WO2018221907A1 - Mmc 컨버터 및 그의 서브모듈 - Google Patents

Mmc 컨버터 및 그의 서브모듈 Download PDF

Info

Publication number
WO2018221907A1
WO2018221907A1 PCT/KR2018/006024 KR2018006024W WO2018221907A1 WO 2018221907 A1 WO2018221907 A1 WO 2018221907A1 KR 2018006024 W KR2018006024 W KR 2018006024W WO 2018221907 A1 WO2018221907 A1 WO 2018221907A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
power semiconductor
terminal
submodule
node
Prior art date
Application number
PCT/KR2018/006024
Other languages
English (en)
French (fr)
Inventor
홍정원
정홍주
오성민
유현호
이주연
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Priority to US16/618,306 priority Critical patent/US11011911B2/en
Publication of WO2018221907A1 publication Critical patent/WO2018221907A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to a modular multilevel converter (MMC), and more particularly to an MMC converter associated with a high voltage direct current transmission (HVDC) system and a submodule constituting the same.
  • MMC modular multilevel converter
  • HVDC high voltage direct current transmission
  • High Voltage Direct Current (HVDC) system converts the AC power produced in the power plant to DC power and transmits it.
  • the HVDC system is capable of efficient and economical power transmission through voltage boost, and has advantages of heterogeneous system linkage and long distance high efficiency power transmission.
  • This HVDC system can be associated with the MMC converter.
  • Conventional MMC converter is composed of one or more phase modules (1) as shown in Figure 1, each of these phase modules (1) is composed of a plurality of sub-modules (2) connected in series with each other.
  • the conventional submodule 2 is a half-bridge circuit composed of two power semiconductor switches 21 connected in series with each other as shown in FIG. 2A and a capacitor 22 connected in parallel thereto, or as shown in FIG. 2B. It consists of a full-bridge circuit composed of a pair of power semiconductor switches 21 connected in series and a capacitor 22 connected in parallel to these pairs. Two terminals X1 and X2 are formed in each of the sub modules 2 so that the upper and lower sub modules are serially connected to each other through the two terminals X1 and X2.
  • Each upper module 1 is connected with respective terminals L1, L2, and L3 for connecting to the AC grid, and the upper converter arm 1a and the lower converter are referenced to the respective terminals L1, L2, and L3. It is divided into the arm 1b.
  • the second terminal X2 of the lowermost submodule of the upper converter arm 1a and the first terminal X1 of the uppermost submodule of the lower converter arm 1b may be any one of terminals L1, L2, and L3 of the AC system.
  • Connected with The AC system may for example be a three phase AC power system.
  • the submodule 2 constituting the upper converter arm 1a and the lower converter arm 1b has the same shape as the submodule 2 for redundancy operation of the submodule 2. It has at least one spare submodule (3) having.
  • the preliminary submodule 3 is used to replace a submodule in which a failure occurs among a plurality of submodules 2 in operation, and is input and operated instead of a submodule in which a failure occurs.
  • the preliminary submodule 3 of the prior art cannot be commonly applied to the upper converter arm 1a and the lower converter arm 1b, so that each of the upper converter arm 1a and the lower converter arm 1b is a separate spare submodule. There is a problem in that it has to be provided with (3) and the cost increases.
  • an object of the present invention is to provide an MMC converter and a submodule including a submodule commonly applicable to an upper converter arm and a lower converter arm in an MMC converter.
  • the first power semiconductor switch and the second power semiconductor switch including a semiconductor switch and a diode connected in parallel with the semiconductor switch in parallel with each other in series in the same direction ;
  • a capacitor connected in parallel to the first power semiconductor switch and the second power semiconductor switch connected in series;
  • a first terminal connected to a first node between the first and second power semiconductor switches;
  • a second terminal connected to a second node between the second power semiconductor switch and a capacitor;
  • a third power semiconductor switch including a semiconductor switch and a diode connected in anti-parallel to the semiconductor switch and having one side connected to the second node; And a third terminal connected to the other side of the third power semiconductor switch and connected to a terminal of an AC system.
  • the sub-module of the MMC converter according to another embodiment of the present invention, a semiconductor switch and a diode for the first power semiconductor switch and the second power connected in series with each other in the same direction, each of which includes a diode connected in reverse parallel to the semiconductor switch Semiconductor switches; A capacitor connected in parallel to the first power semiconductor switch and the second power semiconductor switch connected in series; A first terminal connected to a first node between the first and second power semiconductor switches; A second terminal connected to a second node between the second power semiconductor switch and a capacitor; A third power semiconductor switch including a semiconductor switch and a diode connected in anti-parallel to the semiconductor switch and having one side connected to the first node; And a third terminal connected to the other side of the third power semiconductor switch and connected to a terminal of an AC system.
  • the preliminary submodule of the MMC converter is a preliminary submodule applicable in common to the upper converter arm and the lower converter arm constituting the MMC converter, and is inversely parallel to the semiconductor switch and the semiconductor switch.
  • a first power semiconductor switch and a second power semiconductor switch each including diodes connected in series and connected to each other in series in the same direction;
  • a capacitor connected in parallel to the first power semiconductor switch and the second power semiconductor switch connected in series;
  • a third power semiconductor switch including a semiconductor switch and a diode connected in anti-parallel to the semiconductor switch and having one side connected to the second node;
  • a third terminal connected to the other side of the third power semiconductor switch and connected to a terminal of an AC system, wherein the preliminary submodule is configured between an upper converter arm and a lower converter arm composed of a plurality of submodules connected in series
  • the preliminary submodule of the MMC converter is a preliminary submodule applicable in common to the upper converter arm and the lower converter arm constituting the MMC converter, and is in parallel with the semiconductor switch and the semiconductor switch.
