WO2020075902A1 - 복수의 컨버터 모듈을 구비하는 dc/dc 컨버터 - Google Patents

복수의 컨버터 모듈을 구비하는 dc/dc 컨버터 Download PDF

Info

Publication number
WO2020075902A1
WO2020075902A1 PCT/KR2018/013275 KR2018013275W WO2020075902A1 WO 2020075902 A1 WO2020075902 A1 WO 2020075902A1 KR 2018013275 W KR2018013275 W KR 2018013275W WO 2020075902 A1 WO2020075902 A1 WO 2020075902A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
basic
power
converter module
modules
Prior art date
Application number
PCT/KR2018/013275
Other languages
English (en)
French (fr)
Inventor
장성록
김종수
김형석
유찬훈
김신
배정수
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2020075902A1 publication Critical patent/WO2020075902A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to a DC / DC converter, and more particularly, to a DC / DC converter having a plurality of converter modules.
  • the DC / DC converter converts the input DC power to AC, converts the converted AC voltage up or down, and converts it to DC to output the DC power, and is an electric device generally used in power supplies.
  • 1A is a diagram showing the configuration of a typical DC / DC converter.
  • a typical DC / DC converter 10 includes a DC / AC inverter 11, a transformer 12, an AC / DC rectifier 13, a smoothing unit 14, and a controller 15. do.
  • the DC / AC inverter 11 includes a plurality of switching elements therein, and switches the input DC voltage to a high frequency to output the AC voltage to the transformer 12.
  • the DC / AC inverter 11 may be variously applied, such as a full bridge circuit and a half bridge circuit.
  • the transformer 12 either step-downs or boosts the AC voltage input from the DC / AC inverter 11 through the primary winding and outputs it to the AC / DC rectifier 13 connected to the secondary winding.
  • the AC / DC rectifier 13 includes a plurality of diodes therein to convert the AC voltage input from the secondary winding of the transformer 12 into DC voltage and output it to the output terminal.
  • the AC / DC rectifier 13 may also be variously applied to a full-wave rectifier circuit, a double-voltage rectifier circuit, and the like.
  • the smoothing unit 14 is generally implemented with a capacitor connected to the output terminal, smoothing the DC voltage output from the AC / DC rectifier 13, and the output voltage output from the output terminal to the outside becomes the voltage across the capacitor.
  • the controller 15 measures the output voltage across the capacitor, generates a control signal that controls the switching of each switch included in the DC / AC inverter 11, outputs it to each switch of the DC / AC inverter 11, and , Each switch is turned on / off according to the control signal.
  • the applicant of the present invention considered a method of sharing a switching control signal output to a DC / AC inverter with other modules while controlling one module voltage with a single controller, but manufacturing all parameters of the converter module in the same way Since it is very difficult to do this, an imbalance between the output voltages of the multiple modules was inevitable. Therefore, there is a need for a solution to this problem.
  • the problem to be solved by the present invention is to control the entire modules using a single controller to simplify the overall control process, DC / DC converter having a plurality of converter modules capable of solving the output voltage imbalance between the modules Is to provide.
  • the DC / DC converter for solving the above-described problems converts the input DC power to AC, boosts or boosts it, converts it to DC, and outputs it to the basic output terminal, and outputs it from the basic output terminal.
  • a basic converter module for measuring a voltage and adjusting a switching control signal for converting the input DC power to AC; And converting the input DC power to AC according to the switching control signal input from the basic converter module, converting it to step-up or step-down and converting it to DC to output it to a connected output terminal, wherein the connected output terminal is connected to the basic output terminal of the basic converter module.
  • one or more connected converter modules connected in series or parallel.
  • the basic converter module includes a plurality of switching elements, and the switching element is on / off controlled according to the switching control signal to convert the input DC power to AC to output;
  • a transformer for boosting or stepping down the AC power input from the inverter and outputting the AC power;
  • measuring the output voltage of the basic output terminal generating the switching control signal according to the measured output voltage, and outputting it to inverters included in the inverter and the plurality of connected converter modules, thereby switching elements included in the inverters And a controller that controls to be turned on / off according to the same switching control signal.
  • the connecting converter module includes a plurality of switching elements, the switching element is on / off control according to the switching control signal to convert the input DC power to AC inverter; A transformer for boosting or stepping down the AC power input from the inverter and outputting the AC power; And a rectifier that converts AC power input from at least two of the transformers and transformers included in the connection converter modules into DC and outputs the output to the connection output terminal.
  • two or more secondary windings are wound on the core of the transformer, and the two or more secondary windings wound on the same transformer core may be connected to a rectifier included in different converter modules.
  • the rectifier may receive power from a common node of secondary windings of different transformers.
  • the rectifier may receive power from a common node of the secondary winding wound on the transformer core of the converter module other than the converter module containing itself and the secondary winding wound on the transformer core of the converter module containing it. .
  • the rectifier may receive power from a common node of secondary windings wound on a transformer core of different converter modules other than the converter module in which it is included.
  • the basic output terminal of the basic converter module and the connection output terminals of the plurality of connected converter modules are connected to each other in series, and in the converter modules located at both ends of the serially connected converter modules, the rectifier includes itself It receives power from the common node of the secondary winding wound on the transformer core of the converter module and the secondary winding wound on the transformer core of the converter module other than the converter module containing itself, and connects both ends of the converter modules connected in series. In the excluded converter modules, the rectifier may receive power from a common node of secondary windings wound on transformer cores of different converter modules other than the converter module in which it is included.
  • the basic converter module is preferably in charge of the lowest level voltage output of the output voltage (Vout) of the DC / DC converter.
  • two or more secondary windings are wound on the core of the transformer, and each secondary winding is connected in series with any one of two or more secondary windings wound on the transformer core of different converter modules, and the rectifier Can receive the voltage across both ends of the secondary windings connected in series with each other.
  • the basic output terminal of the basic converter module and the connection output terminal of the plurality of connected converter modules are connected in series with each other, and in the converter modules located at both ends of the converter modules connected in series, the rectifier includes itself The voltage across both ends of any secondary winding wound on the transformer core of the converter module can be input.
  • the basic output terminal of the basic converter module and the connection output terminal of the plurality of connected converter modules are connected in series with each other, and in converter modules excluding both ends of the converter modules connected in series, the rectifier includes itself.
  • the voltage across both ends of any secondary winding wound on the transformer core of the converter module other than the converter module may be input.
  • the present invention provides a DC / DC converter that outputs a high voltage or a high current by connecting output terminals of a plurality of converter modules in series or in parallel, and includes a controller in only one converter module and a plurality of switching control signals output from the controller.
  • the converter modules of the controller module can simplify the control method of the entire DC / DC converter.
  • the present invention winds a plurality of secondary windings on each transformer core of a plurality of converter modules, inputs each secondary windings as a rectifier of different converter modules, and the rectifiers of each converter module are connected to different transformers.
  • the rectifiers of each converter module are connected to different transformers.
  • FIG. 1A is a diagram showing a configuration of a conventional general DC / DC converter
  • FIG. 1B is a diagram showing a configuration of a DC / DC converter outputting high voltage by connecting a plurality of DC / DC converter modules in series.
  • FIG. 2 is a diagram showing the configuration of a DC / DC converter having a plurality of converter modules according to a preferred embodiment of the present invention.
  • 3A and 3B are graphs comparing the performance of the prior art and the present invention.
  • FIG. 2 is a diagram showing the configuration of a DC / DC converter having a plurality of converter modules according to a preferred embodiment of the present invention.
