WO2014069900A1 - Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치 - Google Patents

Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치 Download PDF

Info

Publication number
WO2014069900A1
WO2014069900A1 PCT/KR2013/009747 KR2013009747W WO2014069900A1 WO 2014069900 A1 WO2014069900 A1 WO 2014069900A1 KR 2013009747 W KR2013009747 W KR 2013009747W WO 2014069900 A1 WO2014069900 A1 WO 2014069900A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching element
ripple
compensation
pfc converter
Prior art date
Application number
PCT/KR2013/009747
Other languages
English (en)
French (fr)
Inventor
이준영
유광민
김원용
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to US14/377,144 priority Critical patent/US9597964B2/en
Priority to JP2014553269A priority patent/JP5820544B2/ja
Priority to CN201380018309.7A priority patent/CN104272570A/zh
Publication of WO2014069900A1 publication Critical patent/WO2014069900A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • Embodiments of the present invention provide an output voltage ripple compensation device of a PFC converter capable of reducing ripple voltage generated at an output voltage of a power factor correction (PFC) converter without using a high capacity electrolytic capacitor and charging a battery for an electric vehicle using the same. Relates to a device.
  • PFC power factor correction
  • a battery charging device for an electric vehicle takes commercial power as an input. Therefore, the battery charging device for an electric vehicle can be used at 110Vac or 220Vac, and power factor correction should be considered.
  • the battery charger for an electric vehicle requires a wide output of 100V to 500V to charge all of the specifications of various specifications.
  • an AC / DC converter 110 in charge of power factor correction (PFC) 110 and a high voltage link capacitor 120 for converting a power varying according to an AC voltage into a stable DC power are shown.
  • a battery charging apparatus 100 for an electric vehicle having a two-stage configuration including a DC / DC converter 130 using a transformer for charge control.
  • FIG. 2 is a diagram illustrating a power flow of the conventional battery charging device 100 for an electric vehicle shown in FIG. 1.
  • the conventional charging apparatus for an electric vehicle 100 performs a current control at the power factor improving stage to rectify an AC input to follow a rectified voltage of the input side, in this case, as shown in FIG. 3.
  • PFC converter 400 is used.
  • Fluctuating Power is generated at the output of the PFC converter 400, and a high voltage DC link capacitor is used to filter it.
  • a DC / DC converter using a transformer for insulation using the DC voltage formed at the AC / DC stage charges the battery through current control.
  • the conventional electric vehicle charging device 100 has a two-stage structure has a disadvantage in that the configuration is complicated.
  • the conventional charging device for an electric vehicle 100 should use an electrolytic capacitor having a high power density and a high power density of several thousand uF or more to filter the Fluctuating Power.
  • the electrolytic capacitor has a disadvantage in that its life is rapidly reduced when the temperature increases. There is a problem that it is not suitable for applications requiring long life, such as electric vehicles.
  • a method of using a film capacitor instead of an electrolytic capacitor may be considered.
  • the film capacitor has a very low power density compared to the electrolytic capacitor, it is not suitable for a charger requiring a high power density when designed with a high capacity. There was a problem.
  • the output voltage of the PFC converter that can reduce the ripple voltage generated in the output voltage of the power factor correction (PFC) converter without using a high capacity electrolytic capacitor
  • An ripple compensation device and a battery charging device for an electric vehicle using the same are proposed.
  • one end of the output terminal of the PFC converter A first switching device connected to an output terminal not connected to ground among two output terminals constituting the first switching element; A second switching element having one end connected to the other end of the first switching element and the other end connected to the ground; A compensation inductor having one end connected to the other end of the first switching element and one end of the second switching element; And a compensation capacitor having one end connected to the other end of the inductor and the other end connected to the ground.
  • an electric vehicle battery charging device comprising: a PFC converter unit for performing a power factor improvement for an input voltage; A link capacitor connected in parallel with the output terminal of the PFC converter; And a ripple compensation unit connected in parallel with the link capacitor and configured to compensate for ripple included in voltages across the link capacitor, wherein the ripple compensation unit has one end connected to one end of the link capacitor; A second switching element having one end connected to the other end of the first switching element and the other end connected to the ground; A compensation inductor having one end connected to the other end of the first switching element and one end of the second switching element; And a compensation capacitor having one end connected to the other end of the compensation inductor and the other end connected to the ground.
  • FIG. 1 is a block diagram showing a schematic configuration of a conventional battery charging device for an electric vehicle.
  • FIG. 2 is a diagram illustrating a power flow of the conventional battery charging apparatus for an electric vehicle shown in FIG. 1.
  • FIG. 3 is a view for explaining the configuration of the PFC converter (AC / DC converter) of the conventional battery charging device for an electric vehicle shown in FIG.
  • FIG. 4 is a block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a detailed configuration of a charging device for an electric vehicle according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the function of the control unit according to an embodiment of the battery charging apparatus for an electric vehicle according to an embodiment of the present invention.
  • FIG. 7 and 8 illustrate an equivalent circuit of a circuit adjacent to the ripple compensator of the battery charging apparatus for an electric vehicle according to an embodiment of the present invention.
  • 9 to 11 are graphs showing a result graph for validating a ripple compensation unit according to an embodiment of the present invention.
  • connection may mean “electrical connection”.
  • FIG. 4 is a block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention
  • Figure 5 is a circuit diagram showing a detailed configuration of the charging device for an electric vehicle according to an embodiment of the present invention.
  • the charging device 400 for an electric vehicle includes a rectifier 410, a PFC converter 420, a DC / DC converter 430, and a ripple compensator ( 440 and the controller 450 may be included.
  • a rectifier 410 a PFC converter 420, a DC / DC converter 430, and a ripple compensator ( 440 and the controller 450 may be included.
  • a ripple compensator 440 and the controller 450 may be included.
  • the rectifier 410 half-wave rectifies or full-wave rectifies an AC voltage (Vac, hereinafter referred to as an "input voltage") input from the outside.
  • Vac AC voltage
  • the input voltage Vac may have a size of greater than or equal to 90 Vac and less than or equal to 260 Vac.
  • the input AC voltage may be a commercial AC voltage having a size of 110 Vac or 220 Vac.
  • the rectifier 410 may be connected to an external power source and may include four diodes connected in a full bridge form.
  • the input capacitor C in and the PFC converter 420 are sequentially connected to the output terminal of the rectifier 410.
  • the PFC converter 420 is an AC / DC converter that receives the rectified input voltage and performs power factor correction for the applied voltage.
  • the PFC converter unit 420 may include an input inductor L in , a third switching element M 3 , and a diode D 1 (first switching element M 1 and second switching). Element M 2 is included in the ripple compensation unit 440 described below).
  • the input inductor L in is connected to an output terminal, one end of which is not connected to ground, of the two output terminals constituting the output terminal of the rectifier 410, and the other end of the third switching element M 3 and the diode D 1 is connected to one end (input end), and the other end of the third switching element M 3 is connected to ground.
  • the other end (output terminal) of the diode D 1 is used as one output terminal constituting the output terminal of the PFC converter unit 420, and the other output terminal constituting the output terminal is connected to ground.
