WO2017086714A1 - 무선 충전기용 공진 컨버터 및 그 구현방법 - Google Patents

무선 충전기용 공진 컨버터 및 그 구현방법 Download PDF

Info

Publication number
WO2017086714A1
WO2017086714A1 PCT/KR2016/013274 KR2016013274W WO2017086714A1 WO 2017086714 A1 WO2017086714 A1 WO 2017086714A1 KR 2016013274 W KR2016013274 W KR 2016013274W WO 2017086714 A1 WO2017086714 A1 WO 2017086714A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
coil
resonant
resonant tank
voltage
Prior art date
Application number
PCT/KR2016/013274
Other languages
English (en)
French (fr)
Inventor
최우진
덕홍 트란
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160141559A external-priority patent/KR101851995B1/ko
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to US15/766,749 priority Critical patent/US10998768B2/en
Publication of WO2017086714A1 publication Critical patent/WO2017086714A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a resonant converter for a wireless charger and a method for implementing the same, and more particularly, to a resonant converter for a wireless charger and a method for implementing the same, which realize constant current and constant voltage charging.
  • Wireless power transfer has been proposed.
  • Wireless power transfer methods have recently been in the spotlight because they do not require wire connection, can safely recharge the device, and are convenient.
  • Such wireless power transmission method is typically an inductive wireless power transmission system using two resonant coils of short distance.
  • Topologies of inductive wireless power systems may have maximum efficiency when the air gap is short.
  • the magnetic coupling weakens and the efficiency decreases rapidly. Therefore, various methods for increasing the magnetization coupling have been studied.
  • a method of using a high permeability material such as ferrite has been proposed, but it is not suitable for application to electric vehicles by increasing the size, weight and cost.
  • a three-coil system has been proposed that adds intermediate coils to improve coupling efficiency, but the zero phase angle (ZPA) condition cannot be achieved in the charging operation.
  • ZPA zero phase angle
  • the disadvantage is that switching is impossible, and switching losses are inevitable due to the narrow soft switching range.
  • the loss of primary side switch elements is one of the most important reasons for reducing the efficiency of the overall system.
  • the output voltage can be controlled by a pulse frequency modulation (PFM) method, but a wide range of frequency change is inevitable, and the zero phase angle condition in the whole charging operation is inevitable.
  • PFM pulse frequency modulation
  • a control method combining phase shift and PFM has been proposed. This can achieve the soft switching conditions of the primary side switch elements using hardware to detect zero-crossing of the primary side current.
  • the need for an additional dc-dc converter to control the thrust voltage has the disadvantage of complex implementation and increased manufacturing cost.
  • One aspect of the present invention provides a resonant converter for a wireless charger that performs voltage conversion of an induction power transfer method between a primary side resonant tank and a secondary side resonant tank, each including an intermediate resonator, in addition to a transmission resonator and a reception resonator.
  • Another aspect of the present invention provides a method of implementing a resonant converter for a wireless charger implementing a resonant tank including two intermediate resonators for realizing constant current and constant voltage charging under zero phase angle conditions.
  • a resonant converter for a wireless charger is connected to an input power supply for supplying an input voltage, and a plurality of resonators including a full bridge inverter provided with first to fourth switches, a series connected capacitor, and a coil are provided. And a rectifying bridge receiving the input voltage from the full bridge inverter, performing a voltage conversion of an induction power transfer method between a plurality of resonators, and rectifying the output voltage received from the resonant tank and transferring the rectified bridge to a battery.
  • the resonant tank may include a first resonator connected to the full bridge inverter and a first side resonator tank including a first intermediate resonator coupled to the first resonator, and a second resonator connected to the rectifying bridge and the first resonator.
  • a secondary side resonant tank including a second intermediate resonator coupled in series with the second resonator may perform voltage conversion of an induction power transfer method between the primary resonant tank and the four resonators of the secondary resonant tank.
  • the resonant tank when the resonant tank operates under a constant frequency constant current mode frequency condition, the resonant tank may output a constant current to the rectifying bridge.
  • the first switch to the fourth switch provided in the full bridge inverter achieve the switching operation under the soft switching condition by achieving the zero phase angle condition of the input impedance. Can be done.
  • the resonant tank may output a voltage having a constant magnitude to the rectifying bridge when operating under a constant voltage mode frequency condition that is a fixed frequency.
  • the first switch to the fourth switch provided in the full bridge inverter achieve a switching operation under the soft switching condition by achieving a zero phase angle condition of an input impedance. Can be done.
  • another aspect of the present invention is a resonant converter for a wireless charger, which is connected to an input power supply for supplying an input voltage, and includes a full bridge inverter provided with first to fourth switches, a plurality of capacitors and a coil connected in series.
  • a resonator receiving the input voltage from the full bridge inverter, a resonant tank for performing a voltage conversion of the inductive power transfer method between a plurality of resonators, rectifying the rectified output voltage transmitted from the resonant tank to the battery
  • the resonant tank may include a first resonator connected to the full bridge inverter and a first side resonator tank including a first intermediate resonator coupled to the first resonator, and a second resonator connected to the rectifying bridge and the first resonator.
  • a secondary side resonant tank including a second intermediate resonator coupled in series with the second resonator may perform voltage conversion of an induction power transfer method between the primary resonant tank and the four resonators of the secondary resonant tank.
  • the resonant tank when the resonant tank operates under a constant frequency constant current mode frequency condition, the resonant tank may output a constant current to the rectifying bridge.
  • the first switch to the fourth switch provided in the full bridge inverter achieve the switching operation under the soft switching condition by achieving the zero phase angle condition of the input impedance. Can be done.
  • the resonant tank may output a voltage having a constant magnitude to the rectifying bridge when operating under a constant voltage mode frequency condition that is a fixed frequency.
  • the first switch to the fourth switch provided in the full bridge inverter achieve a switching operation under the soft switching condition by achieving a zero phase angle condition of an input impedance. Can be done.
  • the control circuit may further include a mode change switch configured to compare the battery power supply with a reference power supply so as to perform different control according to the constant current mode or the constant voltage mode. It may include a PI controller for controlling the switching operation of the switch elements provided in the full bridge inverter to operate, and an anti-wind up circuit for reducing the overshoot and travel time caused by the operation of the PI controller.
  • another aspect of the present invention provides a primary resonant tank including a first resonator and a first intermediate resonator softly coupled to the first resonator, and a second intermediate resonator softly coupled to the second resonator and the second resonator.
  • a resonant tank for performing a voltage conversion of the induction power transfer method between the secondary side resonant tank including a, Wireless charger for transferring the voltage of the input terminal connected to the primary side resonant tank to the output terminal connected to the secondary side resonant tank
  • the inductance may be set and each of the second coil included in the first intermediate resonator and the third coil included in the second intermediate resonator may have a maximum cue recognition value.
  • the first resonator is provided in the input terminal, and includes a first switch to a fourth switch to connect the full bridge inverter for transmitting the input voltage to the resonant tank
  • the second resonator is provided in the output terminal
  • the method may further include connecting the rectifying bridge to rectify the output of the resonant tank including first to fourth diodes.
  • constant current and constant voltage charging can be performed under fixed frequency conditions irrespective of load changes, so that control is simple and stability of the charger can be guaranteed.
  • FIG. 1 is a schematic circuit diagram of a resonant converter for a wireless charger according to an embodiment of the present invention.
  • FIG. 2 is an example of measuring an equivalent impedance of the battery shown in FIG. 1.
  • FIG. 3 is a schematic equivalent circuit diagram of a resonant converter for a wireless charger according to an embodiment of the present invention shown in FIG. 1.
  • FIG. 4 is a circuit diagram illustrating an impedance network of a resonant converter for a wireless charger according to an embodiment of the present invention.
  • 5 to 7 are simplified views of the Thevenin's theorem applied to the impedance network of the resonant converter for a wireless charger according to an embodiment of the present invention illustrated in FIG. 4.
  • FIG 8 is a graph illustrating an output current when the resonant converter according to an embodiment of the present invention operates in the constant current mode for constant current charging.
  • FIG. 9 is a graph showing a voltage gain when the resonant converter according to an embodiment of the present invention operates in the constant voltage mode for constant voltage charging.
  • 10A, 10B, 11A, and 11B are graphs for describing a method of realizing constant voltage charging under a zero phase angle condition of a resonant converter for a wireless charger according to an embodiment of the present invention.
  • FIG. 12 is a schematic circuit diagram of a resonant converter for a wireless charger according to another embodiment of the present invention.
  • 13A and 13B are graphs showing voltage gains when performing constant current and constant voltage charging in a resonant converter for a wireless charger according to another embodiment of the present invention.
  • 14A to 16 are views for explaining the advantageous effect of the resonant converter for a wireless charger according to an embodiment of the present invention.
  • FIG. 1 is a schematic circuit diagram of a resonant converter for a wireless charger according to an embodiment of the present invention
  • FIG. 2 is an example of measuring an equivalent impedance of the battery shown in FIG. 1.
  • the resonant converter 100 for a wireless charger is a converter for a battery charging device supporting wireless charging, and converts a voltage U dc of an input terminal into an induction power transmission method. It can be delivered to the battery, for this purpose, it may be composed of a full bridge inverter 110, a resonant tank 120 and the rectifying bridge 130.
  • the resonant tank 120 is a loosely coupled transformer including two intermediate resonators, for example, the resonant converter 100 for a wireless charger according to an embodiment of the present invention
  • Table 1 When operating under the conditions shown in Table 1 below, constant current / constant voltage charging of the battery connected to the output terminal can be realized. That is, the battery connected to the output terminal of the resonant converter 100 for a wireless charger according to an embodiment of the present invention may have an equivalent impedance shown in FIG. 2 while charging is in progress.
  • the full bridge inverter 110 includes a full bridge circuit provided with the first switch S 1 to the fourth switch S 4 , which is connected to an input terminal for supplying an input voltage U dc .
  • the input voltage U dc may be transmitted to the resonant tank 120 according to the switching operation of the first switch S 1 to the fourth switch S 4 .
  • the full bridge inverter 110 may include a first leg provided with the first switch S 1 and a third switch S 3 , a second leg S 2 , and a fourth switch S 4 provided with the first leg.
  • the two legs include a full bridge circuit connected in parallel, and upper and lower contacts of the first leg and the second leg may be connected to an input capacitor supplying an input voltage U dc , respectively.
  • the resonant tank 120 is a loosely coupled transformer including two intermediate resonators, and may be largely divided into a primary resonant tank and a secondary resonant tank.
  • the primary resonant tank may include a first resonator connected with the full bridge inverter 110 and a first intermediate resonator coupled with the first resonator
  • the secondary resonant tank may include a second resonator connected with the rectifying bridge 130.
  • a second intermediate resonator softly coupled to the second resonator.
  • the first resonator, the second resonator, the first intermediate resonator, and the second intermediate resonator are all series-serial resonant tanks, and may be composed of coils and capacitors. Voltage conversion of the induction power transfer method may be performed. That is, the resonant tank 120 may perform energy transfer between four coils in a soft coupling in a series-serial four coil compensation topology.
  • the primary resonant tank may include a first resonator connected to the full bridge inverter 110 and a first intermediate resonator coupled in series with the first resonator, and the first resonator may include a first coil 121 connected in series. And a first capacitor 122, and the first intermediate resonator may include a second coil 123 and a second capacitor 124 connected in series.
  • the first resonator may be implemented on an input voltage line connecting two legs constituting the full bridge inverter 110, wherein one end of the first capacitor 122 is connected to the first switch S 1 and the third switch S 3.
  • the second coil 123 included in the first intermediate resonator may be softly coupled to the first coil 121.
  • the first coil 121 and the second coil 123 may be softly coupled to the third coil 125 and the fourth coil 127 included in the secondary-side resonant tank to be described later.
  • the secondary side resonant tank may include a second resonator connected to the rectifying bridge 130 and a second intermediate resonator softly coupled to the second resonator, and the second intermediate resonator may include a third coil 125 and a third capacitor connected in series. 126, and the second resonator may include a fourth coil 127 and a fourth capacitor 128 connected in series.
  • the second resonator may be implemented on an output voltage line connecting two legs constituting the rectifying bridge 130, wherein one end of the fourth capacitor 128 has a first diode D 1 and a third diode D 3 .
  • the other end of the fourth capacitor 128 is connected to one end of the fourth coil 127, and the other end of the fourth coil 127 is connected to the second diode D 2 and the fourth diode D 4 . Can be connected between.
  • the third coil 125 included in the second intermediate resonator may be softly coupled to the fourth coil 127.
  • the third coil 125 and the fourth coil 127 may be softly coupled to the first coil 121 and the second coil 123 included in the primary side resonant tank.
  • the resonant tank 120 includes two intermediate resonant tanks each having a capacitor and a coil connected in series, respectively, on both sides of the primary side and the secondary side, and softly coupled to the resonance tanks provided on both sides of the primary side and the secondary side. It may be a form further comprising a resonator. Basic features of such a resonant tank 120 will be briefly described based on first harmonic approximation (FHA) with reference to FIGS. 3 and 4.
  • FHA first harmonic approximation
  • u 1 (t) is the fundamental harmonic voltage of the square wave input voltage of the resonant tank 120
  • U dc is the input voltage
  • is the operating frequency of the resonant tank 120
  • i 1 (t) is the fundamental harmonic current of the square wave input current of the resonant tank 120
  • u 4 (t) is the fundamental harmonic voltage of the square wave output voltage of the resonant tank 120
  • i 4 (t) is the resonant tank
  • the fundamental harmonic current of the square wave output current of 120, I 1 to I 4 are the currents flowing through the first coil 121 to the fourth coil 127, respectively
  • I o is the output current and R L
  • eq is the constant current / constant voltage.
  • the equivalent load resistance, n f21 taking into account the state of charge of the battery during charging, is the ratio f 2 / f 1 of the resonant frequencies of the first coil 121 and the second coil 123, L 1 , L 2 , L 3 and L 4 is the inductance of the first coil 121 to the fourth coil 127, respectively, k 12 , k 13 , k 14 , k 23 , k 24 and k 34 are coupling coefficients between the two coils shown in FIG. 3, respectively.
  • Z pri and Z se are the impedances of the primary resonant tank and the secondary resonant tank, respectively, and Z mag represents the mutual impedance between the primary resonant tank and the secondary resonant tank.
  • FIG. 3 is a schematic equivalent circuit diagram of a resonant converter for a wireless charger according to an embodiment of the present invention shown in FIG. 1
  • FIG. 4 is a circuit diagram showing an impedance network of a resonant converter for a wireless charger according to an embodiment of the present invention. to be.
  • Equation 1 may be obtained from a first harmonic approximation model of the resonant converter 100 for a wireless charger illustrated in FIG. 3.
  • Equation 2 a voltage equation such as Equation 2 below may be obtained.
  • the resonant converter 100 for a wireless charger may be represented by a two-port impedance network as shown in FIG. 4, wherein the voltage expressions of the two closed circuits may be represented by Equation 3 below. have.
  • Equation 3 Z mag denotes an effective magnetization impedance between the primary resonance tank and the secondary resonance tank, Z pri and Z se denote impedances of the primary resonance tank and the secondary resonance tank, respectively, wherein the primary resonance tank and The impedance of the secondary resonance tank and the effective magnetization impedance between the primary resonance tank and the secondary resonance tank may be calculated by Equation 4 below.
  • the resonant converter 100 for a wireless charger may realize constant current and constant voltage charging of a battery connected to an output terminal by the resonant tank 120, and a method of implementing the resonant tank 120 for this purpose. Detailed description will be described later.
  • the rectifying bridge 130 includes a full bridge circuit in which first diodes D 1 to fourth diodes D 4 are provided, and the full bridge circuit is connected to an output terminal and thus, a first diode.
  • the energy received from the resonant tank 120 may be rectified by the first through fourth diodes D 1 to D 4 and transferred to the batteries R b and C b .
