WO2018124523A2 - Mmc 컨버터의 서브모듈 제어기용 전원장치 - Google Patents
Mmc 컨버터의 서브모듈 제어기용 전원장치 Download PDFInfo
- Publication number
- WO2018124523A2 WO2018124523A2 PCT/KR2017/014183 KR2017014183W WO2018124523A2 WO 2018124523 A2 WO2018124523 A2 WO 2018124523A2 KR 2017014183 W KR2017014183 W KR 2017014183W WO 2018124523 A2 WO2018124523 A2 WO 2018124523A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- voltage
- resistor
- energy storage
- storage unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/36—Arrangements for transfer of electric power between ac networks via a high-tension dc link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/325—Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0006—Arrangements for supplying an adequate voltage to the control circuit of converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Definitions
- the present invention relates to a power supply device for a submodule controller, and more particularly, to a submodule controller of a modular multilevel converter (MMC) associated with a high voltage direct current (HVDC) system.
- MMC modular multilevel converter
- HVDC high voltage direct current
- the present invention relates to a power supply unit for a submodule controller of an MMC converter to supply power.
- an ultra-high voltage direct current transmission (HVDC) system converts the AC power produced in the power plant into a direct current to transmit and re-converts to an alternating current in the power receiving end to supply power to the load.
- This HVDC system is capable of efficient and economical power transmission through voltage boost, heterogeneous system linkage, and long distance high efficiency transmission.
- HVDC systems incorporate MMC converters for power transmission and reactive power compensation.
- MMC converter a plurality of sub-modules are connected in series.
- the submodule is a very important element and controlled by a separate controller.
- a power supply unit for converting the submodule into a low voltage required for the submodule controller is required.
- FIG. 1 is an equivalent circuit diagram of an MMC converter
- FIG. 2 is a circuit diagram of a power supply device for a submodule controller of a conventional MMC converter.
- the MMC converter is composed of one or more phase modules 1 and a plurality of sub modules 10 are connected in series to each phase module 1.
- each phase module 1 connects the DC voltage side to the positive (+) and negative (-) DC voltage bus lines P and N, respectively. DC high voltage exists between these DC voltage P-N buses.
- Each submodule 10 is formed with two connection terminals X1 and X2.
- the power supply device 20 for the sub-module controller of the conventional MMC converter includes two power semiconductors 21 and 22 formed in a half bridge shape, an energy storage unit 23 connected in parallel to the power semiconductor, and an energy storage unit thereof ( 23 is composed of an output resistor 24 and a DC / DC converter 25 connected back to the output resistor 24 in parallel.
- the power supply unit 20 for the submodule controller When the power supply unit 20 for the submodule controller is applied to the MMC converter connected to the HVDC system, the high voltage of several to several tens of volts stored in the energy storage unit 23 is converted into the low voltage of several to several tens of volts required for the submodule controller. Should be.
- the input voltage specification of the DC / DC converter 25 had to be increased, but there was a disadvantage in that the cost was increased by applying a DC / DC converter having a higher specification than necessary to consider the overvoltage generation range.
- the present invention provides a high-spec component unnecessary for supplying control power to the sub-module controller by converting a plurality of sub-modules of the MMC converter connected to the HVDC system to a low voltage required for driving the sub-module controller. It is an object of the present invention to provide a power supply unit for a submodule controller of an MMC converter that can prevent a failure due to an internal overvoltage even if it is not applied.
- Power supply control device for a sub-module of the MMC converter is an energy storage unit for storing the DC voltage in the sub-modules of the MMC converter connected in series with each other, the energy storage unit is connected in parallel in the form of a bridge
- a bridge circuit unit including a plurality of power semiconductors;
- a first resistor unit connected in parallel to the energy storage unit and configured of at least one series-connected resistor;
- a second resistor unit connected in series with the first resistor unit;
- a switching unit connected in parallel to the first resistor unit;
- a DC / DC converter which converts the voltage output from the output terminals formed at both ends of the second resistor unit into a low voltage and supplies the converted voltage to the sub module controller. It includes.
- the switching unit when the voltage sensed by the energy storage unit is less than a predetermined voltage, the switching unit is switched to provide a bypass path to the first resistor unit.
- Power supply control device for a sub-module of the MMC converter is an energy storage unit for storing a DC voltage inside the sub-module of the MMC converter connected in series with each other, and connected in parallel in the form of a bridge to the energy storage unit
- a bridge circuit unit including a plurality of power semiconductors;
- a first resistor unit connected in parallel to the energy storage unit and configured of N series connected resistors;
- a second resistor unit connected in series with the first resistor unit;
- a DC / DC converter which converts the voltage output from the output terminals formed at both ends of the second resistor unit into a low voltage and supplies the converted voltage to the sub module controller. It includes.
- the switching unit is provided to each of the n resistors to provide a bypass path to each of n resistors (n ⁇ N) of the N resistors constituting the first resistor unit according to the voltage sensed by the energy storage unit.
- Switch n switches connected in parallel.
- the switching unit sets the n value to switch the n switches so that the greater the voltage sensed by the energy storage unit, the smaller the number of resistors provided with the bypass path among the N resistors constituting the first resistor unit. do.
- the bridge circuit unit includes any one selected from a half bridge circuit or a full bridge circuit.
- a voltage divider value according to the degree of overvoltage can be selected, thereby enabling precise overvoltage control.
- 1 is an equivalent circuit diagram of a general MMC converter.
- FIG. 2 is a circuit diagram of a power supply device for a submodule controller of a conventional MMC converter.
- FIG. 3 is a circuit diagram of a power supply device for a submodule controller of an MMC converter according to an embodiment of the present invention.
- FIG. 4 is a circuit diagram of a power supply device for a submodule controller of an MMC converter according to another embodiment of the present invention.
- first, second, A, B, (a), and (b) may be used. These terms are only to distinguish the components from other components, and the nature, order, order, etc. of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but there may be another component between each component. It will be understood that may be “connected”, “coupled” or “connected”.
- 3A and 3B are circuit diagrams of a power supply device for a submodule controller of an MMC converter according to an embodiment of the present invention.
- the power supply device 100 for the sub-module controller of the MMC converter according to the present embodiment is applied to an MMC converter including one or more phase modules.
- the phase module includes a plurality of submodules connected in series with each other and connects the DC voltage side to the positive and negative DC voltage bus lines P and N, respectively.
- the plurality of sub modules are connected in series with each other through two input terminals X1 and X2 and store DC voltages in the energy storage 111 connected in series with each other.
- Such a sub-module is controlled by a controller (not shown), and the power supply device 100 according to the present invention uses a high voltage (several to several tens of volts) stored in the energy storage unit 111 at a low voltage (tens to tens of V). To be supplied to the driving power of the submodule controller.