  • the third switching device M 3 may be turned on / off at a predetermined cycle.
  • the third switching element M 3 may include a current I L flowing in the input inductor L in , a voltage V in across the input capacitor C in , and both ends of a link capacitor C 1 described later. The voltage of can be controlled based on. At this time, the control of the on / off of the third switching element (M 3 ) may be performed by the controller 450 described below.
  • the link capacitor C 1 and the DC / DC converter 430 are sequentially connected to the output terminal of the PFC converter 420.
  • the link capacitor C 1 performs a function of converting power that varies with AC voltage into stable DC power. One end and the other end of the link capacitor C 1 is connected to two output terminals constituting the output terminal of the PFC converter unit 420, respectively.
  • the DC / DC converter 430 converts the voltage output from the PFC converter 420 to DC / DC and charges the battery 460 for the electric vehicle using the DC / DC converter.
  • the ripple compensator 440 is connected in parallel with the DC / DC converter 430 based on the PFC converter 420 to output an output voltage of the PFC converter 420 (that is, the link capacitor C 1 ). Compensating for the ripple voltage included in the voltage across both terminals).
  • the ripple compensator 440 includes two switching elements M 1 and M 2 , a compensation inductor L C , and a compensation capacitor C 2 . The connection relationship of each element included in the ripple compensation unit 440 will be described below.
  • the two switching elements M 1 , M 2 are connected in series with each other.
  • one end of the first switching element M 1 is connected to an output terminal not connected to ground, and the other end of the two output terminals constituting the output terminal of the PFC converter 420 is connected to the second switching element M 2.
  • the other end of the second switching element M 2 is connected to ground.
  • the compensation inductor L C and the compensation capacitor C 2 are connected in series with each other, which is connected between the ground where the first switching element M 1 and the second switching element M 2 are connected.
  • one end of the compensation inductor L C is connected to the other end of the first switching element M 1 and one end of the second switching element M 2 , and the other end is connected to one end of the compensation capacitor C 2 .
  • the other end of the compensation capacitor C 2 is connected to ground.
  • the controller 450 controls on / off of the first switching element M 1 , the second switching element M 2 , and the third switching element M 3 .
  • the controller 450 is configured to measure the first voltage measured at the output terminal of the PFC converter 420 (that is, the voltage V 1 at both ends of the link capacitor C 1 ) and the compensation capacitor.
  • the first switching element M 1 included in the ripple compensator 440 according to a proportional-integral (PI) control method and a pulse width modulation (PWM) control method using the second voltage V 2 measured at both ends. And on / off of the second switching device M 2 .
  • the controller 450 includes a ripple extractor 451, an amplifier 452, an adder 453, a PI controller 454, and a PWM controller 455 as shown in FIGS. 4 and 5. can do.
  • PI proportional-integral
  • PWM pulse width modulation
  • the ripple extraction unit 451 extracts a first voltage (i.e., the link capacitor (C 1), the both-end voltage (V 1) of a) the ripple voltage (V a) contained in the.
  • the ripple extractor 450 senses an output terminal of the PFC converter 420 to which the link capacitor C 1 is connected, measures the first voltage V 1 , and measures the measured voltage at the first voltage V 1 .
  • the ripple voltage Va may be extracted by subtracting the DC component value ⁇ V 1 > at the output terminal of the PFC converter 420.
  • the amplification section 452 extracts the ripple voltage (V a) is amplified by K times.
  • the adder 453 may generate a command voltage V C by summing the amplified ripple voltage KV a and the reference voltage V 2_ref for the second voltage V 2 .
  • the PI controller 454 controls a value (PI control value) for PI control using the second voltage V 2 sensed and measured at both ends of the command voltage V C and the compensation capacitor C 2 .
  • the PI control value is a signal for controlling the second voltage V 2 to estimate the command voltage V C. Since the principle of the PI control is obvious to those skilled in the art, a detailed description thereof will be omitted.
  • the PWM controller 455 generates a PWM control value using the PI control value.
  • the PWM controller 455 may generate a PWM control value by comparing a PI control value with a reference signal in the form of a triangular wave or sinusoidal wave input from the outside. Since the principle of PWM control is also obvious to those skilled in the art, a detailed description thereof will be omitted.
  • the PWM control value is used to control on / off of the first switching element M 1 and the second switching element M 2 . More specifically, the first switching element (M 1) and a second switching element for being turned on (M 2) is turned off, the first switching element (M 1) that during the off second switching element (M 2) are turned on Can be controlled.
  • the one-cycle average of the output current of the ripple compensator 440 may be the same as the waveform shown in the lowermost part of FIG. That is, while the link capacitor C 1 is being charged, the second switching element M 2 is turned on so that surplus current larger than the load current flows to the ripple compensator 440 to suppress charging to the link capacitor C 1 . , so as to have a first switching element to the on-link capacitor (M 1) (C 1) during the current flow into the discharge, the link capacitor (C 1) to suppress the discharge of the link capacitor (C 1).
  • FIG. 7 and 8 illustrate an equivalent circuit of a circuit adjacent to the ripple compensator 450 of the battery charging apparatus 400 for an electric vehicle according to an embodiment of the present invention.
  • the current I C1 flowing in the link capacitor C 1 is a current I 2 flowing from the output current I 1 of the PFC converter 420 to the load as shown in Equation 1 below. And a value obtained by subtracting the current I 3 flowing to the ripple compensator 450.
  • Equation 1 when the input / output gain of the ripple compensator 450 is M, Equation 1 may be modified as in Equation 2.
  • Equation 4 the variation ⁇ V 2 of the voltage V 2 across the compensation capacitor C 2 and the output current I 4 of the ripple compensation unit 450 have a relationship as shown in Equation 4 below.
  • Equation 4 may be expressed as Equation 5 below.
  • Equation 6 is derived, which is represented by an equivalent circuit as shown in FIG.
  • the capacity of the link capacitor C 1 connected to the output terminal of the PFC converter unit 420 effectively increases from C 1 to MKC 2 .
  • the capacity of the link capacitor (C 1 ) is 110uF
  • the capacity of the compensation capacitor (C 2 ) is 220uF
  • the leveling voltage of the ripple compensation unit 450 is 200V
  • K has a value of 15
  • the gain M of the ripple compensator 450 is 0.5
  • the use of a low-capacity film capacitor without using a high-capacity electrolytic capacitor has an effect of reducing the ripple voltage generated at the output voltage of the PFC converter unit 420.
  • 9 to 11 are graphs showing experimental results for validating the ripple compensation unit 450 according to an embodiment of the present invention.
  • Values of 110 uF, 220 uF, and 15 were used.
  • 10 and 11 are waveforms comparing the voltage V 1 of the output terminal of the PFC converter unit 420 with or without the ripple compensation unit 450.
  • the capacity of the link capacitor C 1 when the ripple compensation unit 450 is not included and the capacity of the link capacitor C 1 and the compensation capacitor C 2 when the ripple compensation unit 450 is included.
  • the sum was set equal to 330 uF.
  • the capacity of the link capacitor C 1 when the ripple compensation unit 450 is not included is set to 1760 uF, and the link capacitor C 1 and the compensation when the ripple compensation unit 450 is included.
  • the sum of the capacities of the capacitors C 2 was set to 330 uF.
  • the voltage V 1 of the output terminal of the PFC converter unit 420 varies from 365V to 432V (that is, a ripple voltage of 67V occurs, a))
  • the voltage V1 of the output terminal of the PFC converter unit 420 varies from 391V to 407V (that is, a ripple voltage of 16V occurs). It can be seen that the decrease.
  • the same ripple reduction effect as that using the link capacitor C 1 of 1760 uF may be obtained by using only 330 uF of capacitance.

