(130)로 전송할 수도 있다.
한편, 도 1에서는 센싱부(120)가 정류부(140)와 부하(300) 사이에 배치되어 일정한 전압(즉, 부하로 공급되는 전압)을 감지하는 것으로 이해될 수 있다.
하지만, 도 1에 도시된 정류부(140)는 변류기(110)에서 유도된 전압을 직류 전압으로 변환하는 구성이며, 실제 구성에서는 센싱부(120)와 부하(300) 사이에 정류부(140)에서 변환된 직류 전압을 부하에서 요구되는 전압으로 변환하는 DC-DC 컨버터(미도시)가 배치된다.
따라서, 센싱부(120)에서 감지하는 전압값을 변류기(110)에서 유도된 교류 전압을 정류부(140)에서 변환한 직류 전압의 값을 의미한다.
또 다른 한편, 도 1에서는 센싱부(120)가 정류부(140)와 부하(300) 사이에 배치되어 정류부(140)와 병렬 연결되는 것으로 도시하였으나, 이에 한정되지 않고 센싱부(120)가 스위칭부(130)와 정류부(140) 사이에 배치되어 스위칭부를 통해 인가되는 교류 전압(즉, 변류기(110)에서 유도된 전압)의 값을 센싱할 수도 있다.
스위칭부(130)는 자기유도 전원 공급 장치(100)의 초기 구동 여부 및 센싱부(120)에서 감지한 전압을 근거로 복수의 단위 코일(114) 중 적어도 하나가 정류부(140)에 직렬 연결되도록 스위칭한다.
스위칭부(130)는 자기유도 전원 공급 장치(100)의 초기 구동시 설정시간(예를 들면, 대략 1분 정도) 동안 복수의 단위 코일(114) 중 가장 낮은 권선 수를 갖는 단위 코일(114)이 정류부(140)에 직렬 연결되도록 스위칭한다.
즉, 자기유도 전원 공급 장치(100)의 초기 구동시 변류기(110)에서 최대 기준 전압 이상의 전압이 유도되어 자기유도 전원 공급 장치(100)를 구성하는 소자나, 부하(300)를 구성하는 소자가 파손될 수 있다.
이에, 스위칭부(130)는 초기 구동시 설정시간 동안 복수의 단위 코일(114) 중 가장 낮은 권선 수를 갖는 단위 코일(114)이 정류부(140)에 직렬 연결되도록 스위칭하여, 최대 기준 전압 이하의 전압이 정류부(140)로 인가되도록 한다. 이때, 스위칭부(130)는 센싱부(120)에서 감지되는 전압이 없거나, 자기유도 전원 공급 장치(100)의 전원이 꺼지면 가장 낮은 권선 수를 갖는 단위 코일(114)이 정류부(140)에 직렬 연결되도록 스위칭하는 것을 디폴트로 설정할 수도 있다.
이를 통해, 스위칭부(130)는 정류부(140)로 인가되는 전압을 최대 기준 전압 이하로 유지하여 자기유도 전원 공급 장치(100) 및 부하(300)를 구성하는 소자들의 파손을 방지한다.
스위칭부(130)는 자기유도 전원 공급 장치(100)의 초기 구동 후 설정시간이 지나면 센싱부(120)에 감지한 전압을 근거로 복수의 단위 코일(114) 중 적어도 하나가 정류부(140)와 직렬 연결되도록 스위칭한다.
이때, 스위칭부(130)는 센싱부(120)에서 감지한 전압이 최소 기준 전압 미만이면 복수의 단위 코일(114)이 정류부(140)에 직렬 연결되도록 스위칭하여, 변류기(110)에서 유도된 모든 전압을 정류부(140)로 인가한다. 여기서, 스위칭부(130)는 복수의 단위 코일(114) 중 일부(즉, 둘 이상)의 단위 코일(114)이 정류부(140)에 직렬 연결되도록 스위칭하여 최소 기준 전압 이상의 전압이 정류부(140)로 인가되도록 할 수도 있다.