  • a first power semiconductor switch and a second power semiconductor switch each including diodes connected in series and connected to each other in series in the same direction;
  • a capacitor connected in parallel to the first power semiconductor switch and the second power semiconductor switch connected in series;
  • a first terminal connected to a first node between the first and second power semiconductor switches;
  • a third power semiconductor switch including a semiconductor switch and a diode connected in anti-parallel to the semiconductor switch and having one side connected to the first node;
  • a third terminal connected to the other side of the third power semiconductor switch and connected to a terminal of an AC system, wherein the preliminary submodule is configured between an upper converter arm and a lower converter arm composed of a plurality of submodules connected in series.
  • the MMC converter according to an embodiment of the present invention, the upper converter arm consisting of a plurality of sub-modules connected in series; And a lower converter arm composed of a plurality of submodules connected in series with each other and serially connected to a submodule of the upper converter arm, wherein each of the submodules includes a semiconductor switch and a diode connected in reverse parallel with the semiconductor switch.
  • a first power semiconductor switch and a second power semiconductor switch connected in series with each other in the same direction, a capacitor connected in parallel to the first power semiconductor switch and the second power semiconductor switch connected in series, and the first and second power.
  • a third power semiconductor switch having one side connected to the second node, and the third power half; And a third terminal connected to the other side of the conductor switch and connected to the terminal of the AC system.
  • the MMC converter according to another embodiment of the present invention, the upper converter arm consisting of a plurality of sub-modules connected in series; And a lower converter arm composed of a plurality of submodules connected in series with each other and serially connected to a submodule of the upper converter arm, wherein each of the submodules includes a semiconductor switch and a diode connected in reverse parallel with the semiconductor switch.
  • a first power semiconductor switch and a second power semiconductor switch connected in series with each other in the same direction, a capacitor connected in parallel to the first power semiconductor switch and the second power semiconductor switch connected in series, and the first and second power switches;
  • a third power semiconductor switch each having one side connected to the first node and the third power semiconductor switch; Connected to the other end of the conductor switch and a third terminal connected to terminals of the AC grid.
  • the MMC converter according to another embodiment of the present invention, the upper converter arm consisting of a plurality of sub-modules connected in series; A lower converter arm consisting of a plurality of submodules connected in series with each other; And at least one preliminary submodule connected in series between the upper and lower converter arms and commonly applicable to the upper and lower converter arms, each of the preliminary submodules being connected in reverse parallel with the semiconductor switch and the semiconductor switch.
  • a first power semiconductor switch and a second power semiconductor switch each including a diode and connected in series to each other in the same direction, a capacitor connected in parallel to the first and second power semiconductor switches connected in series, and A first terminal connected to a first node between first and second power semiconductor switches, a second terminal connected to a second node between the second power semiconductor switch and a capacitor, and a semiconductor switch and the semiconductor switch
  • a third power semiconductor including a diode connected in parallel and having one side connected to the second node And a third terminal connected to the other side of the third power semiconductor switch and connected to a terminal of an AC system.
  • the MMC converter according to another embodiment of the present invention, the upper converter arm consisting of a plurality of sub-modules connected in series; A lower converter arm consisting of a plurality of submodules connected in series with each other; And at least one preliminary submodule connected in series between the upper and lower converter arms and commonly applicable to the upper and lower converter arms, each of the preliminary submodules being connected in reverse parallel with the semiconductor switch and the semiconductor switch.
  • a first power semiconductor switch and a second power semiconductor switch each including a diode and connected in series to each other in the same direction, a capacitor connected in parallel to the first and second power semiconductor switches connected in series, and A first terminal connected to a first node between first and second power semiconductor switches, a second terminal connected to a second node between the second power semiconductor switch and a capacitor, and a semiconductor switch and the semiconductor switch
  • a third power semiconductor including a diode connected in parallel and having one side connected to the first node And a third terminal connected to the other side of the third power semiconductor switch and connected to a terminal of an AC system.
  • At least two spare submodules may be commonly applied to the upper and lower converter arms in the MMC converter with one submodule, thereby simplifying the structure of the circuit and reducing the cost.
  • the reliability of the MMC converter can be improved.
  • 1 is a circuit diagram of a conventional MMC converter.
  • 2A and 2B are configuration diagrams of a sub module applied to a conventional MMC converter.
  • FIG. 3 is a configuration diagram of a submodule according to a first embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a submodule according to a second embodiment of the present invention.
  • FIG. 5 is a circuit diagram of an MMC converter to which a submodule is applied according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of an MMC converter to which the submodule of FIG. 3 is applied.
  • FIG. 7 is a diagram illustrating an example of an MMC converter to which the submodule of FIG. 4 is applied.
  • FIG. 8 is a flow chart illustrating a switching operation of the submodule of FIG. 3.
  • FIG. 9 is a flow chart illustrating a switching operation of the submodule of FIG. 4.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 3 is a configuration diagram of a submodule according to a first embodiment of the present invention.
  • the submodule 100 may include a first power semiconductor switch 110, a second power semiconductor switch 120, and a third power semiconductor switch 130. And a capacitor 140.
  • the first power semiconductor switch 110 includes a first semiconductor switch 111 and a first diode 112 connected in anti-parallel to the first semiconductor switch 111 and the second power semiconductor switch 120. Includes a second semiconductor switch 121 and a second diode 122 connected in anti-parallel to the second semiconductor switch 121. In this case, the first power semiconductor switch 110 and the second power semiconductor switch 120 are connected in series in the same direction.
  • the capacitor 140 is connected in parallel to all of the first and second power semiconductor switches 110 and 120 connected in series with each other as described above.
  • a first terminal X1 is connected to the first node N1 between the first and second power semiconductor switches 110 and 120, and the second power semiconductor switch 120 and the capacitor 150 are connected to each other.