- the power supply apparatus 100 includes a bridge circuit unit 110, a first resistor unit 120, a second resistor unit 130, a switching unit 140, and a DC / DC converter 150. It is configured to include.
- the bridge circuit unit 110 includes an energy storage unit 111 and a plurality of power semiconductors 112.
- the energy storage unit 111 stores the DC voltage.
- a plurality of power semiconductors 112 are connected in parallel to the energy storage unit 111 in the form of a bridge.
- the bridge circuit unit 110 may include a half bridge circuit or a full bridge circuit.
- the energy storage unit 111 may be implemented as a device for storing a DC voltage, for example, a capacitor, and the like, and the power semiconductor 112 may use, for example, an IGBT, a FET, a transistor, or the like as a device for switching the flow of current. have.
- FIG. 3A illustrates an example in which an energy storage unit 111 and a plurality of power semiconductors 112 constitute a half bridge circuit
- FIG. 3B illustrates a full bridge of the energy storage unit 111 and a plurality of power semiconductors 112. An example of configuring a circuit is shown.
- two power semiconductors 112 connected in series to each other are connected in parallel to the energy storage unit 111 to form a half bridge circuit.
- the power semiconductor 112 includes a turn-on / turn-off controllable power semiconductor switch 1121 and a reflux diode 1122 connected in parallel thereto.
- the power semiconductor 112 is turned on / off by a control signal of a controller (not shown).
- a first input terminal X1 and a second input terminal X2 are formed at both ends of one of the two power semiconductors 112 of the half bridge circuit, and are connected in series with the other submodules.
- two power semiconductors 112 are illustrated, but the present invention is not limited thereto.
- the power semiconductor 112 may be turned on / off by a control signal of a controller (not shown).
- first input terminal X1 and the second input terminal X2 are formed at each neutral point of each of the power semiconductors 112 that are paired in the full bridge circuit.
- four power semiconductors 112 are illustrated, but the present invention is not limited thereto.
- the first resistor unit 120 is connected to the energy storage unit 111 in parallel and is composed of at least one resistor connected in series with each other.
- the first resistor unit 120 is represented as one resistor for convenience of description.
- the second resistor unit 130 is connected in series with the first resistor unit 120, and the first resistor unit 120 and the second resistor unit 130 are connected in series with the energy storage unit 111 in parallel. Leads to.
- Both ends of the first resistor unit 120 are connected to the switching unit 140 in parallel.
- Switching unit 140 is a single pole single throw (SPST) type of switch is applied, the on (on) / off (off).
- SPST single pole single throw
- the switching unit 140 When the switching unit 140 is turned on, the both ends of the first resistor unit 120 are shorted to form a bypass path to separate the first resistor unit 120 from the circuit, and the energy storage unit ( All of the DC voltages stored in 111 are transmitted to the second resistor unit 130.
- the switching unit 140 when the switching unit 140 is off, the bypass paths formed at both ends of the first resistor unit 120 are opened, and the DC voltage stored in the energy storage unit 111 is the first resistor.
- the voltage is divided by the unit 120 and the second resistor unit 130.
- both a semiconductor switch such as an IGBT, a FET, a transistor, and a mechanical switch such as a relay may be used.
- the DC / DC converter 150 converts the voltage output from the output terminals formed at both ends of the second resistor unit 130 to a low voltage and supplies the converted voltage to a submodule controller (not shown).
- the voltage divided by the first resistor unit 120 may be input through the second resistor unit 130 according to the off operation of the switching unit 140. According to the ON operation of the), a voltage that is not divided through the bypass path formed in the first resistor unit 120 may be input through the second resistor unit 130.
- the switching unit 140 performs an on / off operation according to the voltage of the energy storage unit 111.
- the switching unit 140 turns on the switch to form a bypass path in the first resistor unit 120 to store the voltage stored in the energy storage unit 111.
- the voltage is supplied to the DC / DC converter 150 through the second resistor unit 130 without being divided.
- the switching unit 140 turns off the switch to remove the bypass path formed in the first resistor unit 120, thereby saving the energy storage unit 111.
- the power supply device 100 supplies the driving power to the submodule controller by using the high voltage stored in the energy storage unit 111 inside the submodule of the MMC converter.
- the overvoltage occurs in the high voltage stored in the 111, only a part of the predetermined voltage among the high voltages is supplied from the DC / DC converter 150 to the low voltage by the partial pressure of the first resistor 120 and the second resistor 130. It converts and supplies it to the drive power to the submodule controller.
- the switching unit 140 is turned on to provide a bypass path to the first resistor unit 120 to store the voltage in the energy storage 111 without partial voltage.
- the high voltage is supplied to the DC / DC converter 150 through the second resistor unit 130 so that overvoltage control by partial voltage is performed only when necessary.
- FIG. 4 is a circuit diagram of a power supply device for a submodule controller of an MMC converter according to another embodiment of the present invention.
- the power supply device 200 includes a bridge circuit unit 210, a first resistor unit 220, a second resistor unit 230, a switching unit 240, and a DC / DC converter 250. It is configured to include.
- the bridge circuit unit 210, the second resistor unit 230, and the DC / DC converter 250 are the same as the bridge circuit unit 110, the second resistor unit 130, and the DC / DC converter 150 of FIG. 3.
- the bridge circuit unit 210 may be implemented as a half bridge circuit or a full bridge circuit using the energy storage unit 211 and the plurality of power semiconductors 212.
- the bridge circuit 210 is implemented as a half bridge circuit.
- the power supply device 200 illustrated in FIG. 4 has a plurality of series-connected resistors 221 constituting the first resistor unit 220 compared to the power supply device 100 shown in FIG. 3, and the switching unit 140.
- the switch constituting a plurality of the plurality of switches are also connected in parallel to the resistor 221 constituting the first resistor unit 220. This will be described in detail below.
- the first resistor unit 220 includes N resistors 221 connected in series, and the switching unit 240 constitutes the first resistor unit 220. And N switches 241 connected in parallel across the two resistors 221.
- the switching unit 240 may provide a bypass path to each of n resistors (n ⁇ N) of the N resistors constituting the first resistor unit 220 according to the voltage sensed by the energy storage unit 211.
- N switches 241 connected in parallel to the two resistors, respectively.
- the first resistor unit 220 includes three resistors 221 connected in series, and each switch 241 has a switch 241. Are connected to the three switches 241 constitute the switching unit 240.
- the voltage divider depends on how many of the three resistors 221 provide the bypass path in the switching unit 240. As the ratio is changed, the voltage value input to the DC / DC converter 250 is changed.