스위칭부(130)는 센싱부(120)에서 감지한 전압이 최소 기준 전압 이상이고 최대 기준 전압 이하이면 복수의 단위 코일(114) 중 가장 높은 권선수를 갖는 단위 코일(114)이 정류부(140)와 직렬 연결되도록 스위칭하여, 가장 높은 권선 수의 단위 코일(114)에서 유도된 전압을 정류부(140)로 인가한다.
스위칭부(130)는 센싱부(120)에서 감지한 전압이 최대 기준 전압을 초과하면 복수의 단위 코일(114) 중 가장 낮은 권선수를 갖는 단위 코일(114)이 정류부(140)와 직렬 연결되도록 스위칭하여, 가장 낮은 권선수의 단일 코일에서 유도된 전압을 정류부(140)로 인가한다.
도 2에 도시된 바와 같이, 변류기(110)가 코어(112)에 상호 이격되어 권선된 제1 단위 코일(114a) 및 제2 단위 코일(114b)로 구성되고, 제1 단위 코일(114a)이 제2 단위 코일(114b) 보다 높은 권선 수를 갖는 경우를 예로 들면, 스위칭부(130)는 제1 단위 코일(114a) 및 제2 단위 코일(114b)에 연결된 복수의 입력 단자(132a~132d)와 정류부(140)에 연결된 한 쌍의 출력 단자(134a, 134b) 및 복수의 전환 스위치(136a~136c)를 포함하여 구성된다.
즉, 스위칭부(130)는 제1 단위 코일(114a)의 일단(제1 단부)과 연결되는 제1 입력 단자(132a), 제1 단위 코일(114a)의 타단(제2 단부)과 연결되는 제2 입력 단자(132b), 제2 단위 코일(114b)의 일단(제1 단부)과 연결되는 제3 입력 단자(132c) 및 제2 단위 코일(114b)의 타단(제2 단부)과 연결되는 제4 입력 단자(132d)를 포함할 수 있다.
여기서, 제1 단위 코일(114a)의 일단은 청구항에 기재된 제1 단위 코일의 제1 단부에 대응되고, 제1 단위 코일(114a)의 타단은 청구항에 기재된 제1 단위 코일의 제2 단부에 대응된다. 제2 단위 코일(114b)의 일단은 청구항에 기재된 제2 단위 코일의 제1 단부에 대응되고, 제2 단위 코일(114b)의 타단은 청구항에 기재된 제2 단위 코일의 제2 단부에 대응된다.
스위칭부(130)는 정류부(140)와 연결되는 두 연결선에 각각 연결되는 제1 출력 단자(134a) 및 제2 출력 단자(134b)를 포함할 수 있다.
스위칭부(130)는 제1 출력 단자(134a)를 제1 입력 단자(132a) 또는 제3 입력 단자(132c)로 스위칭하는 제1 전환 스위치(136a), 제2 출력 단자(134b)를 제2 입력 단자(132b) 또는 제4 입력 단자(132d)로 스위칭하는 제2 전환 스위치(136b), 제2 입력 단자(132b) 및 제2 입력 단자(132b)의 연결을 스위칭하는 제3 전환 스위치(136c)를 포함할 수 있다.
스위칭부(130)는 변류기(110)에 유도되는 전압 또는 자기유도 전원 공급 장치(100)의 초기 구동 여부를 근거로 입력 단자 및 출력 단자의 연결을 스위칭하여 변류기(110)의 제1 단위 코일(114a) 및 제2 단위 코일(114b) 중 적어도 하나를 정류부(140)에 직렬 연결한다.
