WO2012141434A2 - 전기 차량용 배터리 충전 장치 - Google Patents

전기 차량용 배터리 충전 장치 Download PDF

Info

Publication number
WO2012141434A2
WO2012141434A2 PCT/KR2012/002198 KR2012002198W WO2012141434A2 WO 2012141434 A2 WO2012141434 A2 WO 2012141434A2 KR 2012002198 W KR2012002198 W KR 2012002198W WO 2012141434 A2 WO2012141434 A2 WO 2012141434A2
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
turned
voltage
output
output terminal
Prior art date
Application number
PCT/KR2012/002198
Other languages
English (en)
French (fr)
Other versions
WO2012141434A3 (ko
Inventor
이준영
윤수영
김경동
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to JP2014505060A priority Critical patent/JP5760143B2/ja
Priority to CN201280018058.8A priority patent/CN103534898B/zh
Priority to US14/113,377 priority patent/US9399401B2/en
Publication of WO2012141434A2 publication Critical patent/WO2012141434A2/ko
Publication of WO2012141434A3 publication Critical patent/WO2012141434A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Embodiments of the present invention relate to a battery charging device for an electric vehicle, and more particularly, to a battery charging device for an electric vehicle capable of miniaturization and long life.
  • a battery charging device for an electric vehicle uses a commercial power source.
  • the battery charger for an electric vehicle must be able to output a voltage of 100V to 500V.
  • the conventional battery charging apparatus for an electric vehicle is divided into a front end for performing power factor correction and a rear end for performing current control, and in particular, the rear end is configured by using a boost converter.
  • the conventional battery charging apparatus for an electric vehicle has a disadvantage in that the link voltage must be kept below the output voltage, thereby causing a problem that the internal configuration must be changed according to the magnitude of the input voltage.
  • the conventional battery charging device for an electric vehicle uses a continuous current mode (CCM) control technique to control the current flowing to the internal inductor, there is a problem that a controller of a complex configuration must be used for this purpose.
  • CCM continuous current mode
  • the conventional battery charger for an electric vehicle uses an electrolytic capacitor to secure a wide output range, which increases the size and weight of the battery charger and does not guarantee sufficient lifespan.
  • the present invention is to propose a battery charging device for an electric vehicle that can be miniaturized and ensure a long life.
  • a first converter unit for converting the first voltage inputted by full-wave rectification into a second voltage;
  • a second converter configured to convert the second voltage into a direct current so as to be converted into a third voltage for charging the battery for the electric vehicle, and output the converted second output;
  • the output terminal of the first converter includes a first output terminal and a second output terminal, A first switching element having one end connected to the first output terminal; A second switching element having one end connected to the second output terminal; A first output capacitor having one end connected in series with the other end of the first switching element; And a second output capacitor having one end connected in series with the other end of the second switching element, wherein the first switching element and the second switching element are turned on / off and the first switching element
  • a battery charging device for an electric vehicle wherein the on-time and the on-time of the second switching element do not overlap each other.
  • the first converter unit for boosting the first voltage input by the full-wave rectified to the second voltage;
  • a second converter configured to convert the second voltage into a direct current so as to be converted into a third voltage for charging the battery for the electric vehicle, and output the converted second output;
  • the output terminal of the first converter includes a first output terminal and a second output terminal
  • the second converter may include: a first switching element having one end connected to the first output terminal to simultaneously perform a power factor correction (PFC) function and an amplification function; A second switching element having one end connected to the second output terminal; A first output capacitor having one end connected to the other end of the first switching element; A second output capacitor having one end connected to the other end of the second switching element; A first inductor having one end connected in parallel with the first output capacitor based on a third node to which the other end of the first switching element and one end of the first output capacitor are connected; And a second inductor having one end connected in parallel with the second output capacitor based on a fourth no
  • the battery charging device for an electric vehicle has the advantage of being capable of miniaturization and ensuring a long service life.
  • the battery charging apparatus for an electric vehicle has an advantage of performing current control using a controller having a simple configuration.
  • FIG. 1 is a block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a detailed configuration of a charging device for an electric vehicle according to an embodiment of the present invention.
  • FIG. 3 and 4 illustrate a first switching element B1, a second switching element B2, a third switching element SL1, a fourth switching element SL2, a fifth switching element SL2, and a sixth switching element. It is a figure which shows an example of the control signal produced
  • FIG. 1 is a block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention
  • Figure 2 is a circuit diagram showing a detailed configuration of the charging device for an electric vehicle according to an embodiment of the present invention.
  • the charging device 100 for an electric vehicle may include a first rectifying unit 110, a first converter unit 120, a second converter unit 130, and a controller ( 140).
  • a first rectifying unit 110 may rectif a first rectifying unit 110
  • a first converter unit 120 may rectif a first converter to generate a first signal.
  • a second converter unit 130 may output a first signal from the charging device 100 for an electric vehicle.
  • a controller 140
  • the function of each component will be described in detail.
  • the first rectifier 110 generates a first voltage by half-wave rectifying or full-wave rectifying the AC voltage input from the outside.
  • the input AC voltage may have a size of 90Vac or more and 260Vac or less.
  • the input AC voltage may be a commercial AC voltage having a size of 110 Vac or 220 Vac.
  • the first rectifier 110 may be connected to an external power source as shown in FIG. 2 and may include four diodes connected in the form of a full bridge.
  • the first converter unit 120 boosts the first voltage received by full-wave rectification by the first rectifying unit 110 and changes it to a second voltage.
  • the first converter unit 120 may have a configuration of an LLC converter as shown in FIG. 2.
  • the first converter unit 120 is connected to the first rectifying unit 110, the switching unit 121 receives the first voltage, the transformer unit 122 is connected to the switching unit 121 to perform the step-up operation And a second rectifier 123 connected to the transformer unit 122 to rectify the voltage generated as a result of the boosting operation to generate and output a second voltage.
  • the switching unit 121 may be connected to two output terminals of the first rectifying unit 110 and may include four switching elements SL1, SL2, SL3, and SL4 connected in a full bridge form.
  • the four switching elements included in the switching unit 121 are referred to as “third switching element SL1", “fourth switching element SL2", “fifth switching element SL3”, and It will be referred to as a “sixth switching element SL4" (the first switching element and the second switching element are included in the second converter unit 130 described later).
  • each of the four switching elements SL1, SL2, SL3, SL4 has one transistor (e.g., FET) and an input terminal connected to a second conducting electrode (e.g., drain electrode) of the transistor.
  • the diode may be connected, and the output terminal may be configured as a diode connected to the first conductive electrode (eg, the source electrode) of the transistor.
  • Each of the third switching element SL1, the fourth switching element SL2, the fifth switching element SL3, and the sixth switching element SL4 may be periodically turned on / off.
  • a period in which the switching elements SL1, SL2, SL3, and SL4 are turned on / off will be referred to as a “second period” (the “first period” is the second converter unit 130 described later).
  • the third switching element SL1 and the sixth switching element SL4 positioned in the diagonal direction thereof are simultaneously turned on and off, and the fourth switching element SL2 and the fifth switching element positioned in the diagonal direction thereof.
  • SL3 is simultaneously turned on / off.
  • the time when the third switching element SL1 and the sixth switching element SL4 are turned on and the time when the fourth switching element SL2 and the fifth switching element SL3 are turned on do not overlap each other.
  • the interval between the time when the third switching element SL1, the fourth switching element SL, the fifth switching element SL3, and the sixth switching element SL4 is turned on and off during the second period is determined.
  • the spacing can be the same.
  • the on / off of the switching unit 121 may be controlled based on a control signal generated by the control unit 140 (not shown in FIG. 2).
  • the controller 140 may receive a feedback of the third voltage output from the second converter 130 and generate a control signal using the feedbacked third voltage.
  • the generated control signal is input to a control electrode (eg, a gate electrode) of a transistor (eg, a FET) included in the switching elements SL1, SL2, SL3, and SL4, and thus the switching elements SL1. , SL2, SL3, SL4 can be controlled on / off.
  • the transformer unit 122 is connected to the switching unit 121 and boosts the voltage output from the switching unit 121.
  • the secondary winding number of the transformer unit 122 may be larger than the primary winding number.
  • the winding ratio of the transformer unit 122 may be 1: 1.5.
  • the second rectifier 123 is connected to the transformer unit 122 and rectifies the voltage output from the transformer unit 122 to generate and output a second voltage.
  • the second rectifier 123 may include four diodes connected in a full bridge form as shown in FIG. 2.