Abstract

PFC 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치가 개시된다. 개시된 PFC 컨버터의 출력전압 리플 보상 장치는 일단이 상기 PFC 컨버터의 출력단을 구성하는 2개의 출력단자 중 접지와 연결되지 않은 출력단자와 연결되는 제1 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단과 연결되고, 타단이 접지와 연결되는 제2 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단 및 상기 제2 스위칭 소자의 일단과 연결되는 보상 인덕터; 및 일단이 상기 인덕터의 타단과 연결되고, 타단이 접지와 연결되는 보상 캐패시터를 포함한다.

Description

PFC 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치
본 발명의 실시예들은 고용량의 전해 캐패시터를 사용하지 않으면서도 PFC(Power Factor Correction) 컨버터의 출력 전압에서 발생하는 리플 전압을 감소시킬 수 있는 PFC 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치에 관한 것이다.
일반적으로 전기 차량(EV: Electric Vehicle)용 배터리 충전 장치는 상용 전원을 입력으로 한다. 따라서, 전기 차량용 배터리 충전 장치는 110Vac 또는 220Vac에서 사용이 가능하며 역률 보정이 고려되어야 한다. 그리고 다양한 사양의 스팩의 배터리를 모두 충전할 수 있도록 전기 차량용 배터리 충전 장치는 100V 내지 500V의 넓은 출력이 요구된다.
이를 위해, 도 1에 도시된 바와 같이 역률 개선(PFC: Power Factor Correction)을 담당하는 AC/DC 컨버터(110), AC 전압에 따라 변하는 전력을 안정된 DC 전력으로 변환하기 위한 고압 링크 캐패시터(120) 및 충전 제어를 위한 변압기를 사용하는 DC/DC 컨버터(130)를 포함하는 2단 구성의 전기 차량용 배터리 충전 장치(100)가 일반적으로 사용되고 있다.
도 2는 도 1에 도시된 종래의 전기 차량용 배터리 충전 장치(100)의 전력 흐름을 도시한 도면이다.
도 2를 참조하면, 종래의 전기 차량용 충전 장치(100)는 AC 입력을 정류하여 입력측의 전류가 정류된 전압을 추종하도록 역률 개선단에서 전류 제어를 수행하며, 이 경우 도 3에 도시된 바와 같은 PFC 컨버터(400)가 사용된다.
이 경우, PFC 컨버터(400)의 출력단에서는 Fluctuating Power가 발생하며 이를 필터링하기 위해 고압의 DC 링크 캐패시터가 이용된다. 그리고, AC/DC 단에서 형성된 DC 전압을 이용하여 절연을 위해 변압기를 사용하는 DC/DC 컨버터는 전류 제어를 통해 배터리를 충전하게 된다.
그러나, 상기한 종래의 전기 차량용 충전 장치(100)는 2단 구조로 되어 있어 구성이 복잡하다는 단점이 있었다. 또한, 종래의 전기 차량용 충전 장치(100)는 Fluctuating Power를 필터링하기 위해 수천 uF 이상의 고용량이면서 전력밀도가 높은 전해 캐패시터를 사용하여야 하는데, 전해 캐패시터는 온도가 높아지면 수명이 급격하게 줄어드는 단점이 있어서, 전기 차량과 같이 긴 수명이 요구되는 응용 분야에는 적합하지 않다는 문제점이 있었다.
이를 해결하기 위해, 전해 캐패시터를 대신하여 필름 캐패시터를 사용하는 방법을 고려할 수는 있으나, 필름 캐패시터는 전해 캐패시터에 비해 전력밀도가 매우 낮아 고용량으로 설계할 경우 높은 전력밀도를 요구하는 충전기에 적합하지 않는다는 문제점이 있었다.
상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 본 발명에서는 고용량의 전해 캐패시터를 사용하지 않으면서도 PFC(Power Factor Correction) 컨버터의 출력 전압에서 발생하는 리플 전압을 감소시킬 수 있는 PFC 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치를 제안하고자 한다.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 도출될 수 있을 것이다.
상기한 목적을 달성하기 위해 본 발명의 바람직한 일 실시예에 따르면, 전기 차량용 배터리 충전 장치에 구비된 PFC 컨버터의 출력전압에 포함되는 리플을 보상하기 위한 장치에 있어서, 일단이 상기 PFC 컨버터의 출력단을 구성하는 2개의 출력단자 중 접지와 연결되지 않은 출력단자와 연결되는 제1 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단과 연결되고, 타단이 접지와 연결되는 제2 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단 및 상기 제2 스위칭 소자의 일단과 연결되는 보상 인덕터; 및 일단이 상기 인덕터의 타단과 연결되고, 타단이 접지와 연결되는 보상 캐패시터를 포함하는 것을 특징으로 하는 PFC 컨버터의 출력전압 리플 보상 장치가 제공된다.