변류기(110)에 유도되는 전압이 최소 기준 전압 미만이면 부하(300)에서 요구하는 전압 미만의 전압이 인가되므로, 제1 단위 코일(114a) 및 제2 단위 코일(114b)에 유도되는 전압을 모두 정류부(140)로 인가되도록 해야 한다.
이에, 도 3에 도시된 바와 같이, 스위칭부(130)는 제3 전환 스위치(136c)를 스위칭하여 제1 단위 코일(114a) 및 제2 단위 코일(114b)을 직렬연결하고, 제1 전환 스위치(136a)가 제1 입력 단자(132a)와 제1 출력 단자(134a)에 연결되도록 스위칭하고, 제2 전환 스위치(136b)가 제4 입력 단자(132d)와 제2 출력 단자(134b)에 연결되도록 스위칭하여 제1 단위 코일(114a) 및 제2 단위 코일(114b)이 정류부(140)에 직렬 연결되도록 한다.
그에 따라, 제1 단위 코일(114a) 및 제2 단위 코일(114b)이 직렬 연결되어 구성되는 코일에서 유도되는 전압이 정류부(140)에 인가된다.
한편, 변류기(110)에 유도되는 전압이 최소 기준 전압 이상 최대 기준 전압 이하이면 부하(300)에서 요구하는 전압 범위 내의 전압이 정류부(140)에 인가된다.
따라서, 도 4에 도시된 바와 같이, 스위칭부(130)는 제1 전환 스위치(136a)가 제1 입력 단자(132a)와 제1 출력 단자(134a)에 연결되도록 스위칭하고, 제2 전환 스위치(136b)가 제2 입력 단자(132b)와 제2 출력 단자(134b)에 연결되도록 스위칭하여, 상대적으로 높은 권선 수를 갖는 제1 단위 코일(114a)에서 유도되는 전압을 정류부(140)로 인가하도록 한다.
또 다른 한편, 변류기(110)에서 유도되는 전압이 최대 기준 전압을 초과하면 정류부(140)를 구성하는 소자의 손상을 초래할 수 있다.
따라서, 도 5에 도시된 바와 같이, 스위칭부(130)는 제1 전환 스위치(136a)가 제3 입력 단자(132c)와 제1 출력 단자(134a)에 연결되도록 스위칭하고, 제2 전환 스위치(136b)가 제4 입력 단자(132d)와 제2 출력 단자(134b)에 연결되도록 스위칭하여, 상대적으로 낮은 권선 수를 갖는 제2 단위 코일(114b)에서 유도되는 전압을 정류부(140)로 인가하도록 한다.
한편, 도 6 및 도 7을 참조하면, 자기유도 전원 공급 장치(100)의 초기 구동시 최대 기준 전압을 초과하는 유입 전압(Inrush Voltage)이 인가되면 자기유도 전원 공급 장치(100) 또는 부하(300)를 구성하는 소자의 손상을 초래할 수 있다.
따라서, 스위칭부(130)는 자기유도 전원 공급 장치(100)의 초기 구동시 설정시간 동안 제1 전환 스위치(136a)가 제3 입력 단자(132c)와 제1 출력 단자(134a)에 연결되도록 스위칭하고, 제2 전환 스위치(136b)가 제4 입력 단자(132d)와 제2 출력 단자(134b)에 연결되도록 스위칭하여, 상대적으로 낮은 권선 수를 갖는 제2 단위 코일(114b)에서 유도되는 전압을 정류부(140)로 인가하도록 한다.