  • the rectifying bridge 130 includes a fourth leg provided with the first diode D 1 and the third diode D 3 , a fourth diode provided with the second diode D 2 , and a fourth diode D 4 .
  • Legs include a full bridge circuit connected in parallel, and the upper and lower contacts of the third leg and the fourth leg may be connected to an output capacitor connected in parallel with the battery, respectively.
  • FIG. 5 to 7 is a simplified view of applying the Thevenin's theorem to the impedance network of the resonant converter for a wireless charger according to an embodiment of the present invention shown in Figure 4,
  • Figure 8 is a view of the present invention 9 is a graph illustrating an output current when the resonant converter is operated in the constant current mode for constant current charging, and
  • FIG. 9 is a voltage gain when the resonant converter is operated in the constant voltage mode for constant voltage charging according to an embodiment of the present invention. This is a graph.
  • the resonant converter 100 for a wireless charger may realize constant current and constant voltage charging of a battery connected to an output terminal. That is, the resonant converter 100 for a wireless charger according to an embodiment of the present invention can operate as a current source and a voltage source. In order to have such an operating characteristic, the resonant tank 120 must be appropriately implemented.
  • u 1 (t) is the fundamental harmonic voltage of the square wave input voltage of the resonant tank 120
  • U dc is the input voltage
  • is the operating frequency of the resonant tank 120
  • i 1 (t) is the fundamental harmonic current of the square wave input current of the resonant tank 120
  • u 4 (t) is the fundamental harmonic voltage of the square wave output voltage of the resonant tank 120
  • i 4 (t) is the resonant tank
  • the fundamental harmonic current of the square wave output current of 120, I 1 to I 4 are the currents flowing through the first coil 121 to the fourth coil 127, respectively
  • I o is the output current and R L
  • eq is the constant current / constant voltage.
  • the equivalent load resistance, n f21 taking into account the state of charge of the battery during charging, is the ratio f 2 / f 1 of the resonant frequencies of the first coil 121 and the second coil 123, L 1 , L 2 , L 3 and L 4 is the inductance of the first coil 121 to the fourth coil 127, respectively, k 12 , k 13 , k 14 , k 23 , k 24 and k 34 are coupling coefficients between the two coils shown in FIG. 3, respectively.
  • Z pri and Z se are the impedances of the primary and secondary resonant tanks
  • Z mag is the mutual impedance between the primary and secondary resonant tanks
  • Z in is the input impedance of the resonant tank 120, , Z TH
  • the impedance network of the resonant converter for a wireless charger may be represented as a 2-port impedance network. It can be shown more briefly. Equation for implementing the Thevenin equivalent circuit as shown in FIG. 5 is the same as Equations 5 to 8 below.
  • Thevenin current ( ) Can be determined that the Thevenin impedance (Z TH ) may have a constant value when the value of the Thevenin impedance (Z TH ) is sufficiently larger than the load resistance (R L, eq ). That is, referring to Equation 7, when the impedance Z pri of the primary resonant tank becomes 0 at the operating frequency as shown in Equation 9 below, the Thevenin current ( ) May have a constant value regardless of the magnitude of the load resistance.
  • a change in output current according to a change in operating frequency under various load conditions can be confirmed.
  • a constant current frequency (f CC ) of 50 kHz a constant current of 15.7 A is output regardless of the load condition. Can be confirmed.
  • the resonant converter 100 for a wireless charger can achieve a zero phase angle (ZPA) condition when operating in a constant current mode for constant current charging. 8, it can be seen that the phase of the input impedance becomes zero under the constant current frequency condition.
  • ZPA zero phase angle
  • Equation 8 it can be seen that the change in the voltage gain according to the change in the operating frequency under various load conditions as shown in FIG. According to Equations 8 and 7, when the Thevenin impedance Z TH is 0, it may be confirmed that the output voltage is constant regardless of the load condition.
  • FIG. 9 it can be seen that the resonant converter 100 according to an embodiment of the present invention can realize constant voltage charging when operated under two different constant voltage mode frequencies f CV1 and f CV2 . .
  • Equation 11 when the load changes, it can be seen that the phase of the input impedance also changes. Therefore, it appears that the zero phase angle (ZPA) condition cannot be achieved when the resonant converter 100 for a wireless charger according to an embodiment of the present invention operates in the constant voltage mode for realizing the constant voltage charging as in the conventional converter.
  • ZPA zero phase angle
  • the effective magnetization impedance Z mag between the primary resonance tank and the secondary resonance tank is implemented to have a very large value, the zero phase angle condition can be achieved even when operating in the constant voltage mode.
  • the resonant converter 100 for a wireless charger includes two intermediate resonators in the resonant tank 120, unlike the topology of the conventional wireless charger converter, thereby providing a primary resonant tank and a second resonator. It is possible to increase the value of the effective magnetization impedance between the vehicle side resonance tanks, thereby achieving the zero phase angle condition when operating in the constant voltage mode. This will be described in detail with reference to FIGS. 10A, 10B, 11A, and 11B.
  • 10A and 11B are graphs for describing a method of realizing constant voltage charging under a zero phase angle condition of a resonant converter for a wireless charger according to an embodiment of the present invention.
  • the resonant converter 100 for a wireless charger may be composed of a full bridge inverter 110, a resonant tank 120, and a rectifying bridge 130. Accordingly, the overall efficiency of the system may be determined according to the switching loss of the switch elements provided in the full bridge inverter 110 and the power transmission efficiency in the resonant tank 120. Therefore, in order to have a high efficiency of the resonant converter 100 for a wireless charger according to an embodiment of the present invention, it is implemented to satisfy the zero phase angle condition for soft switching of the switch elements provided in the full bridge inverter 110. desirable.
  • the input impedance Z in may be represented by a real number as shown in Equation 10.
  • the natural phase angle condition can also be naturally achieved.
  • Equation 12 when the resonant converter 100 for a wireless charger according to an embodiment of the present invention operates in the constant voltage mode for constant voltage charging, in order to achieve the zero phase angle condition, the following condition as shown in Equation 12 is required.
  • the impedance Z pri of the primary resonance tank and the effective magnetization impedance Z mag between the primary resonance tank and the secondary resonance tank are or It can be seen that it is preferable to be implemented to satisfy.
  • Equation 13 When implemented to satisfy Equation 4, Equation 13 below can be derived according to Equations 4 and 12.
  • Equation 13 the resonance frequency ratio between the first coil 121 and the second coil 123 may be calculated as shown in Equation 14 below.
  • the resonant converter 100 for a wireless charger when the resonant frequency ratio between the first coil 121 and the second coil 123 is implemented to satisfy Equation 14, the resonant converter 100 for a wireless charger according to an embodiment of the present invention.
  • zero-phase angular conditions can be achieved. This means that the switching elements provided in the full bridge inverter 110 can achieve the soft switching condition when operating in the constant voltage mode.
  • the resonance frequency ratio (ratio) between the first coil 121 and the second coil 123 may be calculated as shown in Equation 15 below.
  • the resonant converter 100 for a wireless charger is implemented so that the resonant tank 120 satisfies Equation 15 to operate under a first constant voltage frequency f CV1 , or a resonant tank.
  • 120 is implemented to satisfy Equation 14 and operates under the second constant voltage frequency f CV2 , constant voltage charging under the zero phase angle condition may be realized.
  • a difference between the constant current frequency f CC and the second constant voltage frequency f CV2 or the first constant voltage frequency f cv1 that enables constant voltage charging under the zero phase angle condition is compared.
  • the resonant tank 120 is implemented to satisfy Equation 14 as shown in FIG.
  • the resonant converter 100 for a wireless charger may provide a resonant frequency ratio between the first coil 121 and the second coil 123.
  • n f21 is preferably designed to satisfy Equation 14, and operates according to the second constant voltage frequency f CV2 .
  • Resonant converter 100 for a wireless charger according to an embodiment of the present invention is composed of a full bridge inverter 110, a resonant tank 120 and a rectifying bridge 130 as described above, the constant current of the battery connected to the output terminal And in order to charge in a constant voltage method should implement a resonant tank 120 to satisfy a predetermined condition.
  • the implementation method of the resonant tank 120 for realizing the constant current and constant voltage charging will be described in detail.
  • the coils included in the resonant tank 120 will be described with an example implemented as a planar spiral coil. This is because the magnetization coupling is higher than that of the rectangular coil or the square coil.
  • the resonant tank 120 includes four resonators including an intermediate resonator on the primary side and the secondary side, respectively.
  • first, coils provided at the transmitting end and the receiving end, that is, Self-inductance of the first coil 121 and the fourth coil 127 may be set.
  • the optimal number of turns of the coil may be calculated by a try-and-error method based on the following constraints.
  • the diameter of the transmitting coil is preferably set to be less than four times the airgap distance, and based on this restriction, the optimal number of turns of the coil may be calculated. Can be.
  • the transmission coil and the reception coil should be designed in consideration of Equation 16 below.
  • the inductances of the coils of the intermediate resonator that is, the second coil 123 and the third coil 125 may be set.
  • the cue factor is preferably set to 500 to 600. Therefore, the optimal number of turns of the coils of the intermediate resonator may be calculated in a try-and-error manner so that the coils of the intermediate resonator have a maximum cue factor value, using the second coil 123 and the third coil.
  • the self inductance of 125 can be calculated. In this case, Equations 17 and 18 below may be used.
  • Equations 17 and 18 r 2 and r 3 represent AC resistances of the second coil 123 and the third coil 125, respectively, and Q 2 and Q 3 represent the second coil 123 and the third coil, respectively.
  • a cue factor of 125 is shown.
  • the resonant frequencies of the coils of the transmitting coil and the intermediate resonator can be set.
  • the resonant frequency of the first coil 121 which is a transmitting coil, is It can be calculated as.
  • the effective magnetization impedance that is, the effective magnetization impedance between the primary side resonance tank and the secondary side resonance tank may be expressed by Equation 19 below from Equations 1 and 9.
  • Equation 20 when Equation 4 is applied to Equation 19, Equation 20 below may be obtained.
  • the resonance frequency f 1 of the transmitting coil in Equation 20 may be calculated by a numerical method. Thereafter, the resonance frequency f 2 of the intermediate coil may be calculated according to the ratio n f21 of the resonance frequencies of the first coil 121 and the second coil 123 as shown in Equation 21 below.
  • the capacitance of the resonant capacitors included in the four resonators may be calculated using Equation 22 below.
  • the constant current and the constant voltage charging may be realized under fixed frequency conditions, respectively.
  • the precondition that the output voltage of the front-end PFC converter is always constant is required. That is, when the output voltage of the potential PFC converter is not constant, the resonant converter 100 for a wireless charger according to an embodiment of the present invention is difficult to have the above characteristics due to a deviation in the resonance operation.
  • the resonant converter 100 for a wireless charger is a closed-loop control circuit to realize constant current and constant voltage charging under zero phase angle conditions irrespective of a change in the AC input voltage. Needs to be added. In this regard, it will be described with reference to FIGS. 12, 13A and 13B.
  • FIGS. 13A and 13B are diagrams illustrating constant current and constant voltage charging in a resonant converter for a wireless charger according to another embodiment of the present invention. This graph shows the voltage gain.
  • the resonant converter 100 ′ for a wireless charger may perform wireless charging as the resonant converter 100 for a wireless charger according to an embodiment of the present invention illustrated in FIG. 1.
  • a converter for a battery charging device that supports a voltage of an input terminal (U dc ) can be converted into an inductive power transmission method and transferred to a battery.
  • a full bridge inverter 100 ', a resonant tank 200', and a rectifying bridge are provided. 300 '.
  • the resonant converter 100 ′ for the wireless charger includes a mode change switch 140 ′, a PI controller 150 ′, an anti-wind up circuit 160 ′, and a voltage controlled oscillator (VCO). It may further comprise a control circuit consisting of a).
  • This control circuit is a constant current and constant voltage under the zero-phase angle condition of the resonant converter 100 'for the wireless charger according to another embodiment of the present invention irrespective of the change in the output voltage of the front-end PFC converter as described above It can be controlled to realize charging.
  • the configuration of the full bridge inverter 100 ', the resonant tank 200', and the rectifying bridge 300 'shown in FIG. 12 is applied to the resonant converter 100 for the wireless charger according to the embodiment of the present invention described above. Since it has the same characteristics as each of the components included, repeated description will be omitted, and the control circuit will be described in detail.
  • the mode change switch 140 ′ may control the switch according to a constant current or constant voltage operation mode of the resonant converter 100 for a wireless charger according to another embodiment of the present invention.
  • the resonant converter 100 ′ for the wireless charger according to another embodiment of the present invention may operate according to one of the constant current mode for charging the battery at the output terminal with a constant current or the constant voltage mode for charging the battery with a constant voltage.
  • the control circuit may perform different control according to the constant current mode and the constant voltage mode. Accordingly, the mode change switch 140 'connects the comparator of the battery power source and the reference current with the PI controller 150' when the wireless charger resonant converter 100 'operates in the constant current mode according to another embodiment of the present invention.
  • the comparator of the battery power source and the reference voltage may be connected to the PI controller 150 ′.
  • the PI controller 150 ′ can prevent the resonant converter 100 ′ for the wireless charger according to another embodiment of the present invention from operating at a frequency lower than the frequency of the peak voltage under the maximum load (6.6 kW) condition.
  • the resonant converter 100' for the wireless charger according to another embodiment of the present invention can always operate in the inductive region.
  • the anti-wind up circuit 160 ′ may reduce overshoot and transient time caused by the operation of the PI controller 150 ′.
  • the wireless charger resonant converter 100 ' according to another embodiment of the present invention until the voltage of the battery connected to the output terminal reaches the maximum charging voltage, for example 420V Constant current charging can be performed.
  • the control circuit may also operate in the constant current mode according to the switching operation of the mode change switch 140 '.
  • the resonant converter 100 ′ for the wireless charger according to another embodiment of the present invention may perform constant voltage charging when the voltage of the battery connected to the output terminal reaches the maximum charging voltage.
  • the control circuit may also perform a mode change switch ( 140 ') may be automatically switched to the constant voltage mode according to the switching operation.
  • FIGS. 13A and 13B In order to confirm the operating characteristics of the control circuit, an open circuit transfer function in each operation mode was obtained using a PSIM ac sweep function as shown in FIGS. 13A and 13B. 13A and 13B, a bode plot of current and voltage control under different load conditions can be seen. 13A and 13B, the switching operation of the switch elements provided in the full bridge inverter 100 ′ may be controlled to provide sufficient phase margin at the crossover frequency in each control mode of operation. For example, as shown in FIG. 13A, the control circuit can provide bandwidth and phase margins of 850 Hz and 60 ° when operating in the constant current mode.
  • control circuit may provide bandwidth and phase margins of 100 Hz and 90 ° when operated in the constant voltage mode.
  • 14A to 16 are views for explaining the advantageous effect of the resonant converter for a wireless charger according to an embodiment of the present invention.
  • a converter having the specifications shown in Table 2 below is designed, and the current flowing through each device and the voltage across each device are measured. The experiment was performed, and the results are the same as those of FIGS. 14A, 14B, 15A, and 15B. At this time, the air gap of the primary side and the secondary side of the resonant tank 120 was set to 200 mm, since the mounting distance of the general vehicle is 150 to 300 mm.
  • the fourth switch S 4 provided at may perform the turn on operation under the zero voltage switching condition, and may perform the turn off operation under the zero current switching condition. That is, the resonant converter 100 for a wireless charger according to the exemplary embodiment of the present invention may improve switching efficiency under soft switching conditions of the switch elements provided in the full bridge inverter 110.
  • the power reference changes from 3.9 kW to 4.8 kW and one embodiment of the present invention.
  • the change of the current reference from 3.9 kW to 2.9 kW can be confirmed, wherein the transition times are measured at 16 msec and 20 msec, respectively. This means that it is suitable to be implemented as a battery charging device.
  • the efficiency may be checked, and at this time, the constant voltage mode It can be seen that it has a maximum efficiency of 97.08% at the output power of 3.7kW and 96.39% at the output power of 6.1kW when operating in the constant current mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

