WO2021241831A1 - 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로 - Google Patents

전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로 Download PDF

Info

Publication number
WO2021241831A1
WO2021241831A1 PCT/KR2020/019413 KR2020019413W WO2021241831A1 WO 2021241831 A1 WO2021241831 A1 WO 2021241831A1 KR 2020019413 W KR2020019413 W KR 2020019413W WO 2021241831 A1 WO2021241831 A1 WO 2021241831A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
high voltage
link capacitor
voltage battery
power conversion
Prior art date
Application number
PCT/KR2020/019413
Other languages
English (en)
French (fr)
Inventor
강필순
Original Assignee
한밭대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교산학협력단 filed Critical 한밭대학교산학협력단
Publication of WO2021241831A1 publication Critical patent/WO2021241831A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an OBC and LDC combination integrated power conversion circuit for an electric vehicle.
  • An on-board charger is one of the devices included in an electric vehicle (or plug-in hybrid vehicle), and is a device that converts external AC power into DC power to charge a high-voltage battery used for driving of an electric vehicle.
  • OBC uses a transformer to insulate between the AC grid used as the power source and the high voltage battery.
  • a low voltage DC-DC converter is a device that converts the voltage of a high voltage battery used for driving an electric vehicle to a low voltage and charges an auxiliary battery that supplies power to the electric parts of the electric vehicle.
  • LDC uses a transformer like OBC for step-down of about 10 times the output of the high-voltage battery and for isolation between the high-voltage battery and the auxiliary battery.
  • the weight of the charging system is directly related to the weight of the electric vehicle body, a light one should be used.
  • the charging part of each of the high voltage battery and the auxiliary battery may be shared in consideration of each characteristic, and such research is ongoing.
  • Korean Patent Registration No. 10-1903121 (“Charging and Power Conversion Circuit for Electric Vehicles”, hereinafter referred to as Prior Art 1) uses an insulated power factor correction converter to simplify the circuit configuration and reduce losses.
  • a circuit for both charging and power conversion for an electric vehicle is disclosed.
  • an EMI filter for removing noise from an input AC power source
  • a rectifier circuit for rectifying the input AC power that has passed through the EMI filter
  • a first inductor for rectifying the input AC power that has passed through the EMI filter
  • a first inductor for rectifying the input AC power that has passed through the EMI filter
  • a first inductor for rectifying the input AC power that has passed through the EMI filter
  • a first inductor a high-frequency transformer
  • a first switching It consists of a circuit, a second switching circuit, and a third capacitor, and controls the input current of the input power rectified by the rectifier circuit in phase with the input voltage to improve the power factor and is insulated through the high-frequency transformer.
  • An insulated power factor correction converter for transferring an AC input input to the primary side to the secondary side of the high frequency transformer, a second switching circuit connected to a tertiary terminal of the high frequency transformer and connected to the secondary terminal through the high frequency transformer and a tertiary-side rectifying circuit for rectifying the high-voltage power delivered by the rectifier and converting alternating current to direct current through switching, and an LC filter for smoothing the direct current that has passed through the tertiary-side rectifying circuit.
  • Prior Art 1 Although OBC and LDC are integrated, the difference in voltage between the DC-DC converter included in the OBC and the DC-DC converter output stage included in the LDC is large. There was a problem that there was no countermeasure for the difficult case of creation.
  • the present invention has been devised to solve the above problems, and the object of the OBC and LDC combination integrated power conversion circuit for an electric vehicle according to the present invention is cheaper and bulkier than conventional devices through the integration of OBC and LDC.
  • An object of the present invention is to provide an integrated OBC and LDC power conversion circuit for an electric vehicle that is small and light and can output a desired target voltage according to an operation mode.
  • the OBC and LDC combination integrated power conversion circuit for an electric vehicle for solving the above problems, charging and discharging a high voltage battery by inputting a power source, a high frequency transformer provided between the power source and the high voltage battery
  • a charging unit comprising: a power conversion unit for charging an auxiliary battery using the high voltage battery; and a control unit for controlling each of the charging unit and the power conversion unit, wherein the control unit uses the single high-frequency transformer to control the high voltage battery It is characterized in that charging and discharging, or charging the auxiliary battery.
  • the charging unit may include an AC-DC converter connected to the power source to convert an alternating current input from the power source into direct current, a DC link capacitor connected to the AC-DC converter to be charged or discharged, and the DC link capacitor and the high voltage It is connected between the batteries, characterized in that it comprises a full-bridge converter for changing the output voltage of the DC link capacitor to a voltage for charging the high-voltage battery.
  • the control unit constantly controls the switching duty ratio of the semiconductor switch of the full-bridge converter based on the amount of charging or discharging power of the high-voltage battery, but using the first H-Bridge converter 210 to control the DC link capacitor. It is characterized in that the voltage is variably controlled. Due to such a feature, even if the charging power or the discharging power varies, the switching duty ratio of the semiconductor switch of the full-bridge converter can be maintained constant, thereby increasing system efficiency and reducing the size of the transformer.
  • the AC-DC converter is a bridgeless PFC converter.
  • the AC-DC converter may include a first inductor connected to the power source and a first H-bridge converter connected to the power source and the first inductor.
  • the full-bridge converter a second H-Bridge converter connected between the DC link capacitor and the high-frequency transformer, and the high-frequency transformer connected to the second H-Bridge converter insulated from the second H-Bridge converter, and connected to the high voltage battery It is characterized in that it comprises a third H-Bridge converter.
  • the full bridge converter it characterized in that it further comprises a second inductor connected to the third H-Bridge converter and the high voltage battery.
  • the power conversion unit is characterized in that it comprises a bidirectional converter connected between the DC link capacitor and the auxiliary battery and a third inductor connected between the bidirectional converter and the auxiliary battery.
  • control unit controls the converter or the power source to operate in any one of a charging mode of the high voltage battery, a charging mode of the auxiliary battery, a discharging mode of the auxiliary battery, and a discharging mode of the high voltage battery. characterized.
  • control unit operates in a charging mode of the high voltage battery, the power source charges the DC link capacitor using the AC-DC converter, and the DC link capacitor charges the high voltage battery using the full bridge converter. characterized in that
  • control unit operates in a charging mode of the auxiliary battery, the high voltage battery charges the DC link capacitor using a turns ratio and a phase shift of the full bridge converter, and the DC link capacitor is included in the power conversion unit It is characterized in that the auxiliary battery is charged through the step-down operation of the bidirectional converter.
  • control unit operates in a discharging mode of the auxiliary battery
  • the bidirectional converter included in the power conversion unit charges the DC link capacitor with the output of the auxiliary battery
  • the DC link capacitor uses the full bridge converter It is characterized in that the output of the auxiliary battery is transferred to the high voltage battery.
  • control unit operates in a discharging mode of the high voltage battery, the high voltage battery charges the DC link capacitor through a high frequency transformer included in the full bridge converter, and the DC link capacitor is a triangular wave of the AC-DC converter It is characterized in that the output is transferred to the power supply using the inversion operation of the comparison method.
  • the voltage of the DC link capacitor is differently controlled by using the bidirectional capacitor and the auxiliary battery according to the operation mode, so that the turns ratio of the transformer and the full bridge
  • the target voltage cannot be output only by controlling the duty ratio of the switch included in the converter
  • a different voltage is supplied so that the target voltage can be output so that the target voltage can be output, and the OBC and LDC are integrated into one transformer It has the effect of providing an integrated power conversion circuit combining OBC and LDC for electric vehicles that can be more economical and simplified by sharing.
  • FIG. 1 is a schematic diagram of a circuit for charging and power conversion of an electric vehicle of the prior art
  • FIG. 2 is a circuit diagram of an OBC and LDC combination integrated power conversion circuit for an electric vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram when the OBC and LDC combined integrated power conversion circuit for an electric vehicle according to an embodiment of the present invention operates in OBC mode;
  • FIG. 4 is a schematic diagram when the OBC and LDC combined integrated power conversion circuit for an electric vehicle according to an embodiment of the present invention operates in LDC mode;
  • FIG. 5 is a schematic diagram when the OBC and LDC combined integrated power conversion circuit for an electric vehicle according to an embodiment of the present invention operates in an auxiliary battery discharge mode;
  • FIG. 6 is a schematic diagram when the OBC and LDC combination integrated power conversion circuit for an electric vehicle according to an embodiment of the present invention operates in a high voltage battery discharge mode
  • 10 is a waveform of a simulation result of an auxiliary battery discharging mode.
  • FIG. 2 is a schematic circuit diagram of an OBC and LDC combination integrated power conversion circuit for an electric vehicle according to an embodiment of the present invention.
  • the OBC and LDC combination integrated power conversion circuit for an electric vehicle includes an AC grid 100, a charging unit, a high voltage battery 500, a power conversion unit 600 and It may include an auxiliary battery 700 , and the charging unit may include an AC-DC converter 200 , a DC link capacitor 300 , and a full-bridge converter 400 . Due to the characteristics of the electric vehicle to which the present invention is applied, the high voltage battery 500 and the auxiliary battery 700 can be charged and discharged at any time. By sharing , it is possible to reduce the weight and volume of the system.
  • the AC grid 100 is a system power source, and outputs AC power to charge the high voltage battery 500 , which will be described later, or to return surplus power from the high voltage battery 500 .
  • the high voltage battery 500 serves to supply power to the motor for driving the vehicle.
  • the auxiliary battery 700 may serve to supply electric power to the electric components of the vehicle.