이를 통해, 스위칭부(130)는 변류기(110)에 유도되는 전압과 관계없이 정류부(140)로 설정 범위 내의 전압을 인가하여 소자의 손상을 방지할 수 있다.
정류부(140)는 연결선들을 통해 스위칭부(130)로부터 인가되는 전압을 정류하여 직류로 변환하여 부하(300)로 공급한다. 정류부(140)는 복수의 다이오드로 구성된 전파(全波) 정류회로 또는 반파(半波) 정류회로로 구성될 수 있다. 정류부(140)는 스위칭부(130)의 스위칭 구동에 따라 제1 단위 코일(114a) 및 제2 단위 코일(114b) 중 적어도 하나에서 유도된 전압을 직류로 변환하여 부하(300)로 공급한다.
상술한 바와 같이, 자기유도 전원 공급 장치는 전력선에서 유도된 전압에 따라 서로 다른 권선 수를 갖는 복수의 단위 코일을 중 적어도 하나가 정류부와 직렬 연결되도록 스위칭함으로써, 전력선의 전류 변화에 따라 전력유도 비율을 조정하여 일정한 전력을 부하로 제공할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선에서 유도된 전압에 따라 서로 다른 권선 수를 갖는 복수의 단위 코일을 중 적어도 하나가 정류부와 직렬 연결되도록 스위칭함으로써, 기준을 벗어나는 전류(즉, 기준 미만의 전류, 기준 초과의 전류)가 유도되는 상태에서 부하에서 요구되는 범위 이내의 전력을 생산할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선에서 유도된 전압이 기준 미만이면 복수의 단위 코일이 정류부와 직렬 연결되도록 스위칭함으로써, 전력선에서 유도된 전압이 낮은 상태에서도 부하에서 요구되는 범위 이내의 전력을 공급할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선에서 유도된 전압이 기준을 초과하면 복수의 단위 코일 중 권선 수가 가장 낮은 단위 코일이 정류부와 직렬 연결되도록 스위칭함으로써, 전력선에서 유도된 전압이 과도한 상태에서도 부하에서 요구되는 범위 이내의 전력을 공급할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선의 전류 변화에도 일정한 전력을 유도함으로써, 정류부의 복잡도 또는 용량을 감소시키므로, 최적 시스템의 구현이 용이하며, 제조비용을 감소시킬 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 초기 구동시 설정시간 동안 최소 권선 수를 갖는 단위 코일로 스위칭함으로써, 초기 동작시 발생하는 높은 전압의 유입 전압(Inrush Voltage)을 낮춰 유입 전압에 의해 부품이 손상되는 것을 방지할 수 있는 효과가 있다.
또한, 자기유도 전원 공급 장치는 입력 전압을 안정화함으로써, 전압 손실이 감소되어 전원 취득 효율이 증가하는 효과가 있다.
또한, 자기유도 전원 공급 장치는 전력선에서 유도된 전압에 따라 스위칭부를 제어하여 복수의 단위 코일 중 적어도 하나를 직렬 연결함으로써, 정상 동작 구간(즉, 유도된 전압이 최소 기준 전압 이상 최대 기준 전압 이하인 구간)에서 효율적인 에너지 컨트롤이 가능한 효과가 있다.
이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.