  • the second terminal (X2) is connected to the second node (N2) between.
  • One end of the third power semiconductor switch 130 is connected to the second node N2, and the other end of the third terminal X3 is connected to an input / output terminal of an AC system. That is, the third terminal X3 is a terminal connected to the AC system, and the third power semiconductor switch 130 is connected to the AC system through the third terminal X3.
  • These first to third nodes N1 to N3 are points where branch lines for connecting respective terminals are connected to connection lines between the corresponding components.
  • the third power semiconductor switch 130 includes a third semiconductor switch 131 and a third diode 132 connected in anti-parallel to the third semiconductor switch 131.
  • the cathode of the third diode 132 of the third power semiconductor switch 130 is connected to the second node N2 and the anode is connected to the third terminal X3.
  • the submodule 100 may be used as a plurality of submodules constituting the upper and lower converter arms 11a and 11b in the MMC converter.
  • the submodule 100 may be a redundant submodule inserted into the submodule when a failure occurs. Can also be used.
  • a plurality of submodules 12a connected between the upper converter arm 11a and the lower converter arm 11b in the MMC converter and constituting the upper converter arm 11a or the lower converter arm 11b. 12b) is replaced by a submodule in which a failure occurs, thereby operating as a submodule in the MMC converter.
  • the first terminal X1 and the second terminal X2 are connected to terminals of other normal submodules, and the third terminal X3 is connected to a terminal of an AC system.
  • the submodule 100 is applied as a spare submodule, the submodule 100 is connected in series with another submodule of either the upper converter arm 11a or the lower converter arm 11b, wherein the first terminal X1 is connected to the upper converter. It is connected to one of the two terminals of the lowermost submodule 12a-n of the arm 11a and the second terminal X2 is one of the two terminals of the uppermost submodule 12b-1 of the lower converter arm 11b. Is connected to the terminal.
  • the third terminal X3 is connected to a terminal of the AC system.
  • each submodule 100 shown in FIG. 3 has first and second terminals X1 and X2 for series connection with other submodules at the top and bottom, and is connected to the AC grid. It includes a third terminal (X3) for each.
  • the submodule 100 is directly connected to the AC system when used as a submodule in the upper and lower converter arms 11a and 11b and when used as a spare submodule.
  • FIG. 4 is a configuration diagram of a submodule according to a second embodiment of the present invention.
  • the submodule 200 may include a first power semiconductor switch 210, a second power semiconductor switch 220, and a third power semiconductor switch 230. And a capacitor 240.
  • the first power semiconductor switch 210 includes a first semiconductor switch 211 and a first diode 212 connected in anti-parallel to the first semiconductor switch 211 and the second power semiconductor switch 220. Includes a second semiconductor switch 221 and a second diode 222 connected in anti-parallel to the second semiconductor switch 221. In this case, the first power semiconductor switch 210 and the second power semiconductor switch 220 are connected in series in the same direction.
  • the capacitor 240 is connected in parallel to all of the first and second power semiconductor switches 210 and 220 connected in series with each other as described above.
  • a first terminal X1 is connected to the first node N1 between the first and second power semiconductor switches 210 and 220, and the second power semiconductor switch 220 and the capacitor 150 are connected to each other.
  • the second terminal (X2) is connected to the second node (N2) between.
  • One end of the third power semiconductor switch 230 is connected to the first node N1, and a third terminal X3 connected to an input / output terminal of an AC system is connected to the other end thereof. That is, the third terminal X3 is a terminal connected to the AC system, and the third power semiconductor switch 230 is connected to the AC system through the third terminal X3.
  • These first to third nodes N1 to N3 are points where branch lines for connecting respective terminals are connected to connection lines between the corresponding components.
  • the third power semiconductor switch 230 includes a third semiconductor switch 131 and a third diode 132 connected in anti-parallel to the third semiconductor switch 131.
  • the cathode of the third diode 132 of the third power semiconductor switch 130 is connected to the first node N1 and the anode is connected to the third terminal X3.
  • the submodule 200 may be used as a plurality of submodules constituting the upper and lower converter arms 11a and 11b in the MMC converter, but as a redundant submodule inserted into the submodules when a failure occurs. Can also be used.
  • a plurality of submodules 12a connected between the upper converter arm 11a and the lower converter arm 11b in the MMC converter and constituting the upper converter arm 11a or the lower converter arm 11b. 12b) is replaced by a submodule in which a failure occurs, thereby operating as a submodule in the MMC converter.
  • the first terminal X1 and the second terminal X2 are connected to terminals of other normal submodules, and the third terminal X3 is connected to a terminal of an AC system.
  • the submodule 200 is applied as a spare submodule, the submodule 200 is connected in series with another submodule of either the upper converter arm 11a or the lower converter arm 11b, wherein the first terminal X1 is connected to the upper converter. It is connected to one of the two terminals of the lowermost submodule 12a-n of the arm 11a and the second terminal X2 is one of the two terminals of the uppermost submodule 12b-1 of the lower converter arm 11b. Is connected to the terminal.
  • the third terminal X3 is connected to a terminal of the AC system.
  • each submodule 200 illustrated in FIG. 4 may have a first terminal and a second terminal connected in series with other submodules of the upper and lower sides in the same way as the submodule 100 illustrated in FIG. 3.
  • X1, X2 and includes a third terminal (X3) for connecting to the AC system, respectively.
  • the submodule 200 is directly connected to the AC system when used as a submodule in the upper and lower converter arms 11a and 11b and when used as a spare submodule.
  • FIG. 5 is a circuit diagram of an MMC converter to which a submodule according to the present invention is applied.