  • the AC-DC converter 200 is connected to the AC grid 100 , receives AC power output from the AC grid 100 , converts it into DC power, and outputs it.
  • the AC-DC converter 200 may be a bridgeless PFC (Power-Factor Correction) converter.
  • the bridgeless PFC converter compensates for the phase difference due to the reactance component of the converter circuit that converts AC power to DC to improve power conversion efficiency and power factor.
  • the AC-DC converter 200 may include a first inductor L1 connected in series with the AC grid 100 and a first H-Bridge converter 210 , and the first H-Bridge converter 210 .
  • the first switch (S1) may be configured to include a first switch (S1), a second switch (S2), a third switch (S3), and a fourth switch (S4).
  • the DC link capacitor 300 is connected to the AC-DC converter 200 to be charged or discharged.
  • the DC link capacitor 300 is charged differently depending on the mode in which the present invention operates, and even if the switching duty ratio of the full bridge converter 400 is fixed by supplying a voltage to the full bridge converter 400, the full bridge converter 400
  • the efficiency of duty ratio control can be increased by allowing the s to output a desired voltage.
  • the full bridge converter 400 is connected between the DC link capacitor 300 and the high voltage battery 500 to charge the output voltage of the DC link capacitor 300 to the high voltage battery 500 .
  • the full bridge converter 400 may be configured to include a second H-Bridge converter 410 , a high-frequency transformer 420 and a third H-Bridge converter 430 .
  • the high-frequency transformer 420 may be disposed between the second H-Bridge converter 410 and the third H-Bridge converter 430 , and the second H-Bridge converter 410 and the third H-Bridge 430 . ) is insulated.
  • the second H-Bridge converter 410 is connected to the DC link capacitor 300
  • the third H-Bridge converter 430 is connected to the high voltage battery 500 .
  • the second H-Bridge converter 410 may include a fifth switch S5, a sixth switch S6, a seventh switch S7 and an eighth switch S8, and the third H-Bridge converter ( 430 may include a ninth switch S9, a tenth switch S10, an eleventh switch S11, a twelfth switch S12, and a second inductor L2.
  • the primary winding of the high frequency transformer 420 may be lower than the secondary winding. This is to enable the system according to the present invention to perform both charging and discharging of the high-voltage battery 500 and the auxiliary battery 700 using one high-frequency transformer 420 later.
  • the second inductor L2 is connected to the positive terminal of the high voltage battery 500 .
  • the power conversion unit 600 may include a third inductor L3 and a bidirectional converter 610 , and the bidirectional converter 620 includes a thirteenth switch S13 and a fourteenth switch ( S13 ). S14) may be included.
  • the third inductor L3 may be connected to the positive terminal of the auxiliary battery 700 .
  • the power conversion unit 600 shares the DC link capacitor 300 , the first H-Bridge converter 410 and the high frequency transformer 420 , which are some components included in the charging unit 400 described above, with the charging unit 400 . can do.
  • the OBC and LDC combination integrated power conversion circuit for an electric vehicle may include a switch included in each converter and a controller for controlling the AC grid 100 .
  • the On Board Charger (OBC) mode is an operation mode for charging the high voltage battery 500 in the AC grid 100 .
  • the AC-DC converter 200 converts the AC power output from the AC grid 100 into DC and outputs it to charge the DC link capacitor 300 .
  • the DC link capacitor 300 charges the high voltage battery 500 through the full bridge converter 400 .
  • the power converter 600 and the auxiliary battery 700 may not be used.
  • the low voltage DC-DC converter (LDC) mode is an operation mode for charging the auxiliary battery 700 through the high voltage battery 500 .
  • LDC low voltage DC-DC converter
  • a two-step buck operation is performed to charge the auxiliary battery 700 .
  • the full bridge converter 400 charges the DC link capacitor 300 by primarily lowering the output voltage of the high voltage battery 500 .
  • the DC link capacitor 300 charges the auxiliary battery 700 by secondarily lowering the output voltage (step-down operation) using the bidirectional converter 610 .
  • FIG. 5 schematically illustrates a power flow in an auxiliary battery discharging mode.
  • the auxiliary battery 700 is discharged to charge the high voltage battery 500 .
  • a two-step boost operation is performed. More specifically, the bidirectional converter 400 charges the DC link capacitor 300 with the output of the auxiliary battery 700 , and the DC link capacitor 300 controls the high voltage battery 500 through the duty ratio control of the high frequency transformer 420 . ) to charge the boost operation.
  • FIG. 6 schematically shows a power flow in a high voltage battery discharge mode.
  • the surplus power of the high voltage battery 500 is transferred to the AC grid 100 , and the high voltage battery 500 charges the DC link capacitor 300 through the full bridge converter 400 .
  • the charged DC voltage of the DC link capacitor 300 is returned to the AC grid 100 by surplus power generated by an inverting operation of the triangle wave comparison method of the AC-DC converter 200 .
  • the OBC and LDC combination integrated power conversion circuit for an electric vehicle according to the present invention in order for the OBC and LDC combination integrated power conversion circuit for an electric vehicle according to the present invention to operate in the OBC mode, the LDC mode, and the auxiliary battery discharge mode, design conditions for the high-frequency transformer 420 are required.
  • the high voltage battery discharging mode does not need to consider the design conditions of the high frequency transformer 420 to be described below.
  • a condition to be considered first is charging of the high voltage battery 500 using the AC grid 100 in the OBC mode.
  • the AC grid 100 charges the DC link capacitor 300 through the AC-DC converter 200
  • the DC link capacitor 300 charges the high voltage battery 500 using the full bridge converter 400 .
  • the voltage of the high-voltage battery 500 is is the output voltage of the DC link capacitor 300 is
  • the turns ratio of the high-frequency transformer 420 (the winding on the second H-Bridge converter side is , the third H-Bridge converter side winding is ) and the conductivity when the current flows through the phase shift control It can be expressed as the product of
  • the next condition to be considered is charging of the auxiliary battery 700 using the high voltage battery 500 in the LDC mode.
  • the high voltage battery 500 charges the DC link capacitor 300 by first lowering the output using the turns ratio and the phase shift of the high frequency transformer 420 , and the DC link capacitor 300 is the bidirectional converter 610 .
  • the auxiliary battery 700 is charged using the step-down operation.
  • the voltage of the auxiliary battery 700 as shown in Equation 2 below is the voltage of the high voltage battery 500
  • the turns ratio of the high-frequency transformer 420, the conductivity when the current flows through the phase shift control and conductivity by buck operation It can be expressed as the product of
  • the next condition to be considered is a condition for discharging the auxiliary battery 700 in the auxiliary battery discharging mode.
  • the bidirectional converter 610 charges the DC link capacitor 300 , and the DC link capacitor 300 provides the surplus power of the auxiliary battery 700 to the high voltage battery 500 through the full bridge converter 400 .
  • the voltage of the high voltage battery 500 is is the voltage of the auxiliary battery 700 , the turns ratio of the high-frequency transformer 420, the conductivity when the current flows through the phase shift control is multiplied by , and the conductance by the boost operation at 1 is It is expressed by dividing the value minus .
  • Table 1 below shows the simulation results of the OBC and LDC combined integrated power conversion circuit for an electric vehicle according to the present invention.
  • the first inductor L1 is set to 1000uH
  • the second inductor L2 and the third inductor L3 are set to 500uH, respectively
  • the N1:N2 turns ratio of the high-frequency transformer 420 is 10: set to 26.
  • the switching frequency is set to 20 kHz
  • the sampling time is set to 0.5 us.
  • 7 is a simulation result when the OBC and LDC combination integrated power conversion circuit for an electric vehicle according to an embodiment of the present invention operates in OBC mode.
  • 7A is a gate signal of the full-bridge converter 400, and as shown in FIG. 7A , the duty ratio of the fifth switch to the eighth switch charges the high voltage battery 500 through the turn ratio control of the high frequency transformer 420. regulated to generate a voltage for The DC link capacitor 300 is charged to 380V through the AC-DC converter 200 , and becomes the primary input voltage of the high-frequency transformer 420 .
  • 7b shows the primary side voltage of the high frequency transformer 420. over current , secondary voltage over current is shown.
  • the fifth switch S5 and the eighth switch S8 generate a positive voltage
  • the sixth switch S6 and the seventh switch S7 generate a negative voltage.
  • 7C is a current waveform of the second inductor L2.
  • 8A shows the secondary side and primary side current/voltage waveforms of the high frequency transformer 420 through the high voltage battery 500 in the LDC mode.
  • the DC link capacitor 300 is charged to 80V.
  • 8B shows the current waveform of the third inductor L3 and the 14th switch S14 when the bidirectional converter 610 is in the buck mode (when the auxiliary battery 700 is charged with the output voltage of the DC link capacitor 300). ) shows the gate signal.
  • Figure 9a shows the primary side voltage of the high-frequency transformer 420 in the auxiliary battery discharging mode. over current , secondary voltage over current The waveform is shown.
  • the DC link capacitor 300 is charged to 110V.
  • 9B shows the current and voltage of the fourteenth switch S14 in the boost mode (when the DC link capacitor 300 is charged in the auxiliary battery 700) in the bidirectional converter 610. Referring to FIG.
  • the current of the fourteenth switch S14 is the current of the second inductor L2.
  • Figure 10a shows the primary side voltage of the high frequency transformer 420 in the high voltage battery discharge mode. over current , secondary voltage over current The waveform is shown.
  • Figure 10b shows the output voltage and the output current, the voltage of the AC grid 100 and the first inductor (L1) current will show
  • the OBC and LDC combination integrated power conversion circuit for electric vehicles of the present invention uses only one transformer in the combined structure of OBC and LDC used in hybrid vehicles and electric vehicles, and provides a DC link voltage variable function.
  • the system of the present invention provides a winding ratio of the high-frequency transformer 420 in consideration of three operating modes.
  • the winding ratio of the high frequency transformer 420 is generally set to the ratio of the step-down winding, but in the present invention is set to the step-up winding ratio.
  • the phase shift of the isolated full bridge converter 400 enables ZVS and a wide voltage control width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 OBC와 LDC의 일체화를 통하여 종래의 장치보다 저렴하고 부피가 작고 가벼우면서, 동작 모드에 따라 원하는 목표 전압을 출력할 수 있는 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로에 관한 것으로, 전원을 입력으로 고전압 배터리를 충방전시키되, 상기 전원과 상기 고전압 배터리 사이에 구비되는 DC 링크 커패시터와 고주파수 트랜스포머를 포함하는 충전부, 상기 고전압 배터리를 이용하여 보조 배터리를 충전시키는 전력변환부 및 상기 충전부 및 상기 전력변환부 각각을 제어하는 제어부를 포함하되, 상기 충전부와 상기 전력변환부는 상기 DC 링크 커패시터와 상기 고주파수 트랜스포머를 공유하는 것을 특징으로 한다.