  • the DC / DC converter includes a basic converter module 100 and a plurality of coupling converter modules 210, 220, and 230 connected in series to the basic converter module 100 do.
  • the basic converter module 100 includes a DC / AC inverter 110, a transformer 120, an AC / DC rectifier 130, a smoothing unit 140, and a controller 150.
  • the function of each component included in the basic converter module 100 is very similar to the function of each component included in the DC / DC converter described with reference to FIG. 1A.
  • the DC / AC inverter 110 of the basic converter module 100 includes a plurality of switching elements therein, and switches the input DC voltage to a high frequency to generate an AC voltage to generate an AC voltage.
  • the transformer 120 step-downs or boosts the AC voltage input from the DC / AC inverter 110 through the primary winding and outputs it to the AC / DC rectifier 130 connected to the secondary winding.
  • the DC / AC inverter 110 may be variously applied, such as a full bridge circuit and a half bridge circuit.
  • two or more secondary windings are wound on the core of the transformer 120, and one of the plurality of secondary windings is connected to the AC / DC rectifier 130 included in the basic converter module 100, and the other 1 More than one secondary winding is connected to the AC / DC rectifier 130 included in the other connecting converter modules 210, 220, and 230.
  • two secondary windings are wound on the core of the transformer 120, and one secondary winding is connected to the AC / DC rectifier 130 included in the basic converter module 100, The other secondary winding was connected to the AC / DC rectifier 213 included in the adjacent connection converter module 210.
  • the AC / DC rectifier 130 includes a plurality of diodes therein, converts AC voltage input from the secondary winding of the transformer 120 into DC voltage, and outputs it to an output terminal (referred to as "basic output terminal").
  • two or more secondary windings are connected to a common node at the input terminal of the AC / DC rectifier 130 of the present invention. That is, a plurality of secondary windings wound on the cores of different transformers 120 and 212 are connected to a common node at the input terminal of the AC / DC rectifier 130 of the present invention.
  • the secondary winding is wound in common to the cores of the different transformers 120 and 212, if the voltage derived from the core of one transformer 120 is higher than the voltage derived from the core of the other transformer 212, the induced voltage is higher. The current flows from the core to the lower induced voltage so that the potentials are balanced with each other.
  • the AC / DC rectifier 130 may also be variously applied to a full-wave rectifier circuit, a double-voltage rectifier circuit, and the like.
  • the smoothing unit 140 is generally implemented with a capacitor connected to the output terminal (basic output terminal), and smooths the DC voltage output from the AC / DC rectifier 130, and the output voltage output from the output terminal (basic output terminal) to the outside is a capacitor It becomes the voltage at both ends.
  • the controller 150 measures the output voltage (V o1 ) across the capacitor to generate a switching control signal to control the switching of each switch included in the DC / AC inverter 110 to generate each of the DC / AC inverters 110. All connected converter modules connected to the basic converter module 100 by outputting to the switches and outputting the same switching control signals to the respective switches included in the DC / AC inverters 211, 221 and 231 of the other connected converter modules 210, 220 and 230 The DC / AC inverters 211, 221, and 231 of (210, 220, 230) are collectively controlled.
  • the basic converter module 100 is configured to be in charge of the lowest level voltage output among the output voltages (Vout) of the DC / DC converters in which all the converter modules are connected, thereby minimizing the design burden of the voltage sensing circuit. .
  • connection converter module 210 the output terminal (referred to as “connected output terminal") is connected in series or in parallel with the basic converter module 100
  • the output terminal (connected output terminal) of the other connected converter module (220,230) is a basic converter
  • the output terminal (connected output terminal) of the connected converter module 210 connected to the module 100 is connected in series or in parallel.
  • Connection converter module (210,220,230) is composed of a DC / AC inverter (211,221,231), transformer (212,222,232), AC / DC rectifier (213,223,233), and smoothing unit (214,224,234), the function of the basic converter module 100 and same.
  • each switching element included in the DC / AC inverters 211, 221, and 231 of the plurality of connected converter modules 210, 220, and 230 is controlled by receiving a switching control signal from the controller 150 of the basic converter module 100 and controlling on / off.
  • All switching elements of the DC / DC converter according to the preferred embodiment of the present invention are controlled to be turned on / off at the same timing by the same switching control signal, and thus, the entire DC / DC converter is controlled by only one controller 150 Becomes possible, so that control of the entire DC / DC converter can be performed simply and efficiently.
  • the transformers 212, 222, 232 of the connection converter modules 210, 220, 230 like the transformer 120 of the basic converter module 100, a plurality of secondary coils are wound on the core, and each secondary winding is a different connection converter
  • each secondary winding is a different connection converter
  • the AC / DC rectifiers 213, 223 and 233 are connected to common nodes of secondary windings connected to different transformers 212, 222 and 232 cores, rectifying the AC voltage input from the secondary windings to convert the DC voltage to the output terminal (connected output terminal) Output.
  • one of the plurality of secondary windings connected to the AC / DC rectifier (213,223,233) may be connected to the core of the transformer (212,222,232) of the converter module including the AC / DC rectifier (213,223,233), and the other AC / DC rectifier (213,223,233) may be connected to the transformer core included in the converter module other than the converter module included.
  • all of the plurality of secondary windings may be connected to the cores of the transformers 212, 222, 232 included in the converter module other than the converter module including the AC / DC rectifiers 213, 223, 233.
  • the two secondary windings connected to the AC / DC rectifier 213 of the first connection converter module 210 are respectively the core of the transformer 120 included in the basic converter module 100 and It is connected to the core of the transformer 222 included in the second connection converter module 220.
  • the two secondary windings connected to the AC / DC rectifier 223 of the second connection converter module 220 are respectively the core and the third connection converter of the transformer 212 included in the first connection converter module 210
  • the transformer 232 included in the module 230 is connected to the core.
  • the two secondary windings connected to the AC / DC rectifier 233 of the third connection converter module 230 are respectively the core and the second of the transformer 222 included in the second connection converter module 220.
  • 3 connection is connected to the transformer 232 core included in the converter module 230.
  • connection structures are possible in addition to the connection structure shown in FIG. 2.
  • one of the two secondary windings connected to the AC / DC rectifier 213 of the first connection converter module 210 is wound around the transformer 212 core of the first connection converter module 210, and the other is One of the two secondary windings wound around the core of the transformer 222 of the adjacent second connection converter module 220 and connected to the AC / DC rectifier 223 of the second connection converter module 220 in the same way.
  • One of the two secondary windings connected to the / DC rectifier 233 is wound around the transformer 232 core of the third connection converter module 230, and the other is the transformer 120 core of the basic converter module 100 It may be configured to be wound on.
  • the output terminals (connected output terminals) of the three connected converter modules 210, 220, and 230 are connected to one basic converter module 100 in series with each other. Although it is illustrated, four or more connected converter modules may be included according to the size of the output voltage required for the DC / DC converter.
  • capacitors which are smoothing units 214, 224, and 234 are connected to both ends of the AC / DC rectifiers 213, 223, and 233 of the connection converter modules 210, 220, and 230 to smooth the output voltage of the connection converter modules 210, 220, and 230.
  • 3A and 3B are graphs comparing the performance of the prior art and the present invention.
  • FIG. 3A shows the current waveform in the DC / DC converter according to the prior art
  • FIG. 3B shows the current waveform in the DC / DC converter according to the present invention.
  • the sinusoidal AC current waveform represents the current waveform output from the DC / AC inverter of each converter module, and the same waveform means that the output voltage is the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 복수의 컨버터 모듈을 구비하는 DC/DC 컨버터를 공개한다. 본 발명은 복수의 컨버터 모듈들의 출력단을 직렬 또는 병렬로 연결하여 고전압 또는 고전류를 출력하는 DC/DC 컨버터를 제공함에 있어서, 하나의 컨버터 모듈에만 제어기를 구비하고, 제어기에서 출력되는 스위칭 제어 신호를 복수의 컨버터 모듈들이 공유하여 각 컨버터 모듈의 인버터에 포함된 스위칭 소자들을 동시에 제어함으로써, 전체 DC/DC 컨버터의 제어 방식을 단순화할 수 있다. 또한, 본 발명은 복수의 컨버터 모듈 각각의 변압기 코어에 복수의 2차 권선을 권취하고, 각 2차 권선들을 서로 다른 컨버터 모듈의 정류기로 입력하며, 각 컨버터 모듈의 정류기는 서로 다른 변압기에 연결된 2차 권선들의 공통 노드로부터 AC 전원을 입력받아 DC로 변환하여 출력함으로써, 각 컨버터 모듈들의 출력 전압을 밸런싱할 수 있다.