  • the MMC converter to which the submodules 100 and 200 are applied according to the present invention includes N submodules 100 and 200 and at least one preliminary submodule 100a and 200a.
  • the N submodules 100 and 200 and the preliminary submodules 100a and 200 are given different reference numerals for convenience of description, but actually have the same configuration as shown in FIGS. 3 and 4.
  • the preliminary submodules 100a and 200a replace the submodules in which the failure occurs when any one of the N submodules 100 and 200 occurs.
  • preliminary submodule 100a or 200a is exemplarily illustrated in the drawing, this is an example and the preliminary submodule 100a and 200a may be provided with at least one.
  • the spare submodules 100a and 200a may be used.
  • the present invention can be commonly used in the upper and lower converter arms 11a and 11b. If only one submodule 100a or 200a is provided and a failure occurs in any of the submodules of the upper or lower converter arms 11a and 11b, the failed submodule is replaced by the upper or lower converter arms 11a and 11b. can do. As a result, the number of preliminary submodules can be reduced compared to the related art, and it is very advantageous in terms of cost. In the present invention, the number of spare submodules will be selectively determined according to the characteristics of the MMC converter and the number of submodules of the converter arm.
  • each of the sub-modules (100, 200, 100a, 200a) in the MMC converter according to the present invention is characterized in that it is directly connected to the AC system through the third terminal (X3).
  • FIG. 6 is a diagram illustrating an example of an MMC converter to which the submodule of FIG. 3 is applied.
  • FIG. 6 for example, two sub-modules 100-u1, 100-u2, 100-d1, and 100-d2 are provided in the upper converter arm 11a and the lower converter arm 11b, respectively.
  • the current flow according to the operation in the MMC converter in which one preliminary submodule 100a is connected between the arms 11a and 11b is illustrated.
  • two sub-modules 100-u1, 100-u2, 100-d1, and 100-d2 of the upper converter arm 11a and the lower converter arm 11b are respectively higher during normal operation.
  • the spare submodule 100a replaces the failed submodule 100-u2 in a situation in which current is bypassed due to a failure in the second submodule 100-u2 of the converter arm 11a. An example is shown.
  • the failed submodule 100-u2 turns on the second power semiconductor switch 120 to bypass the current and supplies the current supplied from the upper submodule 100-u1 through the first terminal X1. Flows to the second terminal X2 through the second power semiconductor switch 120 so as to be supplied to the lower submodule 100-d1.
  • the preliminary submodule 100 replaces the failed submodule 100-u2, and for this purpose, the first and third power semiconductor switches 110 and 130 are turned on and the second power semiconductor switch 120 is turned on. The turn off state is maintained. As a result, the current bypassed by the submodule 100-u2 having the fault as described above is supplied through the first terminal X1, and the second terminal (eg, through the first power semiconductor switch 110 and the capacitor 140). X2) and the third power semiconductor switch 130 is turned on, so the current is supplied to the AC system.
  • the input of the preliminary submodule 100a may be input by substituting the submodule in which the failure occurs in the same principle as described above according to the number of the preliminary submodule 100a installed.
  • the lower converter arm 11b as shown in FIG. 6, when a failure occurs in another submodule of the upper converter arm 11a while the preliminary submodule 100a is all input, the lower converter arm 11b as shown in FIG. Any one of the plurality of submodules configured to operate may be operated as a submodule of the upper converter arm 11a.
  • the submodule 100 of the lower converter arm 11b as shown in FIG. -d1) may switch to the submodule of the upper converter arm 11a.
  • the sub-module 100-d1 of the lower converter arm 11b is switched to operate as a sub-module of the upper converter arm 11a.
  • the switches 110 and 130 are turned on and the second power semiconductor switch 120 is turned off.
  • current is supplied to the first terminal X1 to flow through the first power semiconductor switch 110 and the capacitor 140 to the second terminal X2 and the third power semiconductor switch 130 is turned on. Therefore, current is supplied to the AC system.
  • the preliminary submodule 100a since the preliminary submodule 100a is already operating as a submodule of the upper converter arm 11a, the preliminary submodule 100a turns the third power semiconductor switch 230 to turn off to cut off the supply of current to the AC system.
  • the submodule 100 according to the present invention can be applied as a submodule constituting the upper converter arm 11a and the lower converter arm 11a, and between the upper and lower converter arms 11a and 11b. It can also be applied as a connected spare submodule.
  • the sub-module of the lower converter arm 11b may be switched to operate while operating as the sub-module of the upper converter arm 11a. Of course the opposite is also true.
  • the MMC converter may be operated by controlling a switching operation of turning on / off of the first to third power semiconductor switches 110, 120, and 130 according to a case of operating as a preliminary submodule.
  • the submodule 100 when the submodule 100 operates as a submodule of the upper converter arm 11a, when the voltage of the AC system is not input to the third terminal X3, the submodule 100 operates as one of the N submodules of the upper converter arm 11a. And, when the voltage of the AC system is input, it operates as a preliminary submodule 100a of the upper converter arm 11a.
  • the submodule 100 when the submodule 100 operates as a submodule of the lower converter arm 11b, when the voltage of the AC system is not input to the third terminal X3, the submodule 100 operates as one of N submodules of the lower converter arm 11b. And, when the voltage of the AC system is input, it operates as a preliminary submodule 100a of the lower converter arm 11b.
  • FIG. 7 is a diagram illustrating an example of an MMC converter to which the submodule of FIG. 4 is applied.
  • FIG. 7 for example, two sub-modules 200-u1, 200-u2, 200-d1, 200-d2 are provided in the upper converter arm 11a and the lower converter arm 11b, respectively.
  • the current flow according to the operation in the MMC converter in which one preliminary submodule 200a is connected between the arms 11a and 11b is illustrated.