입력 전압을 공급하는 입력 전원과 연결되며, 제1 스위치 내지 제4 스위치가 마련된 풀브릿지 인버터, 직렬 연결된 커패시터 및 코일로 구성되는 복수 개의 공진기를 포함하여, 상기 풀브릿지 인버터로부터 상기 입력 전압을 전달받아, 복수 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행하는 공진 탱크 및 상기 공진 탱크로부터 전달받는 출력 전압을 정류하여 배터리로 전달하는 정류 브릿지를 포함하는 무선 충전기용 공진 컨버터가 개시된다.

Description

무선 충전기용 공진 컨버터 및 그 구현방법
본 발명은 무선 충전기용 공진 컨버터 및 그 구현방법에 관한 것으로, 보다 상세하게는 정전류 및 정전압 충전을 실현하는 무선 충전기용 공진 컨버터 및 그 구현방법에 관한 것이다.
최근까지 전기차(EV: Electric Vehicle) 배터리를 충전하는 방법으로, 케이블을 통해 전기차와 계통을 연결하는 방식의 플러그인 충전 방법이 가장 널리 사용되고 있다. 그러나, 이러한 플러그인 충전 방법은 전기 플러그의 노출에 따른 안전 문제 등 몇몇 단점이 존재한다.
이에 무선 전력 전송(WPT: Wireless Power Transfer) 방법이 제안된 바 있다. 무선 전력 전송 방법은 와이어 연결이 불필요하고, 디바이스를 안전하게 재충전할 수 있으며, 편리하다는 장점을 가져 최근 각광받는 추세이다.
이러한 무선 전력 전송 방법으로는, 대표적으로 짧은 거리의 두 개의 공진 코일을 이용한 유도성 무선 전력 전송 시스템이 있다. 유도성 무선 전력 시스템의 토폴로지는 에어 갭이 수 짧은 경우 최대 효율을 가질 수 있다. 이와 달리, 송신단과 수신단의 거리가 늘어나면 자화 커플링(magnetic coupling)이 약해져 그 효율은 급속히 감소하게 된다. 따라서, 자화 커플링을 증가시킬 수 있는 다양한 방법들이 연구되고 있다.
예를 들면, 페라이트(ferrite)와 같은 고투자율 자성 재료(high permeability material)을 이용하는 방법이 제안된 바 있으나, 크기, 무게 및 비용을 증가시켜 전기차에 적용하기에는 부적합하다. 또는, 중간(intermediate) 코일들을 부가하여 커플링(coupling) 효율성을 향상시킨 3-코일 시스템이 제안된 바 있으나, 충전 동작에서 영 위상 각(ZPA: Zero Phase Angle) 조건을 달성할 수 없기 때문에 소프트 스위칭이 불가하다는 단점이 있으며, 소프트 스위칭 범위가 좁아 스위칭 손실이 불가피하다. 특히, 1차측 스위치 소자들의 손실은 전체적인 시스템의 효율을 저감시키는 가장 주요한 원인 중 하나이다.
한편, 충전 장치에 있어서, 정전류(CC: Constant Current) 및 정전압(Constant Voltage) 충전을 실현할 수 있는지 여부도 중요한데, 무선 충전기에 적용되는 공진 컨버터의 경우, 정전류 및 정전압 충전을 위해서는 넓은 범위의 주파수 변화가 요구된다.
정전압 충전을 위한 제어 방법으로, 예를 들면, 펄스 주파수 변조(PFM: Pulse Frequency Modulation) 방식으로 출력 전압을 제어할 수 있으나, 넓은 범위의 주파수 변화가 불가피하며, 전체 충전 동작에서 영 위상 각 조건을 만족시킬 수 없다. 또는, 위상 천이 및 PFM을 조합한 제어 방법이 제안된 바 있다. 이는 1차측 전류의 제로 크로싱(zero-crossing)을 검출하기 위한 하드웨어를 이용하여 1차측 스위치 소자들의 소프트 스위칭 조건을 달성할 수 있다. 그러나, 추력 전압을 제어하기 위한 추가 dc-dc 컨버터가 필요하므로 구현이 복잡하고 제조 비용이 증가한다는 단점이 있다.
본 발명의 일측면은 송신 공진기 및 수신 공진기 이외에 각각 중간 공진기를 포함하는 1차측 공진 탱크와 2차측 공진 탱크 간의 유도 전력 전송 방식의 전압 변환을 수행하는 무선 충전기용 공진 컨버터를 제공한다.
본 발명의 다른 측면은 영 위상 각 조건 하에서 정전류 및 정전압 충전을 실현하기 위한 2 개의 중간 공진기를 포함하는 공진 탱크를 구현하는 무선 충전기용 공진 컨버터의 구현방법을 제공한다.
본 발명의 일측면은 무선 충전기용 공진 컨버터에 있어서, 입력 전압을 공급하는 입력 전원과 연결되며, 제1 스위치 내지 제4 스위치가 마련된 풀브릿지 인버터, 직렬 연결된 커패시터 및 코일로 구성되는 복수 개의 공진기를 포함하여, 상기 풀브릿지 인버터로부터 상기 입력 전압을 전달받아, 복수 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행하는 공진 탱크 및 상기 공진 탱크로부터 전달받는 출력 전압을 정류하여 배터리로 전달하는 정류 브릿지를 포함한다.
한편, 상기 공진 탱크는, 상기 풀브릿지 인버터와 연결되는 제1 공진기 및 상기 제1 공진기와 연식 결합된 제1 중간 공진기를 포함하는 1차측 공진 탱크 및 상기 정류 브릿지와 연결되는 제2 공진기 및 상기 제2 공진기와 연식 결합된 제2 중간 공진기를 포함하는 2차측 공진 탱크를 포함하여 상기 1차측 공진 탱크 및 상기 2차측 공진 탱크의 4 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행할 수 있다.
또한, 상기 공진 탱크는, 고정 주파수인 정전류 모드 주파수 조건 하에서 동작하는 경우, 상기 정류 브릿지로 일정한 크기의 전류를 출력할 수 있다.
또한, 상기 공진 탱크는, 상기 정전류 모드 주파수 조건 하에서 동작하는 경우, 입력 임피던스의 영 위상 각 조건을 달성하여 상기 풀브릿지 인버터에 마련된 상기 제1 스위치 내지 상기 제4 스위치가 소프트 스위칭 조건 하에서 스위칭 동작을 수행할 수 있다.
또한, 상기 공진 탱크는, 고정 주파수인 정전압 모드 주파수 조건 하에서 동작하는 경우, 상기 정류 브릿지로 일정한 크기의 전압을 출력할 수 있다.
또한, 상기 공진 탱크는, 상기 정전압 모드 주파수 조건 하에서 동작하는 경우, 입력 임피던스의 영 위상 각 조건을 달성하여 상기 풀브릿지 인버터에 마련된 상기 제1 스위치 내지 상기 제4 스위치가 소프트 스위칭 조건 하에서 스위칭 동작을 수행할 수 있다.
한편, 본 발명의 다른 측면은 무선 충전기용 공진 컨버터에 있어서, 입력 전압을 공급하는 입력 전원과 연결되며, 제1 스위치 내지 제4 스위치가 마련된 풀브릿지 인버터, 직렬 연결된 커패시터 및 코일로 구성되는 복수 개의 공진기를 포함하여, 상기 풀브릿지 인버터로부터 상기 입력 전압을 전달받아, 복수 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행하는 공진 탱크, 상기 공진 탱크로부터 전달받는 출력 전압을 정류하여 배터리로 전달하는 정류 브릿지 및 상기 배터리의 정전류 충전을 위한 정전류 모드 및 상기 배터리의 정전압 충전을 위한 정전압 모드의 크로스 오버 주파수에서의 충분한 위상 마진을 제공할 수 있도록 상기 풀브릿지 인버터를 제어하는 제어회로를 포함한다.
한편, 상기 공진 탱크는, 상기 풀브릿지 인버터와 연결되는 제1 공진기 및 상기 제1 공진기와 연식 결합된 제1 중간 공진기를 포함하는 1차측 공진 탱크 및 상기 정류 브릿지와 연결되는 제2 공진기 및 상기 제2 공진기와 연식 결합된 제2 중간 공진기를 포함하는 2차측 공진 탱크를 포함하여 상기 1차측 공진 탱크 및 상기 2차측 공진 탱크의 4 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행할 수 있다.
또한, 상기 공진 탱크는, 고정 주파수인 정전류 모드 주파수 조건 하에서 동작하는 경우, 상기 정류 브릿지로 일정한 크기의 전류를 출력할 수 있다.
또한, 상기 공진 탱크는, 상기 정전류 모드 주파수 조건 하에서 동작하는 경우, 입력 임피던스의 영 위상 각 조건을 달성하여 상기 풀브릿지 인버터에 마련된 상기 제1 스위치 내지 상기 제4 스위치가 소프트 스위칭 조건 하에서 스위칭 동작을 수행할 수 있다.
또한, 상기 공진 탱크는, 고정 주파수인 정전압 모드 주파수 조건 하에서 동작하는 경우, 상기 정류 브릿지로 일정한 크기의 전압을 출력할 수 있다.
또한, 상기 공진 탱크는, 상기 정전압 모드 주파수 조건 하에서 동작하는 경우, 입력 임피던스의 영 위상 각 조건을 달성하여 상기 풀브릿지 인버터에 마련된 상기 제1 스위치 내지 상기 제4 스위치가 소프트 스위칭 조건 하에서 스위칭 동작을 수행할 수 있다.
또한, 상기 제어 회로는, 상기 정전류 모드 또는 상기 정전압 모드에 따라 서로 다른 제어를 수행할 수 있도록 상기 배터리 전원과 레퍼런스 전원을 비교하여 스위칭 동작을 수행하는 모드 변경 스위치, 상기 공진 탱크가 유도성 영역에서 동작할 수 있도록 상기 풀브릿지 인버터에 마련된 스위치 소자들의 스위칭 동작을 제어하는 PI 제어기 및 상기 PI 제어기의 동작에 의해 발생하는 오버슛 및 이동 시간을 감소시키는 안티 와인드 업 회로를 포함할 수 있다.
한편, 본 발명의 또 다른 측면은 제1 공진기 및 상기 제1 공진기와 연식 결합된 제1 중간 공진기를 포함하는 1차측 공진 탱크와, 제2 공진기 및 상기 제2 공진기와 연식 결합된 제2 중간 공진기를 포함하는 2차측 공진 탱크 간의 유도 전력 전송 방식의 전압 변환을 수행하는 공진 탱크를 포함하여, 상기 1차측 공진 탱크와 연결되는 입력단의 전압을 상기 2차측 공진 탱크와 연결되는 출력단으로 전달하는 무선 충전기용 공진 컨버터의 구현방법에 있어서, 상기 제1 공진기에 포함되는 제1 코일 및 상기 제2 공진기에 포함되는 제4 코일 간의 결합 계수를 최대로 할 수 있도록 상기 제1 코일 및 상기 제4 코일의 자체 인덕턴스를 설정하고, 상기 제1 중간 공진기에 포함되는 제2 코일 및 상기 제2 중간 공진기에 포함되는 제3 코일이 각각 최대 큐 인지 값을 가질 수 있도록 상기 제2 코일 및 상기 제3 코일의 턴 수를 산출하고, 상기 제1 코일 내지 상기 제4 코일의 공진 주파수를 설정하며, 상기 제1 코일 내지 상기 제4 코일의 인덕턴스 및 상기 공진 주파수에 따라 상기 제1 코일 내지 상기 제4 코일과 각각 직렬 연결되는 제1 커패시터 내지 제4 커패시터의 커패시턴스를 산출하여 상기 공진 탱크를 구현하는 것을 포함한다.
한편, 상기 제1 공진기는 상기 입력단에 마련되며, 제1 스위치 내지 제4 스위치를 포함하여 상기 입력 전압을 상기 공진 탱크로 전달하는 풀브릿지 인버터와 연결하고, 상기 제2 공진기는 상기 출력단에 마련되며, 제1 다이오드 내지 제4 다이오드를 포함하여 상기 공진 탱크의 출력을 정류하는 정류 브릿지와 연결하는 것을 더 포함할 수 있다.
상술한 본 발명의 일측면에 따르면 부하의 변화와 무관하게 고정 주파수 조건 하에서 정전류 및 정전압 충전을 수행할 수 있으므로, 제어가 간단하며 충전기의 안정성을 보장할 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 개략적인 회로도이다.
도 2는 도 1에 도시된 배터리의 등가 임피던스를 측정한 일 예이다.
도 3은 도 1에 도시된 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 개략적인 등가 회로도이다.
도 4는 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 임피던스 네트워크를 나타난 회로도이다.
도 5 내지 도 7은 도 4에 도시된 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 임피던스 네트워크에 테브낭 정리(Thevenin's theorem)을 적용하여 보다 간략하게 나타낸 도면이다.
도 8은 본 발명의 일 실시예에 따른 공진 컨버터가 정전류 충전을 위한 정전류 모드로 동작 시 출력 전류를 나타낸 그래프이다.
도 9는 본 발명의 일 실시예에 따른 공진 컨버터가 정전압 충전을 위한 정전압 모드로 동작 시 전압 이득을 나타낸 그래프이다.
도 10a, 도 10b, 도 11a 및 도 11b는 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 영 위상 각 조건 하에서 정전압 충전을 실현하는 방법을 설명하기 위한 그래프이다.