또한, 본 발명의 다른 실시예에 따르면, 전기 차량용 배터리 충전 장치에 있어서, 입력 전압에 대한 역률개선을 수행하는 PFC 컨버터부; 상기 PFC 컨버터의 출력단과 병렬로 연결되는 링크 캐패시터; 및 상기 링크 캐패시터와 병렬로 연결되며, 상기 링크 캐패시터의 양단전압에 포함된 리플을 보상하기 위한 리플 보상부를 포함하되, 상기 리플 보상부는 일단이 상기 링크 캐패시터의 일단과 연결되는 제1 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단과 연결되고, 타단이 접지와 연결되는 제2 스위칭 소자; 일단이 상기 제1 스위칭 소자의 타단 및 상기 제2 스위칭 소자의 일단과 연결되는 보상 인덕터; 및 일단이 상기 보상 인덕터의 타단과 연결되고, 타단이 접지와 연결되는 보상 캐패시터를 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치가 제공된다.
본 발명에 따르면, 전기 차량용 충전 장치에 있어 고용량의 전해 캐패시터를 사용하지 않으면서도 PFC(Power Factor Correction) 컨버터의 출력 전압에서 발생하는 리플 전압을 감소시킬 수 있게 된다.
도 1은 종래의 전기 차량용 배터리 충전 장치의 개략적인 구성을 도시한 블록도이다.
도 2는 도 1에 도시된 종래의 전기 차량용 배터리 충전 장치의 전력 흐름을 도시한 도면이다.
도 3은 도 1에 도시된 종래의 전기 차량용 배터리 충전 장치의 PFC 컨버터(AC/DC 컨버터)의 구성을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 개략적인 구성을 도시한 블록도이다.
도 5는 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 상세한 구성을 도시한 회로도이다.
도 6은 본 발명의 일 실시예에 따른 전기 차량용 배터리 충전 장치 중 일 실시예에 따른 제어부의 기능을 설명하기 위한 도면이다.
도 7 및 도 8은 본 발명의 일 실시예에 따른 전기 차량용 배터리 충전 장치 중 리플 보상부와 인접한 회로의 등가회로를 도시한 도면이다.
도 9 내지 도 11은 본 발명의 일 실시예에 따른 리플 보상부의 유효성을 검증하기 위한 결과 그래프를 도시한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 여기서, "연결"은 "전기적인 연결"을 의미할 수 있다.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
도 4는 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 개략적인 구성을 도시한 블록도이고, 도 5는 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 상세한 구성을 도시한 회로도이다.
도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 전기 차량용 충전 장치(400)는 정류부(410), PFC 컨버터부(420), DC/DC 컨버터부(430), 리플 보상부(440) 및 제어부(450)를 포함할 수 있다. 이하, 각 구성 요소 별로 그 기능을 상세히 설명하기로 한다.
정류부(410)는 외부로부터 입력되는 교류 전압(Vac, 이하 "입력 전압"이라 함)을 반파 정류 또는 전파 정류한다.
이 때, 입력 전압(Vac)은 90Vac 이상 260Vac 이하의 크기를 가질 수 있다. 일례로, 입력되는 교류 전압은 110Vac 또는 220Vac의 크기를 가지는 상용 교류 전압일 수 있다.
본 발명의 일 실시예에 따르면, 정류부(410)는 외부 전원과 연결되며, 풀 브리지(Full Bridge) 형태로 연결된 4개의 다이오드를 포함할 수 있다.
다음으로, 정류부(410)의 출력단에는 입력 캐패시터(Cin) 및 PFC 컨버터부(420)가 순차적으로 연결된다.
PFC 컨버터부(420)는 정류된 입력 전압을 인가받으며, 인가 전압에 대한 역률개선(Power Factor Correction)을 수행하는 AC/DC 컨버터이다.
보다 상세하게, PFC 컨버터부(420)는 입력 인덕터(Lin), 제3 스위칭 소자(M3) 및 다이오드(D1)를 포함할 수 있다(제1 스위칭 소자(M1) 및 제2 스위칭 소자(M2)는 아래에서 설명하는 리플 보상부(440)에 포함됨).
입력 인덕터(Lin)는 일단이 정류부(410)의 출력단을 구성하는 2개의 출력단자 중 접지와 연결되지 않은 출력 단자와 연결되고, 타단이 제3 스위칭 소자(M3)의 타단 및 다이오드(D1)의 일단(입력단)과 연결되며, 제3 스위칭 소자(M3)의 타단은 접지와 연결된다. 그리고, 다이오드(D1)의 타단(출력단)은 PFC 컨버터부(420)의 출력단을 구성하는 하나의 출력단자로 이용되고, 출력단을 구성하는 다른 하나의 출력단자는 접지와 연결된다.
본 발명의 일 실시예에 따르면, 제3 스위칭 소자(M3)는 소정의 주기에 따라 온/오프될 수 있다. 일례로서, 제3 스위칭 소자(M3)는 입력 인턱터(Lin)에 흐르는 전류(IL), 입력 캐패시터(Cin) 양단의 전압(Vin) 및 후술하는 링크 캐패시터(C1)의 양단의 전압이 기초하여 제어될 수 있다. 이 때, 제3 스위칭 소자(M3)의 온/오프의 제어는 아래에서 설명하는 제어부(450)에 의해 수행될 수 있다.