  • FIG. 7A two sub-modules 200-u1, 200-u2, 200-d1, 200-d2 of the upper converter arm 11a and the lower converter arm 11b are respectively higher during normal operation.
  • the spare submodule 200a replaces the failed submodule 100-u2 in a situation in which current is bypassed due to a failure in the second submodule 200-u2 of the converter arm 11a. An example is shown.
  • the failed submodule 200-u2 turns on the second power semiconductor switch 220 to bypass the current, and turns off the first and third power semiconductor switches 210 and 230 to turn off the first terminal X1.
  • the current supplied from the upper submodule 200-u1 flows to the second terminal X2 through the second power semiconductor switch 220 to be supplied to the lower submodule 200-d1.
  • the preliminary submodule 200a replaces the failed submodule 200-u2, and for this purpose, the first power semiconductor switch 210 is turned on and the second and third power semiconductor switches 220 and 230 are turned on. The off state is maintained. As a result, the current bypassed by the submodule 200-u2 having the fault as described above is supplied through the first terminal X1, and the second terminal (eg, through the first power semiconductor switch 210 and the capacitor 240). X2).
  • the preliminary submodule 200a may be input by substituting the submodule in which the failure occurs in the same principle as described above, depending on the number of preliminary submodules 200a installed.
  • the lower converter arm 11b as shown in FIG. Any one of the plurality of submodules configured to operate may be operated as a submodule of the upper converter arm 11a.
  • the submodule 200 of the lower converter arm 11b as shown in FIG. 7B. -d1) may switch to the submodule of the upper converter arm 11a.
  • the sub-module 200-d1 of the lower converter arm 11b is switched to operate as a submodule of the upper converter arm 11a.
  • the switch is turned off and the first power semiconductor switch 210 is turned on.
  • the current bypassed by the preliminary submodule 200-u1 having a failure as described above is supplied to the first terminal X1, and the second terminal is provided through the first power semiconductor switch 210 and the capacitor 240. It flows to (X2) and is supplied to the sub-module (100-d1) at the bottom.
  • the preliminary submodule 200a since the preliminary submodule 200a is already operating as a submodule of the upper converter arm 11a, the preliminary submodule 200a turns off the third power semiconductor switch 230 to turn off to cut off the current supply to the AC system. Then, the submodule 100-d2 of the lower converter arm 11b operates as the uppermost submodule of the lower converter arm 11b so that the third power semiconductor switch 230 is turned on to supply current to the AC system.
  • the submodule 200 according to the present invention can be applied as a submodule constituting the upper converter arm 11a and the lower converter arm 11a, and between the upper and lower converter arms 11a and 11b. It can also be applied as a connected spare submodule.
  • the sub-module of the lower converter arm 11b may be switched to operate while operating as the sub-module of the upper converter arm 11a. Of course the opposite is also true.
  • the MMC converter may be operated by controlling a switching operation of turning on / off the first to third power semiconductor switches 210, 220, and 230 according to a case of operating as a preliminary submodule.
  • FIG. 8 and 9 are flow charts illustrating a switching operation of a submodule according to an exemplary embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a switching operation of the submodule 100 of FIG. 3, and
  • FIG. 9 is a submodule of FIG. 4. A switching operation for 200 is shown.
  • FIGS. 8 (a) and 8 (b) show an example of charging the capacitor 140 and an example of bypassing the current when the current is output to the AC system, and FIGS. 8 (c) and (d) respectively. Shows an example of charging the capacitor 140 and an example of bypassing the current when no current is output to the AC system.
  • the first and third power semiconductor switches 110 and 130 are turned on, and the second power semiconductor switch 120 is turned off so that a current supplied through the first terminal X1 is used for the first power.
  • Flow through the semiconductor switch 110 and the capacitor 140 to the second terminal (X2) is supplied to the other sub-module (not shown) at the bottom, at the same time such a current is supplied through the third power semiconductor switch 130 It flows to 3 terminals (X3) and is supplied to AC system.
  • the first power semiconductor switch 110 is turned off, the second and third power semiconductor switches 120 and 130 are turned on, and the current supplied through the first terminal X1 is the second terminal ( X2) flows to the other submodule at the bottom, and at the same time, the current flows to the third terminal X3 through the third power semiconductor switch 130 and is supplied to the AC system.
  • the submodule When the current is supplied to the AC grid as shown in Table 1, the submodule operates as a spare submodule. When the current is not supplied to the AC grid, the submodule operates as a submodule of the converter arm.
  • FIGS. 9A and 9B an example of charging the capacitor 240 and an example of bypassing the current when the current is output to the AC system are shown. Also shown in (d) is an example of charging the capacitor 240 and an example of bypassing the current when no current is output to the AC system.
  • the first and third power semiconductor switches 210 and 230 are turned on and the second power semiconductor switch 220 is turned off so that a current supplied through the first terminal X1 is used for the first power.
  • Flow through the semiconductor switch 210 and the capacitor 240 to the second terminal (X2) is supplied to the other sub-module (not shown) at the bottom, and at the same time such current is supplied through the third power semiconductor switch 230 It flows to 3 terminals (X3) and is supplied to AC system.
  • the first power semiconductor switch 210 is turned off, the second and third power semiconductor switches 220 and 230 are turned on, and the current supplied through the first terminal X1 is the second terminal ( X2) flows to the other submodule at the bottom, and at the same time, the current flows to the third terminal X3 through the third power semiconductor switch 230 and is supplied to the AC system.
  • the submodule When the current is supplied to the AC grid as shown in Table 2, the submodule operates as a spare submodule. When the current is not supplied to the AC grid, the submodule operates as a submodule of the converter arm.
  • the submodules 100 and 200 according to the present invention may be applied to an MMC converter, and in particular, may be applied as a spare submodule in an MMC converter.