  • the second converter unit 130 which is connected to the output terminal of the second rectifying unit 123 (that is, the output terminal of the first converter unit 120), is configured to charge the electric vehicle battery 150 by directing a second voltage. Output by changing to 3 voltage.
  • the second converter 130 may be in the form of a buck boost converter having a parallel structure as shown in FIG. 2.
  • the second converter unit 130 may include a first capacitor C1, a second capacitor C2, a first switching device B1, a second switching device B2, a first inductor L1, and a first capacitor C1.
  • 2 may include an inductor L2, a first diode D1, a second diode D2, a first output capacitor Cout1, and a second output capacitor Cout2.
  • One end of the first switching element B1 is connected to the first output terminal (ie, the first node n1) of the first converter unit 120, and one end of the second switching element B2 is the first converter unit. It is connected to the second output terminal (ie, the second node n2) of (120).
  • the second switching element B2 when the second switching element B2 is based on the first node n1, the second switching element B2 may be regarded as being connected in parallel with the first switching element B1.
  • the other end of the first switching element B1 is connected in series with one end of the first output capacitor Cout1 via the first diode D1. That is, the other end of the first switching element B1 is connected to the output terminal of the first diode D1 at the third node n3, and the input terminal of the first diode D1 is connected to one end of the first output capacitor Cout1. Connected.
  • the other end of the second switching element B2 is connected to the other end of the second output capacitor Cout2 via the second diode D2. That is, the other end of the second switching element B2 is connected to the output terminal of the second diode D2 at the fourth node n4, and the input terminal of the second diode D2 is connected to one end of the second output capacitor Cout2. Connected.
  • the first inductor L1 is connected in parallel with the first diode D1 and the first output capacitor Cout1 based on the third node n3, and the second inductor L2 connects the fourth node n4.
  • the second diode D2 and the second output capacitor Cout2 are connected in parallel.
  • One end of the first capacitor C1 is connected in parallel with the first switching element B1 based on the first node n1, and the second capacitor C2 is formed based on the second node n2. 2 is connected in parallel with the switching element (B2).
  • the other ends of the two capacitors C2 are connected to each other at the fifth node n5.
  • first switching element B1 and the second switching element B2 are the third switching element SL1, the fourth switching element SL2, the fifth switching element SL3, and the sixth switching element SL4.
  • One transistor e.g., FET
  • an input terminal are connected to the second conductive electrode (e.g., drain electrode) of the transistor and the output terminal is connected to the first conductive electrode (e.g., source electrode) of the transistor. It may be composed of a diode connected.
  • first switching element B1 and the second switching element B2 are the third switching element SL1, the fourth switching element SL2, the fifth switching element SL3, and the sixth switching element SL4. Can be periodically turned on / off according to a predetermined period (ie, a first period).
  • the first switching element B1 and the second switching element B2 may be turned on / off so that the on time does not overlap each other.
  • the on / off period of the first switching element B1 and the on / off period of the second switching element B2 are the same (first period), and the starting time point at which the first switching element B1 is turned on and The starting time point at which the second switching element B2 is turned on may differ by 1/2 of the first period.
  • the first switching element B1 and the second switching element B2 may be turned on / off at the same time.
  • the time intervals during which the first switching element B1 and the second switching element B2 are turned on within the first period is the first switching element B1 and the second switching element. It may be adjustable within a range shorter or equal to the time interval that (B2) is off.
  • the on / off of the first switching element B1 and the second switching element B2 may also be controlled based on the control signal generated by the controller 140 as described above. That is, the control unit 140 generates a control signal using the feedbacked third voltage, and the generated control signal is the first switching element B1, the second switching element B2, the third switching element SL1, and the first switching element. It may be input to a control electrode (eg, a gate electrode) of a transistor (eg, a FET) included in the fourth switching element SL2, the fifth switching element SL3, and the sixth switching element SL4.
  • a control electrode eg, a gate electrode
  • a transistor eg, a FET
  • the first switching element B1, the second switching element B2, the third switching element SL1, the fourth switching element SL22, the fifth switching element SL3, and the sixth switching element Examples of the control signal generated by the control unit 140 to control the switching of the SL4.
  • a control signal as shown in the upper part of FIG. 3 is input to the control electrodes of the third switching element SL1, the fourth switching element SL2, the fifth switching element SL3, and the sixth switching element SL4.
  • the third switching element SL1 / the sixth switching element SL4 is turned on
  • the fourth switching element SL2 / the fifth switching element SL3 is turned off and the third switching element SL1 / sixth is turned off.
  • the switching element SL4 is turned off
  • the fourth switching element SL2 / fifth switching element SL3 is turned on. That is, the third switching element SL1 / the sixth switching element SL4 and the fourth switching element SL2 / the fifth switching element SL3 are turned on / off according to a fixed duty ratio.
  • the control signal as shown in the lower part of FIG. 3 is input to the control electrodes of the first switching element B1 and the second switching element B2, the first switching element B1 and the second switching element as described above.
  • the switching element B2 is not turned on at the same time, and the interval between the first switching element B1 and the second switching element B2 is turned on in the first period is the first switching element B1 and the second switching element. It becomes shorter or equal to the interval of the time that (B2) is off, the start time when the first switching device (B1) is on and the start time when the second switching device (B2) is on the difference by 1/2 of the first period Will be gone.
  • the interval of time when the first switching element B1 / second switching element B2 is turned on is shorter than or equal to the interval of time when the first switching element B1 / second switching element B2 is turned off. It can be adjusted freely within the range. That is, the first switching element B1 and the second switching element B2 may be turned on or off according to an arbitrary duty ratio, and the duty ratio may be variable.
  • the first period is more than the second period. Twice as long, the start time at which the first switching device B1 is turned on and the start time at which the third switching device SL1 / sixth switching device SL4 is turned on are the same.
  • the third switching element SL1 to the sixth switching element SL4 are turned on / off as described above with reference to FIG. 3.
  • the first switching element B1 and the second switching element B2 are simultaneously turned on and off.
  • the interval of time when the first switching element B1 / second switching element B2 is turned on is shorter than or equal to the interval of time when the first switching element B1 / second switching element B2 is turned off. It can be adjusted freely within the range. That is, the first switching element B1 and the second switching element B2 may be turned on or off according to an arbitrary duty ratio, and the duty ratio may be variable.
  • the first period is more than the second period. Twice as long, the start time at which the first switching device B1 is turned on and the start time at which the third switching device SL1 / sixth switching device SL4 is turned on are the same.
  • the second converter 130 is controlled in a discontinuous current mode (DCM). Accordingly, the second converter 130 may be controlled by using the controller 140 having a simple configuration as compared to the case where the continuous current mode (CCM) and the boundary current mode (Current Current Mode) are controlled. .
  • DCM discontinuous current mode
  • the first switching device B1 and the second switching device B2 are controlled to be turned on / off alternately as described above, the first switching device B1, the first capacitor C1, and the first inductor L1 and the first output capacitor Cout1 form one converting group, the second switching element B2, the second capacitor C2, the second inductor L2, and the second output capacitor Cout2. ) Forms the other converting group.
  • the second switching element B2, the second capacitor C2, the second inductor L2, and the second output capacitor Cout2. Forms the other converting group.
  • voltage stress of the elements included in the second converter unit 130 is reduced, and phase shift occurs to generate the second voltage.
  • the included ripple may be reduced.
  • the duty ratio of the first switching device B1 / the second switching device B2 is changed. Since the size of the third voltage can be arbitrarily adjusted by adjusting the power supply, it is possible to charge various electric vehicle batteries without being limited by the specifications of the electric vehicle battery.
  • the second converter unit 140 when configuring the second converter unit 130 as shown in FIG. 2, the second converter unit 140 simultaneously performs power factor correction (PFC) and amplification function (ie, current control function). Since it is possible, a circuit for improving the power factor does not need to be separately provided at the front end of the first converter unit 120.
  • PFC power factor correction
  • amplification function ie, current control function
  • the second converter unit 140 which is a component directly connected to the battery for the electric vehicle 150, receives a voltage having an AC waveform, it is not a large capacity electrolytic capacitor.
  • the first output capacitor Cout1 / the second output capacitor Cout2 may be configured by using a small capacity film capacitor.
  • the second converter unit 140 is configured by using a small capacity film capacitor, the lifespan and size of the battery charging device for an electric vehicle may be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