Description

복수의 컨버터 모듈을 구비하는 DC/DC 컨버터
본 발명은 DC/DC 컨버터에 관한 것으로서, 보다 구체적으로는 복수의 컨버터 모듈을 구비하는 DC/DC 컨버터에 관한 것이다.
DC/DC 컨버터는 입력된 DC 전원을 AC로 변환하고, 변환된 AC 전압을 승압 또는 강압한 후 DC로 변환하여 출력하는 장치로서, 전원 공급 장치에서 일반적으로 이용되는 전기 장치이다.
도 1a 는 일반적인 DC/DC 컨버터의 구성을 도시하는 도면이다.
도 1a를 참조하면, 일반적인 DC/DC 컨버터(10)는 DC/AC 인버터(11), 변압기(12), AC/DC 정류기(13), 평활부(14) 및 제어기(15)를 포함하여 구성된다.
DC/AC 인버터(11)는 내부에 복수의 스위칭 소자를 포함하여, 입력되는 DC 전압을 고주파수로 스위칭하여 AC 전압을 변압기(12)로 출력한다. DC/AC 인버터(11)는 풀브릿지회로, 하프 브릿지 회로 등 다양하게 적용될 수 있다.
변압기(12)는 1차 권선을 통해서 DC/AC 인버터(11)로부터 입력된 AC 전압을 강압 또는 승압하여 2차 권선에 연결된 AC/DC 정류기(13)로 출력한다.
AC/DC 정류기(13)는 내부에 복수의 다이오드를 포함하여 변압기(12)의 2차 권선으로부터 입력된 AC 전압을 DC 전압으로 변환하여 출력단으로 출력한다. AC/DC 정류기(13) 역시 전파 정류회로, 배전압 정류 회로 등 다양하게 적용될 수 있다.
평활부(14)는 일반적으로 출력단에 연결된 커패시터로 구현되고, AC/DC 정류기(13)로부터 출력되는 DC 전압을 평활화하고, 출력단에서 외부로 출력되는 출력 전압은 커패시터 양단의 전압이 된다.
제어기(15)는 커패시터 양단의 출력 전압을 측정하여, DC/AC 인버터(11)에 포함된 각 스위치들의 스위칭을 제어하는 제어 신호를 생성하여 DC/AC 인버터(11)의 각 스위치들로 출력하고, 각 스위치들은 제어 신호에 따라서 온/오프된다.
그런데, 이러한 하나의 DC/DC 컨버터(10)가 출력할 수 있는 전압 및 전류에는 한계가 있어, 고전압 또는 고전류가 요구되는 응용 분야에서는 적용하기 어려운 단점이 있었다.
이러한 문제를 해결하기 위해서, 종래의 다른 기술은 도 1b와 같이, 복수의 DC/DC 컨버터 모듈(10-1~10-4)을 직렬 또는 병렬로 연결하여 고전압 또는 고전류를 제공하였다.
그러나, 도 1b에 도시된 바와 같이, 복수의 DC/DC 컨버터 모듈(10-1~10-4)을 직렬 또는 병렬로 연결하는 경우에, 각각의 출력 전압을 제어하기 위해서 각 모듈마다 전압 센싱 회로와 제어기를 구비해야 하므로, 전체적인 제어 과정이 복잡한 문제점이 존재한다.
또한, 각 모듈(10-1~10-4)의 전압 센싱 회로 중 고전압 출력에 연결되는 모듈의 출력 전압 센싱은 절연을 고려해야 하기 때문에 최대 출력 전압이 올라갈수록 전압 센싱이 매우 까다로운 문제점이 존재한다.
이에, 본 발명의 출원인은 단일 제어기로 하나의 모듈 전압을 제어하면서, DC/AC 인버터로 출력하는 스위칭 제어 신호를 다른 모듈들과 공유하는 방안을 생각해 보았으나, 컨버터 모듈의 모든 파라미터를 동일하게 제작하는 것이 매우 어렵기 때문에 복수 모듈들의 출력 전압간 불균형은 불가피하였다. 따라서, 이러한 문제점을 해결할 수 있는 방안이 요구된다.
본 발명이 해결하고자 하는 과제는 전체 제어 과정을 단순화하기 위해서 하나의 제어기를 이용하여 전체 모듈들을 제어하되, 모듈들간의 출력 전압 불균형 문제를 해결할 수 있는 복수의 컨버터 모듈을 구비하는 DC/DC 컨버터를 제공하는 것이다.
상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 DC/DC 컨버터는, 입력 DC 전원을 AC로 변환하여 승압 또는 강압한 후 DC로 변환하여 기본 출력단으로 출력하고, 상기 기본 출력단에서의 출력 전압을 측정하여 상기 입력 DC 전원을 AC로 변환하는 스위칭 제어 신호를 조절하는 기본 컨버터 모듈; 및 상기 기본 컨버터 모듈로부터 입력되는 상기 스위칭 제어신호에 따라서 입력 DC 전원을 AC로 변환하고 승압 또는 강압한 후 DC로 변환하여 연결 출력단으로 출력하되, 상기 연결 출력단이 상기 기본 컨버터 모듈의 상기 기본 출력단에 직렬 또는 병렬로 연결되는, 하나 이상의 연결 컨버터 모듈을 포함한다.
또한, 상기 기본 컨버터 모듈은, 복수의 스위칭 소자를 포함하고, 상기 스위칭 제어신호에 따라서 스위칭 소자가 온/오프 제어되어 입력 DC 전원을 AC로 변환하여 출력하는 인버터; 상기 인버터로부터 입력된 AC 전원을 승압 또는 강압하여 출력하는 변압기; 상기 변압기 및 상기 연결 컨버터 모듈들에 포함된 변압기들 중 적어도 2개 이상의 변압기로부터 입력되는 AC 전원을 DC로 변환하여 상기 기본 출력단으로 출력하는 정류기; 및 상기 기본 출력단의 출력 전압을 측정하고, 측정된 출력 전압에 따라서 상기 스위칭 제어 신호를 생성하여 상기 인버터 및 상기 복수의 연결 컨버터 모듈에 포함된 인버터들로 출력하여, 인버터들에 포함되는 스위칭 소자들이 동일한 상기 스위칭 제어 신호에 따라서 온/오프되도록 제어하는 제어기를 포함한다.