  • the sub-modules 100 and 200 according to the present invention have a first terminal X1 and a second terminal X2 for series connection with other sub-modules and a third terminal for connection with an AC system. (X3) each.
  • the switching operation of the sub-module and the preliminary sub-module in the MMC converter varies according to whether the AC voltage is input through the third terminal X3, and the switching operation varies according to the charging of the capacitor or the bypass of the current.

Abstract

본 발명은 고전압 직류송전(HVDC)시스템에 연계되는 MMC 컨버터 및 그를 구성하는 서브모듈에 관한 것이다. 본 발명에 따른 서브모듈은, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와, 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함한다.

Description

MMC 컨버터 및 그의 서브모듈
본 발명은 모듈러 멀티레벨 컨버터(Modular Multilevel Converter:MMC)에 관한 것으로서, 특히 고전압 직류송전(HVDC) 시스템에 연계되는 MMC 컨버터 및 그를 구성하는 서브모듈에 관한 것이다.
고전압 직류 송전(High Voltage Direct Current: HVDC) 시스템은 발전소에서 생산된 교류전력을 직류전력으로 변환시켜 송전하고 수전단에서는 교류전력으로 재변환하여 부하에 공급하도록 한다. 이러한 HVDC 시스템은 전압 승압을 통하여 효율적이고 경제적인 전력전송이 가능하고 이종 계통의 연계, 장거리 고효율 송전 등의 장점을 갖는다.
이러한 HVDC 시스템에는 MMC 컨버터가 연계될 수 있다. 종래의 MMC 컨버터는 도 1과 같이 1개 이상의 상모듈(1)로 구성되고, 이러한 상모듈(1) 각각은 서로 직렬연결된 복수의 서브모듈(2)로 포함하여 구성된다.
종래의 서브모듈(2)은 도 2a와 같이 2개의 서로 직렬연결된 전력용 반도체 스위치(21)와 이에 병렬연결된 커패시터(22)로 구성된 하프 브릿지(half-bridge) 회로 또는 도 2b와 같이 2개의 서로 직렬연결된 전력용 반도체 스위치(21)의 쌍과 이들 쌍에 병렬연결된 커패시터(22)로 구성된 풀 브릿지(full-bridge) 회로로 구성된다. 이들 각각의 서브모듈(2)에 2개의 단자(X1,X2)가 형성되어 두 단자(X1,X2)를 통해 상단과 하단의 서브모듈이 서로 직렬연결되도록 한다.
각각의 상모듈(1)에는 AC 계통과 연결하기 위한 각각의 단자(L1,L2,L3)가 연결되며, 이러한 각 단자(L1,L2,L3)를 기준으로 상위 컨버터 암(1a)과 하위 컨버터 암(1b)으로 구분된다. 상위 컨버터 암(1a)의 최하단 서브모듈의 제2단자(X2)와 하위 컨버터 암(1b)의 최상단 서브모듈의 제1단자(X1)는 AC 계통의 단자(L1,L2,L3) 중 어느 하나와 연결된다. AC 계통은 예컨대 3상 교류 전력 시스템이 될 수 있다.
이러한 종래의 MMC 컨버터에서는 상위 컨버터 암(1a)과 하위 컨버터 암(1b)을 구성하는 서브모듈(2)에 서브모듈(2)의 리던던시(redundancy) 운영을 위해 서브모듈(2)과 동일한 형태를 갖는 적어도 하나 이상의 예비 서브모듈(3)을 구비하게 된다. 예비 서브모듈(3)은 동작 중인 복수의 서브모듈(2) 중 고장이 발생한 서브모듈을 대체하여 투입하기 위한 것으로서 고장이 발생한 서브모듈 대신에 투입되어 동작된다.
그런데 종래기술의 예비 서브모듈(3)은 상위 컨버터 암(1a)과 하위 컨버터 암(1b)에 공통으로 적용될 수 없으므로 상위 컨버터 암(1a)과 하위 컨버터 암(1b)마다 각각 별도의 예비 서브모듈(3)을 구비해야 하는 번거로움이 있고 비용이 증가하는 문제점이 있다.
이에 본 발명은 MMC 컨버터에서 상위 컨버터 암과 하위 컨버터 암에 공통으로 적용 가능한 서브모듈을 포함하는 MMC 컨버터 및 그 서브모듈을 제공하는데 그 목적이 있다.
본 발명의 일 실시 예에 따른 MMC 컨버터의 서브모듈은, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치; 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터; 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자; 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자; 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치; 및 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함한다.
또한, 본 발명의 다른 실시 예에 따른 MMC 컨버터의 서브모듈은, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치; 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터; 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자; 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자; 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제1 노드에 연결된 제3 전력용 반도체 스위치; 및 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함한다.
또한, 본 발명의 일 실시 예에 따른 MMC 컨버터의 예비 서브모듈은, MMC 컨버터를 구성하는 상위 컨버터 암과 하위 컨버터 암에 공통으로 적용 가능한 예비 서브모듈에 있어서, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치; 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터; 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자; 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자; 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치; 및 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하고, 상기 예비 서브모듈은 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암과 하위 컨버터 암 사이에 연결되며 상기 상위 컨버터 암 또는 하위 컨버터 암을 구성하는 복수의 서브모듈 중 고장이 발생한 서브모듈을 대체하여 투입되어 동작한다.
또한, 본 발명의 다른 실시 예에 따른 MMC 컨버터의 예비 서브모듈은, MMC 컨버터를 구성하는 상위 컨버터 암과 하위 컨버터 암에 공통으로 적용 가능한 예비 서브모듈에 있어서, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치; 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터; 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자; 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자; 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제1 노드에 연결된 제3 전력용 반도체 스위치; 및 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하고, 상기 예비 서브모듈은 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암과 하위 컨버터 암 사이에 연결되며 상기 상위 컨버터 암 또는 하위 컨버터 암을 구성하는 복수의 서브모듈 중 고장이 발생한 서브모듈을 대체하여 투입되어 동작한다.