전기 차량용 배터리 충전 장치가 개시된다. 개시된 전기 차량용 배터리 충전 장치는 전파 정류되어 입력되는 제1 전압을 제2 전압으로 변화시키는 제1 컨버터부; 상기 제2 전압을 직류화하여 전기 차량용 배터리를 충전하기 위한 제3 전압으로 변화시켜 출력하는 제2 컨버터부를 포함하되, 상기 제1 컨버터부의 출력단은 제1 출력단자 및 제2 출력단자를 포함하고, 상기 제2 컨버터부는 일단이 상기 제1 출력단자와 연결되는 제1 스위칭 소자; 일단이 상기 제2 출력단자와 연결되는 제2 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단과 직렬로 연결되는 제1 출력 캐패시터; 및 일단이 상기 제2 스위칭 소자의 타단과 직렬로 연결되는 제2 출력 캐패시터를 포함하며, 상기 제1 스위칭 소자 및 상기 제2 스위칭 소자는 온/오프(on/off)되고, 상기 제1 스위칭 소자가 온되는 시간과 상기 제2 스위칭 소자가 온되는 시간은 서로 겹치지 않다. 본 발명에 따른 전기 차량용 배터리 충전 장치는 소형화가 가능하고 긴 수명을 보장할 수 있는 장점이 있다.