계속하여, PFC 컨버터부(420)의 출력단에는 링크 캐패시터(C1) 및 DC/DC 컨버터부(430)가 순차적으로 연결된다.
링크 캐패시터(C1)는 AC 전압에 따라 변하는 전력을 안정된 DC 전력으로 변환하는 기능을 수행한다. 이러한 링크 캐패시터(C1)의 일단 및 타단은 PFC 컨버터부(420)의 출력단을 구성하는 2개의 출력단자와 각각 연결된다. 그리고, DC/DC 컨버터(430)는 PFC 컨버터부(420)에서 출력되는 전압을 DC/DC 컨버팅한 후, 이를 이용하여 전기 차량용 배터리(460)를 충전시킨다.
다음으로, 리플 보상부(440)는 PFC 컨버터부(420)를 기준으로 DC/DC 컨버터부(430)와 병렬로 연결되어 PFC 컨버터부(420)의 출력전압(즉, 링크 캐패시터(C1)의 양단 전압)에 포함된 리플 전압을 보상하는 기능을 수행한다. 이를 위해, 리플 보상부(440)는 2개의 스위칭 소자(M1, M2), 보상 인덕터(LC) 및 보상 캐패시터(C2)를 포함한다. 리플 보상부(440)에 포함된 각 소자의 연결관계를 설명하면 아래와 같다.
먼저, 2개의 스위칭 소자(M1, M2)는 서로 직렬 연결된다. 보다 상세하게, 제1 스위칭 소자(M1)의 일단은 PFC 컨버터(420)의 출력단을 구성하는 2개의 출력단자 중 접지와 연결되지 않은 출력단자와 연결되고, 타단은 제2 스위칭 소자(M2)의 일단과 연결된다. 그리고, 제2 스위칭 소자(M2)의 타단은 접지와 연결된다.
다음으로, 보상 인덕터(LC) 및 보상 캐패시터(C2)는 서로 직렬 연결되며, 이는 제1 스위칭 소자(M1)와 제2 스위칭 소자(M2)가 연결된 지점과 접지 사이에서 연결된다. 다시 말해, 보상 인덕터(LC)의 일단은 제1 스위칭 소자(M1)의 타단 및 제2 스위칭 소자(M2)의 일단과 연결되고, 타단은 보상 캐패시터(C2)의 일단과 연결되며, 보상 캐패시터(C2)의 타단은 접지와 연결된다.
제어부(450)는 제1 스위칭 소자(M1), 제2 스위칭 소자(M2) 및 제3 스위칭 소자(M3)의 온/오프를 제어한다.
특히, 본 발명의 일 실시예에 따르면, 제어부(450)는 PFC 컨버터(420)의 출력단에서 측정된 제1 전압(즉, 링크 캐패시터(C1)의 양단 전압(V1)) 및 보상 캐패시터의 양단에서 측정된 제2 전압(V2)을 이용하여 PI(Proportional-Integral) 제어 방식 및 PWM(Pulse Width Modulation) 제어 방식에 따라 리플 보상부(440)에 포함된 제1 스위칭 소자(M1) 및 제2 스위칭 소자(M2)의 온/오프를 제어할 수 있다. 이를 위해, 제어부(450)는 도 4 및 도 5에 도시된 바와 같이 리플 추출부(451), 증폭부(452), 합산부(453), PI 제어부(454) 및 PWM 제어부(455)를 포함할 수 있다. 이하, 도 6을 참조하여 제어부(450)에 포함된 각 구성요소의 기능을 설명한다.
먼저, 리플 추출부(451)는 제1 전압(즉, 링크 캐패시터(C1)의 양단 전압(V1))에 포함되어 있는 리플 전압(Va)을 추출한다. 보다 상세하게, 리플 추출부(450)는 링크 캐패시터(C1)가 연결된 PFC 컨버터(420)의 출력단을 센싱하여 제1 전압(V1)을 측정하고, 측정된 제1 전압(V1)에서 미리 설정된 PFC 컨버터(420)의 출력단의 DC 성분값(<V1>)을 감산하여 리플 전압(Va)을 추출할 수 있다.
다음으로, 증폭부(452)는 추출된 리플 전압(Va)을 K배 만큼 증폭한다. 그리고, 합산부(453)는 증폭된 리플 전압(KVa)과 제2 전압(V2)에 대한 기준 전압(V2_ref)을 합산하여 명령 전압(Commend Voltage, VC)을 생성한다.
계속하여, PI 제어부(454)는 명령 전압(VC)과 보상 캐패시터(C2)의 양단에서 센싱되어 측정된 제2 전압(V2)을 이용하여 PI 제어를 위한 제어값(PI 제어값)을 출력한다. 여기서, PI 제어값은 제2 전압(V2)이 명령 전압(VC)을 추정하도록 제어하기 위한 신호로서, PI 제어의 원리는 당업자에게 자명하므로, 이에 대한 상세한 설명은 생략한다.
마지막으로, PWM 제어부(455)는 PI 제어값을 이용하여 PWM 제어값을 생성한다. 일례로서, PWM 제어부(455)는 외부로부터 입력된 삼각파 또는 정현파 형태의 레퍼런스 신호와 PI 제어값을 비교하여 PWM 제어값을 생성할 수 있다. PWM 제어의 원리는 역시 당업자에게 자명한 사항이므로, 이에 대한 상세한 설명은 생략한다.
PWM 제어값은 제1 스위칭 소자(M1) 및 제2 스위칭 소자(M2)의 온/오프의 제어에 이용된다. 보다 상세하게, 제1 스위칭 소자(M1)가 온되는 동안 제2 스위칭 소자(M2)는 오프되고, 제1 스위칭 소자(M1)가 오프되는 동안 제2 스위칭 소자(M2)는 온되도록 제어될 수 있다.
이러한 제어 결과, 리플 보상부(440)의 출력전류의 한 주기 평균은 도 6의 가장 아래 부분에 표시된 파형과 같을 수 있다. 즉, 링크 캐패시터(C1)가 충전되는 동안에는 제2 스위칭 소자(M2)를 온시켜 부하전류보다 큰 잉여전류가 리플 보상부(440)로 흐르게 하여 링크 캐패시터(C1)로 충전을 억제하고, 링크 캐패시터(C1)가 방전되는 동안에는 제1 스위칭 소자(M1)를 온시켜 링크 캐패시터(C1)로 전류가 흘러 들어가도록 하여 링크 캐패시터(C1)의 방전을 억제한다.