또한, 본 발명의 일 실시 예에 따른 MMC 컨버터는, 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암; 및 상기 상위 컨버터 암의 서브모듈에 직렬연결되고 서로 직렬연결된 복수의 서브모듈로 구성된 하위 컨버터 암을 포함하고, 상기 서브모듈 각각은, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함한다.
또한, 본 발명의 다른 실시 예에 따른 MMC 컨버터는, 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암; 및 상기 상위 컨버터 암의 서브모듈에 직렬연결되고 서로 직렬연결된 복수의 서브모듈로 구성된 하위 컨버터 암을 포함하고, 상기 서브모듈 각각은, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와, 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제1 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함한다.
또한, 본 발명의 또 다른 실시 예에 따른 MMC 컨버터는, 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암; 서로 직렬연결된 복수의 서브모듈로 구성된 하위 컨버터 암; 및 상기 상위 및 하위 컨버터 암 사이에 직렬연결되며 상기 상위 및 하위 컨버터 암에 공통으로 적용 가능한 하나 이상의 예비 서브모듈을 포함하고, 상기 예비 서브모듈 각각은, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와, 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함한다.
또한, 본 발명의 또 다른 실시 예에 따른 MMC 컨버터는, 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암; 서로 직렬연결된 복수의 서브모듈로 구성된 하위 컨버터 암; 및 상기 상위 및 하위 컨버터 암 사이에 직렬연결되며 상기 상위 및 하위 컨버터 암에 공통으로 적용 가능한 하나 이상의 예비 서브모듈을 포함하고, 상기 예비 서브모듈 각각은, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와, 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제1 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함한다.
본 발명에 따르면 MMC 컨버터에서 상위 및 하위 컨버터 암에 예비 서브모듈을 최소 2개 적용하던 것을 서브모듈 1개로 상위 및 하위 컨버터 암에 공통으로 적용할 수 있어 회로의 구조를 단순화시키고 비용을 절감할 수 있으며, MMC 컨버터의 신뢰성을 향상시킬 수 있다.
도 1은 종래의 MMC 컨버터의 회로도이다.
도 2a 및 도 2b는 종래의 MMC 컨버터에 적용되는 서브모듈의 구성도이다.
도 3은 본 발명의 제1 실시 예에 따른 서브모듈의 구성도이다.
도 4는 본 발명의 제2 실시 예에 따른 서브모듈의 구성도이다.
도 5는 본 발명의 실시 예에 따른 서브모듈이 적용된 MMC 컨버터의 회로도이다.
도 6은 도 3의 서브모듈이 적용된 MMC 컨버터의 일례에 대한 동작도이다.
도 7은 도 4의 서브모듈이 적용된 MMC 컨버터의 일례에 대한 동작도이다.
도 8는 도 3의 서브모듈의 스위칭동작에 따른 전류 흐름도이다.
도 9는 도 4의 서브모듈의 스위칭동작에 따른 전류 흐름도이다.
이하, 본 발명의 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 3은 본 발명의 제1 실시 예에 따른 서브모듈의 구성도이다.
도 3을 참조하면, 본 발명의 제1 실시 예에 따른 서브모듈(100)은 제1 전력용 반도체 스위치(110), 제2 전력용 반도체 스위치(120), 제3 전력용 반도체 스위치(130) 및 커패시터(140)를 포함하여 구성된다.
제1 전력용 반도체 스위치(110)는 제1 반도체스위치(111) 및 이러한 제1 반도체스위치(111)에 역병렬로 연결된 제1 다이오드(112)를 포함하고, 제2 전력용 반도체 스위치(120)는 제2 반도체스위치(121) 및 이러한 제2 반도체스위치(121)에 역병렬로 연결된 제2 다이오드(122)를 포함한다. 이때, 이들 제1 전력용 반도체 스위치(110)와 제2 전력용 반도체 스위치(120)는 서로 동일한 방향으로 직렬연결된다.
커패시터(140)는 상기와 같이 서로 직렬연결된 제1 및 제2 전력용 반도체 스위치(110,120) 전체에 병렬연결된다.
이러한 서브모듈(100)에는 제1 및 제2 전력용 반도체 스위치(110,120) 사이의 제1 노드(N1)에 제1 단자(X1)가 연결되고 제2 전력용 반도체 스위치(120)와 커패시터(150) 사이의 제2 노드(N2)에 제2 단자(X2)가 연결된다. 제2 노드(N2)에는 제3 전력용 반도체 스위치(130)의 일단이 연결되고 타단에는 AC 계통의 입출력 단자와 연결되는 제3 단자(X3)가 연결된다. 즉, 제3 단자(X3)는 AC 계통과 연결되는 단자로서 제3 전력용 반도체 스위치(130)는 제3 단자(X3)를 통해 AC 계통과 연결되는 것이다. 이러한 제1 내지 제3 노드(N1~N3)는 해당 구성요소들 사이의 연결선에 각각의 단자를 연결하기 위한 분기선이 연결되는 지점이다.
제3 전력용 반도체 스위치(130)는 제3 반도체스위치(131) 및 이러한 제3 반도체스위치(131)에 역병렬로 연결된 제3 다이오드(132)를 포함한다. 이때, 제3 전력용 반도체 스위치(130)의 제3 다이오드(132)의 음극은 제2 노드(N2)와 연결되고 양극은 제3 단자(X3)와 연결된다.