Description

전기 차량용 배터리 충전 장치
본 발명의 실시예들은 전기 차량용 배터리 충전 장치에 관한 것으로서, 더욱 상세하게는 소형화가 가능하고 긴 수명을 보장할 수 있는 전기 차량용 배터리 충전 장치에 관한 것이다.
일반적으로 전기 차량(EV: Electric Vehicle)용 배터리 충전 장치는 상용 전원을 이용한다. 그리고 다양한 사양의 배터리를 모두 충전하기 위해 전기 차량용 배터리 충전 장치는 100V 내지 500V의 전압을 출력할 수 있어야 한다.
이를 위해, 종래의 전기 차량용 배터리 충전 장치는 역률 보정을 수행하기 위한 전단과 전류 제어를 수행하기 위한 후단으로 분리되어 구성되었고, 특히 후단은 부스트 컨버터(Boost Converter)를 이용하여 구성되었다.
그러나, 상기한 종래의 전기 차량용 배터리 충전 장치는 링크 전압을 출력 전압 이하로 유지하여야 한다는 단점이 있었고, 이에 의해 입력 전압의 크기에 따라 내부 구성이 변경되어야 하는 문제점이 있었다.
또한, 종래의 전기 차량용 배터리 충전 장치는 CCM(Continuous Current Mode) 제어 기법을 이용하여 내부 인덕터로 흐르는 전류를 제어하는데, 이를 위해서는 복잡한 구성의 제어기를 사용하여야 한다는 문제점이 있었다.
그리고, 종래의 전기 차량용 배터리 충전 장치는 넓은 출력 범위를 확보하기 위해 전해(Electrolytic) 캐패시터를 사용하였는데, 이는 배터리 충전 장치의 크기 및 무게를 증가시키고 충분한 수명을 보장하지 못하는 단점이 있었다.
상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 본 발명에서는 소형화가 가능하고 긴 수명을 보장할 수 있는 전기 차량용 배터리 충전 장치를 제안하고자 한다.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 도출될 수 있을 것이다.
상기한 목적을 달성하기 위해 본 발명의 바람직한 일 실시예에 따르면, 전파 정류되어 입력되는 제1 전압을 제2 전압으로 변화시키는 제1 컨버터부; 상기 제2 전압을 직류화하여 전기 차량용 배터리를 충전하기 위한 제3 전압으로 변화시켜 출력하는 제2 컨버터부를 포함하되, 상기 제1 컨버터부의 출력단은 제1 출력단자 및 제2 출력단자를 포함하고, 상기 제2 컨버터부는 일단이 상기 제1 출력단자와 연결되는 제1 스위칭 소자; 일단이 상기 제2 출력단자와 연결되는 제2 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단과 직렬로 연결되는 제1 출력 캐패시터; 및 일단이 상기 제2 스위칭 소자의 타단과 직렬로 연결되는 제2 출력 캐패시터를 포함하며, 상기 제1 스위칭 소자 및 상기 제2 스위칭 소자는 온/오프(on/off)되고, 상기 제1 스위칭 소자가 온되는 시간과 상기 제2 스위칭 소자가 온되는 시간은 서로 겹치지 않는 것을 특징으로 하는 전기 차량용 배터리 충전 장치가 제공된다.
또한, 본 발명의 다른 실시예에 따르면, 전파 정류되어 입력되는 제1 전압을 승압하여 제2 전압으로 변화시키는 제1 컨버터부; 상기 제2 전압을 직류화하여 전기 차량용 배터리를 충전하기 위한 제3 전압으로 변화시켜 출력하는 제2 컨버터부를 포함하되, 상기 제1 컨버터부의 출력단은 제1 출력단자 및 제2 출력단자를 포함하고, 상기 제2 컨버터부는 역률 개선(PFC: Power Factor Correction) 기능 및 증폭 기능을 동시에 수행하기 위하여, 일단이 상기 제1 출력단자와 연결되는 제1 스위칭 소자; 일단이 상기 제2 출력단자와 연결되는 제2 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단과 연결되는 제1 출력 캐패시터; 일단이 상기 제2 스위칭 소자의 타단과 연결되는 제2 출력 캐패시터; 상기 제1 스위칭 소자의 타단과 상기 제1 출력 캐패시터의 일단이 연결된 제3 노드를 기준으로 일단이 상기 제1 출력 캐패시터와 병렬로 연결되는 제1 인덕터; 및 상기 제2 스위칭 소자의 타단과 상기 제2 출력 캐패시터의 일단이 연결된 제4 노드를 기준으로 일단이 상기 제2 출력 캐패시터와 병렬로 연결되는 제2 인덕터를 포함하는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치가 제공된다.
본 발명에 따른 전기 차량용 배터리 충전 장치는 소형화가 가능하고 긴 수명을 보장할 수 있는 장점이 있다.
또한, 본 발명에 따른 전기 차량용 배터리 충전 장치는 간단한 구성을 가지는 제어기를 이용하여 전류 제어를 수행할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 개략적인 구성을 도시한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 상세한 구성을 도시한 회로도이다.
도 3 및 도 4는 제1 스위칭 소자(B1), 제2 스위칭 소자(B2), 제3 스위칭 소자(SL1), 제4 스위칭 소자(SL2), 제5 스위칭 소자(SL2) 및 제6 스위칭 소자(SL4)의 스위칭을 제어하기 위해 제어부에서 생성되는 제어 신호의 일례들을 도시한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 개략적인 구성을 도시한 블록도이고, 도 2는 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 상세한 구성을 도시한 회로도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 전기 차량용 충전 장치(100)는 제1 정류부(110), 제1 컨버터부(120), 제2 컨버터부(130) 및 제어부(140)를 포함할 수 있다. 이하, 각 구성 요소 별로 그 기능을 상세히 설명하기로 한다.
제1 정류부(110)는 외부로부터 입력되는 교류 전압을 반파 정류 또는 전파 정류하여 제1 전압을 생성한다. 이 때, 입력되는 교류 전압은 90Vac 이상 260Vac 이하의 크기를 가질 수 있다. 일례로, 입력되는 교류 전압은 110Vac 또는 220Vac의 크기를 가지는 상용 교류 전압일 수 있다.
본 발명의 일 실시예에 따르면, 제1 정류부(110)는 도 2에 도시된 바와 같이 외부 전원과 연결되며, 풀 브리지(Full Bridge) 형태로 연결된 4개의 다이오드를 포함할 수 있다.
제1 컨버터부(120)는 제1 정류부(110)에 의해 전파 정류되어 입력되는 제1 전압을 승압하여 제2 전압으로 변화시킨다. 일례로서, 제1 컨버터부(120)는 도 2에 도시된 바와 같이 LLC 컨버터의 구성을 가질 수 있다.
보다 상세하게, 제1 컨버터부(120)는 제1 정류부(110)와 연결되어 제1 전압을 입력받는 스위칭부(121), 스위칭부(121)와 연결되어 승압 동작을 수행하는 변압기부(122) 및 변압기부(122)와 연결되어 상기 승압 동작의 결과로 생성된 전압을 정류하여 제2 전압을 생성하여 출력하는 제2 정류부(123)를 포함할 수 있다.
스위칭부(121)는 제1 정류부(110)의 2개의 출력단자와 연결되며, 풀 브리지 형태로 연결된 4개의 스위칭 소자(SL1, SL2, SL3, SL4)를 포함할 수 있다. 이하 설명의 편의를 위해 스위칭부(121)에 포함된 4개의 스위칭 소자를 각각 "제3 스위칭 소자(SL1)", "제4 스위칭 소자(SL2)", "제5 스위칭 소자(SL3)" 및 "제6 스위칭 소자(SL4)"라 칭하기로 한다(제1 스위칭 소자 및 제2 스위칭 소자는 후술하는 제2 컨버터부(130)에 포함됨).