Claims (16)

  1. 전력선에 설치되어 전압을 유도하는 복수의 단위 코일을 구비한 변류기;
    상기 변류기에서 유도되는 전압을 감지하는 센싱부;
    상기 변류기에서 유도된 전압을 정류하는 정류부; 및
    상기 센싱부에서 감지한 전압을 근거로 상기 복수의 단위 코일 중 적어도 하나가 상기 정류부와 연결되도록 스위칭하는 스위칭부를 포함하는 자기유도 전원 공급 장치.
  2. 제1항에 있어서,
    상기 복수의 단위 코일은 서로 다른 권선 수를 갖는 자기유도 전원 공급 장치.
  3. 제1항에 있어서,
    상기 스위칭부는 초기 구동시 설정시간 동안 상기 복수의 단위 코일 중 가장 낮은 권선수를 갖는 단위 코일이 상기 정류부와 연결되도록 스위칭하는 자기유도 전원 공급 장치.
  4. 제1항에 있어서,
    상기 스위칭부는 초기 구동 후 설정시간이 지나면 상기 센싱부에서 감지한 전압을 근거로 상기 복수의 단위 코일 중 적어도 하나가 상기 정류부와 연결되도록 스위칭하는 자기유도 전원 공급 장치.
  5. 제1항에 있어서,
    상기 스위칭부는 상기 센싱부에서 감지한 전압이 최소 기준 전압 미만이면 상기 복수의 단위 코일 중 둘 이상의 단위 코일들이 상기 정류부와 연결되도록 스위칭하는 자기유도 전원 공급 장치.
  6. 제1항에 있어서,
    상기 스위칭부는 상기 센싱부에서 감지한 전압이 최대 기준 전압을 초과하면 상기 복수의 단위 코일 중 가장 낮은 권선수를 갖는 단위 코일이 상기 정류부와 연결되도록 스위칭하는 자기유도 전원 공급 장치.
  7. 제1항에 있어서,
    상기 변류기는,
    코어;
    상기 코어에 권선된 제1 단위 코일; 및
    상기 코어에 권선되고, 상기 제1 단위 코일보다 낮은 권선 수를 갖는 제2 단위 코일을 포함하는 자기유도 전원 공급 장치.
  8. 제7항에 있어서,
    상기 스위칭부는 상기 센싱부에서 감지한 전압이 최소 기준 전압 미만이면 상기 제1 단위 코일 및 제2 단위 코일을 상기 정류부와 직렬 연결하도록 스위칭하는 자기유도 전원 공급 장치.
  9. 제7항에 있어서,
    상기 스위칭부는,
    상기 센싱부에서 감지한 전압이 최소 기준 전압 이상이고 최대 기준 전압 이하이면 상기 제1 단위 코일을 상기 정류부와 직렬 연결되도록 스위칭하는 자기유도 전원 공급 장치.
  10. 제7항에 있어서,
    상기 스위칭부는,
    상기 센싱부에서 감지한 전압이 최대 기준 전압을 초과하면 상기 제2 단위 코일이 상기 정류부와 직렬 연결되도록 스위칭하는 자기유도 전원 공급 장치.
  11. 제7항에 있어서,
    상기 스위칭부는,
    초기 구동시 설정시간 동안 상기 제2 단위 코일이 상기 정류부와 직렬 연결되도록 스위칭하는 자기유도 전원 공급 장치.
  12. 제7항에 있어서,
    상기 스위칭부는,
    상기 제1 단위 코일의 제1 단부에 연결된 제1 입력 단자
    상기 제1 단위 코일의 제2 단부에 연결된 제2 입력 단자;
    상기 제2 단위 코일의 제1 단부에 연결된 제3 입력 단자
    상기 제2 단위 코일의 제2 단부에 연결된 제4 입력 단자;
    상기 정류부의 제1 단부에 연결된 제1 출력 단자; 및
    상기 정류부의 제2 단부에 연결된 제2 출력 단자를 포함하는 자기유도 전원 공급 장치.
  13. 제12항에 있어서,
    상기 스위칭부는 상기 센싱부에서 감지한 전압이 최소 기준 전압 미만이면 상기 제1 입력 단자를 상기 제1 출력 단자로 스위칭하고, 상기 제2 입력 단자를 상기 제3 입력 단자로 스위칭하고, 상기 제4 입력 단자를 제2 출력 단자로 스위칭하는 자기유도 전원 공급 장치.
  14. 제12항에 있어서,
    상기 스위칭부는,
    상기 센싱부에서 감지한 전압이 최소 기준 전압 이상이고 최대 기준 전압 이하이면 상기 제1 입력 단자를 상기 제1 출력 단자로 스위칭하고, 상기 제2 입력 단자를 상기 제2 출력 단자로 스위칭하는 자기유도 전원 공급 장치.
  15. 제12항에 있어서,
    상기 스위칭부는,
    상기 센싱부에서 감지한 전압이 최대 기준 전압을 초과하면 상기 제3 입력 단자를 상기 제1 출력 단자로 스위칭하고, 상기 제4 입력 단자를 상기 제2 출력 단자로 스위칭하는 자기유도 전원 공급 장치.
  16. 제12항에 있어서,
    상기 스위칭부는,
    초기 구동시 설정시간 동안 상기 제3 입력 단자를 상기 제1 출력 단자로 스위칭하고, 상기 제4 입력 단자를 상기 제2 출력 단자로 스위칭하는 자기유도 전원 공급 장치.
PCT/KR2017/011199 2016-10-11 2017-10-11 자기유도 전원 공급 장치 WO2018070779A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780068414.XA CN109937515B (zh) 2016-10-11 2017-10-11 电磁感应供电设备
US16/340,335 US10958102B2 (en) 2016-10-11 2017-10-11 Electromagnetic-inductive power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0131429 2016-10-11
KR1020160131429A KR102154251B1 (ko) 2016-10-11 2016-10-11 자기유도 전원 공급 장치