- the voltage value input to the DC / DC converter 250 may be controlled by adjusting the partial pressure ratio according to the setting of the n value.
- the resistance values of the N resistors constituting the first resistor unit 220 are equal to R1, and the second resistor unit is the same.
- the resistance value of 230 is R2 and the voltage value stored in the energy storage unit 211 is V DC
- the input voltage V dc of the DC / DC converter 250 according to the n switches is expressed by the following equation. Can be expressed as 1.
- Equation 1 when N is fixed, the smaller the value of n, the larger the value of the denominator in the partial pressure ratio, and thus the value of V dc becomes smaller, thus maintaining a constant value of V dc.
- V DC adjust the value of n to be small so that the value of V dc is kept low.
- the switching unit 240 sets n value in consideration of the input voltage range of the DC / DC converter 250. Accordingly, the switch 241 is operated to adjust the voltage division ratio.
- the switching unit 240 When the voltage sensed by the energy storage unit 211 is less than or equal to the preset voltage range, the switching unit 240 provides three switches (3) to provide a bypass path to all three resistors 221 of the first resistor unit 220. 241) are all operated.
- the switching unit 240 may include the first resistor unit 220.
- the two switches 241 are operated to provide a bypass path to only two of the three resistors 221. That is, N is 3 and n is set to 2.
- the voltage stored in the energy storage unit 211 is stored in the DC / DC converter 250.
- the voltage is divided by the resistor 221 and the second resistor 230 to be input.
- the switching unit 240 may be configured as the third resistor of the first resistor unit 220. Only one switch 241 is operated to provide a bypass path to only one of the two resistors 221. That is, N is 3 and n is set to 1.
- the voltage stored in the energy storage unit 211 is stored in the DC / DC converter 250.
- the two resistors 221 and the second resistor unit 230 are divided and input.
- the voltage input to the DC / DC converter 250 may be adjusted low even though the voltage sensed by the energy storage unit 211 increases.
- the switching unit 240 provides a bypass path to all three resistors 221 of the first resistor unit 220. In order not to operate the switch 241 is not operated. That is, N is 3 and n is set to 0.
- both the three resistors 221 constituting the first resistor unit 220 and the second resistor unit 230 are connected in parallel to both ends of the energy storage unit 211, the DC / DC converter 250 ),
- the voltage stored in the energy storage unit 211 is divided and input by three resistors 221 and the second resistor unit 230.
- the partial pressure ratio is lowered so that the voltage is input to the DC / DC converter 250 by the partial pressure even if an overvoltage is detected in the energy storage unit 211.
- the voltage can satisfy the normal range.
- the power supply device 200 supplies the driving power to the submodule controller using the high voltage stored in the energy storage unit 211 stored in the submodule of the MMC converter, but overvoltage occurs in the high voltage.
- the plurality of resistors configured in the first resistor unit 220 according to the overvoltage degree of the energy storage unit 211.
- the voltage of the energy storage unit 211 is divided by the resistors of the selected part of the resistors 221 and the second resistor unit 230 to input only a voltage satisfying the normal range of the input of the DC / DC converter 250.
- the switch 241 configured in the switching unit 240 is operated to operate.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
본 발명은 고압전 직류송전(HVDC)시스템과 연계되는 모듈러 멀티레벨 컨버터(MMC)의 서브모듈 제어기에 구동전원을 공급하도록 하는 MMC 컨버터의 서브모듈 제어기용 전원장치에 관한 것이다. 본 발명의 일 실시예에 따른 MMC 컨버터의 서브모듈용 전원제어장치는 상호 간에 직렬연결된 MMC 컨버터의 서브모듈 내부에 DC전압을 저장하는 에너지저장부와, 상기 에너지저장부에 브릿지 형태로 병렬로 연결된 다수의 전력용반도체를 포함하는 브릿지회로부; 상기 에너지저장부에 병렬로 연결되며, 적어도 하나 이상의 직렬연결된 저항으로 구성되는 제1저항부; 상기 제1저항부에 직렬로 연결되는 제2저항부; 상기 제1저항부에 병렬로 연결되는 스위칭부; 및 상기 제2저항부의 양단에 형성된 출력단자로부터 출력된 전압을 저전압으로 변환하여 서브모듈 제어기로 공급하는 DC/DC컨버터; 를 포함한다.
Description
본 발명은 서브모듈 제어기용 전원장치에 관한 것으로서, 특히 고압전 직류송전(HVDC: High Voltage Direct Current)시스템과 연계되는 모듈러 멀티레벨 컨버터(MMC: Modular Multilevel Converter)의 서브모듈(submodule) 제어기에 구동전원을 공급하도록 하는 MMC 컨버터의 서브모듈 제어기용 전원장치에 관한 것이다.
일반적으로, 초고압 직류송전(HVDC) 시스템에서는 발전소에서 생산되는 교류전력을 직류로 변환시켜 송전하고 수전단에서 교류로 재변환하여 부하에 전력을 공급하도록 한다. 이러한 HVDC 시스템은 전압승압을 통하여 효율적이고 경제적인 전력전송이 가능하고 이종계통 연계, 장거리 고효율 송전 등의 장점을 갖는다.
HVDC 시스템에는 전력송전 및 무효전력 보상을 위해 MMC 컨버터가 연계된다. 이러한 MMC 컨버터에는 다수의 서브모듈(sub-module)이 직렬로 연결된다. MMC 컨버터에서 서브모듈은 매우 중요한 요소로서 별도 마련된 제어기에 의해 제어되는데, 서브모듈의 고전압을 서브모듈 제어기의 구동전원으로 이용하기 위해서는 서브모듈 제어기에 필요한 저전압으로 변환하는 전원장치가 필요하다.
도 1에는 MMC 컨버터의 등가회로도이고, 도 2는 종래의 MMC 컨버터의 서브모듈 제어기용 전원장치의 회로도이다. 주지된 바와 같이 MMC 컨버터는 1개 이상의 상모듈(phase module)(1)로 구성되고 각 상모듈(1)에는 다수의 서브모듈(10)이 직렬로 연결된다. 또한, 각 상모듈(1)은 직류전압측을 정(+) 및 부(-)의 직류전압 모선 P 및 N에 각각 접속시킨다. 이들 직류전압 P-N 모선 간에는 직류 고전압이 존재한다. 각각의 서브모듈(10)은 두 개의 접속단자(X1,X2)가 형성된다.
종래의 MMC 컨버터의 서브모듈 제어기용 전원장치(20)는 하프 브릿지 형태로 구성된 전력용반도체 두 개(21, 22)와 전력용반도체에 병렬로 연결된 에너지저장부(23)와 그 에너지저장부(23)에 병렬로 출력저항(24) 및 출력저항(24)에 다시 연결된 DC/DC컨버터(25)로 구성된다.