일례로서, 4개의 스위칭 소자(SL1, SL2, SL3, SL4) 각각은 하나의 트랜지스터(예를 들어, FET) 및 입력단이 트랜지스터의 제2 도통 전극(Conducting Electrode)(예를 들어, 드레인 전극)과 연결되고, 출력단이 트랜지스터의 제1 도통 전극(예를 들어, 소스 전극)과 연결되는 다이오드로 구성될 수 있다.
이와 같은 각각 제3 스위칭 소자(SL1), 제4 스위칭 소자(SL2), 제5 스위칭 소자(SL3) 및 제6 스위칭 소자(SL4)는 주기적으로 온/오프(on/off)될 수 있다. 이하, 설명의 편의를 위해 스위칭 소자들(SL1, SL2, SL3, SL4)이 온/오프되는 주기를 "제2 주기"라 칭하기로 한다("제1 주기"는 후술하는 제2 컨버터부(130)에 포함된 제1 스위칭 소자 및 제2 스위칭 소자의 온/오프 주기를 의미함).
보다 상세하게, 제3 스위칭 소자(SL1) 및 이와 대각 방향에 위치하는 제6 스위칭 소자(SL4)는 동시에 온/오프되고, 제4 스위칭 소자(SL2) 및 이와 대각 방향에 위치하는 제5 스위칭 소자(SL3)는 동시에 온/오프된다. 그리고, 제3 스위칭 소자(SL1) 및 제6 스위칭 소자(SL4)가 온되는 시간과 제4 스위칭 소자(SL2) 및 제5 스위칭 소자(SL3)가 온되는 시간은 서로 겹치지 않는다.
이 경우, 제2 주기 내에서 제3 스위칭 소자(SL1), 제4 스위칭 소자(SL), 제5 스위칭 소자(SL3) 및 제6 스위칭 소자(SL4)가 온되는 시간의 간격과 오프되는 시간의 간격은 동일할 수 있다.
이러한 스위칭부(121)의 온/오프는 제어부(140)(도 2에는 도시하지 않음)에서 생성되는 제어 신호에 기초하여 제어될 수 있다. 제어부(140)는 제2 컨버터부(130)에서 출력되는 제3 전압을 피드백받고, 피드백받은 제3 전압을 이용하여 제어 신호를 생성할 수 있다. 생성된 제어 신호는 스위칭 소자들(SL1, SL2, SL3, SL4)에 포함된 트랜지스터(예를 들어, FET)의 제어 전극(예를 들어, 게이트 전극)으로 입력되고, 이에 따라 스위칭 소자들(SL1, SL2, SL3, SL4)의 온/오프가 제어될 수 있다.
다음으로, 변압기부(122)는 스위칭부(121)와 연결되며, 스위칭부(121)로부터 출력된 전압을 승압한다. 이를 위해, 변압기부(122)의 2차측 권선수는 1차측 권선수보다 클 수 있다. 일례로, 변압기부(122)의 권선비는 1:1.5일 수 있다.
마지막으로, 제2 정류부(123)는 변압기부(122)와 연결되며, 변압기부(122)에서 출력된 전압을 정류하여 제2 전압을 생성하여 출력한다.
본 발명의 일 실시예에 따르면, 제2 정류부(123)는 도 2에 도시된 바와 같이 풀 브리지 형태로 연결된 4개의 다이오드를 포함할 수 있다.
제2 정류부(123)의 출력단(즉, 제1 컨버터부(120)의 출력단)과 연결되는 제2 컨버터부(130)는 제2 전압을 직류화하여 전기 차량용 배터리(150)를 충전하기 위한 제3 전압으로 변화시켜 출력한다.
일례로서, 제2 컨버터부(130)는 도 2에 도시된 바와 같이 병렬구조의 벅 부스트(Buck Boost) 컨버터의 형태일 수 있다.
보다 상세하게, 제2 컨버터부(130)는 제1 캐패시터(C1), 제2 캐패시터(C2), 제1 스위칭 소자(B1), 제2 스위칭 소자(B2), 제1 인덕터(L1), 제2 인덕터(L2), 제1 다이오드(D1), 제2 다이오드(D2), 제1 출력 캐패시터(Cout1) 및 제2 출력 캐패시터(Cout2)를 포함할 수 있다. 각 소자의 연결 관계에 대해 설명하면 아래와 같다.
제1 스위칭 소자(B1)는 일단이 제1 컨버터부(120)의 제1 출력 단자(즉, 제1 노드(n1))와 연결되고, 제2 스위칭 소자(B2)는 일단이 제1 컨버터부(120)의 제2 출력단자(즉, 제2 노드(n2))와 연결된다. 여기서, 제2 스위칭 소자(B2)는 제1 노드(n1)를 기준으로 할 때는 제1 스위칭 소자(B1)와 병렬로 연결되는 것으로 볼 수 있다.
또한, 제1 스위칭 소자(B1)의 타단은 제1 다이오드(D1)를 거쳐 제1 출력 캐패시터(Cout1)의 일단과 직렬로 연결된다. 즉, 제1 스위칭 소자(B1)의 타단은 제3 노드(n3)에서 제1 다이오드(D1)의 출력단과 연결되고, 제1 다이오드(D1)의 입력단은 제1 출력 캐패시터(Cout1)의 일단과 연결된다.
마찬가지로, 제2 스위칭 소자(B2)의 타단은 제2 다이오드(D2)를 거쳐 제2 출력 캐패시터(Cout2)의 타단과 연결된다. 즉, 제2 스위칭 소자(B2)의 타단은 제4 노드(n4)에서 제2 다이오드(D2)의 출력단과 연결되고, 제2 다이오드(D2)의 입력단은 제2 출력 캐패시터(Cout2)의 일단과 연결된다.
제1 인덕터(L1)는 제3 노드(n3)를 기준으로 제1 다이오드(D1) 및 제1 출력 캐패시터(Cout1)와 병렬로 연결되고, 제2 인덕터(L2)는 제4 노드(n4)를 기준으로 제2 다이오드(D2) 및 제2 출력 캐패시터(Cout2)와 병렬로 연결된다.
그리고, 제1 캐패시터(C1)는 일단이 제1 노드(n1)를 기준으로 제1 스위칭 소자(B1)와 병렬로 연결되며, 제2 캐패시터(C2)는 제2 노드(n2)를 기준으로 제2 스위칭 소자(B2)와 병렬로 연결된다.
그리고, 제1 출력 캐패시터(Cout1)의 타단, 제2 출력 캐패시터(Cout2)의 타단, 제1 인덕터(L1)의 타단, 제2 인덕터(L2)의 타단, 제1 캐패시터(C1)의 타단 및 제2 캐패시터(C2)의 타단은 제5 노드(n5)에서 서로 연결된다.
한편, 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)는 앞서 설명한 제3 스위칭 소자(SL1), 제4 스위칭 소자(SL2), 제5 스위칭 소자(SL3), 제6 스위칭 소자(SL4)와 마찬가지로 하나의 트랜지스터(예를 들어, FET) 및 입력단이 트랜지스터의 제2 도통 전극(예를 들어, 드레인 전극)과 연결되고 출력단이 트랜지스터의 제1 도통 전극(예를 들어, 소스 전극)과 연결되는 다이오드로 구성될 수 있다.
또한, 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)는 앞서 설명한 제3 스위칭 소자(SL1), 제4 스위칭 소자(SL2), 제5 스위칭 소자(SL3), 제6 스위칭 소자(SL4)와 유사하게 소정의 주기(즉, 제1 주기)에 따라 주기적으로 온/오프될 수 있다.
보다 상세하게, 본 발명의 일 실시예에 따르면, 제1 스위칭 소자(B1)와 제2 스위칭 소자(B2)는 온되는 시간이 서로 겹치지 않도록 온/오프될 수 있다. 이 경우, 제1 스위칭 소자(B1)의 온/오프 주기와 제2 스위칭 소자(B2)의 온/오프 주기는 동일하고(제1 주기), 제1 스위칭 소자(B1)가 온되는 시작 시점과 제2 스위칭 소자(B2)가 온되는 시작 시점은 제1 주기의 1/2만큼 차이가 날 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 제1 스위칭 소자(B1)와 제2 스위칭 소자(B2)는 동시에 온/오프될 수 있다.