Publications (1)

Publication Number Publication Date
WO2018070779A1 true WO2018070779A1 (ko) 2018-04-19

Family

ID=61906245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011199 WO2018070779A1 (ko) 2016-10-11 2017-10-11 자기유도 전원 공급 장치

Country Status (4)

Country Link
US (1) US10958102B2 (ko)
KR (1) KR102154251B1 (ko)
CN (1) CN109937515B (ko)
WO (1) WO2018070779A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102030721B1 (ko) * 2016-10-19 2019-10-10 주식회사 아모센스 자기유도 전원 공급 장치
KR102132903B1 (ko) * 2018-11-05 2020-07-14 한국철도기술연구원 전력선 에너지 하베스팅용 자기장 결합 장치
KR102369617B1 (ko) * 2020-01-02 2022-03-03 주식회사 폰 지중 송배전 선로에 설치가 용이하고 방수/방진 기능이 개선된 고출력 전원 공급장치용 전원용 변류기
US11791648B2 (en) * 2021-05-28 2023-10-17 Deltran Operations Usa, Inc. Automated battery charging
CN117060601B (zh) * 2023-10-12 2024-02-20 南方电网数字电网研究院股份有限公司 一种电磁感应取能装置及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100090009A (ko) * 2009-02-05 2010-08-13 엘에스전선 주식회사 전류 유도 방식 기반의 전원 공급 장치
KR101189298B1 (ko) * 2011-07-27 2012-10-09 엘지이노텍 주식회사 공진 코일 및 이를 포함하는 무선 전력 전송장치
KR101342585B1 (ko) * 2012-03-23 2013-12-17 유노시스템 주식회사 무접점 충전 시스템의 다층 코일 구조
KR20140093498A (ko) * 2013-01-18 2014-07-28 (주)테라에너지시스템 전자기 유도 방식 전원 공급 장치
WO2016064725A1 (en) * 2014-10-20 2016-04-28 Momentum Dynamics Corporation Method and apparatus for intrinsic power factor correction