이러한 서브모듈 제어기용 전원장치(20)가 HVDC 시스템에 연계된 MMC 컨버터에 적용되는 경우 에너지저장부(23)에 저장된 수~수십㎸의 고전압을 서브모듈 제어기에 필요한 수~수십V의 저전압으로 변환해야 한다.
그러나 이러한 종래 기술에서는 에너지저장부(23)에 저장된 수~수십㎸의 고전압에 과전압이 발생하는 경우 DC/DC컨버터(25)의 입력범위를 초과하여 고장이 발생할 가능성이 있다.
따라서 DC/DC컨버터(25)의 입력전압 사양을 높여야 했는데 과전압 발생 범위까지 고려하기 위해 필요 이상의 고사양의 DC/DC컨버터를 적용하여 비용이 상승하는 단점이 있었다.
이에 본 발명은 본 발명은 HVDC 시스템과 연계되는 MMC 컨버터의 다수의 서브모듈이 내부 고전압을 입력받아 서브모듈 제어기의 구동에 필요한 저전압으로 변환하여 서브모듈 제어기로 제어전원을 공급함에 있어서 불필요한 고사양의 부품을 적용하지 않더라도 내부 과전압에 의한 고장을 막을 수 있도록 하는 MMC 컨버터의 서브모듈 제어기용 전원장치를 제공하는데 그 목적이 있다.
본 발명의 일 실시예에 따른 MMC 컨버터의 서브모듈용 전원제어장치는 상호 간에 직렬연결된 MMC 컨버터의 서브모듈 내부에 DC전압을 저장하는 에너지저장부와, 상기 에너지저장부에 브릿지 형태로 병렬로 연결된 다수의 전력용반도체를 포함하는 브릿지회로부; 상기 에너지저장부에 병렬로 연결되며, 적어도 하나 이상의 직렬연결된 저항으로 구성되는 제1저항부; 상기 제1저항부에 직렬로 연결되는 제2저항부; 상기 제1저항부에 병렬로 연결되는 스위칭부; 및 상기 제2저항부의 양단에 형성된 출력단자로부터 출력된 전압을 저전압으로 변환하여 서브모듈 제어기로 공급하는 DC/DC컨버터; 를 포함한다.
본 발명에서 상기 스위칭부는 상기 에너지저장부에서 감지되는 전압이 기설정된 전압 이하인 경우, 상기 제1저항부에 바이패스 경로를 제공하도록 스위칭된다.
본 발명의 다른 실시예에 따른 MMC 컨버터의 서브모듈용 전원제어장치는 상호 간에 직렬연결된 MMC 컨버터의 서브모듈 내부에 DC전압을 저장하는 에너지저장부와, 상기 에너지저장부에 브릿지 형태로 병렬로 연결된 다수의 전력용반도체를 포함하는 브릿지회로부; 상기 에너지저장부에 병렬로 연결되며 N개의 직렬연결된 저항으로 구성되는 제1저항부; 상기 제1저항부에 직렬로 연결되는 제2저항부; 상기 제1저항부를 구성하는 N개의 저항에 각각 병렬로 연결되는 N개의 스위치로 구성되는 스위칭부; 및 상기 제2저항부의 양단에 형성된 출력단자로부터 출력된 전압을 저전압으로 변환하여 서브모듈 제어기로 공급하는 DC/DC컨버터; 를 포함한다.
본 발명에서 상기 스위칭부는 상기 에너지저장부에서 감지되는 전압에 따라 상기 제1저항부를 구성하는 N개의 저항 중 n개(n≤N)의 저항에 각각 바이패스 경로를 제공하도록 상기 n개의 저항에 각각 병렬로 연결된 n개의 스위치를 스위칭한다.
본 발명에서 상기 스위칭부는 상기 에너지저장부에서 감지되는 전압이 클수록 상기 제1저항부를 구성하는 N개의 저항 중 바이패스 경로가 제공되는 저항의 갯수가 작아지도록 n값을 설정하여 상기 n개의 스위치를 스위칭한다.
본 발명에서 상기 브릿지회로부는 하프브릿지회로 또는 풀브릿지회로 중 선택된 어느 하나를 포함한다.
본 발명에 따른 MMC 컨버터의 서브모듈용 전원제어장치 내부의 DC/DC컨버터의 입력전압 사양을 높이지 않더라도 과전압 상태에서 안정적으로 동작할 수 있다.
또한, 본 발명에 의하면 다수의 분압저항과 분압저항의 바이패스 경로를 제공하여 과전압의 정도에 따른 분압값을 선택할 수 있어 정밀한 과전압 제어가 가능하다.
도 1은 일반적인 MMC 컨버터의 등가회로도이다.
도 2는 종래의 MMC 컨버터의 서브모듈 제어기용 전원장치의 회로도이다.
도 3은 본 발명의 일 실시 예에 따른 MMC 컨버터의 서브모듈 제어기용 전원장치의 회로도이다.
도 4는 본 발명의 다른 실시 예에 따른 MMC 컨버터의 서브모듈 제어기용 전원장치의 회로도이다.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세히 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성요소 사이에 또 다른 구성요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 3a 및 도 3b는 본 발명의 일 실시 예에 따른 MMC 컨버터의 서브모듈 제어기용 전원장치의 회로도이다.
본 실시 예에 따른 MMC 컨버터의 서브모듈 제어기용 전원장치(100)는 1개 이상의 상모듈(phase module)을 포함하는 MMC 컨버터에 적용된다. 상모듈은 서로 직렬연결된 다수의 서브모듈을 포함하며 직류전압측을 정(+) 및 부(-)의 직류전압 모선 P 및 N에 각각 접속시킨다. 다수의 서브모듈은 두 입력단자(X1,X2)를 통해 서로 직렬연결 되며 DC전압을 내부에 상호 간에 직렬로 연결된 에너지저장부(111)에 저장한다. 이러한 서브모듈은 제어기(미도시)에 의해 동작이 제어되며, 본 발명에 따른 전원장치(100)는 이러한 에너지저장부(111)에 저장된 고전압(수~수십㎸)을 저전압(수~수십V)으로 변환하여 서브모듈 제어기의 구동전원으로 공급하도록 한다.
본 발명의 일 실시 예에 따른 전원장치(100)는 브릿지회로부(110), 제1저항부(120), 제2저항부(130), 스위칭부(140) 및 DC/DC컨버터(150)를 포함하여 구성된다.
브릿지회로부(110)는 에너지저장부(111) 및 다수의 전력용반도체(112)를 포함한다. 에너지저장부(111)는 DC전압을 저장한다.