그리고, 상기한 2가지의 실시예에 있어서, 제1 주기 내에서 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)가 온되는 시간 간격은 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)가 오프되는 시간 간격 보다 짧거나 같은 범위 내에서 조절 가능할 수 있다.
이러한 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)의 온/오프 역시 앞서 설명한 바와 마찬가지로 제어부(140)에서 생성되는 제어 신호에 기초하여 제어될 수 있다. 즉, 제어부(140)는 피드백받은 제3 전압에 이용해 제어 신호를 생성하고, 생성된 제어 신호는 제1 스위칭 소자(B1), 제2 스위칭 소자(B2), 제3 스위칭 소자(SL1), 제4 스위칭 소자(SL2), 제5 스위칭 소자(SL3) 및 제6 스위칭 소자(SL4)에 포함된 트랜지스터(예를 들어, FET)의 제어 전극(예를 들어, 게이트 전극)으로 입력될 수 있다.
도 3 및 도 4에서는 제1 스위칭 소자(B1), 제2 스위칭 소자(B2), 제3 스위칭 소자(SL1), 제4 스위칭 소자(SL22), 제5 스위칭 소자(SL3) 및 제6 스위칭 소자(SL4)의 스위칭을 제어하기 위해 제어부(140)에서 생성되는 제어 신호의 일례들을 도시하고 있다.
먼저, 도 3의 상단에 도시된 바와 같은 제어 신호가 제3 스위칭 소자(SL1), 제4 스위칭 소자(SL2), 제5 스위칭 소자(SL3) 및 제6 스위칭 소자(SL4)의 제어 전극으로 입력되면, 제3 스위칭 소자(SL1)/제6 스위칭 소자(SL4)가 온된 시점에서 제4 스위칭 소자(SL2)/제5 스위칭 소자(SL3)는 오프되고, 제3 스위칭 소자(SL1)/제6 스위칭 소자(SL4)가 오프된 시점에서 제4 스위칭 소자(SL2)/제5 스위칭 소자(SL3)는 온된다. 즉, 제3 스위칭 소자(SL1)/제6 스위칭 소자(SL4)와 제4 스위칭 소자(SL2)/제5 스위칭 소자(SL3)는 고정된 듀티비에 따라 온/오프된다.
그리고, 도 3의 하단에 도시된 바와 같은 제어 신호가 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)의 제어 전극으로 입력되면, 앞서 설명한 바와 같이 제1 스위칭 소자(B1)와 제2 스위칭 소자(B2)는 동시에 온되지 않고, 제1 주기 내에서 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)가 온되는 시간의 간격은 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)가 오프되는 시간의 간격 보다 짧거나 같게 되며, 제1 스위칭 소자(B1)가 온되는 시작 시점과 제2 스위칭 소자(B2)가 온되는 시작 시점은 제1 주기의 1/2만큼 차이가 나게 된다. 이 때, 제1 스위칭 소자(B1)/제2 스위칭 소자(B2)가 온되는 시간의 간격은 제1 스위칭 소자(B1)/제2 스위칭 소자(B2)가 오프되는 시간의 간격보다 짧거나 같은 범위 내에서 자유롭게 조절될 수 있다. 즉, 제1 스위칭 소자(B1)와 제2 스위칭 소자(B2)는 임의의 듀티비에 따라 온/오프될 수 있고, 듀티비는 가변될 수 있다.
또한, 제1 스위칭 소자(B1)/제2 스위칭 소자(B2)와 제3 스위칭 소자(SL1) 내지 제6 스위칭 소자(SL4)의 온/오프 주기를 비교하면, 제1 주기는 제2 주기 보다 두 배 더 길고, 제1 스위칭 소자(B1)가 온되는 시작 시점과 제3 스위칭 소자(SL1)/제6 스위칭 소자(SL4)가 온되는 시작시점은 동일하다.
다음으로, 도 4와 같은 제어 신호가 입력되는 경우, 제3 스위칭 소자(SL1) 내지 제6 스위칭 소자(SL4)는 앞서 도 3에서 설명한 바와 동일하게 온/오프된다. 그리고, 제1 스위칭 소자(B1) 및 제2 스위칭 소자(B2)는 동시에 온/오프된다. 이 때, 제1 스위칭 소자(B1)/제2 스위칭 소자(B2)가 온되는 시간의 간격은 제1 스위칭 소자(B1)/제2 스위칭 소자(B2)가 오프되는 시간의 간격보다 짧거나 같은 범위 내에서 자유롭게 조절될 수 있다. 즉, 제1 스위칭 소자(B1)와 제2 스위칭 소자(B2)는 임의의 듀티비에 따라 온/오프될 수 있고, 듀티비는 가변될 수 있다.
또한, 제1 스위칭 소자(B1)/제2 스위칭 소자(B2)와 제3 스위칭 소자(SL1) 내지 제6 스위칭 소자(SL4)의 온/오프 주기를 비교하면, 제1 주기는 제2 주기 보다 두 배 더 길고, 제1 스위칭 소자(B1)가 온되는 시작 시점과 제3 스위칭 소자(SL1)/제6 스위칭 소자(SL4)가 온되는 시작시점은 동일하다.
상기와 같은 제어 신호의 입력에 따라, 제2 컨버터부(130)는 불연속 전류 모드(DCM: Discontinuous Current Mode)로 제어된다. 이에 따라, 연속 전류 모드(CCM: Continuous Current Mode) 및 경계 전류 모드(Boundary Current Mode)로 제어되는 경우에 비해 간단한 구성의 제어기(140)를 이용하여 제2 컨버터부(130)를 제어할 수 있다.
또한, 상기와 같이 제1 스위칭 소자(B1)와 제2 스위칭 소자(B2)가 서로 번갈아 가면서 온/오프되도록 제어하는 경우, 제1 스위칭 소자(B1), 제1 캐패시터(C1), 제1 인덕터(L1), 및 제1 출력 캐패시터(Cout1)가 하나의 컨버팅 그룹을 형성하고, 제2 스위칭 소자(B2), 제2 캐패시터(C2), 제2 인덕터(L2), 및 제2 출력 캐패시터(Cout2)가 다른 하나의 컨버팅 그룹을 형성한다. 그리고, 병렬로 연결된 2개의 컨버팅 그룹이 서로 번갈아 가면서 컨버팅을 수행하게 되므로, 제2 컨버터부(130)에 포함되는 소자들의 전압 스트레스가 감소하고, 위상 천이(Phase Shift)가 발생하여 제2 전압에 포함된 리플(Riffle)이 감소할 수 있다.
그리고, 상기와 같이 제1 스위칭 소자(B1)와 제2 스위칭 소자(B2)가 서로 번갈아 가면서 온/오프되도록 제어하는 경우, 제1 스위칭 소자(B1)/제2 스위칭 소자(B2)의 듀티비를 조절하여 제3 전압의 크기를 임의로 조절할 수 있으므로 전기 차량용 배터리의 사양에 제한받지 않고 다양한 전기 차량용 배터리를 충전할 수 있게 된다.
또한, 도 2에 도시된 바와 같이 제2 컨버터부(130)를 구성하는 경우, 제2 컨버터부(140)는 역률 개선(PFC: Power Factor Correction)과 증폭 기능(즉 전류 제어 기능)을 동시에 수행할 수 있게 되므로, 역률 개선을 위한 회로를 제1 컨버터부(120)의 앞단에 별도로 구비할 필요가 없게 된다.
이와 더불어, 종래의 전기 차량용 배터리 충전 장치와 달리 전기 차량용 배터리(150)와 직접 연결되는 구성 요소인 제2 컨버터부(140)가 교류 파형을 가지는 전압을 입력받기 때문에, 큰 용량의 전해 캐패시터가 아닌 작은 용량의 필름(film) 캐패시터를 이용하여 제1 출력 캐패시터(Cout1)/제2 출력 캐패시터(Cout2)를 구성할 수 있다. 작은 용량의 필름 캐패시터를 이용하여 제2 컨버터부(140)를 구성하는 경우, 전기 차량용 배터리 충전 장치의 수명을 증가시키고 크기를 소형화 할 수 있다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (15)