이러한 동작은 도 7 및 도 8에 도시된 등가회로를 통해 보다 명확하게 이해될 수 있다.
도 7 및 도 8은 본 발명의 일 실시예에 따른 전기 차량용 배터리 충전 장치(400) 중 리플 보상부(450)와 인접한 회로의 등가회로를 도시한 도면이다.
먼저, 도 7을 참조하면, 링크 캐패시터(C1)에 흐르는 전류(IC1)는 아래의 수학식 1과 같이 PFC 컨버터(420)의 출력 전류(I1)에서 부하로 흐르는 전류(I2) 및 리플 보상부(450)로 흐르는 전류(I3)를 감산한 값과 대응된다.
수학식 1
Figure PCTKR2013009747-appb-M000001
여기서, 리플 보상부(450)의 입출력 이득을 M이라 하는 경우, 상기한 수학식 1은 수학식 2와 같이 변형될 수 있다.
수학식 2
Figure PCTKR2013009747-appb-M000002
한편, 링크 캐패시터(C1)로 흐르는 전류와 PFC 컨버터(420)의 출력단의 전압(V1)에 포함된 리플 전압(Va 또는 ΔV1)은 아래의 수학식 3과 같은 관계를 가진다.
수학식 3
Figure PCTKR2013009747-appb-M000003
또한, 보상 캐패시터(C2) 양단의 전압(V2)의 변동분(ΔV2)과 리플 보상부(450)의 출력전류(I4)는 아래의 수학식 4와 같은 관계를 가진다.
수학식 4
Figure PCTKR2013009747-appb-M000004
여기서, 보상 캐패시터(C2) 양단의 전압(V2)의 변동분(ΔV2)은 KΔV1을 추정하도록 제어되므로, 상기한 수학식 4는 아래의 수학식 5와 같이 표현될 수 있다.
수학식 5
Figure PCTKR2013009747-appb-M000005
상기한 수학식 1 내지 수학식 5를 이용하면, 아래의 수학식 6이 도출되며, 이를 등가회로로 표현하면 도 7과 같다.
수학식 6
Figure PCTKR2013009747-appb-M000006
즉, 리플 보상부(450)를 사용하는 경우, PFC 컨버터부(420)의 출력단에 연결된 링크 캐패시터(C1)의 용량은 C1에서 MKC2로 유효하게 증가되는 효과가 발생한다.
예를 들어, 링크 캐패시터(C1)의 용량이 110uF이고, 보상 캐패시터(C2)의 용량이 220uF이고, 리플 보상부(450)의 평준 전압이 200V이며, K가 15의 값을 가지는 경우, 리플 보상부(450)의 이득(M)은 0.5가 되므로 유효 용량은 0.5 ×15 ×220uF+100uF=1760uF이 된다. 다시 말해, 330uF의 링크 캐패시터(C1)를 이용해도 1760uF의 링크 캐패시터(C1)를 이용하는 것과 동일한 리플전압을 얻을 수 있다.
따라서, 본 발명에 따르면, 고용량의 전해 캐패시터를 사용하지 않고 용량이 낮은 필름 캐패시터를 사용하여도 PFC 컨버터부(420)의 출력 전압에서 발생하는 리플 전압을 감소시킬 수 있는 효과를 가진다.
도 9 내지 도 11은 본 발명의 일 실시예에 따른 리플 보상부(450)의 유효성을 검증하기 위한 실험 결과 그래프를 도시한 도면이다.
도 5 및 도 7의 회로에서 출력 전력 3300W(출력전압=400V)를 사용하였으며, 링크 캐패시터(C1), 보상 캐패시터(C2) 및 리플 보상부(450)에서의 증폭 이득(K)은 각각 110uF, 220uF, 및 15의 값을 사용하였다.
도 9을 참조하면, 앞서 설명한 바와 같이 리플 보상부(450)의 출력 전류는 링크 캐패시터(C1) 양단 전압(V1)에서 발생하는 리플을 억제하는 방향으로 잘 동작되고 있음을 볼 수 있다.
도 10 및 도 11는 리플 보상부(450)의 유무에 따른 PFC 컨버터부(420)의 출력단의 전압(V1)을 비교한 파형이다.
도 10에서는 리플 보상부(450)가 포함되지 않은 경우의 링크 캐패시터(C1)의 용량과 리플 보상부(450)가 포함된 경우의 링크 캐패시터(C1)와 보상 캐패시터(C2)의 용량의 합은 330uF으로 동일하게 설정하였다. 그리고, 도 11에서는 리플 보상부(450)가 포함되지 않은 경우의 링크 캐패시터(C1)의 용량을 1760uF으로 설정하고, 리플 보상부(450)가 포함된 경우의 링크 캐패시터(C1)와 보상 캐패시터(C2)의 용량의 합은 330uF으로 설정하였다.
도 10을 참조하면, 리플 보상부(450)가 없을 경우 PFC 컨버터부(420)의 출력단의 전압(V1)은 365V에서 432V까지 변화하지만(즉, 67V의 리플 전압이 발생, 도 10의 (a)), 리플 보상부(460)가 사용되는 경우, PFC 컨버터부(420)의 출력단의 전압(V1)은 391V에서 407V가지 변화(즉, 16V의 리플 전압이 발생)하는바, 리플 전압이 감소되는 것을 확인할 수 있다.
또한, 도 11를 참조하면, 리플 보상부(450)를 사용하는 경우, 총 330uF의 캐패시턴스 만으로도 1760uF의 링크 캐패시터(C1)를 이용한 것과 동일한 리플 감소 효과를 얻을 수 있음을 확인할 수 있다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (9)