다수의 전력용반도체(112)는 에너지저장부(111)에 브릿지 형태로 병렬로 연결된다. 본 실시 예에서 브릿지회로부(110)는 하프브릿지(half bridge) 회로 또는 풀브릿지(full bridge) 회로를 포함할 수 있다.
또한, 에너지저장부(111)는 DC전압을 저장하는 소자로서 예컨대 커패시터 등으로 구현될 수 있고, 전력용반도체(112)는 전류의 흐름을 스위칭하는 소자로서 예컨대 IGBT, FET, 트랜지스터 등을 사용할 수 있다.
도 3a는 에너지저장부(111)와 다수의 전력용반도체(112)가 하프브릿지회로를 구성하는 예를 도시하고 도 3b는 에너지저장부(111)와 다수의 전력용반도체(112)가 풀브릿지회로를 구성하는 예를 도시하고 있다.
구체적으로, 도 3a에 도시된 하프브릿지회로의 일례에서는 상호 간에 직렬로 연결된 2개의 전력용반도체(112)가 에너지저장부(111)에 병렬로 연결되어 하프브릿지회로를 구성한다.
이러한 전력용반도체(112)는 턴온(turn-on)/턴오프(turn-off)제어가능한 파워반도체스위치(1121) 및 이에 병렬연결된 환류다이오드(1122)를 포함한다.
전력용반도체(112)는 제어부(미도시)의 제어신호에 의해 턴온/턴오프가 제어된다.
또한, 하프브릿지회로의 두 전력용반도체(112) 중 어느 하나의 전력용반도체의 양단에 제1입력단자(X1)와 제2입력단자(X2)가 형성되어 다른 서브모듈들과 직렬 연결된다. 도면에 일례로 전력용반도체(112)가 2개로 예시되었으나 본 발명은 이에 한정되지 않는다.
도 3b에 도시된 풀브릿지회로의 일례에서는 상호간에 병렬로 연결된 두 쌍의 전력용반도체(112)의 직렬연결이 에너지저장부(111)에 병렬로 각각 연결되어 풀브릿지회로를 구성한다.
이러한 전력용반도체(112)는 제어부(미도시)의 제어신호에 의해 턴온/턴오프될 수 있다.
또한, 풀브릿지회로에서 각각 쌍을 이루는 전력용반도체(112)의 각 중성점에 제1입력단자(X1)와 제2입력단자(X2)가 각각 형성된다. 도면에는 일례로 전력용반도체(112)가 4개로 예시되었으나 본 발명은 이에 한정되지 않는다.
제1저항부(120)는 에너지저장부(111)에 병렬로 연결되며, 서로 직렬연결된 적어도 하나 이상의 저항으로 구성된다.
도 3a 및 도 3b에 도시된 일례에서는 설명의 편의상 제1저항부(120)는 하나의 저항으로 구성된 것으로 표시하였다.
제2저항부(130)는 제1저항부(120)에 직렬로 연결되며, 제1저항부(120)와 제2저항부(130)는 직렬로 연결된 상태에서 에너지저장부(111)와 병렬로 연결된다.
제1저항부(120)의 양단에는 스위칭부(140)가 병렬로 연결된다.
스위칭부(140)는 SPST(Single Pole Single Throw) 형태의 스위치가 적용되며, 온(on)/오프(off)된다.
스위칭부(140)가 온(on)되면, 제1저항부(120)의 양단을 단락(short)시켜 바이패스 경로를 형성하여 제1저항부(120)를 회로에서 분리시키며, 에너지저장부(111)에 저장된 DC전압이 모두 제2저항부(130)에 전달되도록 한다.
반면, 스위칭부(140)가 오프(off)되면, 제1저항부(120)의 양단에 형성되는 바이패스 경로는 개방(open)되고, 에너지저장부(111)에 저장된 DC전압은 제1저항부(120)와 제2저항부(130)에 의해 분압된다.
스위칭부(140)로는 예컨대 IGBT, FET, 트랜지스터 등의 반도체 스위치와 릴레이 등의 기계식 스위치가 모두 적용될 수 있다.
DC/DC 컨버터(150)는 제2저항부(130)의 양단에 형성된 출력단자로부터 출력된 전압을 저전압으로 변환하여 서브모듈 제어기(미도시)로 공급한다.
따라서 DC/DC 컨버터(150)는 스위칭부(140)의 오프 동작에 따라 제1저항부(120)에 의해 분압된 전압이 제2저항부(130)를 통해 입력될 수도 있고, 스위칭부(140)의 온 동작에 따라 제1저항부(120)에 형성된 바이패스 경로를 통해 분압되지 않은 전압을 제2저항부(130)를 통해 입력받을 수도 있다.
스위칭부(140)는 에너지저장부(111)의 전압에 따라 온/오프 동작이 이루어진다.
에너지저장부(111)에 저장된 전압이 기설정된 전압을 넘지 않으면 스위칭부(140)는 제1저항부(120)에 바이패스 경로를 형성하도록 스위치를 온시켜 에너지저장부(111)에 저장된 전압이 분압되지 않고 제2저항부(130)를 통해 DC/DC컨버터(150)에 공급되도록 한다.
만약 에너지저장부(111)에 저장된 전압이 기설정된 전압 이상인 것으로 감지되면 스위칭부(140)는 스위치를 오프시켜 제1저항부(120)에 형성되었던 바이패스 경로를 제거하여, 에너지저장부(111)에 저장된 전압이 제1저항부(120)와 제2저장부(130)의 전압값에 의해 분압되어 제2저항부(130)의 양단에 걸리는 전압만이 DC/DC컨버터(150)에 공급되도록 한다.
이와 같이 본 발명의 일 실시 예에 따른 전원장치(100)는 MMC 컨버터의 서브모듈의 내부의 에너지저장부(111)에 저장된 고전압을 이용하여 서브모듈 제어기의 구동전원으로 공급하되, 에너지저장부(111)에 저장된 고전압에 과전압이 발생하는 경우 제1저항부(120) 및 제2저항부(130)의 분압에 의해 고전압 중 기설정된 일부의 전압만 DC/DC컨버터(150)에서 공급받아 저전압으로 변환하여 서브모듈 제어기에의 구동전원으로 공급하도록 한다.
만약 에너지저장부(111)에 저장된 고전압에 과전압이 발생하지 않는 경우에는 스위칭부(140)는 온되어 제1저항부(120)에 바이패스 경로를 제공하여 분압 없이 에너지저장부(111)에 저장된 고전압이 제2저항부(130)를 통해 DC/DC컨버터(150)로 공급 되도록하여 필요한 경우에만 분압에 의한 과전압 제어가 이루어지도록 한다.