도 12는 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터의 개략적인 회로도이다.
도 13a 및 도 13b는 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터에서의 정전류 및 정전압 충전을 수행하는 경우 전압 이득을 나타낸 그래프이다.
도 14a 내지 도 16은 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 유리한 효과를 설명하기 위한 도면이다.
<부호의 설명>
100: 무선 충전기용 공진 컨버터
110: 풀브릿지 인버터
120: 공진 탱크
130: 정류 브릿지
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 개략적인 회로도이고, 도 2는 도 1에 도시된 배터리의 등가 임피던스를 측정한 일 예이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 무선 충전을 지원하는 배터리 충전 장치용 컨버터로, 입력단의 전압(Udc)을 유도 전력 전송 방식으로 변환하여 배터리로 전달할 수 있으며, 이를 위해, 풀브릿지 인버터(110), 공진 탱크(120) 및 정류 브릿지(130)로 구성될 수 있다. 특히, 공진 탱크(120)는 두 개의 중간 공진기(intermediate resonator)를 포함하는 연식 결합 변압기(loosely coupled transformer)로서, 예를 들어, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 아래의 표 1과 같은 조건 하에서 동작하는 경우, 출력단에 연결된 배터리의 정전류/정전압 충전을 실현할 수 있다. 즉, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)의 출력단에 연결된 배터리는 충전이 진행되는 동안 도 2에 도시된 등가 임피던스를 가질 수 있다.
Figure PCTKR2016013274-appb-T000001
이하, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)의 각 구성요소에 대하여 구체적으로 설명하기로 한다.
먼저, 풀브릿지 인버터(110)는 제1 스위치(S1) 내지 제4 스위치(S4)가 마련된 풀브릿지 회로를 포함하며, 이러한 풀브릿지 회로는 입력 전압(Udc)을 공급하는 입력단과 연결되어, 제1 스위치(S1) 내지 제4 스위치(S4)의 스위칭 동작에 따라 입력 전압(Udc)을 공진 탱크(120)로 전달할 수 있다.
구체적으로는, 풀브릿지 인버터(110)는 제1 스위치(S1) 및 제3 스위치(S3)가 마련된 제1 레그, 제2 스위치(S2) 및 제4 스위치(S4)가 마련된 제2 레그가 병렬 연결된 형태의 풀브릿지 회로를 포함하며, 제1 레그 및 제2 레그의 상측 접점 및 하측 접점은 각각 입력 전압(Udc)을 공급하는 입력 커패시터와 연결될 수 있다.
공진 탱크(120)는 두 개의 중간 공진기(intermediate resonator)를 포함하는 연식 결합 변압기(loosely coupled transformer)로서, 크게 1차측 공진 탱크와 2차측 공진 탱크로 나뉠 수 있다. 1차측 공진 탱크는 풀브릿지 인버터(110)와 연결되는 제1 공진기 및 제1 공진기와 연식 결합되는 제1 중간 공진기로 이루어질 수 있으며, 2차측 공진 탱크는 정류 브릿지(130)와 연결되는 제2 공진기 및 제2 공진기와 연식 결합되는 제2 중간 공진기로 이루어질 수 있다. 이러한 제1 공진기, 제2 공진기, 제1 중간 공진기 및 제2 중간 공진기는 모두 직렬-직렬 공진 탱크로 코일과 커패시터로 구성될 수 있으며, 각 코일들이 연식 결합되어 1차측 공진 탱크와 2차측 공진 탱크 간의 유도 전력 전송 방식의 전압 변환을 수행할 수 있다. 즉, 공진 탱크(120)는 직렬-직렬 4 코일 보상 토폴로지로, 연식 결합된 4개의 코일 간의 에너지 전달을 수행할 수 있다.
구체적으로는, 1차측 공진 탱크는 풀브릿지 인버터(110)와 연결되는 제1 공진기 및 제1 공진기와 연식 결합된 제1 중간 공진기로 이루어질 수 있으며, 제1 공진기는 직렬 연결된 제1 코일(121) 및 제1 커패시터(122)를 포함하고, 제1 중간 공진기는 직렬 연결된 제2 코일(123) 및 제2 커패시터(124)를 포함할 수 있다. 제1 공진기는 풀브릿지 인버터(110)를 구성하는 두 레그를 연결하는 입력 전압선 상에 구현될 수 있는데, 제1 커패시터(122)의 일단이 제1 스위치(S1) 및 제3 스위치(S3) 사이에 연결되고, 제1 커패시터(122)의 타단은 제1 코일(121)의 일단과 연결되며, 제1 코일(121)의 타단이 제2 스위치(S2) 및 제4 스위치(S4) 사이에 연결될 수 있다. 제1 중간 공진기에 포함되는 제2 코일(123)은 제1 코일(121)과 연식 결합될 수 있다. 아울러, 제1 코일(121) 및 제2 코일(123)은 후술하는 2차측 공진 탱크에 포함되는 제3 코일(125) 및 제4 코일(127)과 연식 결합될 수 있다.
2차측 공진 탱크는 정류 브릿지(130)와 연결되는 제2 공진기 및 제2 공진기와 연식 결합된 제2 중간 공진기로 이루어질 수 있으며, 제2 중간 공진기는 직렬 연결된 제3 코일(125) 및 제3 커패시터(126)를 포함하고, 제2 공진기는 직렬 연결된 제4 코일(127) 및 제4 커패시터(128)를 포함할 수 있다. 제2 공진기는 정류 브릿지(130)를 구성하는 두 레그를 연결하는 출력 전압선 상에 구현될 수 있는데, 제4 커패시터(128)의 일단이 제1 다이오드(D1) 및 제3 다이오드(D3) 사이에 연결되고, 제4 커패시터(128)의 타단은 제4 코일(127)의 일단과 연결되며, 제4 코일(127)의 타단이 제2 다이오드(D2) 및 제4 다이오드(D4) 사이에 연결될 수 있다. 제2 중간 공진기에 포함되는 제3 코일(125)은 제4 코일(127)과 연식 결합될 수 있다. 아울러, 제3 코일(125) 및 제4 코일(127)은 1차측 공진 탱크에 포함되는 제1 코일(121) 및 제2 코일(123)과 연식 결합될 수 있다.
이처럼, 공진 탱크(120)는 직렬 연결된 커패시터 및 코일로 이루어지는 공진 탱크가 각각 1차측 및 2차측의 양측에 마련되며, 아울러, 1차측 및 2차측의 양측에 마련된 공진 탱크와 연식 결합되는 2개의 중간 공진기를 더 포함하는 형태일 수 있다. 이와 같은 공진 탱크(120)의 기본 특징을, 도 3 및 도 4를 참조하여 일차 고조파 근사(FHA: First Harmonic Approximation)에 기반하여 간략하게 설명하기로 한다. 이하의 설명에서 참조하는 수학식들에서, u1(t)는 공진 탱크(120)의 사각 파 입력 전압의 기본 고조파 전압, Udc는 입력 전압, ω 는 공진 탱크(120)의 동작 주파수, i1(t)는 공진 탱크(120)의 사각 파 입력 전류의 기본 고조파 전류, u4(t)는 공진 탱크(120)의 사각 파 출력 전압의 기본 고조파 전압, i4(t)는 공진 탱크(120)의 사각 파 출력 전류의 기본 고조파 전류, I1 내지 I4는 각각 제1 코일(121) 내지 제4 코일(127)에 흐르는 전류, Io는 출력 전류, RL,eq는 정전류/정전압 충전 동안 배터리의 충전 상태를 고려한 등가 부하 저항, nf21은 제1 코일(121) 및 제2 코일(123)의 공진 주파수의 비율(f2/f1), L1, L2, L3 및 L4는 각각 제1 코일(121) 내지 제4 코일(127)의 자체 인덕턴스, k12, k13, k14, k23, k24 및 k34는 각각 도 3에 도시된 두 코일 간의 결합 계수(coupling coefficient), Zpri 및 Zse는 각각 1차측 공진 탱크 및 2차측 공진 탱크의 임피던스, Zmag는 1차측 공진 탱크 및 2차측 공진 탱크 간의 상호 임피던스를 의미한다.
도 3은 도 1에 도시된 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 개략적인 등가 회로도이고, 도 4는 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 임피던스 네트워크를 나타난 회로도이다.
먼저, 도 1에 도시된 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)의 일차 고조파(하모닉) 근사(FHA) 모델의 모든 고차 하모닉을 무시하는 경우, 도 3과 같은 등가 회로를 획득할 수 있다. 도 3에 도시된 무선 충전기용 공진 컨버터(100)의 일차 하모닉 근사 모델로부터 아래의 수학식 1을 획득할 수 있다.
Figure PCTKR2016013274-appb-M000001
또한, 도 3에 도시된 무선 충전기용 공진 컨버터(100)의 일차 하모닉 근사 모델에 키르히호프 전압 법칙(Kirchhoff's voltage law)을 적용하면, 아래의 수학식 2와 같은 전압 식을 획득할 수 있다.
Figure PCTKR2016013274-appb-M000002
여기에서, 설명의 편의를 위해 1차측 공진 탱크 및 2차측 공진 탱크의 파라미터들이 동일하다고 가정하면, 즉, L1=L4, L2=L3, k12=k34 및 k13=k24라고 가정하면, 각 코일의 공진 주파수는
Figure PCTKR2016013274-appb-I000001
일 수 있으며, 대부분의 전압은 각 코일의 인덕턴스에 적용되므로 각 코일의 저항값은 무시하여도 무방하다. 그 결과 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)를 도 4와 같이 2-포트 임피던스 네트워크로 나타낼 수 있으며, 이때, 두 폐쇄 회로의 전압 식은 아래의 수학식 3과 같이 나타낼 수 있다.
Figure PCTKR2016013274-appb-M000003
수학식 3에서 Zmag는 1차측 공진 탱크와 2차측 공진 탱크 간의 유효 자화 임피턴스, Zpri 및 Zse는 각각 1차측 공진 탱크 및 2차측 공진 탱크의 임피던스를 나타내고, 이때, 1차측 공진 탱크 및 2차측 공진 탱크의 임피던스 및 1차측 공진 탱크와 2차측 공진 탱크 간의 유효 자화 임피턴스는 아래의 수학식 4와 같이 산출될 수 있다.
Figure PCTKR2016013274-appb-M000004
본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 이러한 공진 탱크(120)에 의해 출력단에 연결되는 배터리의 정전류 및 정전압 충전을 실현할 수 있는데, 이를 위한 공진 탱크(120)의 구현방법에 대하여 구체적인 설명은 후술하기로 한다.
다시 도 1을 참조하면, 정류 브릿지(130)는 제1 다이오드(D1) 내지 제4 다이오드(D4)가 마련된 풀브릿지 회로를 포함하며, 이러한 풀브릿지 회로는 출력단과 연결되어, 제1 다이오드(D1) 내지 제4 다이오드(D4)에 의해 공진 탱크(120)로부터 전달 받는 에너지를 정류하여 배터리(Rb, Cb)로 전달할 수 있다.
구체적으로는, 정류 브릿지(130)는 제1 다이오드(D1) 및 제3 다이오드(D3)가 마련된 제3 레그, 제2 다이오드(D2) 및 제4 다이오드(D4)가 마련된 제4 레그가 병렬 연결된 형태의 풀브릿지 회로를 포함하며, 제3 레그 및 제4 레그의 상측 접점 및 하측 접점은 각각 배터리와 병렬 연결되는 출력 커패시터와 연결될 수 있다.
이하에서는, 도 5 내지 도 9를 참조하여 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)에서의 정전류 및 정전압 충전을 실현하는 방법에 대하여 설명하기로 한다.