Description

전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로
본 발명은 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로에 관한 것이다.
OBC(On-Board Charger)는 전기자동차(또는 플러그인 하이브리드 차량)에 포함되는 장치 중 하나로, 전기자동차의 주행에 사용되는 고전압 배터리의 충전을 위해, 외부의 AC 전원을 DC 전원으로 변환시키는 장치이다. 일반적으로 OBC는 전원으로 사용되는 AC 그리드와 고전압 배터리간의 절연을 위해 트랜스포머를 사용한다.
LDC(Low voltage DC-DC Converter)는 전기자동차의 주행에 사용되는 고전압 배터리의 전압을 저전압으로 변환하여 전기자동차의 전장 부품에 전원을 공급하는 보조배터리를 충전하는 장치이다. LDC는 고전압 배터리의 출력에서 약 10배가량의 스텝 다운과, 고전압 배터리 및 보조배터리간의 절연을 위해 OBC와 마찬가지로 트랜스포머를 사용한다.
일반적으로 충전시스템의 중량은 전기자동차 본체의 무게와 직접적으로 관계되기 때문에, 가급적 가벼운 것이 사용되어야 하며, 전기자동차는 운행동안에는 고전압 배터리를 충전하기 위한 충전부를 사용하지 않고, 보조 배터리를 사용하기 때문에, 고전압 배터리와 보조배터리 각각의 충전부는 각 특성을 고려하여 공유될 수 있으며, 이러한 연구가 진행 중에 있다.
이러한 연구의 일예로, 한국등록특허 제10-1903121호(“전기자동차용 충전 및 전력변환 겸용 회로”, 이하 선행기술 1)에는 절연형 역률보상컨버터를 사용함으로써 회로구성을 간단히 하면서 손실을 줄일 수 있는 전기자동차용 충전 및 전력변환 겸용 회로가 개시되어 있다.
도 1은 선행기술 1의 대표도이다.
도 1에 도시된 바와 같이, 선행기술 1은 입력 교류전원의 노이즈를 제거하기 위한 EMI필터, 상기 EMI필터를 통과한 입력교류전원을 정류하기 위한 정류회로, 제1인덕터, 고주파변압기, 제1스위칭회로, 제2스위칭회로 및 제3커패시터로 구성되며, 상기 정류회로에서 정류된 입력전원의 입력전류를 입력전압과 동상으로 제어하여 역률을 개선하면서 상기 고주파변압기를 통해 절연되는 구조로 상기 고주파변압기의 1차측으로 입력되는 교류입력을 상기 고주파변압기의 2차측으로 전달하는 절연형 역률보상컨버터, 상기 고주파변압기의 3차측 단자에 연결되어, 상기 고주파변압기를 통해 상기 2차측 단자에 연결되는 제2스위칭회로에 의해 전달되는 고전압의 전원을 정류하고 스위칭을 통해 교류를 직류로 변환하기 위한 3차측 정류회로, 상기 3차측 정류회로를 통과한 직류를 평활하기 위한 LC필터를 포함한다. 선행기술 1 또한 OBC와 LDC가 일체형으로 구성되어 있으나, OBC에 포함되는 DC-DC 컨버터와 LDC에 포함되는 DC-DC 컨버터 출력단의 전압 크기 차이가 커, 트랜스포머의 권선비와 스위치 도통비 제어만으로는 목표전압 생성이 어려운 경우에 대응한 대비책이 없는 문제점이 있었다.
본 발명은 상기한 바와 같은 문제점을 해결하기 위해 안출된 것으로써, 본 발명에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로의 목적은, OBC와 LDC의 일체화를 통하여 종래의 장치보다 저렴하고 부피가 작고 가벼우면서, 동작 모드에 따라 원하는 목표 전압을 출력할 수 있는 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로를 제공함에 있다.
상기한 바와 같은 문제점을 해결하기 위한 본 발명에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로는, 전원을 입력으로 고전압 배터리를 충방전시키되, 상기 전원과 상기 고전압 배터리 사이에 구비되는 고주파수 트랜스포머를 포함하는 충전부, 상기 고전압 배터리를 이용하여 보조 배터리를 충전시키는 전력변환부 및 상기 충전부 및 상기 전력변환부 각각을 제어하는 제어부를 포함하되, 상기 제어부는 단일의 상기 고주파수 트랜스포머를 이용하여 상기 고전압 배터리를 충방전시키거나, 상기 보조배터리를 충전시키는 것을 특징으로 한다.
또한, 상기 충전부는, 상기 전원에 연결되어 상기 전원으로부터 입력되는 교류를 직류로 변환시키는 AC-DC 컨버터, 상기 AC-DC 컨버터에 연결되어 충전 또는 방전되는 DC링크 커패시터 및 상기 DC 링크 커패시터와 상기 고전압 배터리 사이에 연결되어, 상기 DC링크 커패시터의 출력전압을 상기 고전압 배터리를 충전시키기 위한 전압으로 변경하는 풀 브릿지 컨버터를 포함하는 것을 특징으로 한다.
또한, 풀 브릿지 컨버터의 스위칭 주파수가 높으면 트랜스포머의 사이즈를 줄일 수 있고, 고주파 스위칭의 효율을 향상시키기 위해서는 소정의 스위칭 듀티비를 유지하는 것이 바람직하다. 상기 제어부는, 상기 고전압 배터리의 충전 또는 방전 전력량에 기초하여, 상기 풀 브릿지 컨버터의 반도체 스위치의 스위칭 듀티비를 일정하게 제어하되, 제1 H-Bridge 컨버터(210)를 이용하여 상기 DC 링크 커패시터의 전압을 가변 제어하는 것을 특징으로 한다. 이와 같은 특징으로 인하여, 충전 전력 또는 방전 전력이 가변하더라도, 풀 브릿지 컨버터의 반도체 스위치의 스위칭 듀티비는 일정하게 유지할 수 있으므로, 시스템 효율을 증대시키고, 트랜스포머의 사이즈를 줄일 수 있는 효과가 있다.
또한, 상기 AC-DC 컨버터는 Bridgeless PFC 컨버터인 것을 특징으로 한다.
또한, 상기 AC-DC 컨버터는 상기 전원과 연결되는 제1인덕터 및 상기 전원 및 상기 제1인덕터와 연결되는 제1 H-Bridge 컨버터를 포함하는 것을 특징으로 한다.
또한, 상기 풀 브릿지 컨버터는, 상기 DC 링크 커패시터와 상기 고주파수 트랜스포머 사이에 연결되는 제2 H-Bridge 컨버터 및 상기 고주파수 트랜스포머와 연결되어 상기 제2 H-Bridge 컨버터와 절연되고, 상기 고전압 배터리와 연결되는 제3 H-Bridge 컨버터를 포함하는 것을 특징으로 한다.
또한, 상기 풀 브릿지 컨버터는, 상기 제3 H-Bridge 컨버터 및 상기 고전압 배터리와 연결되는 제2 인덕터를 더 포함하는 것을 특징으로 한다.
또한, 상기 전력변환부는, 상기 DC 링크 커패시터와 상기 보조배터리 사이에 연결되는 양방향 컨버터 및 상기 양방향 컨버터와 상기 보조배터리 사이에 연결되는 제3인덕터를 포함하는 것을 특징으로 한다.
또한, 상기 제어부는 상기 컨버터 또는 상기 전원을 제어하여 상기 고전압 배터리의 충전모드, 상기 보조배터리의 충전모드, 상기 보조배터리의 방전모드 및 상기 고전압 배터리의 방전모드 중 어느 하나의 모드로 동작하도록 하는 것을 특징으로 한다.
또한, 상기 제어부는 상기 고전압 배터리의 충전모드로 동작하고, 상기 전원은 상기 AC-DC 컨버터를 이용해 상기 DC 링크 커패시터를 충전하며, 상기 DC 링크 커패시터는 상기 풀 브릿지 컨버터를 이용해 상기 고전압 배터리를 충전하는 것을 특징으로 한다.