이로써 종래기술에서 발생할 수 있는 과전압에 의한 DC/DC컨버터(150)의 손상을 방지하고, 과전압을 고려하여 무리하게 입력전압 범위가 넓은 DC/DC컨버터로 사양을 변경하지 않아 금액적인 손실을 줄일 수 있게 된다.
도 4는 본 발명의 다른 실시 예에 따른 MMC 컨버터의 서브모듈 제어기용 전원장치의 회로도이다.
본 발명의 다른 실시 예에 따른 전원장치(200)는 브릿지회로부(210), 제1저항부(220), 제2저항부(230), 스위칭부(240) 및 DC/DC컨버터(250)를 포함하여 구성된다.
브릿지회로부(210)와 제2저항부(230) 및 DC/DC컨버터(250)는 도 3의 브릿지회로부(110)와 제2저항부(130) 및 DC/DC컨버터(150)와 동일하다.
따라서, 브릿지회로부(210)는 에너지저장부(211) 및 다수의 전력용반도체(212)를 이용하여 하프브릿지회로 또는 풀브릿지회로로 구현될 수 있다.
도 4에 도시된 일례에서는 설명의 편의상 브릿지회로부(210)는 하프브릿지회로로 구현하였다.
다만, 도 4에 도시된 전원장치(200)는 도 3에 도시된 전원장치(100) 비해 제1저항부(220)를 구성하고 있는 직렬연결된 저항(221)이 복수개이며, 스위칭부(140)를 구성하는 스위치도 제1저항부(220)를 구성하고 있는 저항(221)에 각각 병렬연결되어 복수개로 구성된다. 이를 하기에서 상세하게 설명하기로 한다.
본 발명의 다른 실시 예에 따른 전원장치(200)는 제1저항부(220)가 N개의 직렬연결된 저항(221)과, 스위칭부(240)는 제1저항부(220)를 구성하고 있는 N개의 저항(221) 양단에 각각 병렬로 연결된 N개의 스위치(241)로 포함하여 구성된다.
스위칭부(240)는 에너지저장부(211)에서 감지되는 전압에 따라 제1저항부(220)를 구성하는 N개의 저항 중 n개(n≤N)의 저항에 각각 바이패스 경로를 제공하도록 n개의 저항에 각각 병렬로 연력된 n개의 스위치(241)를 스위칭한다.
도 4에 도시된 일례에서는 설명의 편의상 N=3으로 설정하였으며, 이에 따라 제1저항부(220)는 직렬 연결된 3개의 저항(221)으로 구성되며, 각각의 저항(221)에 스위치(241)가 연결되어 3개의 스위치(241)가 스위칭부(240)를 구성하고 있다.
즉, 에너지저장부(221)의 양단에는 제1저항부(220)를 구성하는 3개의 저항(221)과 제2저항부(230)를 구성하는 1개의 저항을 합해 총 4개의 저항이 병렬로 연결되어 있는 상태이다.
DC/DC컨버터(250)는 제2저항부(230)를 통해 출력되는 전압을 입력으로 받기 때문에 스위칭부(240)에서 3개의 저항(221)중 몇 개의 저항에 바이패스 경로를 제공하느냐에 따라 분압 비율이 달라져 DC/DC컨버터(250)에 입력되는 전압값이 달라지게 된다.
즉, n값의 설정에 따라 분압 비율을 조절하여 DC/DC컨버터(250)에 입력되는 전압값을 제어할 수 있는 것이다.
이러한 n값의 설정에 따른 DC/DC컨버터(250)의 입력전압을 수식으로 표현하면, 제1저항부(220)를 구성하는 N개의 저항의 저항값이 모두 R1으로 동일하고, 제2저항부(230)의 저항값이 R2이며, 에너지저장부(211)에 저장된 전압값이 VDC라고 할때, n개의 스위치 동작에 따른 DC/DC컨버터(250)의 입력전압 Vdc는 아래의 수학식 1로 표현할 수 있다.
수학식 1을 보면 N값이 고정되어 있는 경우 n이 작을수록, 분압 비율에서 분모의 값이 커지게 되므로 Vdc값은 작아지게 되는 관계라는 것을 알 수 있으며, 따라서 일정한 값의 Vdc값을 유지하기 위해 VDC값이 커지면 n값을 작게 조절하여 Vdc값을 다운시켜 일정한 레벨로 유지되도록 한다.
스위칭부(240)는 에너지저장부(211)에 저장된 전압값 V가 기설정된 범위를 넘어 과전압이 발생한 것으로 감지되면, DC/DC컨버터(250)의 입력전압 범위를 고려하여 n값을 설정하고 이에 따라 전압의 분압 비율이 조절되도록 스위치(241)를 동작시킨다.
스위칭부(240)는 에너지저장부(211)에서 감지되는 전압이 기설정된 전압 범위 이하이면, 제1저항부(220)의 3개의 저항(221)에 모두 바이패스 경로를 제공하도록 3개의 스위치(241)를 모두 동작시킨다.
이 경우 제1저항부(220)의 3개의 저항(221) 모두가 회로로부터 분리되어 에너지저장부(211)의 양단에는 제2저항부(230)만이 연결된 상태가 되므로 에너지저장부(211)에 저장된 전압은 모두 제2저항부(230)를 통해 DC/DC컨버터(250)에 공급된다.
그러나 에너지저장부(211)에서 감지되는 전압이 기설정된 전압 범위를 초과하고 제1기준전압(제1기준전압 < 제2기준전압)보다 낮으면, 스위칭부(240)는 제1저항부(220)의 3개의 저항(221)중 2개의 저항에만 바이패스 경로를 제공하도록 2개의 스위치(241)를 동작시킨다. 즉, N은 3이고, n은 2로 설정하는 것이다.
이 경우, 에너지저장부(211)의 양단에는 저항(221) 1개와 제2저항부(230)가 병렬로 연결된 상태가 되므로 DC/DC컨버터(250)에는 에너지저장부(211)에 저장된 전압이 저항(221)과 제2저항부(230)에 의해 분압되어 입력되게 된다.
만약 에너지저장부(211)에서 감지되는 전압이 제1기준전압도 초과하고, 제1기준전압보다 높은 제2기준전압보다 낮은 상태라면, 스위칭부(240)는 제1저항부(220)의 3개의 저항(221) 중 1개의 저항에만 바이패스 경로를 제공하도록 1개의 스위치(241)만을 동작시킨다. 즉, N은 3이고, n은 1로 설정하는 것이다.
이 경우, 에너지저장부(211)의 양단에는 저항(221) 2개와 제2저항부(230)가 병렬로 연결된 상태가 되므로 DC/DC컨버터(250)에는 에너지저장부(211)에 저장된 전압이 저항(221) 2개와 제2저항부(230)에 의해 분압되어 입력된다.