도 5 내지 도 7은 도 4에 도시된 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 임피던스 네트워크에 테브낭 정리(Thevenin's theorem)을 적용하여 보다 간략하게 나타낸 도면이고, 도 8은 본 발명의 일 실시예에 따른 공진 컨버터가 정전류 충전을 위한 정전류 모드로 동작 시 출력 전류를 나타낸 그래프이고, 도 9는 본 발명의 일 실시예에 따른 공진 컨버터가 정전압 충전을 위한 정전압 모드로 동작 시 전압 이득을 나타낸 그래프이다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 출력단에 연결되는 배터리의 정전류 및 정전압 충전을 실현할 수 있다. 즉, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 전류원 및 전압원으로의 동작이 가능한데, 이러한 동작 특성을 갖기 위해서는 공진 탱크(120)를 적절하게 구현하여야 한다. 이하의 설명에서 참조하는 수학식들에서, u1(t)는 공진 탱크(120)의 사각 파 입력 전압의 기본 고조파 전압, Udc는 입력 전압, ω 는 공진 탱크(120)의 동작 주파수, i1(t)는 공진 탱크(120)의 사각 파 입력 전류의 기본 고조파 전류, u4(t)는 공진 탱크(120)의 사각 파 출력 전압의 기본 고조파 전압, i4(t)는 공진 탱크(120)의 사각 파 출력 전류의 기본 고조파 전류, I1 내지 I4는 각각 제1 코일(121) 내지 제4 코일(127)에 흐르는 전류, Io는 출력 전류, RL,eq는 정전류/정전압 충전 동안 배터리의 충전 상태를 고려한 등가 부하 저항, nf21은 제1 코일(121) 및 제2 코일(123)의 공진 주파수의 비율(f2/f1), L1, L2, L3 및 L4는 각각 제1 코일(121) 내지 제4 코일(127)의 자체 인덕턴스, k12, k13, k14, k23, k24 및 k34는 각각 도 3에 도시된 두 코일 간의 결합 계수(coupling coefficient), Zpri 및 Zse는 각각 1차측 공진 탱크 및 2차측 공진 탱크의 임피던스, Zmag는 1차측 공진 탱크 및 2차측 공진 탱크 간의 상호 임피던스, Zin은 공진 탱크(120)의 입력 임피던스,
Figure PCTKR2016013274-appb-I000002
, ZTH,
Figure PCTKR2016013274-appb-I000003
Figure PCTKR2016013274-appb-I000004
는 각각 테브낭 전압, 테브낭 임피던스, 테브낭 전류 및 출력 전압을 의미한다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 임피던스 네트워크는 2-포트 임피던스 네트워크로 나타낼 수 있으며, 이러한 2-포트 임피던스 네트워크에 테브낭 정리를 적용하면 도 5와 같이 더욱 간략하게 나타낼 수 있다. 도 5와 같은 테브낭 등가 회로를 구현하기 위한 수학식은 아래의 수학식 5 내지 8과 같다.
Figure PCTKR2016013274-appb-M000005
Figure PCTKR2016013274-appb-M000006
Figure PCTKR2016013274-appb-M000007
Figure PCTKR2016013274-appb-M000008
여기에서, 수학식 7 및 8에 따르면, 테브낭 전류(
Figure PCTKR2016013274-appb-I000005
) 및 출력 전압(
Figure PCTKR2016013274-appb-I000006
) 을 부하 저항 RL,eq과 무관하게 일정하도록 제어함으로써 정전류 충전을 실현할 수 있음을 확인할 수 있다.
구체적으로는, 먼저, 수학식 7을 참조하면, 테브낭 전류(
Figure PCTKR2016013274-appb-I000007
)는 테브낭 임피던스(ZTH)가 부하 저항(RL,eq)보다 충분히 큰 값을 갖는 경우, 일정한 값을 가질 수 있음을 확인할 수 있다. 즉, 수학식 7을 참조하면, 아래의 수학식 9와 같이 동작 주파수에서 1차측 공진 탱크의 임피던스(Zpri)가 0이 되는 경우, 테브낭 전류(
Figure PCTKR2016013274-appb-I000008
)는 부하 저항의 크기와 무관하게 일정한 값을 가질 수 있다.
Figure PCTKR2016013274-appb-M000009
이와 같은 경우, 수학식 5 및 6에 따르면, 테브낭 임피던스(ZTH) 및 테브낭 전압(
Figure PCTKR2016013274-appb-I000009
)이 무한대가 되므로, 도 5의 회로는 도 6과 같이 나타낼 수 있으며, 도 6을 참조하면, 정전류 충전의 실현이 가능함을 확인할 수 있다.
도 8을 참조하면, 다양한 부하 조건 하에서 동작 주파수의 변화에 따른 출력 전류의 변화를 확인할 수 있는데, 50kHz의 정전류 주파수(fCC) 조건 하에서 동작하는 경우, 부하 조건과 무관하게 15.7A의 정전류를 출력함을 확인할 수 있다.
이에 더하여, 상술한 수학식 4에 따르면, 1차측 공진 탱크의 임피던스와 2차측 공진 탱크의 임피던스가 동일한 값을 가지므로(Zpri=Zse), 아래의 수학식 10과 같이 입력 임피던스(Zin)는 실수(real number)만으로 나타낼 수 있다. 따라서, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 정전류 충전을 위한 정전류 모드로 동작 시 영 위상 각(ZPA: Zero Phase Angle) 조건을 달성할 수 있음을 확인할 수 있다. 아울러, 도 8을 참조하면, 정전류 주파수 조건 하에서 입력 임피던스의 위상이 0이 됨을 확인할 수 있다.
Figure PCTKR2016013274-appb-M000010
한편, 수학식 8로부터, 도 9와 같이 다양한 부하 조건 하에서 동작 주파수의 변화에 따른 전압 이득의 변화를 확인할 수 있다. 수학식 8 및 도 7에 따르면, 테브낭 임피던스(ZTH)가 0인 경우, 부하 조건과 무관하게 출력 전압이 일정함을 확인할 수 있다. 또한, 도 9에 따르면, 본 발명의 일 실시예에 따른 공진 컨버터(100)는 2 가지의 서로 다른 정전압 모드 주파수(fCV1, fCV2) 조건 하에서 동작 시 정전압 충전을 실현할 수 있음을 확인할 수 있다.
구체적으로는, 수학식 6에 따르면, 공진 주파수 조건 하에서 Z2 pri - Z2 mag = 0 인 경우, 테브낭 임피던스(ZTH)는 0으로 산출됨을 확인할 수 있다. 이와 같은 경우, 도 7과 같이 출력 전압(
Figure PCTKR2016013274-appb-I000010
)은 테브낭 전압(
Figure PCTKR2016013274-appb-I000011
)과 같아지므로, 정전압 충전을 실현할 수 있다. 이때, 수학식 10에 따르면, 입력 임피던스(Zin) 및 그 위상은 아래의 수학식 11과 같이 나타낼 수 있다.
Figure PCTKR2016013274-appb-M000011
수학식 11을 참조하면, 부하가 변하는 경우, 입력 임피던스의 위상 또한 변함을 확인할 수 있다. 따라서, 종래의 컨버터와 같이 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 정전압 충전을 실현하기 위한 정전압 모드로 동작 시, 영 위상 각(ZPA) 조건을 달성할 수 없는 것처럼 보여질 수 있으나, 1차측 공진 탱크와 2차측 공진 탱크 간의 유효 자화 임피턴스(Zmag)가 매우 큰 값을 갖도록 구현함으로써 정전압 모드로 동작 시에도 영 위상 각 조건을 달성할 수 있다. 즉, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 종래의 무선 충전기용 컨버터의 토폴로지와는 달리 공진 탱크(120)에 두 개의 중간 공진기를 더 포함함으로써 1차측 공진 탱크와 2차측 공진 탱크 간의 유효 자화 임피던스의 값을 크게 할 수 있으며, 이에 따라, 정전압 모드로 동작 시 영 위상 각 조건을 달성할 수 있다. 이와 관련하여 도 10a, 도 10b, 도 11a 및 도 11b를 참조하여 구체적으로 설명하기로 한다.
도 10a 내지 도 11b는 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 영 위상 각 조건 하에서 정전압 충전을 실현하는 방법을 설명하기 위한 그래프이다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 풀브릿지 인버터(110), 공진 탱크(120) 및 정류 브릿지(130)로 이루어질 수 있으며, 이러한 컨버터의 구성에 따르면, 시스템의 전체적인 효율은 풀브릿지 인버터(110)에 마련된 스위치 소자들의 스위칭 손실 및 공진 탱크(120)에서의 전력 전송 효율에 따라 결정될 수 있다. 따라서, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 높은 효율을 갖기 위해서는 풀브릿지 인버터(110)에 마련된 스위치 소자들의 소프트 스위칭을 위한 영 위상 각 조건을 만족할 수 있도록 구현되는 것이 바람직하다. 이때, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 정전류 충전을 위한 정전류 모드로 동작 시, 수학식 10과 같이 입력 임피던스(Zin)는 실수(real number)로 나타낼 수 있으므로, 영 위상 각 조건 또한 자연스럽게 달성할 수 있다.
반면, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 정전압 충전을 위한 정전압 모드로 동작 시, 영 위상 각 조건을 달성하기 위해서는 아래의 수학식 12와 같은 조건을 만족하여야 한다.
Figure PCTKR2016013274-appb-M000012
수학식 12에 따르면, 공진 탱크(120)의 구현 시, 1차측 공진 탱크의 임피던스(Zpri)와 1차측 공진 탱크와 2차측 공진 탱크 간의 유효 자화 임피던스(Zmag)가
Figure PCTKR2016013274-appb-I000012
또는
Figure PCTKR2016013274-appb-I000013
를 만족하도록 구현됨이 바람직함을 확인할 수 있다.
구체적으로는, 먼저, 공진 탱크(120)가
Figure PCTKR2016013274-appb-I000014
를 만족하도록 구현되는 경우, 수학식 4 및 12에 따르면 아래의 수학식 13이 도출될 수 있다.
Figure PCTKR2016013274-appb-M000013
수학식 13에 따르면, 제1 코일(121) 및 제2 코일(123) 간의 공진 주파수 비(ratio)는 아래의 수학식 14와 같이 산출될 수 있다.
Figure PCTKR2016013274-appb-M000014
여기에서, 제1 코일(121) 및 제2 코일(123) 간의 공진 주파수 비(ratio)가 수학식 14를 만족하도록 구현되는 경우, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 정전압 모드로 동작 시 영 위상 각 조건을 달성할 수 있다. 이는, 풀브릿지 인버터(110)에 마련된 스위치 소자들이 정전압 모드로 동작 시 소프트 스위칭 조건을 달성할 수 있음을 의미한다.
또한, 도 10a 및 도 10b를 참조하면, 공진 탱크(120)가 수학식 11에 따라 구현되는 경우, 서로 다른 부하 조건 하에서의 입력 임피던스(Zin)의 위상 및 유효 자화 임피던스(Zmag)의 크기를 확인할 수 있다. 도 10a에 따르면, 제2 정전압 주파수(fCV2)에서 영 위상 각 조건을 달성할 수 있음을 확인할 수 있는데, 이는 유효 자화 임피던스(Zmag)의 값이 매우 크고, 이에 따라 입력 임피던스(Zin)의 값이 부하 조건과는 무관하게 거의 0에 가깝기 때문이다. 하지만 이와 달리 도 10b에 따르면, 제1 정전압 주파수(fCV1)에서는 유효 자화 임피던스(Zmag)의 값이 매우 작으므로, 영 위상 값 조건을 달성할 수 없다.
한편, 공진 탱크(120)가
Figure PCTKR2016013274-appb-I000015
를 만족하도록 구현되는 경우, 수학식 13에 따르면, 제1 코일(121) 및 제2 코일(123) 간의 공진 주파수 비(ratio)는 아래의 수학식 15와 같이 산출될 수 있다.
Figure PCTKR2016013274-appb-M000015
또한, 도 11a 및 도 11b를 참조하면, 공진 탱크(120)가 수학식 15에 따라 구현되는 경우, 서로 다른 부하 조건 하에서의 입력 임피던스(Zin)의 위상 및 유효 자화 임피던스(Zmag)의 크기를 확인할 수 있다. 이때, 도 10a와는 달리, 제1 정전압 주파수(fCV1)에서 유효 자화 임피던스(Zmag)의 값이 매우 큰 값을 갖기 때문에, 제1 정전압 주파수(fCV1)에서 영 위상 각 조건을 달성할 수 있음을 확인할 수 있다.