또한, 상기 제어부는 상기 보조배터리의 충전모드로 동작하고, 상기 고전압 배터리는 상기 풀 브릿지 컨버터의 권선비와 위상 쉬프트를 이용하여 상기 DC 링크 커패시터를 충전하며, 상기 DC 링크 커패시터는 상기 전력변환부에 포함되는 양방향 컨버터의 스텝 다운 동작을 통해 상기 보조배터리를 충전하는 것을 특징으로 한다.
또한, 상기 제어부는 상기 보조배터리의 방전모드로 동작하고, 상기 전력변환부에 포함되는 양방향 컨버터는 상기 보조배터리의 출력으로 상기 DC 링크 커패시터를 충전하고, 상기 DC 링크 커패시터는 상기 풀 브릿지 컨버터를 이용해 상기 고전압 배터리에 상기 보조배터리의 출력을 전달하는 것을 특징으로 한다.
또한, 상기 제어부는 상기 고전압 배터리의 방전모드로 동작하고, 상기 고전압 배터리는 상기 풀 브릿지 컨버터에 포함되는 고주파수 트랜스포머를 통해 상기 DC 링크 커패시터를 충전하고, 상기 DC 링크 커패시터는 상기 AC-DC 컨버터의 삼각파 비교방법의 반전 동작을 이용해 상기 전원에 출력을 전달하는 것을 특징으로 한다.
상기한 바와 같은 본 발명에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로에 의하면, 동작 모드에 따라 DC 링크 커패시터의 전압을 양방향 커패시터와 보조배터리를 사용하여 달리 제어함으로써, 트랜스포머의 권선비와 풀 브릿지 컨버터에 포함되는 스위치의 듀티비 제어만으로 목표 전압을 출력할 수 없을 경우, 목표 전압이 출력될 수 있도록 전압을 다르게 공급하여 목표 전압이 출력될 수 있도록 하고, OBC와 LDC를 일체화시켜, 하나의 트랜스포머를 공유함으로써 보다 경제적이고 간략화시킬 수 있는 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로를 제공할 수 있는 효과가 있다.
도 1은 종래기술의 전기자동차의 충전 및 전력변환 겸용 회로의 개략도이고,
도 2는 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로의 회로도이며,
도 3은 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로가 OBC 모드로 동작할 때의 개략도이고,
도 4는 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로가 LDC 모드로 동작할 때의 개략도이며,
도 5는 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로가 보조배터리 방전모드로 동작할 때의 개략도이고,
도 6은 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로가 고전압 배터리 방전모드로 동작할 때의 개략도이며,
도 7은 OBC 모드의 시뮬레이션 결과의 파형이고,
도 8은 LDC 모드의 시뮬레이션 결과의 파형이며,
도 9는 고전압 배터리 방전모드의 시뮬레이션 결과의 파형이고,
도 10은 보조배터리 방전모드의 시뮬레이션 결과의 파형이다.
이하 첨부된 도면을 참고하여 본 발명에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로의 바람직한 실시예에 관하여 상세히 설명한다.
도 2는 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로의 개략적인 회로도이다.
도 2에 도시된 바와 같이, 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로는, AC 그리드(100), 충전부, 고전압 배터리(500), 전력변환부(600) 및 보조배터리(700)를 포함할 수 있으며, 충전부는 AC-DC 컨버터(200), DC 링크 커패시터(300) 및 풀 브릿지 컨버터(400)를 포함할 수 있다. 본 발명이 적용되는 전기자동차의 특성상, 고전압 배터리(500)와 보조 배터리(700)는 수시로 충방전될 수 있는데, 본 발명은 고전압 배터리(500)와 보조 배터리(700)를 충방전하는 장치 중 일부를 공유함으로써, 시스템의 중량과 부피를 감소시킬 수 있다.
AC 그리드(100)는 계통전원으로, 교류 전원을 출력하여 후술할 고전압 배터리(500)를 충전시키거나, 고전압 배터리(500)로부터 잉여 전력을 리턴받는다. 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로가 전기자동차나 플러그인 하이브리드 자동차에 적용될 경우, 고전압 배터리(500)는 차량의 주행을 위한 모터에 전력을 공급하는 역할을 할 수 있으며, 보조 배터리(700)는 차량의 전기부품에 전력을 공급하는 역할을 할 수 있다.
도 2에 도시된 바와 같이, AC-DC 컨버터(200)는 AC 그리드(100)와 연결되어, AC 그리드(100)로부터 출력되는 교류 전원을 입력받아 직류로 변환하여 출력한다. 본 발명에 의한 AC-DC 컨버터(200)는 다양한 종류의 컨버터가 사용될 수 있지만, 본 실시예에서 AC-DC 컨버터(200)는 Bridgeless PFC(Power-Factor Correction) 컨버터일 수 있다. Bridgeless PFC 컨버터는 전력변환 효율과 역률을 개선하기 위해 교류 전원을 직류로 변환하는 변환기 회로의 리액턴스 성분으로 인한 위상차를 보상하는 역할을 한다.
AC-DC 컨버터(200)는 AC 그리드(100)와 직렬로 연결된 제1인덕터(L1)와, 제1 H-Bridge 컨버터(210)를 포함하여 구성될 수 있으며, 제1H-Bridge 컨버터(210)는 제1스위치(S1), 제2스위치(S2), 제3스위치(S3) 및 제4스위치(S4)를 포함하여 구성될 수 있다.
도 2에 도시된 바와 같이, DC 링크 커패시터(300)는 AC-DC 컨버터(200)에 연결되어 충전 또는 방전된다. DC 링크 커패시터(300)는 본 발명이 동작하는 모드에 따라 다르게 충전되고, 풀 브릿지 컨버터(400)에 전압을 공급하여 풀 브릿지 컨버터(400)의 스위칭 듀티비가 일정하게 고정되더라도 풀 브릿지 컨버터(400)가 원하는 전압을 출력할 수 있도록 함으로써, 듀티비 제어의 효율을 높일 수 있다.
도 2에 도시된 바와 같이, 풀 브릿지 컨버터(400)는 DC 링크 커패시터(300)와 고전압 배터리(500) 사이에 연결되어, DC 링크 커패시터(300)의 출력전압을 고전압 배터리(500)를 충전시키기 위한 전압으로 변압한다. 풀 브릿지 컨버터(400)는 제2 H-Bridge 컨버터(410), 고주파수 트랜스포머(420) 및 제3 H-Bridge 컨버터(430)를 포함하여 구성될 수 있다.
고주파수 트랜스포머(420)는, 제2 H-Bridge 컨버터(410)와 제3 H-Bridge 컨버터(430) 사이에 배치될 수 있으며, 제2 H-Bridge 컨버터(410)와 제3 H-Bridge(430)를 절연한다. 제2 H-Bridge 컨버터(410)는 DC 링크 커패시터(300)와 연결되고, 제3 H-Bridge 컨버터(430)는 고전압 배터리(500)와 연결된다. 제2 H-Bridge 컨버터(410)는 제5스위치(S5), 제6스위치(S6), 제7스위치(S7) 및 제8스위치(S8)를 포함할 수 있으며, 제3 H-Bridge 컨버터(430)는 제9스위치(S9), 제10스위치(S10), 제11스위치(S11), 제12스위치(S12) 및 제2인덕터(L2)를 포함할 수 있다. 고주파 트랜스포머(420)의 1차측 권선은 2차측 권선보다 낮을 수 있다. 이는 추후 본 발명에 의한 시스템이 하나의 고주파수 트랜스포머(420)를 이용하여 고전압 배터리(500)와 보조배터리(700)의 충방전을 모두 수행할 수 있도록 하기 위함이다. 제2인덕터(L2)는 고전압 배터리(500)의 플러스 단자에 연결된다.