또한, 상기 연결 컨버터 모듈은, 복수의 스위칭 소자를 포함하고, 상기 스위칭 제어신호에 따라서 스위칭 소자가 온/오프 제어되어 입력 DC 전원을 AC로 변환하여 출력하는 인버터; 상기 인버터로부터 입력된 AC 전원을 승압 또는 강압하여 출력하는 변압기; 및 상기 변압기 및 상기 연결 컨버터 모듈들에 포함된 변압기들 중 적어도 2개 이상의 변압기로부터 입력되는 AC 전원을 DC로 변환하여 상기 연결 출력단으로 출력하는 정류기를 포함한다.
또한, 상기 변압기의 코어에는 2개 이상의 2차 권선이 권취되고, 동일한 변압기 코어에 권취된 상기 2개 이상의 2차 권선은 서로 다른 컨버터 모듈에 포함된 정류기에 연결될 수 있다.
또한, 상기 정류기는 서로 다른 변압기의 2차 권선들의 공통 노드로부터 전원을 입력받을 수 있다.
또한, 상기 정류기는 자신이 포함된 컨버터 모듈의 변압기 코어에 권취된 2차 권선과 자신이 포함된 컨버터 모듈 이외의 컨버터 모듈의 변압기 코어에 권취된 2차 권선의 공통 노드로부터 전원을 입력 받을 수 있다.
또한, 상기 정류기는 자신이 포함된 컨버터 모듈 이외의 서로 다른 컨버터 모듈의 변압기 코어에 권취된 2차 권선들의 공통 노드로부터 전원을 입력 받을 수 있다.
또한, 상기 기본 컨버터 모듈의 상기 기본 출력단과 상기 복수의 연결 컨버터 모듈의 상기 연결 출력단은 서로 직렬로 연결되고, 직렬로 연결된 컨버터 모듈들 중 양단에 위치한 컨버터 모듈들에 있어서, 상기 정류기는 자신이 포함된 컨버터 모듈의 변압기 코어에 권취된 2차 권선과 자신이 포함된 컨버터 모듈 이외의 컨버터 모듈의 변압기 코어에 권취된 2차 권선의 공통 노드로부터 전원을 입력 받고, 직렬로 연결된 컨버터 모듈들 중 양단을 제외한 컨버터 모듈들에 있어서, 상기 정류기는 자신이 포함된 컨버터 모듈 이외의 서로 다른 컨버터 모듈의 변압기 코어에 권취된 2차 권선들의 공통 노드로부터 전원을 입력 받을 수 있다.
또한, 상기 기본 컨버터 모듈은 DC/DC 컨버터의 출력 전압(Vout) 중에서 가장 낮은 레벨의 전압 출력을 담당하는 것이 바람직하다.
또한, 상기 변압기의 코어에는 2개 이상의 2차 권선이 권취되고, 각각의 2차 권선은 서로 다른 컨버터 모듈의 변압기 코어에 권취된 2개 이상의 2차 권선 중 어느 하나와 직렬로 연결되며, 상기 정류기는 서로 직렬로 연결된 2차 권선들의 양단간에 걸리는 전압을 입력받을 수 있다.
또한, 상기 기본 컨버터 모듈의 상기 기본 출력단과 상기 복수의 연결 컨버터 모듈의 상기 연결 출력단은 서로 직렬로 연결되고, 직렬로 연결된 컨버터 모듈들 중 양단에 위치한 컨버터 모듈들에 있어서, 정류기는 자신이 포함된 컨버터 모듈의 변압기 코어에 권취된 어느 하나의 2차 권선의 양단에 걸리는 전압을 입력받을 수 있다.
또한, 상기 기본 컨버터 모듈의 상기 기본 출력단과 상기 복수의 연결 컨버터 모듈의 상기 연결 출력단은 서로 직렬로 연결되고, 직렬로 연결된 컨버터 모듈들 중 양단을 제외한 컨버터 모듈들에 있어서, 정류기는 자신이 포함된 컨버터 모듈 이외의 컨버터 모듈의 변압기 코어에 권취된 어느 하나의 2차 권선의 양단에 걸리는 전압을 입력받을 수 있다.
본 발명은 복수의 컨버터 모듈들의 출력단을 직렬 또는 병렬로 연결하여 고전압 또는 고전류를 출력하는 DC/DC 컨버터를 제공함에 있어서, 하나의 컨버터 모듈에만 제어기를 구비하고, 제어기에서 출력되는 스위칭 제어 신호를 복수의 컨버터 모듈들이 공유하여 각 컨버터 모듈의 인버터에 포함된 스위칭 소자들을 동시에 제어함으로써, 전체 DC/DC 컨버터의 제어 방식을 단순화할 수 있다.
또한, 본 발명은 복수의 컨버터 모듈 각각의 변압기 코어에 복수의 2차 권선을 권취하고, 각 2차 권선들을 서로 다른 컨버터 모듈의 정류기로 입력하며, 각 컨버터 모듈의 정류기는 서로 다른 변압기에 연결된 2차 권선들의 공통 노드로부터 AC 전원을 입력받아 DC로 변환하여 출력함으로써, 각 컨버터 모듈들의 출력 전압을 밸런싱할 수 있다.
도 1a 는 종래의 일반적인 DC/DC 컨버터의 구성을 도시하는 도면이고, 도 1b는 복수의 DC/DC 컨버터 모듈을 직렬 연결하여 고전압을 출력하는 DC/DC 컨버터의 구성을 도시하는 도면이다.
도 2는 본 발명의 바람직한 실시예에 따른 복수의 컨버터 모듈을 구비하는 DC/DC 컨버터의 구성을 도시하는 도면이다.
도 3a 및 도 3b는 종래 기술과 본 발명의 성능을 비교하는 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다.
도 2는 본 발명의 바람직한 실시예에 따른 복수의 컨버터 모듈을 구비하는 DC/DC 컨버터의 구성을 도시하는 도면이다.
도 2를 참조하면, 본 발명의 바람직한 실시예에 따른 DC/DC 컨버터는 기본 컨버터 모듈(100) 및 상기 기본 컨버터 모듈(100)에 직렬로 연결되는 복수의 결합 컨버터 모듈(210,220,230)을 포함하여 구성된다.