  1. 정류되어 입력되는 제1 전압을 제2 전압으로 변화시키는 제1 컨버터부;
    상기 제2 전압을 직류화하여 전기 차량용 배터리를 충전하기 위한 제3 전압으로 변화시켜 출력하는 제2 컨버터부를 포함하되,
    상기 제1 컨버터부의 출력단은 제1 출력단자 및 제2 출력단자를 포함하고,
    상기 제2 컨버터부는 일단이 상기 제1 출력단자와 연결되는 제1 스위칭 소자; 일단이 상기 제2 출력단자와 제2 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단과 직렬로 연결되는 제1 출력 캐패시터; 및 일단이 상기 제2 스위칭 소자의 타단과 직렬로 연결되는 제2 출력 캐패시터를 포함하며,
    상기 제1 스위칭 소자 및 상기 제2 스위칭 소자는 온/오프(on/off)되고, 상기 제1 스위칭 소자가 온되는 시간과 상기 제2 스위칭 소자가 온되는 시간은 서로 겹치지 않는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
  2. 제1항에 있어서,
    상기 제1 스위칭 소자의 온/오프 주기와 상기 제2 스위칭 소자의 온/오프 주기는 제1 주기로서 동일하고, 상기 제1 스위칭 소자가 온되는 시작 시점과 상기 제2 스위칭 소자가 온되는 시작 시점은 상기 제1 주기의 1/2만큼 차이가 나는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
  3. 제2항에 있어서,
    상기 제1 주기 내에서 상기 제1 스위칭 소자 및 상기 제2 스위칭 소자가 온되는 시간의 간격은 상기 제1 스위칭 소자 및 상기 제2 스위칭 소자가 오프되는 시간의 간격 보다 짧거나 같은 범위 내에서 조절 가능한 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
  4. 제1항에 있어서,
    상기 제1 출력 캐패시터 및 상기 제2 출력 캐패시터는 필름(film) 캐패시터인 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.
  5. 제1항에 있어서,
    상기 제2 컨버터부는 입력단이 상기 제1 출력 캐패시터의 일단과 연결되고, 출력단이 상기 제1 스위칭 소자의 타단과 연결되는 제1 다이오드; 입력단이 상기 제2 스위칭 소자의 타단과 연결되고, 출력단이 상기 제2 출력 캐패시터의 일단과 연결되는 제2 다이오드; 상기 제1 스위칭 소자의 타단과 상기 제1 다이오드의 출력단이 연결된 제3 노드를 기준으로 일단이 상기 제1 다이오드와 병렬로 연결되는 제1 인덕터; 및 상기 제2 스위칭 소자의 타단과 상기 제2 다이오드의 입력단이 연결된 제4 노드를 기준으로 상기 제2 다이오드와 병렬로 연결되는 제2 인덕터를 더 포함하되,
    상기 제1 스위칭 소자 및 상기 제2 스위칭 소자의 듀티비는 가변될 수 있는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.
  6. 제5항에 있어서,
    상기 제2 컨버터부는 상기 제1 출력단자와 상기 제1 스위칭 소자의 일단이 연결되는 제1 노드를 기준으로 일단이 상기 제1 스위칭 소자와 병렬로 연결되는 제1 캐패시터; 및 상기 제2 출력단자와 상기 제2 스위칭 소자의 일단이 연결되는 제2 노드를 기준으로 일단이 상기 제2 스위칭 소자와 병렬로 연결되는 제2 캐패시터를 더 포함하되,
    상기 제1 출력 캐패시터의 타단, 상기 제2 출력 캐패시터의 타단, 상기 제1 인덕터의 타단, 상기 제2 인덕터의 타단, 상기 제1 캐패시터의 타단 및 상기 제2 캐패시터의 타단은 제5 노드에서 서로 연결되는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.
  7. 제1항에 있어서,
    풀 브리지(Full Bridge) 형태로 연결된 4개의 다이오드를 포함하며, 상용 교류 전압을 전파 정류하여 상기 제1 전압을 생성하는 제1 정류부를 더 포함하는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.
  8. 제1항에 있어서,
    제1 컨버터부는
    상기 제1 전압이 입력되는 스위칭부;
    상기 스위칭부와 연결된 변압기부; 및
    상기 변압기부와 연결되어 상기 제2 전압을 출력하는 제2 정류부
    를 포함하는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.
  9. 제8항에 있어서,
    상기 스위칭부는 풀 브리지 형태로 연결되고 제2 주기에 따라 주기적으로 온오프되는 제3 스위칭 소자, 제4 스위칭 소자, 제5 스위칭 소자 및 제6 스위칭 소자를 포함하고,
    상기 제3 스위칭 소자 및 상기 제3 스위칭 소자의 대각 방향에 위치하는 제6 스위칭 소자는 동시에 온/오프되고, 상기 제4 스위칭 소자 및 상기 제4 스위칭 소자의 대각 방향에 위치하는 제5 스위칭 소자는 동시에 온/오프되며,
    상기 제3 스위칭 소자 및 상기 제6 스위칭 소자가 온되는 시간과 상기 제4 스위칭 소자 및 상기 제5 스위칭 소자가 온되는 시간은 서로 겹치지 않으며, 상기 제 3 스위칭 소자 내지 상기 제 6 스위칭 소자의 듀티비는 일정한 것을 특징으로 하는 전기 차량용 배터리 장치.
  10. 제9항에 있어서,
    상기 제1 스위칭 소자의 온/오프 주기와 상기 제2 스위칭 소자의 온/오프 주기는 제1 주기로서 동일하고, 상기 제1 스위칭 소자가 온되는 시작 시점과 상기 제2 스위칭 소자가 온되는 시작 시점은 상기 제1 주기의 1/2만큼 차이가 나고,
    상기 제1 주기 내에서 상기 제1 스위칭 소자 및 상기 제2 스위칭 소자가 온되는 시간의 간격은 상기 제1 스위칭 소자 및 상기 제2 스위칭 소자가 오프되는 시간의 간격 보다 짧거나 같고, 상기 제2 주기 내에서 상기 제3 스위칭 소자, 상기 제4 스위칭 소자, 상기 제5 스위칭 소자 및 상기 제6 스위칭 소자가 온되는 시간의 간격과 오프되는 시간의 간격은 동일하고,
    상기 제1 주기는 상기 제2 주기 보다 두 배 더 길고,
    상기 제1 스위칭 소자가 온되는 시작 시점과 상기 제3 스위칭 소자 및 상기 제6 스위칭 소자가 온되는 시작시점은 동일한 것을 특징으로 하는 전기 차량용 배터리 장치.
  11. 제9항에 있어서,
    상기 제1 스위칭 소자, 상기 제2 스위칭 소자, 상기 제3 스위칭 소자, 상기 제4 스위칭 소자, 상기 제5 스위칭 소자 및 상기 제6 스위칭 소자 중에서 적어도 하나로 온/오프의 제어를 위한 제어 신호를 생성하여 전송하는 제어부를 더 포함하는 것을 특징으로 하는 전기 차량용 배터리 장치.
  12. 제9항에 있어서,
    상기 제1 스위칭 소자, 상기 제2 스위칭 소자, 상기 제3 스위칭 소자, 상기 제4 스위칭 소자, 상기 제5 스위칭 소자 및 상기 제6 스위칭 소자 중에서 적어도 하나는
    트랜지스터; 및
    입력단이 상기 트랜지스터의 제2 도통 전극과 연결되고, 출력단이 상기 트랜지스터의 제1 도통 전극과 연결되는 다이오드
    를 포함하는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.
  13. 전파 정류되어 입력되는 제1 전압을 승압하여 제2 전압으로 변화시키는 제1 컨버터부;
    상기 제2 전압을 직류화하여 전기 차량용 배터리를 충전하기 위한 제3 전압으로 변화시켜 출력하는 제2 컨버터부를 포함하되,
    상기 제1 컨버터부의 출력단은 제1 출력단자 및 제2 출력단자를 포함하고,
    상기 제2 컨버터부는 역률 개선(PFC: Power Factor Correction) 기능 및 증폭 기능을 동시에 수행하기 위하여, 일단이 상기 제1 출력단자와 연결되는 제1 스위칭 소자; 일단이 상기 제2 출력단자와 연결되는 제2 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단과 연결되는 제1 출력 캐패시터; 일단이 상기 제2 스위칭 소자의 타단과 연결되는 제2 출력 캐패시터; 상기 제1 스위칭 소자의 타단과 상기 제1 출력 캐패시터의 일단이 연결된 제3 노드를 기준으로 일단이 상기 제1 출력 캐패시터와 병렬로 연결되는 제1 인덕터; 및 상기 제2 스위칭 소자의 타단과 상기 제2 출력 캐패시터의 일단이 연결된 제4 노드를 기준으로 일단이 상기 제2 출력 캐패시터와 병렬로 연결되는 제2 인덕터를 포함하는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.
  14. 제13항에 있어서,
    상기 제1 스위칭 소자 및 상기 제2 스위칭 소자는 주기적으로 온/오프되고, 상기 제1 스위칭 소자가 온되는 시간과 상기 제2 스위칭 소자가 온되는 시간은 서로 겹치지 않는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
  15. 제13항에 있어서,
    상기 제2 컨버터부는 출력단이 상기 제3 노드를 기준으로 상기 제1 인덕터와 병렬로 연결되고, 입력단이 상기 제1 출력 캐패시터의 일단과 직렬로 연결되는 제1 다이오드; 및 입력단이 상기 제4 노드를 기준으로 상기 제2 인덕터와 병렬로 연결되고, 출력단이 상기 제2 출력 캐패시터의 일단과 연결되는 제2 다이오드를 더 포함하는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.
PCT/KR2012/002198 2011-04-11 2012-03-27 전기 차량용 배터리 충전 장치 WO2012141434A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014505060A JP5760143B2 (ja) 2011-04-11 2012-03-27 電気車両用バッテリ充電装置
CN201280018058.8A CN103534898B (zh) 2011-04-11 2012-03-27 用于电动车辆的电池充电装置
US14/113,377 US9399401B2 (en) 2011-04-11 2012-03-27 Battery charging apparatus for electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0033269 2011-04-11
KR1020110033269A KR101211234B1 (ko) 2011-04-11 2011-04-11 전기 차량용 배터리 충전 장치