도 2에 도시된 바와 같이, 전력변환부(600)는 제3인덕터(L3) 및 양방향 컨버터(610)를 포함할 수 있으며, 양방향 컨버터(620)는 제13스위치(S13) 및 제14스위치(S14)를 포함하여 구성될 수 있다. 제3인덕터(L3)는 보조배터리(700)의 플러스 단자에 연결될 수 있다. 또한, 전력변환부(600)는 앞서 설명한 충전부(400)에 포함되는 일부 구성인 DC 링크 커패시터(300), 제1 H-Bridge 컨버터(410) 및 고주파수 트랜스포머(420)를 충전부(400)와 공유할 수 있다.
도면에는 도시되어 있지 않지만, 본 발명에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로는 각각의 컨버터에 포함된 스위치와 AC 그리드(100)를 제어하는 제어부를 포함할 수 있다.
이하 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로의 동작모드들에 관하여 설명한다.
도 3은 OBC 모드일 때의 전력흐름을 개략적으로 도시한 것이다.
도 3에 도시된 바와 같이, OBC(On Board Charger) 모드는 AC 그리드(100)에서 고전압 배터리(500)를 충전하는 동작 모드이다. OBC 모드에서 AC-DC 컨버터(200)는 AC 그리드(100)에서 출력되는 교류 전원을 직류로 변환하여 출력하여, DC 링크 커패시터(300)를 충전한다. DC 링크 커패시터(300)는 풀 브릿지 컨버터(400)를 통해 고전압 배터리(500)를 충전한다. OBC 모드에서 전력변환부(600) 및 보조 배터리(700)는 사용되지 않을 수 있다.
도 4는 LDC 모드일 때의 전력흐름을 개략적으로 도시한 것이다.
도 4에 도시된 바와 같이, LDC(Low voltage DC-DC Converter) 모드는 고전압 배터리(500)를 통해 보조배터리(700)를 충전하는 동작 모드이다. LDC 모드는 보조 배터리(700)를 충전하기 위해 2단계의 벅(buck) 동작을 수행한다. 먼저, 풀 브릿지 컨버터(400)는 고전압 배터리(500)의 출력전압을 1차적으로 낮춰 DC 링크 커패시터(300)를 충전한다. 이후 DC 링크 커패시터(300)는 양방향 컨버터(610)를 이용해, 출력전압을 2차적으로 낮춰(스텝 다운 동작) 보조배터리(700)를 충전한다.
도 5는 보조배터리 방전모드일 때의 전력흐름을 개략적으로 도시한 것이다.
도 5에 도시된 바와 같이, 보조배터리 방전모드는 보조배터리(700)를 방전시켜 고전압 배터리(500)를 충전시킨다. 보조배터리 방전모드는 보조배터리(700)에서 고전압 배터리(500)로 잉여전력을 보내기 위해, 2단계 부스트 동작을 수행한다. 보다 구체적으로, 양방향 컨버터(400)는 보조배터리(700)의 출력으로 DC 링크 커패시터(300)를 충전하고, DC 링크 커패시터(300)는 고주파수 트랜스포머(420)의 듀티비 제어를 통해 고전압 배터리(500)를 충전하는 부스트 동작을 수행한다.
도 6은 고전압 배터리 방전 모드일 때의 전력흐름을 개략적으로 도시한 것이다.
도 6에 도시된 바와 같이, 고전압 배터리(500)의 잉여 전력은 AC 그리드(100)로 전달되며, 고전압 배터리(500)는 풀 브릿지 컨버터(400)를 통해 DC 링크 커패시터(300)를 충전한다. 충전된 DC 링크 커패시터(300)의 직류 전압은 AC-DC 컨버터(200)의 삼각파 비교방법의 인버팅 동작(inverting operation)에 의해 생기는 잉여 전력에 의해 AC 그리드(100)로 반환된다.
상술한 바와 같이 본 발명에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로가 OBC 모드, LDC 모드, 보조배터리 방전모드로 동작하기 위해서는 고주파수 트랜스포머(420)의 설계 조건이 필요하다. 단, 상술한 모드들 중, 고전압 배터리 방전 모드는 이하에서 설명할 고주파수 트랜스포머(420)의 설계 조건을 고려할 필요가 없다.
먼저 고려할 조건은, OBC 모드에서 AC 그리드(100)를 이용한 고전압 배터리(500)의 충전이다. AC 그리드(100)는 AC-DC 컨버터(200)를 통해 DC 링크 커패시터(300)를 충전하며, DC 링크 커패시터(300)는 풀 브릿지 컨버터(400)를 이용해 고전압 배터리(500)를 충전한다. 아래 수학식 1과 같이 고전압 배터리(500)의 전압인
Figure PCTKR2020019413-appb-img-000001
은 DC 링크 커패시터(300)의 출력전압은
Figure PCTKR2020019413-appb-img-000002
, 고주파수 트랜스포머(420)의 권선비(제2 H-Bridge 컨버터측 권선은
Figure PCTKR2020019413-appb-img-000003
, 제3 H-Bridge 컨버터측 권선은
Figure PCTKR2020019413-appb-img-000004
) 및 전류가 위상 쉬프트 제어를 통하여 흐를 때의 전도율인
Figure PCTKR2020019413-appb-img-000005
의 곱으로 표현될 수 있다.
[수학식 1]
Figure PCTKR2020019413-appb-img-000006
다음으로 고려해야할 조건은, LDC 모드에서 고전압 배터리(500)를 이용한 보조배터리(700)의 충전이다. LDC 모드에서 고전압 배터리(500)는 고주파수 트랜스포머(420)의 권선비와 위상 쉬프트를 이용해 출력을 1차적으로 낮춰 DC 링크 커패시터(300)를 충전하며, DC 링크 커패시터(300)는 양방향 컨버터(610)의 스텝다운 동작을 이용해 보조배터리(700)를 충전한다. 아래 수학식 2와 같이 보조배터리(700)의 전압
Figure PCTKR2020019413-appb-img-000007
은 고전압 배터리(500)의 전압인
Figure PCTKR2020019413-appb-img-000008
고주파수 트랜스포머(420)의 권선비, 전류가 위상 쉬프트 제어를 통해 흐를 때의 전도율인
Figure PCTKR2020019413-appb-img-000009
및 벅 동작에 의한 전도율인
Figure PCTKR2020019413-appb-img-000010
의 곱으로 표현될 수 있다.
[수학식 2]
Figure PCTKR2020019413-appb-img-000011
다음으로 고려해야할 조건은, 보조배터리 방전모드에서 보조배터리(700)를 방전하는 조건이다. 보조배터리 방전모드에서 양방향 컨버터(610)는 DC 링크 커패시터(300)를 충전하고, DC 링크 커패시터(300)는 풀 브릿지 컨버터(400)를 통해 고전압 배터리(500)에 보조배터리(700)의 잉여 전력을 전달한다. 아래 수학식 3과 같이, 고전압 배터리(500)의 전압인