기본 컨버터 모듈(100)은 DC/AC 인버터(110), 변압기(120), AC/DC 정류기(130), 평활부(140) 및 제어기(150)를 포함하여 구성된다. 기본 컨버터 모듈(100)에 포함된 각 구성요소들의 기능은 도 1a를 참조하여 설명한 DC/DC 컨버터에 포함된 각 구성요소의 기능과 매우 유사하다.
따라서, 간략하게 설명하면, 기본 컨버터 모듈(100)의 DC/AC 인버터(110)는 내부에 복수의 스위칭 소자를 포함하여, 입력되는 DC 전압을 고주파수로 스위칭하여 AC 전압을 생성하여 변압기(120)로 출력한다.
변압기(120)는 1차 권선을 통해서 DC/AC 인버터(110)로부터 입력된 AC 전압을 강압 또는 승압하여 2차 권선에 연결된 AC/DC 정류기(130)로 출력한다. DC/AC 인버터(110)는 풀브릿지회로, 하프 브릿지 회로 등 다양하게 적용될 수 있다.
아울러, 변압기(120)의 코어에는 2개 이상의 2차 권선이 권취되는데, 복수의 2차 권선들 중 하나는 기본 컨버터 모듈(100)에 포함된 AC/DC 정류기(130)에 연결되고, 다른 1개 이상의 2차 권선은 다른 연결 컨버터 모듈(210,220,230)에 포함된 AC/DC 정류기(130)에 연결된다. 도 2에 도시된 예에서, 변압기(120)의 코어에는 2개의 2차 권선이 권취되고, 하나의 2차 권선은 기본 컨버터 모듈(100)에 포함된 AC/DC 정류기(130)로 연결되고, 다른 2차 권선은 인접한 연결 컨버터 모듈(210)에 포함된 AC/DC 정류기(213)로 연결되었다.
한편, AC/DC 정류기(130)는 내부에 복수의 다이오드를 포함하여 변압기(120)의 2차 권선으로부터 입력된 AC 전압을 DC 전압으로 변환하여 출력단("기본 출력단"이라 칭함)으로 출력한다.
도 2에 도시된 바와 같이, 본 발명의 AC/DC 정류기(130)의 입력단에는 2개 이상의 2차 권선이 공통 노드로 연결된다. 즉, 본 발명의 AC/DC 정류기(130) 입력단에는 서로 다른 변압기(120,212)의 코어에 권취된 복수의 2차 권선이 공통 노드로 연결된다. 이렇게 서로 다른 변압기(120,212) 코어에 공통으로 2차 권선이 권취되면, 하나의 변압기(120) 코어에서 유도된 전압이 다른 변압기(212) 코어에서 유도된 전압보다 높으면, 유도 전압이 더 높은 쪽의 코어에서 유도 전압이 더 낮은 쪽으로 전류가 흘러서 서로 전위가 밸런싱된다. 이러한 방식으로 복수의 코어들이 2차 권선에 의해서 서로 직렬 연결되면, 복수의 코어들의 유도 전압들이 서로 균형을 이루게 된다. 한편, AC/DC 정류기(130) 역시 전파 정류회로, 배전압 정류 회로 등 다양하게 적용될 수 있다.
평활부(140)는 일반적으로 출력단(기본 출력단)에 연결된 커패시터로 구현되고, AC/DC 정류기(130)로부터 출력되는 DC 전압을 평활화하고, 출력단(기본 출력단)에서 외부로 출력되는 출력 전압은 커패시터 양단의 전압이 된다.
제어기(150)는 커패시터 양단의 출력 전압(Vo1)을 측정하여, DC/AC 인버터(110)에 포함된 각 스위치들의 스위칭을 제어하는 스위칭 제어 신호를 생성하여 DC/AC 인버터(110)의 각 스위치들로 출력하는 동시에, 동일한 스위칭 제어 신호를 다른 연결 컨버터 모듈들(210,220,230)의 DC/AC 인버터(211,221,231)에 포함된 각 스위치들로 출력함으로써, 기본 컨버터 모듈(100)에 연결된 모든 연결 컨버터 모듈(210,220,230)의 DC/AC 인버터(211,221,231)를 일괄 제어한다.
여기서, 기본 컨버터 모듈(100)은 전체 컨버터 모듈들이 연결되어 구성되는 DC/DC 컨버터의 출력 전압(Vout) 중에서 가장 낮은 레벨의 전압 출력을 담당하는 것으로 구성되어, 전압 센싱 회로의 설계 부담을 최소화하였다.
한편, 연결 컨버터 모듈(210)은 그 출력단("연결 출력단"이라 칭함)이 기본 컨버터 모듈(100)과 직렬 또는 병렬로 연결되고, 다른 연결 컨버터 모듈(220,230)의 출력단(연결 출력단)은 기본 컨버터 모듈(100)에 연결된 연결 컨버터 모듈(210)의 출력단(연결 출력단)에 직렬 또는 병렬로 연결된다.
연결 컨버터 모듈(210,220,230)은 DC/AC 인버터(211,221,231), 변압기(212,222,232), AC/DC 정류기(213,223,233), 및 평활부(214,224,234)를 포함하여 구성되고, 그 기능은 기본 컨버터 모듈(100)과 동일하다.
다만, 복수의 연결 컨버터 모듈들(210,220,230)의 DC/AC 인버터(211,221,231)에 포함된 각각의 스위칭 소자는 기본 컨버터 모듈(100)의 제어기(150)로부터 스위칭 제어 신호를 입력받아 온/오프 제어됨으로써, 본 발명의 바람직한 실시예에 따른 DC/DC 컨버터의 모든 스위칭 소자는 동일한 스위칭 제어 신호에 의해서 동일한 타이밍에 온/오프되도록 제어되고, 따라서, DC/DC 컨버터 전체가 하나의 제어기(150) 만으로 제어가 가능해져, 전체 DC/DC 컨버터의 제어가 단순하고 효율적으로 수행될 수 있다.