Publications (2)

Publication Number Publication Date
WO2012141434A2 true WO2012141434A2 (ko) 2012-10-18
WO2012141434A3 WO2012141434A3 (ko) 2013-01-03

Family

ID=47009791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002198 WO2012141434A2 (ko) 2011-04-11 2012-03-27 전기 차량용 배터리 충전 장치

Country Status (5)

Country Link
US (1) US9399401B2 (ko)
JP (1) JP5760143B2 (ko)
KR (1) KR101211234B1 (ko)
CN (1) CN103534898B (ko)
WO (1) WO2012141434A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110680A (ja) * 2012-12-03 2014-06-12 Asti Corp 充電器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150098431A (ko) * 2014-02-20 2015-08-28 삼성전기주식회사 전원 공급 장치
KR101601549B1 (ko) * 2014-02-27 2016-03-08 단국대학교 산학협력단 배터리 충전 제어 방법 및 장치
KR101628133B1 (ko) * 2014-07-04 2016-06-08 현대자동차 주식회사 펄스폭 변조 공진 컨버터 및 이를 이용한 차량용 충전기
CN104124744B (zh) * 2014-08-20 2016-03-09 高玉琴 一种电动车充电器
WO2016192007A1 (zh) * 2015-06-01 2016-12-08 广东欧珀移动通信有限公司 充电电路和移动终端
KR101846683B1 (ko) 2016-06-28 2018-05-21 현대자동차주식회사 전기차량의 충전시스템 및 충전 제어방법
KR101846682B1 (ko) 2016-06-28 2018-04-09 현대자동차주식회사 전기차량의 충전제어방법 및 그 시스템
KR101864684B1 (ko) * 2016-08-01 2018-06-05 삼호중장비산업 주식회사 전기차 충전기 및 그 냉각 시스템
KR102478058B1 (ko) 2017-11-16 2022-12-16 현대자동차주식회사 무 역률보상회로 방식의 충전 시스템
KR20210136576A (ko) * 2020-05-08 2021-11-17 삼성전자주식회사 전자장치 및 그 제어방법
KR102655063B1 (ko) * 2021-11-22 2024-04-09 주식회사 에이스웍스코리아 Bcs용 전원 공급 장치 및 그의 전원 공급 방법
CN116015072B (zh) * 2023-03-28 2023-06-27 浙江大学杭州国际科创中心 一种宽范围变换器的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054755A (ko) * 2000-12-28 2002-07-08 이계안 전기 자동차 배터리의 충전 회로
KR20030025427A (ko) * 2001-09-20 2003-03-29 학교법인 두원학원 영전압 스위칭 풀브리지 컨버터
JP2010206883A (ja) * 2009-03-02 2010-09-16 Fujitsu Telecom Networks Ltd 双方向dc−dcコンバータ
KR20110029798A (ko) * 2009-09-16 2011-03-23 전남대학교산학협력단 양방향 전력수수가 가능한 무정전 전원장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054755A (ko) * 2000-12-28 2002-07-08 이계안 전기 자동차 배터리의 충전 회로
KR20030025427A (ko) * 2001-09-20 2003-03-29 학교법인 두원학원 영전압 스위칭 풀브리지 컨버터
JP2010206883A (ja) * 2009-03-02 2010-09-16 Fujitsu Telecom Networks Ltd 双方向dc−dcコンバータ
KR20110029798A (ko) * 2009-09-16 2011-03-23 전남대학교산학협력단 양방향 전력수수가 가능한 무정전 전원장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110680A (ja) * 2012-12-03 2014-06-12 Asti Corp 充電器

Also Published As

Publication number Publication date
WO2012141434A3 (ko) 2013-01-03
CN103534898A (zh) 2014-01-22
CN103534898B (zh) 2015-12-02
JP5760143B2 (ja) 2015-08-05
KR101211234B1 (ko) 2012-12-11
US20140049219A1 (en) 2014-02-20
US9399401B2 (en) 2016-07-26
KR20120115769A (ko) 2012-10-19
JP2014512168A (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
WO2012141434A2 (ko) 전기 차량용 배터리 충전 장치
WO2013094871A1 (ko) 전기 차량용 배터리 충전 장치
KR20190054390A (ko) 전기자동차용 충전 및 저전압 변환 복합회로
US20120286576A1 (en) Single-inductor-multiple-output regulator with synchronized current mode hysteretic control
WO2014069900A1 (ko) Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치
KR20210156107A (ko) 차량용 배터리 충전 장치 및 방법
CN110995025A (zh) 一种开关电源电路
CN109687702B (zh) Dc-dc转换器
WO2020091168A1 (ko) 전력변환장치
WO2021241831A1 (ko) 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로
US20190372382A1 (en) Dc charging system for storage battery of electric vehicle
CN210075077U (zh) 一种功率因数校正电路及车载充电机
WO2014069743A1 (ko) 양방향 동작이 가능한 전기 차량용 배터리 충전 장치
CN114944759A (zh) Dc-dc转换器和车辆
WO2015156597A1 (ko) 리플 제거를 위한 전력변환 장치
US11431253B2 (en) Large capacity bidirectional isolated DC-DC converter and control method thereof
WO2020027374A1 (ko) 단상 절연형 역률개선용 세픽 컨버터
CN107069914B (zh) 轨道车辆充电装置及充电控制方法
WO2017069333A1 (ko) 멀티 토플러지를 이용한 dc/dc 컨버터
CN211266788U (zh) 一种开关电源电路
CN113169562B (zh) 一种车载充、放电装置及其充放电系统和新能源汽车
WO2016133295A1 (ko) 소프트 스위칭 동작 방식의 양방향 직류-직류 컨버터를 적용한 비절연형 순간정전 보상장치
CN213547169U (zh) 一种多组电池的集中充电装置
CN220785474U (zh) 充电控制系统及车辆
CN210867511U (zh) 一种多路输出的直流电源转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771465

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014505060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14113377

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12771465

Country of ref document: EP

Kind code of ref document: A2