  1. 전기 차량용 배터리 충전 장치에 구비된 PFC 컨버터의 출력전압에 포함되는 리플을 보상하기 위한 장치에 있어서,
    일단이 상기 PFC 컨버터의 출력단을 구성하는 2개의 출력단자 중 접지와 연결되지 않은 출력단자와 연결되는 제1 스위칭 소자;
    일단이 상기 제1 스위칭 소자의 타단과 연결되고, 타단이 접지와 연결되는 제2 스위칭 소자;
    일단이 상기 제1 스위칭 소자의 타단 및 상기 제2 스위칭 소자의 일단과 연결되는 보상 인덕터; 및
    일단이 상기 인덕터의 타단과 연결되고, 타단이 접지와 연결되는 보상 캐패시터를 포함하는 것을 특징으로 하는 PFC 컨버터의 출력전압 리플 보상 장치.
  2. 제1항에 있어서,
    상기 PFC 컨버터의 출력전압 리플 보상 장치는
    상기 PFC 컨버터의 출력단에서 측정된 제1 전압 및 상기 보상 캐패시터의 양단에서 측정된 제2 전압을 이용하여 상기 제1 스위칭 소자의 온/오프 및 상기 제2 스위칭 소자의 온/오프를 제어하기 위한 제어부를 더 포함하는 것을 특징으로 하는 PFC 컨버터의 출력전압 리플 보상 장치.
  3. 제2항에 있어서,
    상기 제어부는
    상기 제1 전압에 포함된 리플 전압을 추출하는 리플 추출부;
    상기 추출된 리플 전압을 증폭하는 증폭부;
    상기 증폭된 리플 전압과 상기 제2 전압에 대한 기준 전압을 합산하여 명령 전압을 생성하는 합산부;
    상기 명령 전압과 상기 제2 전압을 이용하여 PI 제어값을 생성하는 PI 제어부; 및
    상기 PI 제어값을 이용하여 PWM 제어값을 생성하는 PWM 제어부를 포함하는 것을 특징으로 하는 PFC 컨버터의 출력전압 리플 보상 장치.
  4. 제3항에 있어서,
    상기 제1 스위칭 소자의 온/오프 및 상기 제2 스위칭 소자의 온/오프는 상기 PWM 제어값에 의해 제어되되,
    상기 제1 스위칭 소자가 온되는 동안 상기 제2 스위칭 소자는 오프되고, 상기 제1 스위칭 소자가 오프되는 동안 상기 제2 스위칭 소자는 온되는 것을 특징으로 하는 PFC 컨버터의 출력전압 리플 보상 장치.
  5. 전기 차량용 배터리 충전 장치에 있어서,
    입력 전압에 대한 역률개선을 수행하는 PFC 컨버터;
    상기 PFC 컨버터의 출력단과 병렬로 연결되는 링크 캐패시터; 및
    상기 링크 캐패시터와 병렬로 연결되며, 상기 링크 캐패시터의 양단전압에 포함된 리플을 보상하기 위한 리플 보상부를 포함하되,
    상기 리플 보상부는
    일단이 상기 링크 캐패시터의 일단과 연결되는 제1 스위칭 소자;
    일단이 상기 제1 스위칭 소자의 타단과 연결되고, 타단이 접지와 연결되는 제2 스위칭 소자;
    일단이 상기 제1 스위칭 소자의 타단 및 상기 제2 스위칭 소자의 일단과 연결되는 보상 인덕터; 및
    일단이 상기 보상 인덕터의 타단과 연결되고, 타단이 접지와 연결되는 보상 캐패시터를 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
  6. 제5항에 있어서,
    상기 리플 보상부는
    상기 링크 캐패시터의 양단에서 측정된 제1 전압 및 상기 보상 캐패시터의 양단에서 측정된 제2 전압을 이용하여 상기 제1 스위칭 소자의 온/오프 및 상기 제2 스위칭 소자의 온/오프를 제어하기 위한 제어부를 더 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
  7. 제6항에 있어서,
    상기 제어부는
    상기 제1 전압에 포함된 리플 전압을 추출하는 리플 추출부;
    상기 추출된 리플 전압을 증폭하는 증폭부;
    상기 증폭된 리플 전압과 상기 제2 전압에 대한 기준 전압을 합산하여 명령 전압을 생성하는 합산부;
    상기 명령 전압과 상기 제2 전압을 이용하여 PI 제어값을 생성하는 PI 제어부; 및
    상기 PI 제어값을 이용하여 PWM 제어값을 이용하는 PWM 제어부를 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
  8. 제7항에 있어서,
    상기 제1 스위칭 소자의 온/오프는 상기 PWM 제어값에 의해 제어되되,
    상기 제1 스위칭 소자가 온되는 동안 상기 제2 스위칭 소자는 오프되고, 상기 제1 스위칭 소자가 오프되는 동안 상기 제2 스위칭 소자는 온되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
  9. 제5항에 있어서,
    상기 전기 차량용 배터리 충전 장치는 상기 입력 전압을 정류하는 정류부를 더 포함하고,
    상기 PFC 컨버터는 일단이 상기 정류부의 출력단을 구성하는 2개의 출력단자 중 접지와 연결되지 않은 출력 단자와 연결되는 입력 인덕터; 일단이 상기 입력 인덕터의 타단과 연결되고, 타단이 접지와 연결되는 제3 스위칭 소자; 일단이 상기 입력 인덕터의 타단 및 상기 제3 스위칭 소자의 일단과 연결되는 다이오드를 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.
PCT/KR2013/009747 2012-11-01 2013-10-30 Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치 WO2014069900A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/377,144 US9597964B2 (en) 2012-11-01 2013-10-30 Device for compensating for ripples of output voltage of PFC converter and battery charging device for electric vehicle using same
JP2014553269A JP5820544B2 (ja) 2012-11-01 2013-10-30 Pfcコンバータの出力電圧リップル補償装置及びこれを利用した電気車両用バッテリ充電装置
CN201380018309.7A CN104272570A (zh) 2012-11-01 2013-10-30 Pfc转换器的输出电压脉动补偿装置及利用该装置的电动车辆用电池充电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120122866A KR101321236B1 (ko) 2012-11-01 2012-11-01 Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치
KR10-2012-0122866 2012-11-01