이 경우, 저항(221)이 1개 추가되어 분압 비율은 더 낮아지기 때문에 에너지저장부(211)에서 감지되는 전압이 더 상승했어도 DC/DC컨버터(250)에 입력되는 전압은 낮게 조절될 수 있다.
만약 에너지저장부(211)에서 감지되는 전압이 제2기준전압까지 초과해버린 경우라면, 스위칭부(240)는 제1저항부(220)의 3개의 저항(221)에 모두 바이패스 경로가 제공되지 않도록 스위치(241)를 동작시키지 않는다. 즉, N은 3이고, n은 0으로 설정한다.
이 경우, 에너지저장부(211)의 양단에는 제1저항부(220)를 구성하는 저항(221) 3개와 제2저항부(230)가 모두 병렬로 연결된 상태가 되므로, DC/DC컨버터(250)에는 에너지저장부(211)에 저장된 전압이 저항(221) 3개와 제2저항부(230)에 의해 분압되어 입력된다.
즉, 전원장치(200)에 구성되어 있는 모든 저항이 분압에 이용되기 때문에 분압 비율은 더 낮아지게 되어 에너지저장부(211)에서 과전압이 감지되었어도 분압에 의해 DC/DC컨버터(250)에 입력되는 전압은 정상범위를 만족시킬 수 있게 된다.
이와 같이 본 발명의 일 실시 예에 따른 전원장치(200)는 MMC 컨버터의 서브모듈에 저장된 에너지저장부(211)에 저장된 고전압을 이용하여 서브모듈 제어기의 구동전원으로 공급하되, 고전압에 과전압이 발생하는 경우, 고전압을 입력으로 받아 저전압으로 변환시키는 DC/DC컨버터(250)의 입력의 정상 범위를 만족시키기 위해 에너지저장부(211)의 과전압 정도에 따라 제1저항부(220)에 구성된 복수개의 저항 중 선택된 일부의 저항(221)과 제2저항부(230)의 저항에 의해 에너지저장부(211)의 전압을 분압시켜 DC/DC컨버터(250)의 입력의 정상 범위를 만족하는 전압만 입력되도록 스위칭부(240)에 구성된 스위치(241)를 동작시킨다.
이로써 종래기술에서 발생할 수 있는 과전압을 고려하여 과도한 입력전압 범위를 갖는 DC/DC컨버터의 적용없이 기존의 DC/DC컨버터를 이용하면서도 과전압에 따른 손상을 방지할 수 있는 전원장치를 제공할 수 있게된다.
이상에서 설명한 본 발명은 바람직한 실시 예들을 통하여 상세하게 설명되었지만, 본 발명은 이러한 실시 예들의 내용에 한정되는 것이 아님을 밝혀둔다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 비록 실시 예에 제시되지 않았지만 첨부된 청구항의 기재 범위 내에서 다양한 본 발명에 대한 모조나 개량이 가능하며, 이들 모두 본 발명의 기술적 범위에 속함은 너무나 자명하다 할 것이다. 이에, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
Claims (6)
- 상호 간에 직렬연결된 MMC 컨버터의 서브모듈 내부에 DC전압을 저장하는 에너지저장부와, 상기 에너지저장부에 브릿지 형태로 병렬로 연결된 다수의 전력용반도체를 포함하는 브릿지회로부;상기 에너지저장부에 병렬로 연결되며, 적어도 하나 이상의 직렬연결된 저항으로 구성되는 제1저항부;상기 제1저항부에 직렬로 연결되는 제2저항부;상기 제1저항부에 병렬로 연결되는 스위칭부; 및상기 제2저항부의 양단에 형성된 출력단자로부터 출력된 전압을 저전압으로 변환하여 서브모듈 제어기로 공급하는 DC/DC컨버터; 를 포함하는 MMC 컨버터의 서브모듈 제어기용 전원장치.
- 제 1 항에 있어서,상기 스위칭부는 상기 에너지저장부에서 감지되는 전압이 기설정된 전압 이하인 경우, 상기 제1저항부에 바이패스 경로를 제공하도록 스위칭되는 MMC 컨버터의 서브모듈 제어기용 전원장치.
- 상호 간에 직렬연결된 MMC 컨버터의 서브모듈 내부에 DC전압을 저장하는 에너지저장부와, 상기 에너지저장부에 브릿지 형태로 병렬로 연결된 다수의 전력용반도체를 포함하는 브릿지회로부;상기 에너지저장부에 병렬로 연결되며 N개의 직렬연결된 저항으로 구성되는 제1저항부;상기 제1저항부에 직렬로 연결되는 제2저항부;상기 제1저항부를 구성하는 N개의 저항에 각각 병렬로 연결되는 N개의 스위치로 구성되는 스위칭부; 및상기 제2저항부의 양단에 형성된 출력단자로부터 출력된 전압을 저전압으로 변환하여 서브모듈 제어기로 공급하는 DC/DC컨버터; 를 포함하는 MMC 컨버터의 서브모듈 제어기용 전원장치.
- 제 3 항에 있어서,상기 스위칭부는 상기 에너지저장부에서 감지되는 전압에 따라 상기 제1저항부를 구성하는 N개의 저항 중 n개(n≤N)의 저항에 각각 바이패스 경로를 제공하도록 상기 n개의 저항에 각각 병렬로 연결된 n개의 스위치를 스위칭하는 MMC 컨버터의 서브모듈 제어기용 전원장치.
- 제 4 항에 있어서,상기 스위칭부는 상기 에너지저장부에서 감지되는 전압이 클수록 상기 제1저항부를 구성하는 N개의 저항 중 바이패스 경로가 제공되는 저항의 갯수가 작아지도록 n값을 설정하여 상기 n개의 스위치를 스위칭하는 MMC 컨버터의 서브모듈 제어기용 전원장치.