Figure PCTKR2020019413-appb-img-000012
은 보조배터리(700)의 전압인
Figure PCTKR2020019413-appb-img-000013
, 고주파수 트랜스포머(420)의 권선비, 전류가 위상 쉬프트 제어를 통해 흐를 때의 전도율인
Figure PCTKR2020019413-appb-img-000014
을 곱하고, 1에서 부스트 동작에 의한 전도율인
Figure PCTKR2020019413-appb-img-000015
을 뺀 값을 나눈 것으로 표현된다.
[수학식 3]
Figure PCTKR2020019413-appb-img-000016
아래의 표 1은 본 발명에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로의 시뮬레이션 결과를 보여준다.
[표 1]
Figure PCTKR2020019413-appb-img-000017
표 1에서 확인할 수 있듯, 제1인덕터(L1)는 1000uH, 제2인덕터(L2) 및 제3인덕터(L3)는 각각 500uH로 설정되고, 고주파수 트랜스포머(420)의 권선비인 N1:N2가 10:26으로 설정된다. 상술한 모든 동작 모드에서 스위칭 주파수는 20kHz, 샘플링 시간은 0.5us로 설정한다.
도 7은 본 발명의 일실시예에 의한 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로가 OBC 모드로 동작할 때의 시뮬레이션 결과이다. 도 7a는 풀 브릿지 컨버터(400)의 게이트 신호이며, 도 7a에 도시된 바와 같이 고주파수 트랜스포머(420)의 턴 비 제어를 통하여, 제5스위치~제8스위치의 듀티비가 고전압 배터리(500)를 충전하기 위한 전압을 생성하기 위해 조절된다. AC-DC 컨버터(200)를 통하여 DC 링크 커패시터(300)는 380V로 충전되고, 고주파수 트랜스포머(420)의 1차측 입력 전압이 된다.
도 7b는 고주파수 트랜스포머(420)의 1차측 전압
Figure PCTKR2020019413-appb-img-000018
과 전류
Figure PCTKR2020019413-appb-img-000019
, 2차측의 전압
Figure PCTKR2020019413-appb-img-000020
과 전류
Figure PCTKR2020019413-appb-img-000021
가 도시되어 있다. 제5스위치(S5)와 제8스위치(S8)는 플러스 전압을 생성하고, 제6스위치(S6)와 제7스위치(S7)는 마이너스 전압을 생성한다. 도 7c는 제2인덕터(L2)의 전류 파형이다.
도 8은 LDC 모드의 시뮬레이션 결과이다.
도 8a는 LDC 모드에서 고전압 배터리(500)를 통해 고주파수 트랜스포머(420)의 2차측과 1차측 전류/전압 파형을 도시한 것이다. DC 링크 커패시터(300)는 80V로 충전된다. 도 8b는 양방향 컨버터(610)가 벅 모드일 때,(DC 링크 커패시터(300)의 출력전압으로 보조배터리(700)를 충전할 때) 제3인덕터(L3)의 전류파형과 제14스위치(S14)의 게이트 신호를 도시한 것이다.
도 9는 보조배터리 방전 모드의 시뮬레이션 결과이다.
도 9a는 보조배터리 방전 모드에서 고주파수 트랜스포머(420)의 1차측 전압
Figure PCTKR2020019413-appb-img-000022
과 전류
Figure PCTKR2020019413-appb-img-000023
, 2차측의 전압
Figure PCTKR2020019413-appb-img-000024
과 전류
Figure PCTKR2020019413-appb-img-000025
파형을 도시한 것이다. DC 링크 커패시터(300)는 110V로 충전된다. 도 9b는 양방향 컨버터(610)가 부스트 모드(보조배터리(700)에서 DC 링크 커패시터(300)를 충전시킬 때) 제14스위치(S14)의 전류와 전압을 도시한 것이다. 제14스위치(S14)의 전류는 제2인덕터(L2)의 전류이다.
도 10은 고전압 배터리 방전모드의 시뮬레이션 결과이다.
도 10a는 고전압 배터리 방전 모드에서 고주파수 트랜스포머(420)의 1차측 전압
Figure PCTKR2020019413-appb-img-000026
과 전류
Figure PCTKR2020019413-appb-img-000027
, 2차측의 전압
Figure PCTKR2020019413-appb-img-000028
과 전류
Figure PCTKR2020019413-appb-img-000029
파형을 도시한 것이다. 도 10b는 출력전압과 출력전류를 도시한 것으로, AC 그리드(100)의 전압인
Figure PCTKR2020019413-appb-img-000030
와 제1인덕터(L1) 전류
Figure PCTKR2020019413-appb-img-000031
을 도시한 것이다.
시뮬레이션은 DC 링크 커패시터의 전압을 가변하면서 수행되었다. 즉, 본 발명은 DC 링크 커패시터(300)의 전압을 다르게 충전하고, 풀 브릿지 컨버터(400)의 위상 쉬프트 동작은 효과적인 듀티-비 가변성과 ZVS(Zero Voltage Switching)를 가능하게 하여, 하나의 트랜스포머만을 이용하여 고전압 배터리(500)의 충방전과 보조배터리(700)의 충방전이 가능하게 한다. 본 발명의 전기자동차용 OBC 및 LDC 결합 일체형 전력 변환 회로는 하이브리드 자동차와 전기자동차에 사용되는 OBC와 LDC의 결합 구조에서 트랜스포머를 하나만 사용하고, DC 링크 전압 가변 기능을 제공한다. 본 발명의 시스템은 3가지 동작 모드를 고려하여 고주파수 트랜스포머(420)의 와인딩 비율을 제공하였다. 고전압 배터리가 전원을 통해 충전될 때, 고주파수 트랜스포머(420)의 와인딩비는 일반적으로는 스탭 다운 와인딩의 비에 설정되지만, 본 발명에서는 스텝 업 와인딩 비로 설정된다. 격리된 풀 브릿지 컨버터(400)의 위상 쉬프트는 ZVS와 넓은 전압 제어폭을 가능하게 한다.
이상과 같이 본 발명에서는 구체적인 구성 등과 같은 특정 사항들과 한정된 실시예 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것 일 뿐, 본 발명은 상기의 일 실시예에 한정되는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허 청구 범위뿐 아니라 이 특허 청구 범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
[부호의 설명]
100 : AC 그리드
200 : AC-DC 컨버터
210 : 제1 H-Bridge 컨버터
300 : DC 링크 커패시터
400 : 풀 브릿지 컨버터
410 : 제2 H-Bridge 컨버터
420 : 고주파수 트랜스포머
430 : 제3 H-Bridge 컨버터
500 : 고전압 배터리
600 : 전력변환부
610 : 양방향 컨버터
700 : 보조배터리
L1 ~ L3 : 제1인덕터 ~ 제3인덕터
S1 ~ S14 : 제1스위치 ~ 제14스위치