또한, 연결 컨버터 모듈들(210,220,230)의 변압기(212,222,232)는 기본 컨버터 모듈(100)의 변압기(120)와 같이, 복수의 2차 코일이 코어에 권선되고, 각각의 2차 권선은 서로 다른 연결 컨버터 모듈들(210,220,230)의 AC/DC 정류기(213,223,233)에 연결됨으로써, 서로 다른 변압기들(212,222,232)에 의해서 유도되는 전압들간의 밸런싱을 맞추게 된다.
아울러, AC/DC 정류기(213,223,233)는 서로 다른 변압기(212,222,232) 코어에 연결된 2차 권선들의 공통 노드가 연결되어, 2차 권선들로부터 입력되는 AC 전압을 정류하여 DC 전압을 출력단(연결 출력단)으로 출력한다.
이 때, AC/DC 정류기(213,223,233)로 연결되는 복수의 2차 권선들 중 하나는 AC/DC 정류기(213,223,233)가 포함된 컨버터 모듈의 변압기(212,222,232) 코어에 연결된 것일 수 있고, 다른 하나는 AC/DC 정류기(213,223,233)가 포함된 컨버터 모듈 이외의 컨버터 모듈에 포함된 변압기 코어에 연결된 것일 수 있다. 또한, 복수의 2차 권선들 모두 AC/DC 정류기(213,223,233)가 포함된 컨버터 모듈 이외의 컨버터 모듈에 포함된 변압기(212,222,232) 코어에 연결된 것일 수도 있다.
도 2에 도시된 예에서, 제 1 연결 컨버터 모듈(210)의 AC/DC 정류기(213)에 연결되는 2개의 2차 권선은 각각 기본 컨버터 모듈(100)에 포함된 변압기(120)의 코어 및 제 2 연결 컨버터 모듈(220)에 포함된 변압기(222) 코어에 연결된다. 마찬가지로, 제 2 연결 컨버터 모듈(220)의 AC/DC 정류기(223)에 연결되는 2개의 2차 권선은 각각 제 1 연결 컨버터 모듈(210)에 포함된 변압기(212)의 코어 및 제 3 연결 컨버터 모듈(230)에 포함된 변압기(232) 코어에 연결된다. 역시 마찬가지로, 마찬가지로, 제 3 연결 컨버터 모듈(230)의 AC/DC 정류기(233)에 연결되는 2개의 2차 권선은 각각 제 2 연결 컨버터 모듈(220)에 포함된 변압기(222)의 코어 및 제 3 연결 컨버터 모듈(230)에 포함된 변압기(232) 코어에 연결된다.
또한, 도 2에 도시된 연결 구조 이 외에 다양한 연결 구조도 가능하다. 예컨대, 제 1 연결 컨버터 모듈(210)의 AC/DC 정류기(213)에 연결되는 2개의 2차 권선 중 하나는 제 1 연결 컨버터 모듈(210)의 변압기(212)코어에 권취되고, 다른 하나는 인접한 제 2 연결 컨버터 모듈(220)의 변압기(222) 코어에 권취되며, 동일한 방식으로, 제 2 연결 컨버터모듈(220)의 AC/DC 정류기(223)에 연결되는 2개의 2차 권선 중 하나는 제 2 연결 컨버터 모듈(220)의 변압기(222) 코어에 권취되고, 다른 하나는 인접한 제 3 연결 컨버터 모듈(230)의 변압기(232) 코어에 권취되며, 제 3 연결 컨버터 모듈(230)의 AC/DC 정류기(233)에 연결되는 2개의 2차 권선 중 하나는 제 3 연결 컨버터 모듈(230)의 변압기(232) 코어에 권취되고, 다른 하나는 기본 컨버터 모듈(100)의 변압기(120) 코어에 권취되도록 구성될 수도 있다.
아울러, 도 2에 도시된 본 발명의 바람직한 실시예에 따른 DC/DC 컨버터는 1개의 기본 컨버터 모듈(100)에 3개의 연결 컨버터 모듈(210,220,230)의 출력단(연결 출력단)이 서로 직렬로 연결되는 구조를 도시하였으나, DC/DC 컨버터에 요구되는 출력 전압의 크기에 따라서 4개 이상의 연결 컨버터 모듈들이 포함될 수도 있음은 물론이다.
마지막으로, 연결 컨버터 모듈(210,220,230)의 AC/DC 정류기(213,223,233)의 양단에는 평활부(214,224,234)인 커패시터가 연결되어 연결 컨버터 모듈(210,220,230)의 출력 전압을 평활화한다.
이렇게, 기본 컨버터 모듈(100) 및 복수의 연결 컨버터 모듈(210,220,230)의 출력단들이 서로 직렬로 연결되면, DC/DC 컨버터의 출력 전압 Vout 은 각 컨버터 모듈들의 출력 전압의 합이 되고, 도 2를 참조하여 설명한 바에 따라서, 각 컨버터 모듈들의 출력 전압은 균일하게 된다.
도 3a 및 도 3b는 종래 기술과 본 발명의 성능을 비교하는 그래프이다.
보다 구체적으로, 도 3a는 종래기술에 따른 DC/DC 컨버터에서의 전류 파형을 나타내고, 도 3b는 본 발명에 따른 DC/DC 컨버터에서의 전류 파형을 나타낸다. 특히, 양 그래프에서 사인파 형태의 AC 전류 파형은 각 컨버터 모듈의 DC/AC 인버터에서 출력되는 전류 파형을 나타내는데, 이 파형이 동일하다는 것은 출력 전압이 동일하다는 것을 의미한다.
도 3a 에 도시된 그래프에서는, 전류 파형이 서로 일치하지 않아 각 컨버터 모듈의 출력 전압이 서로 다른 것을 확인할 수 있는데 반해, 도 3b에 도시된 그래프에서는, 전류 파형이 서로 일치하여 모든 컨버터 모듈의 출력 전압이 동일함을 알 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (12)