Publications (1)

Publication Number Publication Date
WO2014069900A1 true WO2014069900A1 (ko) 2014-05-08

Family

ID=49639103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009747 WO2014069900A1 (ko) 2012-11-01 2013-10-30 Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치

Country Status (5)

Country Link
US (1) US9597964B2 (ko)
JP (1) JP5820544B2 (ko)
KR (1) KR101321236B1 (ko)
CN (1) CN104272570A (ko)
WO (1) WO2014069900A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698110C2 (ru) * 2015-04-09 2019-08-22 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Силовой преобразователь постоянного тока в постоянный ток, индуктивно-емкостный фильтр и способ ослабления магнитного поля в силовом преобразователе

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137872A (ko) * 2014-05-30 2015-12-09 한국전자통신연구원 전원 공급 장치와 전원 공급 장치의 전력 변환 회로
KR101858586B1 (ko) 2014-06-30 2018-05-17 서울대학교산학협력단 능동 직류단 회로를 포함하는 전력 보상 장치 및 능동 직류단 회로를 이용하는 전력 보상 방법
JP6400407B2 (ja) * 2014-09-18 2018-10-03 Ntn株式会社 充電装置
KR101836571B1 (ko) 2015-08-18 2018-03-09 현대자동차주식회사 전기차량의 충전제어방법 및 시스템
US9923451B2 (en) * 2016-04-11 2018-03-20 Futurewei Technologies, Inc. Method and apparatus for filtering a rectified voltage signal
KR101903121B1 (ko) * 2016-05-23 2018-11-13 주식회사 이진스 전기자동차용 충전 및 전력변환 겸용 회로
CN106787671B (zh) * 2016-11-22 2019-09-10 张欣 具有二次纹波抑制功能和快速动态响应速度的无电解电容的功率因数校正电路
US10148169B2 (en) * 2016-11-23 2018-12-04 Infineon Technologies Austria Ag Bridgeless flyback converter circuit and method of operating thereof
FR3064848B1 (fr) * 2017-04-04 2019-04-05 Renault S.A.S Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride.
CN108539835B (zh) * 2018-04-23 2022-06-07 深圳市高斯宝电气技术有限公司 一种ac-dc电池充电装置
DE102019214485B4 (de) * 2019-09-23 2022-07-07 Vitesco Technologies GmbH Fahrzeugbordnetz mit direkt an Leistungsfaktorkorrekturfilter angeschlossenem Traktionsakkumulator
JP7464925B2 (ja) 2022-02-28 2024-04-10 矢崎総業株式会社 充電器
CN114559852B (zh) * 2022-04-28 2022-07-12 深圳市誉兴通科技股份有限公司 充电桩物联网计价系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668464A (en) * 1994-10-26 1997-09-16 The Board Of Trustees Of The University Of Illinois Feedforward active filter for output ripple cancellation in switching power converters
US20080205095A1 (en) * 2007-02-22 2008-08-28 Stmicroelectronics Sa Ripple compensator and switching converter having such a ripple compensator
JP2009038957A (ja) * 2007-07-09 2009-02-19 Fuji Electric Device Technology Co Ltd スイッチング電源
US20100117615A1 (en) * 2008-07-24 2010-05-13 Exar Corporation Esr zero estimation and auto-compensation in digitally controlled buck converters
KR20100117980A (ko) * 2009-04-27 2010-11-04 페어차일드코리아반도체 주식회사 역률 보상 회로 및 역률 보상 회로의 구동 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69626796T2 (de) * 1995-12-08 2004-02-12 Koninklijke Philips Electronics N.V. Vorschaltgerät
JP2978811B2 (ja) * 1996-02-19 1999-11-15 日本電気株式会社 高力率コンバータ
JP2006087235A (ja) * 2004-09-16 2006-03-30 Sanken Electric Co Ltd 力率改善回路及び力率改善回路の制御回路
US7456621B2 (en) * 2005-05-06 2008-11-25 Silicon Laboratories Inc. Digital controller based power factor correction circuit
CN100401625C (zh) * 2006-08-31 2008-07-09 上海交通大学 有源无源混合的单相功率因数校正电路
US20090206902A1 (en) * 2007-01-03 2009-08-20 Yong Li Method for providing power factor correction including synchronized current sensing and pwm generation
US7554473B2 (en) * 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
JP2009247101A (ja) * 2008-03-31 2009-10-22 Tdk Corp 充電装置
CN101515726B (zh) * 2009-02-24 2013-06-19 苏州工业园区华波电子科技有限公司 高效高功率因素充电器电路
JP4972142B2 (ja) * 2009-10-26 2012-07-11 日立コンピュータ機器株式会社 力率改善装置及びその制御方法
JP5122622B2 (ja) * 2010-09-24 2013-01-16 シャープ株式会社 スイッチング電源装置
US9083242B2 (en) * 2010-12-17 2015-07-14 General Electric Company Interleaved LLC converter employing active balancing
WO2013046160A1 (en) * 2011-09-30 2013-04-04 Koninklijke Philips Electronics N.V. Active capacitor circuit
CN102437728A (zh) * 2012-01-11 2012-05-02 西南交通大学 一种利用削峰填谷消除工频纹波的功率因数校正变换方法及其装置
US8937818B2 (en) * 2012-02-03 2015-01-20 Sheikh Mohammad Ahsanuzzaman Low-volume programmable-output PFC rectifier with dynamic efficiency and transient response optimization
US8723487B2 (en) * 2012-03-09 2014-05-13 Majid Pahlevaninezhad Zero voltage switching interleaved boost AC/DC converter
FR2991833B1 (fr) * 2012-06-06 2015-12-18 Valeo Sys Controle Moteur Sas Circuit d'absorption d'une ondulation de puissance procede associe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668464A (en) * 1994-10-26 1997-09-16 The Board Of Trustees Of The University Of Illinois Feedforward active filter for output ripple cancellation in switching power converters
US20080205095A1 (en) * 2007-02-22 2008-08-28 Stmicroelectronics Sa Ripple compensator and switching converter having such a ripple compensator
JP2009038957A (ja) * 2007-07-09 2009-02-19 Fuji Electric Device Technology Co Ltd スイッチング電源
US20100117615A1 (en) * 2008-07-24 2010-05-13 Exar Corporation Esr zero estimation and auto-compensation in digitally controlled buck converters
KR20100117980A (ko) * 2009-04-27 2010-11-04 페어차일드코리아반도체 주식회사 역률 보상 회로 및 역률 보상 회로의 구동 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698110C2 (ru) * 2015-04-09 2019-08-22 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Силовой преобразователь постоянного тока в постоянный ток, индуктивно-емкостный фильтр и способ ослабления магнитного поля в силовом преобразователе

Also Published As

Publication number Publication date
US9597964B2 (en) 2017-03-21
CN104272570A (zh) 2015-01-07
JP5820544B2 (ja) 2015-11-24
KR101321236B1 (ko) 2013-10-28
US20150224885A1 (en) 2015-08-13
JP2015505454A (ja) 2015-02-19

Similar Documents

Publication Publication Date Title
WO2014069900A1 (ko) Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치
WO2012141434A2 (ko) 전기 차량용 배터리 충전 장치
WO2013094871A1 (ko) 전기 차량용 배터리 충전 장치
WO2012083731A1 (zh) 开关电源的消除噪声电路
CN106786485B (zh) 用于不平衡负载下直流微电网的电压脉动抑制方法
CN101499675A (zh) 充电电路及电源供应系统
CN110995025A (zh) 一种开关电源电路
Khazraei et al. Solid-state transformer stability and control considerations
WO2021241831A1 (ko) 전기자동차용 obc 및 ldc 결합 일체형 전력 변환 회로
WO2019156401A1 (ko) 전력 변환 장치 및 교류 직류 변환 장치
WO2014069743A1 (ko) 양방향 동작이 가능한 전기 차량용 배터리 충전 장치
CN210669601U (zh) 电池充电电路
CN107733032A (zh) 一种升压式无线充电接收电路
CN211266788U (zh) 一种开关电源电路
CN108263240B (zh) 电动汽车车载充电装置及其充电方法
CN111391696A (zh) 具有最优电容值的单三相兼容双向充电机控制电路
KR102660347B1 (ko) 누설전류를 감소시킬 수 있는 충전 시스템
CN110014986B (zh) 分布式单级车载充电装置及其方法
JP2020202708A (ja) 絶縁型dc−dcコンバータ
WO2013009122A2 (ko) 기울기 보상 회로를 포함하는 스위칭 모드 전력 공급 장치
CN115065228B (zh) 一种输出共享型工业电源
CN220570331U (zh) 电源输送装置、电源转换装置及光伏系统
CN217335454U (zh) 一种高压大功率磁悬浮工业控制电源
CN217467548U (zh) 电压跟随电路、电流采样电路及装置
CN111865065B (zh) 一种高功率因数dcm降压-升降压pfc变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553269

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377144

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852117

Country of ref document: EP

Kind code of ref document: A1