- 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,상기 브릿지회로부는 하프브릿지회로 또는 풀브릿지회로 중 선택된 어느 하나를 포함하는 MMC 컨버터의 서브모듈 제어기용 전원장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/473,484 US20200007028A1 (en) | 2016-12-26 | 2017-12-06 | Power supply for submodule controller of mmc converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0179557 | 2016-12-26 | ||
KR1020160179557A KR101943882B1 (ko) | 2016-12-26 | 2016-12-26 | Mmc 컨버터의 서브모듈 제어기용 전원장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018124523A2 true WO2018124523A2 (ko) | 2018-07-05 |
WO2018124523A3 WO2018124523A3 (ko) | 2018-08-23 |
Family
ID=62711126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/014183 WO2018124523A2 (ko) | 2016-12-26 | 2017-12-06 | Mmc 컨버터의 서브모듈 제어기용 전원장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200007028A1 (ko) |
KR (1) | KR101943882B1 (ko) |
WO (1) | WO2018124523A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3890174A4 (en) * | 2019-08-26 | 2022-08-10 | Nr Electric Co., Ltd. | INVERTER AND ARRANGEMENT, VARIANT POWER COMPENSATION DEVICE AND INVERTER THEREOF, AND CONTROL METHOD THEREOF |
EP4012913A4 (en) * | 2019-08-09 | 2023-04-12 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | POWER CONVERSION DEVICE |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101943884B1 (ko) * | 2017-06-02 | 2019-01-30 | 효성중공업 주식회사 | Mmc 컨버터 및 그의 서브모듈 |
KR102241512B1 (ko) * | 2019-01-02 | 2021-04-16 | 효성중공업 주식회사 | Mmc 컨버터의 서브모듈 |
CN110224423B (zh) * | 2019-05-13 | 2020-09-29 | 南方电网科学研究院有限责任公司 | 一种柔性直流耗能装置及其环流控制方法 |
EP3780366A1 (en) * | 2019-08-13 | 2021-02-17 | Vestas Wind Systems A/S | Dc chopper for mmc cell with integrated chopper resistor |
CN111327216B (zh) | 2020-04-01 | 2021-03-30 | 浙江大学 | 一种电阻型子模块混合mmc及其直流故障处理策略 |
CN111416426A (zh) * | 2020-04-02 | 2020-07-14 | 广东安朴电力技术有限公司 | 一种功率单元备用供电电路及功率系统 |
KR102387824B1 (ko) * | 2020-05-14 | 2022-04-18 | 효성중공업 주식회사 | Hvdc 서브 모듈의 바이패스 장치 및 방법 |
JP7499961B2 (ja) | 2021-05-17 | 2024-06-14 | 三菱電機株式会社 | 電力変換装置及び主回路給電装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3374115B2 (ja) * | 2000-03-02 | 2003-02-04 | 三洋電機株式会社 | 可変抵抗回路、演算増幅回路および集積回路 |
JP4345640B2 (ja) * | 2004-10-27 | 2009-10-14 | 富士電機システムズ株式会社 | 電力変換装置の突入電流抑制装置 |
JP6099951B2 (ja) * | 2012-11-29 | 2017-03-22 | 株式会社東芝 | 電力変換装置 |
JP6261491B2 (ja) * | 2014-11-19 | 2018-01-17 | 三菱電機株式会社 | 電力変換装置 |
KR101725087B1 (ko) | 2014-12-29 | 2017-04-26 | 주식회사 효성 | Mmc 컨버터의 서브모듈용 전원제어장치 |
KR101723094B1 (ko) * | 2014-12-29 | 2017-04-18 | 주식회사 효성 | Mmc 컨버터의 서브모듈 제어기용 전원장치 |
KR101711948B1 (ko) | 2014-12-29 | 2017-03-03 | 주식회사 효성 | Mmc 컨버터의 서브모듈용 전원제어장치 |
KR20160080021A (ko) * | 2014-12-29 | 2016-07-07 | 주식회사 효성 | Mmc 컨버터의 서브모듈용 전원제어장치 |
-
2016
- 2016-12-26 KR KR1020160179557A patent/KR101943882B1/ko active IP Right Grant
-
2017
- 2017-12-06 WO PCT/KR2017/014183 patent/WO2018124523A2/ko active Application Filing
- 2017-12-06 US US16/473,484 patent/US20200007028A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4012913A4 (en) * | 2019-08-09 | 2023-04-12 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | POWER CONVERSION DEVICE |
US11722050B2 (en) | 2019-08-09 | 2023-08-08 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Current limiting circuit for multilevel power converter cell |
EP3890174A4 (en) * | 2019-08-26 | 2022-08-10 | Nr Electric Co., Ltd. | INVERTER AND ARRANGEMENT, VARIANT POWER COMPENSATION DEVICE AND INVERTER THEREOF, AND CONTROL METHOD THEREOF |
Also Published As
Publication number | Publication date |
---|---|
WO2018124523A3 (ko) | 2018-08-23 |
US20200007028A1 (en) | 2020-01-02 |
KR101943882B1 (ko) | 2019-01-30 |
KR20180075340A (ko) | 2018-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018124523A2 (ko) | Mmc 컨버터의 서브모듈 제어기용 전원장치 | |
WO2016108575A1 (ko) | Mmc 컨버터의 서브모듈 제어기용 전원장치 | |
CN110729880B (zh) | 电力变换装置的驱动电路及其应用装置 | |
WO2018128216A1 (ko) | 다중 채널 스위칭 컨버터 | |
KR100624999B1 (ko) | 직류 컨버터의 병렬 동작을 제어하기 위한 장치 및 방법 | |
WO2010087608A2 (en) | Charge equalization apparatus and method for series-connected battery string | |
WO2017115955A1 (ko) | 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법 | |
US9917522B2 (en) | Power control apparatus for sub-module of MMC converter | |
WO2012023653A1 (ko) | 발광 다이오드 어레이 구동회로 | |
WO2018221906A1 (ko) | Mmc 컨버터 및 그의 서브모듈 | |
WO2018048057A1 (ko) | Dc-dc 컨버터 및 이를 포함하는 2단 전력단 컨버터 | |
WO2016108571A1 (ko) | Mmc 컨버터의 서브모듈용 전원공급장치 | |
WO2018124519A1 (ko) | 모듈러 멀티레벨 컨버터 시스템 | |
WO2014104836A1 (ko) | 컨버터 | |
WO2020101320A1 (ko) | 모듈러 멀티레벨 컨버터 서브모듈의 커패시터 전압 조정 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체 | |
WO2018221907A1 (ko) | Mmc 컨버터 및 그의 서브모듈 | |
WO2018216850A1 (ko) | 전력 변환 장치 | |
WO2018124516A2 (ko) | Mmc 컨버터 | |
WO2011078424A1 (ko) | 부하의 세그먼테이션을 고려한 풀 브릿지 인버터 및 그 제어방법 | |
WO2021034152A1 (ko) | 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈 | |
WO2018079918A1 (ko) | 배터리 셀 밸런싱 장치 | |
WO2020153603A1 (ko) | 고체콘덴서를 이용한 led 컨버터 | |
WO2016108597A1 (ko) | Mmc 컨버터의 서브모듈용 전원제어장치 | |
WO2022080625A1 (ko) | 시퀀스 제어가 가능한 멀티 전원 공급 장치 | |
WO2020141838A2 (ko) | Mmc 컨버터의 서브모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886129 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886129 Country of ref document: EP Kind code of ref document: A2 |