이처럼, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 공진 탱크(120)가 수학식 15를 만족하도록 구현되어 제1 정전압 주파수(fCV1) 조건 하에서 동작하는 경우, 또는 공진 탱크(120)가 수학식 14를 만족하도록 구현되어 제2 정전압 주파수(fCV2) 조건 하에서 동작하는 경우, 영 위상 각 조건 하에서의 정전압 충전을 실현할 수 있다. 이때, 도 10b 및 도 11b를 참조하여, 정전류 주파수(fCC)와 영 위상 각 조건 하에서의 정전압 충전을 가능하게 하는 제2 정전압 주파수(fCV2) 또는 제1 정전압 주파수(fcv1)의 차이를 비교하면, 도 10b와 같이 공진 탱크(120)가 수학식 14를 만족하도록 구현되어 제2 정전압 주파수(fCV2)조건 하에서 동작하는 경우 그 차이가 적음을 확인할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 영 위상 각 조건 하에서의 정전압 충전을 실현하기 위해서는, 제1 코일(121) 및 제2 코일(123)간의 공진 주파수 비(nf21)을 수학식 14를 만족하도록 설계하고, 제2 정전압 주파수(fCV2)에 따라 동작하는 것이 바람직하다.
이하에서는, 정전류 및 정전압 충전을 실현하기 위한 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)의 구현방법에 대하여 구체적으로 설명하기로 한다. 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 상술한 바와 같이 풀브릿지 인버터(110), 공진 탱크(120) 및 정류 브릿지(130)로 구성되는데, 출력단에 연결되는 배터리를 정전류 및 정전압 방식으로 충전하기 위해서는 소정의 조건을 만족하도록 공진 탱크(120)를 구현하여야 한다. 이에, 정전류 및 정전압 충전을 실현하기 위한 공진 탱크(120)의 구현방법에 대하여 구체적으로 설명하기로 한다. 이하의 설명에서는, 공진 탱크(120)에 포함되는 코일들은 플레이너 스파이럴 코일(planar spiral coil)로 구현된 것을 예로 들어 설명하기로 한다. 이는 직사각형 코일 또는 정사각형 코일에 비해 자화 결합을 높게 하기 때문이다.
공진 탱크(120)는 상술한 바와 같이 1차측 및 2차측에 각각 중간 공진기를 포함하여 총 4개의 공진기로 이루어지며, 이러한 4개의 공진기의 구현 방법으로는 먼저 송신단 및 수신단에 마련된 코일들, 즉, 제1 코일(121) 및 제4 코일(127)의 자체 인덕턴스(self-inductance)를 설정할 수 있다.
이를 위해, 다음과 같은 제한 조건에 기반하여, try-and-error 방법으로 코일의 최적 턴 수를 산출할 수 있다.
먼저, 일반적으로 유도 전력 전송 방식에 있어서, 송신 코일의 지름(diameter)은 에어 갭(airgap) 거리의 4배보다 적게 설정되는 것이 바람직한데, 이러한 제한 사항에 기반하여 코일의 최적 턴 수를 산출할 수 있다.
또한, 전력 효율을 높이기 위해서는 코일 간의 높은 자화 결합(magnetic coupling)이 요구되며, 따라서, 공진기들은 높은 결합 계수(coupling coefficient)를 갖도록 설계되어야 한다. 아울러, 코일의 저항에 의해 발생하는 전도 손실(conduction loss)을 감소시키기 위해서는 큰 큐 인자(quality factor)를 갖도록 설계되는 것이 바람직하다.
또한, 송신 코일과 수신 코일은 아래의 수학식 16을 고려하여 설계되어야 함은 물론이다.
Figure PCTKR2016013274-appb-M000016
이와 같은 송신 코일과 수신 코일의 설계 시 제한 조건들에 기반하여, 제1 코일(121)과 제4 코일(127), 즉, 송신 코일과 수신 코일의 턴 수를 산출하는 과정을 반복함으로써, 송신 코일과 수신 코일 간의 결합 계수를 최대로 할 수 있는 최적의 턴 수를 산출할 수 있으며, 이를 이용하여 제1 코일(121) 및 제4 코일(127)의 자체 인덕턴스를 산출할 수 있다.
그 다음으로는, 중간 공진기의 코일들, 즉, 제2 코일(123) 및 제3 코일(125)의 자체 인덕턴스를 설정할 수 있다. 중간 공진기의 코일들의 전도 손실을 최소화 하기 위해서는 그 큐 인자가 500~600으로 설정되는 것이 바람직하다. 따라서, 중간 공진기의 코일들이 최대 큐 인자 값을 가질 수 있도록 try-and-error 방식으로 중간 공진기의 코일들의 최적의 턴 수를 산출할 수 있으며, 이를 이용하여 제2 코일(123) 및 제3 코일(125)의 자체 인덕턴스를 산출할 수 있다. 이때, 아래의 수학식 17 및 18을 이용할 수 있다.
Figure PCTKR2016013274-appb-M000017
Figure PCTKR2016013274-appb-M000018
수학식 17 및 18에서, r2 및 r3은 제2 코일(123) 및 제3 코일(125)각각의 AC 저항을 나타내고, Q2 및 Q3은 각각 제2 코일(123) 및 제3 코일(125)의 큐 인자를 나타낸다.
그 다음으로는, 송신 코일과 중간 공진기의 코일들의 공진 주파수를 설정할 수 있다. 공진 탱크(120)가 정전류 모드로 동작할 때, 송신 코일인 제1 코일(121)의 공진 주파수는
Figure PCTKR2016013274-appb-I000016
로 산출될 수 있다. 이때, 유효 자화 임피던스, 즉, 1차측 공진 탱크 및 2차측 공진 탱크 간의 유효 자화 임피던스는 수학식 1 및 9로부터 아래의 수학식 19와 같이 나타낼 수 있다.
Figure PCTKR2016013274-appb-M000019
이때, 수학식 4를 수학식 19에 적용하면 아래의 수학식 20을 획득할 수 있다.
Figure PCTKR2016013274-appb-M000020
또한, 도 8에 따르면, 정전류 주파수는 50kHz로 설정될 수 있으므로, 수학식 20에서의 송신 코일의 공진 주파수 f1은 수치 계산법(numerical method)에 의해 산출될 수 있다. 이후, 중간 코일의 공진 주파수 f2는 아래의 수학식 21과 같이 제1 코일(121) 및 제2 코일(123)의 공진 주파수의 비율(nf21)에 따라 계산될 수 있다.
Figure PCTKR2016013274-appb-M000021
마지막으로, 4개의 공진기들에 포함되는 4개의 코일의 인덕턴스 및 공진 주파수를 설정하면, 이를 이용하여 4개의 공진기들에 포함되는 공진 커패시터들의 커패시턴스를 아래의 수학식 22와 같이 산출할 수 있다.
Figure PCTKR2016013274-appb-M000022
본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 이와 같은 구현방법에 따라 구현되는 경우, 각각 고정 주파수 조건 하에서의 정전류 및 정전압 충전을 실현할 수 있으며, 정전류 및 정전압 충전 시 영 위상 각 조건을 달성하여 1차측 스위치 소자들의 소프트 스위칭 조건을 달성할 수 있다. 그러나, 본 발명의 일 실시예에 다른 무선 충전기용 공진 컨버터(100)가 이와 같은 특성을 갖기 위해서는 전위(front-end) PFC 컨버터의 출력 전압이 항상 일정하다는 전제 조건이 필요하다. 즉, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 전위 PFC 컨버터의 출력 전압이 일정하지 않은 경우, 공진 동작에 있어서 편차가 발생하여 위와 갖은 특성을 갖기 어렵다. 이에 따라, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 AC 입력 전압의 변화와 무관하게 영 위상 각 조건 하에서의 정전류 및 정전압 충전을 실현하기 위해서는, 폐쇄(closed-loop) 제어 회로가 부가될 필요가 있다. 이와 관련하여, 도 12, 도 13a 및 도 13b를 참조하여 설명하기로 한다.
도 12는 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터의 개략적인 회로도이고, 도 13a 및 도 13b는 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터에서의 정전류 및 정전압 충전을 수행하는 경우 전압 이득을 나타낸 그래프이다.
도 12를 참조하면, 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')는 도 1에 도시된 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)와 같이 무선 충전을 지원하는 배터리 충전 장치용 컨버터로, 입력단의 전압(Udc)을 유도 전력 전송 방식으로 변환하여 배터리로 전달할 수 있으며, 이를 위해, 풀브릿지 인버터(100'), 공진 탱크(200') 및 정류 브릿지(300')로 구성될 수 있다. 이에 더하여, 본 발명의 다른 실시예에 다른 무선 충전기용 공진 컨버터(100')는 모드 변경 스위치(140'), PI 제어기(150'), 안티 와인드 업 회로(160') 및 전압 제어 오실레이터(VCO)로 구성되는 제어 회로를 더 포함할 수 있다. 이러한 제어 회로는 상술한 바와 같이 전위(front-end) PFC 컨버터의 출력 전압의 변화와 무관하게 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')가 영 위상 각 조건 하에서의 정전류 및 정전압 충전을 실현할 수 있도록 제어할 수 있다. 이하, 도 12에 도시된 풀브릿지 인버터(100'), 공진 탱크(200') 및 정류 브릿지(300')의 구성은 상술한 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)에 포함되는 각 구성요소들과 동일한 특징을 가지므로 반복되는 설명은 생략하며, 제어 회로에 대하여 구체적으로 설명하기로 한다.
모드 변경 스위치(140')는 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100)의 정전류 또는 정전압 동작 모드에 따라 스위치를 제어할 수 있다. 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')는 출력단의 배터리를 일정한 전류로 충전하기 위한 정전류 모드 또는 배터리를 일정한 전압으로 충전하기 위한 정전압 모드 중 어느 하나의 모드에 따라 동작할 수 있는데, 제어 회로는 이러한 정전류 모드 및 정전압 모드에 따라 서로 다른 제어를 수행할 수 있다. 따라서, 모드 변경 스위치(140')는 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')가 정전류 모드로 동작 시, 배터리 전원과 레퍼런스 전류의 비교기를 PI 제어기(150')와 연결시키고, 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')가 정전압 모드로 동작 시, 배터리 전원과 레퍼런스 전압의 비교기를 PI 제어기(150')와 연결시킬 수 있다.
PI 제어기(150')는 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')가 최대 부하(6.6kW) 조건 하에서의 피크 전압의 주파수 보다 낮은 주파수에서 동작하는 것을 방지할 수 있다. 이러한 PI 제어기(150')의 동작에 의해, 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')는 항상 유도성 영역에서 동작할 수 있다.
안티 와인드 업 회로(160')는 PI 제어기(150')의 동작에 의해 발생하는 오버슛(overshoot) 및 이동 시간(transient time)을 감소시킬 수 있다.
이와 같은 제어 회로의 구동방법에 대하여 간략히 설명하면, 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')는 출력단에 연결된 배터리의 전압이 최대 충전 전압, 일예로 420V에 도달할 때까지 정전류 충전을 수행할 수 있다. 이에 제어 회로 또한 모드 변경 스위치(140')의 스위칭 동작에 따라 정전류 모드로 동작할 수 있다. 또한, 본 발명의 다른 실시예에 따른 무선 충전기용 공진 컨버터(100')는 출력단에 연결된 배터리의 전압이 최대 충전 전압에 도달하면 정전압 충전을 수행할 수 있으며, 이때, 제어 회로 또한 모드 변경 스위치(140')의 스위칭 동작에 따라 정전압 모드로 자동 전환되어 동작할 수 있다.