  1. 입력 DC 전원을 AC로 변환하여 승압 또는 강압한 후 DC로 변환하여 기본 출력단으로 출력하고, 상기 기본 출력단에서의 출력 전압을 측정하여 상기 입력 DC 전원을 AC로 변환하는 스위칭 제어 신호를 조절하는 기본 컨버터 모듈; 및
    상기 기본 컨버터 모듈로부터 입력되는 상기 스위칭 제어신호에 따라서 입력 DC 전원을 AC로 변환하고 승압 또는 강압한 후 DC로 변환하여 연결 출력단으로 출력하되, 상기 연결 출력단이 상기 기본 컨버터 모듈의 상기 기본 출력단에 직렬 또는 병렬로 연결되는, 하나 이상의 연결 컨버터 모듈을 포함하는 것을 특징으로 하는 DC/DC 컨버터.
  2. 제 1 항에 있어서, 상기 기본 컨버터 모듈은
    복수의 스위칭 소자를 포함하고, 상기 스위칭 제어신호에 따라서 스위칭 소자가 온/오프 제어되어 입력 DC 전원을 AC로 변환하여 출력하는 인버터;
    상기 인버터로부터 입력된 AC 전원을 승압 또는 강압하여 출력하는 변압기;
    상기 변압기 및 상기 연결 컨버터 모듈들에 포함된 변압기들 중 적어도 2개 이상의 변압기로부터 입력되는 AC 전원을 DC로 변환하여 상기 기본 출력단으로 출력하는 정류기; 및
    상기 기본 출력단의 출력 전압을 측정하고, 측정된 출력 전압에 따라서 상기 스위칭 제어 신호를 생성하여 상기 인버터 및 상기 복수의 연결 컨버터 모듈에 포함된 인버터들로 출력하여, 인버터들에 포함되는 스위칭 소자들이 동일한 상기 스위칭 제어 신호에 따라서 온/오프되도록 제어하는 제어기를 포함하는 것을 특징으로 하는 DC/DC 컨버터.
  3. 제 1 항에 있어서, 상기 연결 컨버터 모듈은
    복수의 스위칭 소자를 포함하고, 상기 스위칭 제어신호에 따라서 스위칭 소자가 온/오프 제어되어 입력 DC 전원을 AC로 변환하여 출력하는 인버터;
    상기 인버터로부터 입력된 AC 전원을 승압 또는 강압하여 출력하는 변압기; 및
    상기 변압기 및 상기 연결 컨버터 모듈들에 포함된 변압기들 중 적어도 2개 이상의 변압기로부터 입력되는 AC 전원을 DC로 변환하여 상기 연결 출력단으로 출력하는 정류기를 포함하는 것을 특징으로 하는 DC/DC 컨버터.
  4. 제 2 항 또는 제 3 항에 있어서,
    상기 변압기의 코어에는 2개 이상의 2차 권선이 권취되고, 동일한 변압기 코어에 권취된 상기 2개 이상의 2차 권선은 서로 다른 컨버터 모듈에 포함된 정류기에 연결되는 것을 특징으로 하는 DC/DC 컨버터.
  5. 제 4 항에 있어서,
    상기 정류기는 서로 다른 변압기의 2차 권선들의 공통 노드로부터 전원을 입력받는 것을 특징으로 하는 DC/DC 컨버터.
  6. 제 5 항에 있어서,
    상기 정류기는 자신이 포함된 컨버터 모듈의 변압기 코어에 권취된 2차 권선과 자신이 포함된 컨버터 모듈 이외의 컨버터 모듈의 변압기 코어에 권취된 2차 권선의 공통 노드로부터 전원을 입력 받는 것을 특징으로 하는 DC/DC 컨버터.
  7. 제 5 항에 있어서,
    상기 정류기는 자신이 포함된 컨버터 모듈 이외의 서로 다른 컨버터 모듈의 변압기 코어에 권취된 2차 권선들의 공통 노드로부터 전원을 입력 받는 것을 특징으로 하는 DC/DC 컨버터.
  8. 제 5 항에 있어서,
    상기 기본 컨버터 모듈의 상기 기본 출력단과 상기 복수의 연결 컨버터 모듈의 상기 연결 출력단은 서로 직렬로 연결되고,
    직렬로 연결된 컨버터 모듈들 중 양단에 위치한 컨버터 모듈들에 있어서, 상기 정류기는 자신이 포함된 컨버터 모듈의 변압기 코어에 권취된 2차 권선과 자신이 포함된 컨버터 모듈 이외의 컨버터 모듈의 변압기 코어에 권취된 2차 권선의 공통 노드로부터 전원을 입력 받고,
    직렬로 연결된 컨버터 모듈들 중 양단을 제외한 컨버터 모듈들에 있어서, 상기 정류기는 자신이 포함된 컨버터 모듈 이외의 서로 다른 컨버터 모듈의 변압기 코어에 권취된 2차 권선들의 공통 노드로부터 전원을 입력 받는 것을 특징으로 하는 DC/DC 컨버터.
  9. 제 4 항에 있어서,
    상기 기본 컨버터 모듈은 DC/DC 컨버터의 출력 전압(Vout) 중에서 가장 낮은 레벨의 전압 출력을 담당하는 것을 특징으로 하는 DC/DC 컨버터.
  10. 제 2 항 또는 제 3 항에 있어서,
    상기 변압기의 코어에는 2개 이상의 2차 권선이 권취되고, 각각의 2차 권선은 서로 다른 컨버터 모듈의 변압기 코어에 권취된 2개 이상의 2차 권선 중 어느 하나와 직렬로 연결되며, 상기 정류기는 서로 직렬로 연결된 2차 권선들의 양단간에 걸리는 전압을 입력받는 것을 특징으로 하는 DC/DC 컨버터.
  11. 제 10 항에 있어서,
    상기 기본 컨버터 모듈의 상기 기본 출력단과 상기 복수의 연결 컨버터 모듈의 상기 연결 출력단은 서로 직렬로 연결되고,
    직렬로 연결된 컨버터 모듈들 중 양단에 위치한 컨버터 모듈들에 있어서,
    정류기는 자신이 포함된 컨버터 모듈의 변압기 코어에 권취된 어느 하나의 2차 권선의 양단에 걸리는 전압을 입력받는 것을 특징으로 하는 DC/DC 컨버터.
  12. 제 10 항에 있어서,
    상기 기본 컨버터 모듈의 상기 기본 출력단과 상기 복수의 연결 컨버터 모듈의 상기 연결 출력단은 서로 직렬로 연결되고,
    직렬로 연결된 컨버터 모듈들 중 양단을 제외한 컨버터 모듈들에 있어서,
    정류기는 자신이 포함된 컨버터 모듈 이외의 컨버터 모듈의 변압기 코어에 권취된 어느 하나의 2차 권선의 양단에 걸리는 전압을 입력받는 것을 특징으로 하는 DC/DC 컨버터.
PCT/KR2018/013275 2018-10-08 2018-11-02 복수의 컨버터 모듈을 구비하는 dc/dc 컨버터 WO2020075902A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180119753A KR102615119B1 (ko) 2018-10-08 2018-10-08 복수의 컨버터 모듈을 구비하는 dc/dc 컨버터
KR10-2018-0119753 2018-10-08