Claims (13)

  1. 전원을 입력으로 고전압 배터리를 충방전시키되, 상기 전원과 상기 고전압 배터리 사이에 구비되는 DC 링크 커패시터 및 상기 DC 링크 커패시터와 상기 고전압 배터리 사이에 구비된 트랜스포머를 포함하는 충전부;
    상기 전원 또는 상기 고전압 배터리로부터 입력된 전력을 이용하여 보조 배터리를 충전시키는 전력변환부; 및
    상기 충전부 및 상기 전력변환부 각각을 제어하는 제어부;
    를 포함하되,
    상기 충전부와 상기 전력변환부는 상기 DC 링크 커패시터와 상기 트랜스포머를 공유하는 것을 특징으로 하는 전력 변환 회로.
  2. 제1항에 있어서,
    상기 충전부는,
    상기 전원에 연결되어 상기 전원으로부터 입력되는 교류를 직류로 변환시키는 AC-DC 컨버터;를 포함하며,
    상기 DC 링크 커패시터는 상기 AC-DC 컨버터에 연결되어 충전 또는 방전되고,
    상기 DC 링크 커패시터와 상기 고전압 배터리 사이에 연결되어, 상기 DC링크 커패시터의 출력전압을 상기 고전압 배터리를 충전시키기 위한 전압으로 변경하는 풀 브릿지 컨버터;를 더 포함하는 것을 특징으로 하는 전력 변환 회로.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 고전압 배터리의 충전 또는 방전 전력량에 기초하여, 상기 풀 브릿지 컨버터의 반도체 스위치의 스위칭 듀티비를 일정하게 제어하되, 제1 H-Bridge 컨버터를 이용하여 상기 DC 링크 커패시터의 전압을 가변 제어하는 것을 특징으로 하는 전력 변환 회로.
  4. 제2항에 있어서,
    상기 AC-DC 컨버터는 Bridgeless PFC 컨버터인 것을 특징으로 하는 전력 변환 회로.
  5. 제2항에 있어서,
    상기 AC-DC 컨버터는 상기 전원과 연결되는 제1인덕터; 및
    상기 전원 및 상기 제1인덕터와 연결되는 제1 H-Bridge 컨버터;
    를 포함하는 것을 특징으로 하는 전력 변환 회로.
  6. 제2항에 있어서,
    상기 풀 브릿지 컨버터는,
    상기 DC 링크 커패시터와 상기 트랜스포머 사이에 연결되는 제2 H-Bridge 컨버터; 및
    상기 트랜스포머와 연결되어 상기 제2 H-Bridge 컨버터와 절연되고, 상기 고전압 배터리와 연결되는 제3 H-Bridge 컨버터;
    를 포함하는 것을 특징으로 하는 전력 변환 회로.
  7. 제6항에 있어서,
    상기 풀 브릿지 컨버터는,
    상기 제3 H-Bridge 컨버터 및 상기 고전압 배터리와 연결되는 제2 인덕터;
    를 더 포함하는 것을 특징으로 하는 전력 변환 회로.
  8. 제2항에 있어서,
    상기 전력변환부는,
    상기 DC 링크 커패시터와 상기 보조배터리 사이에 연결되는 양방향 컨버터; 및
    상기 양방향 컨버터와 상기 보조배터리 사이에 연결되는 제3인덕터;
    를 포함하는 것을 특징으로 하는 전력 변환 회로.
  9. 제2항에 있어서,
    상기 제어부는 상기 컨버터 또는 상기 전원을 제어하여 상기 고전압 배터리의 충전모드, 상기 보조배터리의 충전모드, 상기 보조배터리의 방전모드 및 상기 고전압 배터리의 방전모드 중 어느 하나의 모드로 동작하도록 하는 것을 특징으로 하는 전력 변환 회로.
  10. 제9항에 있어서,
    상기 제어부는 상기 고전압 배터리의 충전모드로 동작하고,
    상기 전원은 상기 AC-DC 컨버터를 이용해 상기 DC 링크 커패시터를 충전하며,
    상기 DC 링크 커패시터는 상기 풀 브릿지 컨버터를 이용해 상기 고전압 배터리를 충전하는 것을 특징으로 하는 전력 변환 회로.
  11. 제9항에 있어서,
    상기 제어부는 상기 보조배터리의 충전모드로 동작하고,
    상기 고전압 배터리는 상기 풀 브릿지 컨버터의 권선비와 위상 쉬프트를 이용하여 상기 DC 링크 커패시터를 충전하며,
    상기 DC 링크 커패시터는 상기 전력변환부에 포함되는 양방향 컨버터의 스텝 다운 동작을 통해 상기 보조배터리를 충전하는 것을 특징으로 하는 전력 변환 회로.
  12. 제9항에 있어서,
    상기 제어부는 상기 보조배터리의 방전모드로 동작하고,
    상기 전력변환부에 포함되는 양방향 컨버터는 상기 보조배터리의 출력으로 상기 DC 링크 커패시터를 충전하고, 상기 DC 링크 커패시터는 상기 풀 브릿지 컨버터를 이용해 상기 고전압 배터리에 상기 보조배터리의 출력을 전달하는 것을 특징으로 하는 전력 변환 회로.
  13. 제9항에 있어서,
    상기 제어부는 상기 고전압 배터리의 방전모드로 동작하고,
    상기 고전압 배터리는 상기 풀 브릿지 컨버터에 포함되는 트랜스포머를 통해 상기 DC 링크 커패시터를 충전하고, 상기 DC 링크 커패시터는 상기 AC-DC 컨버터의 삼각파 비교방법의 반전 동작을 이용해 상기 전원에 출력을 전달하는 것을 특징으로 하는 전력 변환 회로.
PCT/KR2020/019413 2020-05-25 2020-12-30 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로 WO2021241831A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0062414 2020-05-25
KR1020200062414A KR102500741B1 (ko) 2020-05-25 2020-05-25 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로