이러한 제어 회로의 동작 특성을 확인하기 위해, 도 13a 및 도 13b와 같이 PSIM ac sweep function을 이용하여 각 동작 모드에서의 개방 회로 전달 함수를 획득하였다. 도 13a 및 도 13b를 참조하면 각각 서로 다른 부하 조건 하에서의 전류 및 전압 제어의 bode plot을 확인할 수 있다. 도 13a 및 도 13b에 따르면 제어 각 동작 모드에서 크로스 오버 주파수에서의 충분한 위상 마진을 제공할 수 있도록 풀브릿지 인버터(100')에 마련된 스위치 소자들의 스위칭 동작을 제어할 수 있다. 예를 들면, 도 13a에 도시된 바와 같이 제어 회로는 정전류 모드로 동작 시 850Hz 및 60°의 대역폭 및 위상 마진을 제공할 수 있다.
Figure PCTKR2016013274-appb-M000023
또는, 도 13b에 도시된 바와 같이 제어 회로는 정전압 모드로 동작 시 100Hz 및 90°의 대역폭 및 위상 마진을 제공할 수 있다.
Figure PCTKR2016013274-appb-M000024
이하에서는, 도 14a 내지 도 16을 참조하여 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)의 유리한 효과를 검증하기로 한다.
도 14a 내지 도 16은 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터의 유리한 효과를 설명하기 위한 도면이다.
먼저, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)의 유리한 효과를 확인하기 위해 아래 표 2와 같은 사양의 컨버터를 설계하였으며, 각 소자에 흐르는 전류 및 각 소자에 걸리는 전압을 측정하는 실험을 수행하였고 그 결과는 도 14a, 도 14b, 도 15a 및 도 15b와 같다. 이때, 공진 탱크(120)의 1차측 및 2차측의 에어갭(airgap)은 200mm로 설정하였는데, 이는 일반적인 차량의 조립 거리(mounting distance)가 150~300mm이기 때문이다.
Figure PCTKR2016013274-appb-T000002
도 14a 및 도 14b를 참조하면, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 각각 6.6kW 및 3.3kW의 출력 전력의 정전류 모드 및 정전압 모드로 동작 시 풀브릿지 인버터(110)에 마련된 제4 스위치(S4)는 영전압 스위칭 조건 하에서 턴온 동작을 수행하고, 영전류 스위칭 조건 하에서 턴오프 동작을 수행함을 확인할 수 있다. 즉, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)는 풀브릿지 인버터(110)에 마련된 스위치 소자들의 소프트 스위칭 조건 하에서의 스위칭 동작이 가능하여 전체적인 효율을 향상시킬 수 있다.
또한, 도 15a 및 도 15b를 참조하면, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 정전류 모드로 동작 시, 3.9kW에서 4.8kW로의 전력 레퍼런스의 변화 및 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 정전압 모드로 동작 시, 3.9kW에서 2.9kW로의 전류 레퍼런스의 변화를 확인할 수 있는데, 여기에서, 그 전이 시간(transition time)이 각각 16msec 및 20msec로 측정되었으며, 이는 배터리 충전 장치로서의 구현되기에 적합함을 의미한다.
마지막으로, 도 16을 참조하면, 본 발명의 일 실시예에 따른 무선 충전기용 공진 컨버터(100)가 정전류 모드 및 정전압 모드로 충전 동작을 수행하는 경우, 효율을 확인할 수 있으며, 이때, 정전압 모드로 동작 시 3.7kW의 출력 전력에서 97.08%의 최대 효율을 갖고, 정전류 모드로 동작 시 6.1kW의 출력 전력에서 96.39%의 최대 효율을 가짐을 확인할 수 있다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 입력 전압을 공급하는 입력 전원과 연결되며, 제1 스위치 내지 제4 스위치가 마련된 풀브릿지 인버터;
    직렬 연결된 커패시터 및 코일로 구성되는 복수 개의 공진기를 포함하여, 상기 풀브릿지 인버터로부터 상기 입력 전압을 전달받아, 복수 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행하는 공진 탱크; 및
    상기 공진 탱크로부터 전달받는 출력 전압을 정류하여 배터리로 전달하는 정류 브릿지를 포함하는 무선 충전기용 공진 컨버터.
  2. 제1항에 있어서,
    상기 공진 탱크는,
    상기 풀브릿지 인버터와 연결되는 제1 공진기 및 상기 제1 공진기와 연식 결합된 제1 중간 공진기를 포함하는 1차측 공진 탱크 및 상기 정류 브릿지와 연결되는 제2 공진기 및 상기 제2 공진기와 연식 결합된 제2 중간 공진기를 포함하는 2차측 공진 탱크를 포함하여 상기 1차측 공진 탱크 및 상기 2차측 공진 탱크의 4 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행하는 무선 충전기용 공진 컨버터.
  3. 제1항에 있어서,
    상기 공진 탱크는,
    고정 주파수인 정전류 모드 주파수 조건 하에서 동작하는 경우, 상기 정류 브릿지로 일정한 크기의 전류를 출력하는 무선 충전기용 공진 컨버터.
  4. 제3항에 있어서,
    상기 공진 탱크는,
    상기 정전류 모드 주파수 조건 하에서 동작하는 경우, 입력 임피던스의 영 위상 각 조건을 달성하여 상기 풀브릿지 인버터에 마련된 상기 제1 스위치 내지 상기 제4 스위치가 소프트 스위칭 조건 하에서 스위칭 동작을 수행하는 무선 충전기용 공진 컨버터.
  5. 제1항에 있어서,
    상기 공진 탱크는,
    고정 주파수인 정전압 모드 주파수 조건 하에서 동작하는 경우, 상기 정류 브릿지로 일정한 크기의 전압을 출력하는 무선 충전기용 공진 컨버터.
  6. 제5항에 있어서,
    상기 공진 탱크는,
    상기 정전압 모드 주파수 조건 하에서 동작하는 경우, 입력 임피던스의 영 위상 각 조건을 달성하여 상기 풀브릿지 인버터에 마련된 상기 제1 스위치 내지 상기 제4 스위치가 소프트 스위칭 조건 하에서 스위칭 동작을 수행하는 무선 충전기용 공진 컨버터.
  7. 입력 전압을 공급하는 입력 전원과 연결되며, 제1 스위치 내지 제4 스위치가 마련된 풀브릿지 인버터;
    직렬 연결된 커패시터 및 코일로 구성되는 복수 개의 공진기를 포함하여, 상기 풀브릿지 인버터로부터 상기 입력 전압을 전달받아, 복수 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행하는 공진 탱크;
    상기 공진 탱크로부터 전달받는 출력 전압을 정류하여 배터리로 전달하는 정류 브릿지; 및
    상기 배터리의 정전류 충전을 위한 정전류 모드 및 상기 배터리의 정전압 충전을 위한 정전압 모드의 크로스 오버 주파수에서의 충분한 위상 마진을 제공할 수 있도록 상기 풀브릿지 인버터를 제어하는 제어회로를 포함하는 무선 충전기용 공진 컨버터.
  8. 제7항에 있어서,
    상기 공진 탱크는,
    상기 풀브릿지 인버터와 연결되는 제1 공진기 및 상기 제1 공진기와 연식 결합된 제1 중간 공진기를 포함하는 1차측 공진 탱크 및 상기 정류 브릿지와 연결되는 제2 공진기 및 상기 제2 공진기와 연식 결합된 제2 중간 공진기를 포함하는 2차측 공진 탱크를 포함하여 상기 1차측 공진 탱크 및 상기 2차측 공진 탱크의 4 개의 공진기 간의 유도 전력 전송 방식의 전압 변환을 수행하는 무선 충전기용 공진 컨버터.
  9. 제7항에 있어서,
    상기 공진 탱크는,
    고정 주파수인 정전류 모드 주파수 조건 하에서 동작하는 경우, 상기 정류 브릿지로 일정한 크기의 전류를 출력하는 무선 충전기용 공진 컨버터.
  10. 제9항에 있어서,
    상기 공진 탱크는,
    상기 정전류 모드 주파수 조건 하에서 동작하는 경우, 입력 임피던스의 영 위상 각 조건을 달성하여 상기 풀브릿지 인버터에 마련된 상기 제1 스위치 내지 상기 제4 스위치가 소프트 스위칭 조건 하에서 스위칭 동작을 수행하는 무선 충전기용 공진 컨버터.
  11. 제7항에 있어서,
    상기 공진 탱크는,
    고정 주파수인 정전압 모드 주파수 조건 하에서 동작하는 경우, 상기 정류 브릿지로 일정한 크기의 전압을 출력하는 무선 충전기용 공진 컨버터.
  12. 제11항에 있어서,
    상기 공진 탱크는,
    상기 정전압 모드 주파수 조건 하에서 동작하는 경우, 입력 임피던스의 영 위상 각 조건을 달성하여 상기 풀브릿지 인버터에 마련된 상기 제1 스위치 내지 상기 제4 스위치가 소프트 스위칭 조건 하에서 스위칭 동작을 수행하는 무선 충전기용 공진 컨버터.
  13. 제7항에 있어서,
    상기 제어 회로는,
    상기 정전류 모드 또는 상기 정전압 모드에 따라 서로 다른 제어를 수행할 수 있도록 상기 배터리 전원과 레퍼런스 전원을 비교하여 스위칭 동작을 수행하는 모드 변경 스위치;
    상기 공진 탱크가 유도성 영역에서 동작할 수 있도록 상기 풀브릿지 인버터에 마련된 스위치 소자들의 스위칭 동작을 제어하는 PI 제어기; 및
    상기 PI 제어기의 동작에 의해 발생하는 오버슛 및 이동 시간을 감소시키는 안티 와인드 업 회로를 포함하는 무선 충전기용 공진 컨버터.
  14. 제1 공진기 및 상기 제1 공진기와 연식 결합된 제1 중간 공진기를 포함하는 1차측 공진 탱크와, 제2 공진기 및 상기 제2 공진기와 연식 결합된 제2 중간 공진기를 포함하는 2차측 공진 탱크 간의 유도 전력 전송 방식의 전압 변환을 수행하는 공진 탱크를 포함하여, 상기 1차측 공진 탱크와 연결되는 입력단의 전압을 상기 2차측 공진 탱크와 연결되는 출력단으로 전달하는 무선 충전기용 공진 컨버터의 구현방법에 있어서,
    상기 제1 공진기에 포함되는 제1 코일 및 상기 제2 공진기에 포함되는 제4 코일 간의 결합 계수를 최대로 할 수 있도록 상기 제1 코일 및 상기 제4 코일의 자체 인덕턴스를 설정하고,
    상기 제1 중간 공진기에 포함되는 제2 코일 및 상기 제2 중간 공진기에 포함되는 제3 코일이 각각 최대 큐 인지 값을 가질 수 있도록 상기 제2 코일 및 상기 제3 코일의 턴 수를 산출하고,
    상기 제1 코일 내지 상기 제4 코일의 공진 주파수를 설정하며,
    상기 제1 코일 내지 상기 제4 코일의 인덕턴스 및 상기 공진 주파수에 따라 상기 제1 코일 내지 상기 제4 코일과 각각 직렬 연결되는 제1 커패시터 내지 제4 커패시터의 커패시턴스를 산출하여 상기 공진 탱크를 구현하는 것을 포함하는 무선 충전기용 공진 컨버터의 구현방법.
  15. 제14항에 있어서,
    상기 제1 공진기는 상기 입력단에 마련되며, 제1 스위치 내지 제4 스위치를 포함하여 상기 입력 전압을 상기 공진 탱크로 전달하는 풀브릿지 인버터와 연결하고,
    상기 제2 공진기는 상기 출력단에 마련되며, 제1 다이오드 내지 제4 다이오드를 포함하여 상기 공진 탱크의 출력을 정류하는 정류 브릿지와 연결하는 것을 더 포함하는 무선 충전기용 공진 컨버터의 구현방법.
PCT/KR2016/013274 2015-11-20 2016-11-17 무선 충전기용 공진 컨버터 및 그 구현방법 WO2017086714A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/766,749 US10998768B2 (en) 2015-11-20 2016-11-17 Resonance converter for wireless charger and method for implementing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0163060 2015-11-20
KR20150163060 2015-11-20
KR10-2016-0141559 2016-10-28
KR1020160141559A KR101851995B1 (ko) 2015-11-20 2016-10-28 무선 충전기용 공진 컨버터 및 그 구현방법