Publications (1)

Publication Number Publication Date
WO2020075902A1 true WO2020075902A1 (ko) 2020-04-16

Family

ID=70164143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013275 WO2020075902A1 (ko) 2018-10-08 2018-11-02 복수의 컨버터 모듈을 구비하는 dc/dc 컨버터

Country Status (2)

Country Link
KR (1) KR102615119B1 (ko)
WO (1) WO2020075902A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11670011B2 (en) 2021-01-11 2023-06-06 Industry-Academic Cooperation Foundation Yonsei University Image compression apparatus and learning apparatus and method for the same
KR102597829B1 (ko) * 2021-08-27 2023-11-02 인천대학교 산학협력단 복수의 llc 공진형 컨버터 모듈들을 이용한 대용량 dc-dc 컨버팅 시스템 장치
KR20240030061A (ko) * 2022-08-29 2024-03-07 삼성전자주식회사 복수의 컨버터를 구비한 전자 장치 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254440A (ja) * 2003-02-20 2004-09-09 Sony Corp 電源回路
JP2009038954A (ja) * 2007-07-11 2009-02-19 Nitta Ind Corp Ac/ac変換用電源装置
CN101562399A (zh) * 2009-05-08 2009-10-21 华中科技大学 一种全桥双输出直流-直流变换器
KR101726421B1 (ko) * 2016-12-05 2017-04-14 주식회사 동아일렉콤 Dc-dc 컨버터
JP2017077078A (ja) * 2015-10-14 2017-04-20 新電元工業株式会社 スイッチング電源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101207716B1 (ko) * 2010-06-01 2012-12-03 명지대학교 산학협력단 넓은 범위의 출력 전압을 출력할 수 있는 차량용 충전기
KR101856008B1 (ko) * 2016-06-30 2018-05-10 한국에너지기술연구원 인터리브드 llc 공진형 컨버터 및 그 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254440A (ja) * 2003-02-20 2004-09-09 Sony Corp 電源回路
JP2009038954A (ja) * 2007-07-11 2009-02-19 Nitta Ind Corp Ac/ac変換用電源装置
CN101562399A (zh) * 2009-05-08 2009-10-21 华中科技大学 一种全桥双输出直流-直流变换器
JP2017077078A (ja) * 2015-10-14 2017-04-20 新電元工業株式会社 スイッチング電源装置
KR101726421B1 (ko) * 2016-12-05 2017-04-14 주식회사 동아일렉콤 Dc-dc 컨버터

Also Published As

Publication number Publication date
KR102615119B1 (ko) 2023-12-15
KR20200040027A (ko) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2020075902A1 (ko) 복수의 컨버터 모듈을 구비하는 dc/dc 컨버터
US7057905B2 (en) Method and apparatus for power conversion having a four-quadrant output
WO2012141434A2 (ko) 전기 차량용 배터리 충전 장치
WO2018079905A1 (ko) 단일형 컨버터의 출력전압 제어 장치 및 그 방법
WO2018128216A1 (ko) 다중 채널 스위칭 컨버터
WO2015072652A1 (ko) 다중 배터리 충전기 및 그 제어방법
WO2015072645A1 (ko) 다중 출력 컨버터 및 그 제어방법
WO2020091168A1 (ko) 전력변환장치
KR102181321B1 (ko) 전력변환장치
WO2018056506A1 (ko) 하이브리드 능동 필터를 포함하는 전압형 컨버터
WO2021010570A1 (ko) 전력변환 시스템의 dc-dc 컨버터
WO2021049720A1 (ko) 다중 구조 변압기를 위한 전압 밸런싱 회로를 가지는 공진형 컨버터
WO2018105808A1 (ko) Dc-dc 컨버터
WO2010126220A2 (ko) 직렬 보상 정류기를 포함하는 직류 무정전 전원장치
WO2011078424A1 (ko) 부하의 세그먼테이션을 고려한 풀 브릿지 인버터 및 그 제어방법
WO2018074861A1 (ko) 자기유도 전원 공급 장치
WO2015156648A1 (ko) 콘덴서 충전방식의 셀전압 측정회로를 이용한 능동형 셀 밸런싱 회로
WO2018079906A1 (ko) Dab 컨버터의 상전류 제어 장치 및 그 방법
WO2018079918A1 (ko) 배터리 셀 밸런싱 장치
WO2010074434A2 (ko) 플라즈마 환경설비에 이용되는 고압 전원 장치 및 그 제어방법
WO2016039502A1 (ko) 전압센싱 및 제어 회로
WO2012128441A1 (ko) 급속 충전용 전원 장치
WO2017023084A1 (ko) 하나의 변압기를 구비하는 upfc 장치
WO2022114575A1 (ko) 배터리 충/방전용 dc-dc 컨버터
WO2021107480A1 (ko) Dc-dc 컨버터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936532

Country of ref document: EP

Kind code of ref document: A1