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0162116B1 (ko) * 1993-02-22 1998-12-15 마크 버게스 유도 접속의 보호장치
FR2706699B1 (fr) * 1993-06-10 1995-09-15 Gec Alsthom T & D Sa Dispositif pour la fourniture d'une tension à un circuit électronique, en particulier à un circuit électronique associé à un capteur d'intensité placé sur une ligne électrique.
KR100501486B1 (ko) * 2004-09-02 2005-07-25 (주)에이엔피테크놀러지 순시 탭 전환 방식의 자동 전압 조절기
CN100576711C (zh) * 2007-03-29 2009-12-30 雅米科技股份有限公司 感应电力系统
KR101029157B1 (ko) * 2009-07-02 2011-04-13 금종관 자동 전압 조절 장치
WO2011135722A1 (ja) * 2010-04-30 2011-11-03 富士通株式会社 受電装置及び受電方法
CN102437657A (zh) * 2011-12-23 2012-05-02 重庆大学 多线圈的电线能量采集器
CN103001334B (zh) * 2012-11-14 2016-06-08 广东电网公司佛山供电局 一种悬浮取电装置
WO2015173923A1 (ja) * 2014-05-15 2015-11-19 日産自動車株式会社 非接触給電装置
CN105119388B (zh) * 2015-09-01 2018-03-27 国网新疆电力公司经济技术研究院 宽电流范围工作的电流互感取能电源
KR20180016311A (ko) * 2016-08-05 2018-02-14 주식회사 아모센스 변류기 모듈 및 이를 포함하는 전력 공급 장치
KR102030721B1 (ko) * 2016-10-19 2019-10-10 주식회사 아모센스 자기유도 전원 공급 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100090009A (ko) * 2009-02-05 2010-08-13 엘에스전선 주식회사 전류 유도 방식 기반의 전원 공급 장치
KR101189298B1 (ko) * 2011-07-27 2012-10-09 엘지이노텍 주식회사 공진 코일 및 이를 포함하는 무선 전력 전송장치
KR101342585B1 (ko) * 2012-03-23 2013-12-17 유노시스템 주식회사 무접점 충전 시스템의 다층 코일 구조
KR20140093498A (ko) * 2013-01-18 2014-07-28 (주)테라에너지시스템 전자기 유도 방식 전원 공급 장치
WO2016064725A1 (en) * 2014-10-20 2016-04-28 Momentum Dynamics Corporation Method and apparatus for intrinsic power factor correction

Also Published As

Publication number Publication date
KR102154251B1 (ko) 2020-09-09
US10958102B2 (en) 2021-03-23
US20200044483A1 (en) 2020-02-06
CN109937515A (zh) 2019-06-25
CN109937515B (zh) 2022-12-27
KR20180039966A (ko) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2018070779A1 (ko) 자기유도 전원 공급 장치
WO2018074861A1 (ko) 자기유도 전원 공급 장치
WO2014112827A1 (ko) 전자기 유도 방식 전원 공급 장치
WO2015072652A1 (ko) 다중 배터리 충전기 및 그 제어방법
CN102570823A (zh) 带有分离式能量传递元件的回扫功率变换器
WO2015072645A1 (ko) 다중 출력 컨버터 및 그 제어방법
WO2017160098A1 (ko) 스위칭 전원의 1차측에 위치하는 정류 다이오드에서 생성되는 잡음을 낮추는 방법과 장치
US9824809B2 (en) Modular transformer system
WO2013085160A1 (ko) 동축권선 변압기를 이용하는 플라이백 컨버터
WO2020032537A1 (ko) 유무선 통합 전력 수신 시스템
WO2013032129A1 (en) Wireless power transmitter and wireless power transmission method
WO2014157844A2 (ko) 다수의 외부 장치에 유선으로 전원공급이 가능한 무선 전력 수신 장치
WO2014092405A1 (en) Wireless power device
WO2020027374A1 (ko) 단상 절연형 역률개선용 세픽 컨버터
WO2020075902A1 (ko) 복수의 컨버터 모듈을 구비하는 dc/dc 컨버터
WO2013115505A1 (ko) 동축권선 변압기를 이용한 전력 추정 장치
WO2020130357A1 (ko) 전력선에서의 전압강하를 고려한 자기장 에너지 하베스팅 결선 방법 및 장치
WO2020153609A1 (ko) 인덕턴스 가변 장치 및 이의 제어방법
WO2013055000A1 (ko) Led 구동 회로
WO2016039502A1 (ko) 전압센싱 및 제어 회로
WO2020055050A1 (ko) 자기 유도 전원 공급 장치
WO2016052806A1 (ko) 자기장의 다중 동기를 이용한 광역 무선전력 전송 장치 및 방법
WO2015008878A1 (ko) 조명 구동 집적회로 및 조명 제어 방법
WO2014014248A1 (en) Power supply circuit
WO2021107480A1 (ko) Dc-dc 컨버터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859743

Country of ref document: EP

Kind code of ref document: A1