Publications (1)

Publication Number Publication Date
WO2021241831A1 true WO2021241831A1 (ko) 2021-12-02

Family

ID=78744971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019413 WO2021241831A1 (ko) 2020-05-25 2020-12-30 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로

Country Status (2)

Country Link
KR (1) KR102500741B1 (ko)
WO (1) WO2021241831A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114435163A (zh) * 2022-01-13 2022-05-06 南京航空航天大学 一种电动汽车双电池集成化充电拓扑电路及其交错控制策略方法
GB2615871A (en) * 2021-12-16 2023-08-23 Jaguar Land Rover Ltd Electrical vehicle circuitry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102594689B1 (ko) * 2022-01-27 2023-10-25 엘에스일렉트릭(주) 전력용 반도체 변압기 모듈 및 이를 이용한 변압기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170064080A (ko) * 2015-11-30 2017-06-09 현대자동차주식회사 차량의 고전압배터리 충전 제어방법 및 시스템
KR20170126053A (ko) * 2016-05-04 2017-11-16 현대자동차주식회사 양방향 파워링이 가능한 차량용 충전기, 이를 포함하는 차량 전력 공급 시스템 및 그 제어방법
KR20170131895A (ko) * 2016-05-23 2017-12-01 주식회사 이진스 전기자동차용 충전 및 전력변환 겸용 회로
KR20190054390A (ko) * 2017-11-13 2019-05-22 주식회사 이진스 전기자동차용 충전 및 저전압 변환 복합회로

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155117B1 (ko) * 2018-10-02 2020-09-11 영남대학교 산학협력단 전기차용 능동형 전력 디커플링 기능을 갖는 일체형 멀티 충전시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170064080A (ko) * 2015-11-30 2017-06-09 현대자동차주식회사 차량의 고전압배터리 충전 제어방법 및 시스템
KR20170126053A (ko) * 2016-05-04 2017-11-16 현대자동차주식회사 양방향 파워링이 가능한 차량용 충전기, 이를 포함하는 차량 전력 공급 시스템 및 그 제어방법
KR20170131895A (ko) * 2016-05-23 2017-12-01 주식회사 이진스 전기자동차용 충전 및 전력변환 겸용 회로
KR20190054390A (ko) * 2017-11-13 2019-05-22 주식회사 이진스 전기자동차용 충전 및 저전압 변환 복합회로

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEO DAE-HO; KWAK YUN-GI; KANG FEEL-SOON: "Integration of OBC and LDC Using Adaptive DC Link Voltage", 2019 INTERNATIONAL SYMPOSIUM ON ELECTRICAL AND ELECTRONICS ENGINEERING (ISEE), 10 October 2019 (2019-10-10), pages 261 - 264, XP033646372, DOI: 10.1109/ISEE2.2019.8921009 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615871A (en) * 2021-12-16 2023-08-23 Jaguar Land Rover Ltd Electrical vehicle circuitry
GB2615870A (en) * 2021-12-16 2023-08-23 Jaguar Land Rover Ltd Electrical vehicle circuitry
CN114435163A (zh) * 2022-01-13 2022-05-06 南京航空航天大学 一种电动汽车双电池集成化充电拓扑电路及其交错控制策略方法
CN114435163B (zh) * 2022-01-13 2024-04-30 南京航空航天大学 一种电动汽车双电池集成化充电拓扑电路及其交错控制策略方法

Also Published As

Publication number Publication date
KR20210145889A (ko) 2021-12-03
KR102500741B1 (ko) 2023-02-20

Similar Documents

Publication Publication Date Title
WO2021241831A1 (ko) 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로
WO2012141434A2 (ko) 전기 차량용 배터리 충전 장치
CN105637750A (zh) 电力变换装置
JP2015122940A (ja) 電力変換装置
WO2014069900A1 (ko) Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치
WO2017086714A1 (ko) 무선 충전기용 공진 컨버터 및 그 구현방법
WO2018113507A1 (zh) 多功能车载功率变换器和包含其的电动汽车
WO2013100559A1 (ko) 전기자동차 충전장치
US11368037B2 (en) On-board charger (OBC) single-stage converter
WO2018147544A1 (ko) 전력 변환 장치 및 이를 포함하는 배터리의 충전 시스템
CN210075077U (zh) 一种功率因数校正电路及车载充电机
US11870291B2 (en) Apparatus for single stage on-board charger with an integrated pulsating buffer control
WO2021251583A1 (ko) 저압 및 고압 일체용 충전 장치
CN107786095A (zh) 电压转换装置
CN114614665A (zh) 用于单级车载充电器功率因数校正无功控制的系统和方法
US11689112B2 (en) DC-DC converter and vehicle
CN109842182B (zh) 供电系统
WO2014069743A1 (ko) 양방향 동작이 가능한 전기 차량용 배터리 충전 장치
WO2010126220A2 (ko) 직렬 보상 정류기를 포함하는 직류 무정전 전원장치
WO2012128441A1 (ko) 급속 충전용 전원 장치
CN114094850A (zh) 具有脉动缓冲器的板载充电器的系统和方法
WO2022114575A1 (ko) 배터리 충/방전용 dc-dc 컨버터
WO2021020638A1 (ko) 인버터-충전기 통합 장치 및 이를 제어하는 제어방법
KR20200038152A (ko) 전기차용 능동형 전력 디커플링 기능을 갖는 일체형 멀티 충전시스템
CN110014986B (zh) 分布式单级车载充电装置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938061

Country of ref document: EP

Kind code of ref document: A1