Publications (1)

Publication Number Publication Date
WO2017086714A1 true WO2017086714A1 (ko) 2017-05-26

Family

ID=58719076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013274 WO2017086714A1 (ko) 2015-11-20 2016-11-17 무선 충전기용 공진 컨버터 및 그 구현방법

Country Status (1)

Country Link
WO (1) WO2017086714A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612159A (zh) * 2017-09-28 2018-01-19 湖南工业大学 一种兼具pwm控制和调频控制的单发射对四接收线圈电动汽车静态无线供电系统
CN108365654A (zh) * 2018-03-16 2018-08-03 东南大学 一种适用于任意锂电池的无线充电器
CN110293859A (zh) * 2019-07-29 2019-10-01 广东电网有限责任公司 一种巡视无人机在线充电补给装置及方法
CN110544974A (zh) * 2019-09-25 2019-12-06 广东工业大学 一种agv无线充电装置和系统
CN110707827A (zh) * 2019-10-25 2020-01-17 上海科技大学 一种恒压输出的容性无线充电系统
CN110913534A (zh) * 2019-12-31 2020-03-24 佛山市利升光电有限公司 一种led灯具及其供电电路
CN110996445A (zh) * 2019-12-31 2020-04-10 佛山市利升光电有限公司 一种led灯具电路结构
CN113162136A (zh) * 2021-03-04 2021-07-23 广西电网有限责任公司电力科学研究院 一种无线充电系统及方法
CN114744779A (zh) * 2022-03-29 2022-07-12 河南师范大学 一种基于四线圈恒流恒压可变输出的无线供电系统设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281441A1 (en) * 2011-05-02 2012-11-08 Yung-Hsiang Liu Circuit for converting a direct current voltage to an alternating current voltage
JP2014124019A (ja) * 2012-12-20 2014-07-03 Tdk Corp ワイヤレス電力伝送システム
JP2015029404A (ja) * 2013-06-27 2015-02-12 Tdk株式会社 ワイヤレス受電装置、及び、ワイヤレス電力伝送装置
US20150194814A1 (en) * 2012-05-20 2015-07-09 Access Business Group International Llc System and method for communication in wireless power supply systems
US20150194811A1 (en) * 2014-01-07 2015-07-09 NuVolta Technologies Harmonic Reduction Apparatus for Wireless Power Transfer Systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281441A1 (en) * 2011-05-02 2012-11-08 Yung-Hsiang Liu Circuit for converting a direct current voltage to an alternating current voltage
US20150194814A1 (en) * 2012-05-20 2015-07-09 Access Business Group International Llc System and method for communication in wireless power supply systems
JP2014124019A (ja) * 2012-12-20 2014-07-03 Tdk Corp ワイヤレス電力伝送システム
JP2015029404A (ja) * 2013-06-27 2015-02-12 Tdk株式会社 ワイヤレス受電装置、及び、ワイヤレス電力伝送装置
US20150194811A1 (en) * 2014-01-07 2015-07-09 NuVolta Technologies Harmonic Reduction Apparatus for Wireless Power Transfer Systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612159B (zh) * 2017-09-28 2023-05-26 湖南工业大学 一种兼具pwm控制和调频控制的单发射对四接收线圈电动汽车静态无线供电系统
CN107612159A (zh) * 2017-09-28 2018-01-19 湖南工业大学 一种兼具pwm控制和调频控制的单发射对四接收线圈电动汽车静态无线供电系统
CN108365654A (zh) * 2018-03-16 2018-08-03 东南大学 一种适用于任意锂电池的无线充电器
CN110293859A (zh) * 2019-07-29 2019-10-01 广东电网有限责任公司 一种巡视无人机在线充电补给装置及方法
CN110293859B (zh) * 2019-07-29 2024-02-02 广东电网有限责任公司 一种巡视无人机在线充电补给装置及方法
CN110544974A (zh) * 2019-09-25 2019-12-06 广东工业大学 一种agv无线充电装置和系统
CN110544974B (zh) * 2019-09-25 2024-03-26 广东工业大学 一种agv无线充电装置和系统
CN110707827A (zh) * 2019-10-25 2020-01-17 上海科技大学 一种恒压输出的容性无线充电系统
CN110996445A (zh) * 2019-12-31 2020-04-10 佛山市利升光电有限公司 一种led灯具电路结构
CN110913534A (zh) * 2019-12-31 2020-03-24 佛山市利升光电有限公司 一种led灯具及其供电电路
CN113162136B (zh) * 2021-03-04 2022-12-16 广西电网有限责任公司电力科学研究院 一种无线充电系统及方法
CN113162136A (zh) * 2021-03-04 2021-07-23 广西电网有限责任公司电力科学研究院 一种无线充电系统及方法
CN114744779A (zh) * 2022-03-29 2022-07-12 河南师范大学 一种基于四线圈恒流恒压可变输出的无线供电系统设计方法
CN114744779B (zh) * 2022-03-29 2024-03-08 河南师范大学 一种基于四线圈恒流恒压可变输出的无线供电系统设计方法

Similar Documents

Publication Publication Date Title
WO2017086714A1 (ko) 무선 충전기용 공진 컨버터 및 그 구현방법
KR101851995B1 (ko) 무선 충전기용 공진 컨버터 및 그 구현방법
WO2016048030A1 (en) Wireless power transmitter and wireless power receiver
CN104953683B (zh) 感应功率传递系统以及用于操作感应功率传递系统的方法
US6731524B2 (en) Parallel connected DC regulators with power factor corrected rectifier inputs
WO2017065526A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2016052865A1 (ko) 무선전력전송 시스템
WO2013162336A1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
WO2012086975A2 (en) Direct current/ direct current converter for reducing switching loss, wireless power receiver including direct current/ direct current converter
CN110999063A (zh) 谐振交流至直流转换器
US20200153354A1 (en) Controlling voltage in ac power lines
WO2018110787A1 (ko) 단일단 인터리브드 소프트 스위칭 컨버터
US20180269726A1 (en) Inductive Power Transmitter
WO2012030186A2 (en) Power converter in resonance power transmission system, and resonance power transmission apparatus
WO2021241831A1 (ko) 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로
Boys et al. Pick-up transformer for ICPT applications
Shi et al. Modeling and experimental verification of bidirectional wireless power transfer
CN113162167B (zh) 一种恒流恒压自主切换的无线充电系统
CN115173717A (zh) 输入串联输出并联的固态变压器系统及辅助电源获取与输入电压均压的方法
WO2021040197A1 (ko) 독립 마이크로그리드 시스템 및 인버터 장치
CN109980757B (zh) 一种基于拓扑切换的恒流恒压无线充电系统
WO2024143985A1 (ko) 전자 장치의 무선 전력 전송 장치 및 방법
WO2017204426A1 (ko) 능동 클램프 풀브릿지 컨버터 및 그 구동방법
CN220754412U (zh) 一种不间断电源
Stillig et al. Modular Wireless Power Transfer System for the Supply of Mobile Industrial Production Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15766749

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866666

Country of ref document: EP

Kind code of ref document: A1