여기서, 서브모듈(100)은 MMC 컨버터에서 상위 및 하위 컨버터 암(11a,11b)을 구성하는 복수의 서브모듈로도 사용할 수 있지만, 이들 서브모듈에 고장발생 시 투입되는 예비(redundant) 서브모듈로도 사용할 수 있다. 예비 서브모듈로 사용되는 경우에는 MMC 컨버터에서 상위 컨버터 암(11a) 및 하위 컨버터 암(11b) 사이에 연결되며 상위 컨버터 암(11a) 또는 하위 컨버터 암(11b)을 구성하는 복수의 서브모듈(12a,12b) 중 고장이 발생한 서브모듈을 대체하여 투입됨으로써 MMC 컨버터에서 서브모듈로서 동작되도록 한다.
제1 단자(X1)와 제2 단자(X2)는 정상적인 다른 서브모듈의 단자와 연결되며, 제3 단자(X3)는 AC 계통의 단자와 연결된다. 서브모듈(100)이 예비 서브모듈로 적용된 경우에는 상위 컨버터 암(11a) 또는 하위 컨버터 암(11b) 중 어느 한 컨버터 암의 다른 서브모듈과 직렬연결되는데, 이때 제1 단자(X1)는 상위 컨버터 암(11a)의 최하단 서브모듈(12a-n)의 두 단자 중 하나의 단자와 연결되고 제2 단자(X2)는 하위 컨버터 암(11b)의 최상단 서브모듈(12b-1)의 두 단자 중 하나의 단자와 연결된다. 그리고 제3 단자(X3)는 AC 계통의 단자와 연결되는 것이다.
상술한 바와 같이, 도 3에 도시된 각각의 서브모듈(100)은 상단 및 하단의 다른 서브모듈과 직렬연결하기 위한 제1 및 제2 단자(X1,X2)를 구비함과 동시에 AC 계통과 연결하기 위한 제3 단자(X3)를 각각 포함한다. 이로써, 서브모듈(100)은 상위 및 하위 컨버터 암(11a,11b) 내 서브모듈로 사용되는 경우, 그리고 예비 서브모듈로 사용되는 경우 모두 AC 계통과 직접 연결되는 것이다.
도 4는 본 발명의 제2 실시 예에 따른 서브모듈의 구성도이다.
도 4를 참조하면, 본 발명의 제2 실시 예에 따른 서브모듈(200)은 제1 전력용 반도체 스위치(210), 제2 전력용 반도체 스위치(220), 제3 전력용 반도체 스위치(230) 및 커패시터(240)를 포함하여 구성된다.
제1 전력용 반도체 스위치(210)는 제1 반도체스위치(211) 및 이러한 제1 반도체스위치(211)에 역병렬로 연결된 제1 다이오드(212)를 포함하고, 제2 전력용 반도체 스위치(220)는 제2 반도체스위치(221) 및 이러한 제2 반도체스위치(221)에 역병렬로 연결된 제2 다이오드(222)를 포함한다. 이때, 이들 제1 전력용 반도체 스위치(210)와 제2 전력용 반도체 스위치(220)는 서로 동일한 방향으로 직렬연결된다.
커패시터(240)는 상기와 같이 서로 직렬연결된 제1 및 제2 전력용 반도체 스위치(210,220) 전체에 병렬연결된다.
이러한 서브모듈(200)에는 제1 및 제2 전력용 반도체 스위치(210,220) 사이의 제1 노드(N1)에 제1 단자(X1)가 연결되고 제2 전력용 반도체 스위치(220)와 커패시터(150) 사이의 제2 노드(N2)에 제2 단자(X2)가 연결된다. 제1 노드(N1)에는 제3 전력용 반도체 스위치(230)의 일단이 연결되고 타단에는 AC 계통의 입출력 단자와 연결되는 제3 단자(X3)가 연결된다. 즉, 제3 단자(X3)는 AC 계통과 연결되는 단자로서 제3 전력용 반도체 스위치(230)는 제3 단자(X3)를 통해 AC 계통과 연결되는 것이다. 이러한 제1 내지 제3 노드(N1~N3)는 해당 구성요소들 사이의 연결선에 각각의 단자를 연결하기 위한 분기선이 연결되는 지점이다.
제3 전력용 반도체 스위치(230)는 제3 반도체스위치(131) 및 이러한 제3 반도체스위치(131)에 역병렬로 연결된 제3 다이오드(132)를 포함한다. 이때, 제3 전력용 반도체 스위치(130)의 제3 다이오드(132)의 음극은 제1 노드(N1)와 연결되고 양극은 제3 단자(X3)와 연결된다.
여기서, 서브모듈(200)은 MMC 컨버터에서 상위 및 하위 컨버터 암(11a,11b)을 구성하는 복수의 서브모듈로도 사용할 수 있지만, 이들 서브모듈에 고장발생 시 투입되는 예비(redundant) 서브모듈로도 사용할 수 있다. 예비 서브모듈로 사용되는 경우에는 MMC 컨버터에서 상위 컨버터 암(11a) 및 하위 컨버터 암(11b) 사이에 연결되며 상위 컨버터 암(11a) 또는 하위 컨버터 암(11b)을 구성하는 복수의 서브모듈(12a,12b) 중 고장이 발생한 서브모듈을 대체하여 투입됨으로써 MMC 컨버터에서 서브모듈로서 동작되도록 한다.
제1 단자(X1)와 제2 단자(X2)는 정상적인 다른 서브모듈의 단자와 연결되며, 제3 단자(X3)는 AC 계통의 단자와 연결된다. 서브모듈(200)이 예비 서브모듈로 적용된 경우에는 상위 컨버터 암(11a) 또는 하위 컨버터 암(11b) 중 어느 한 컨버터 암의 다른 서브모듈과 직렬연결되는데, 이때 제1 단자(X1)는 상위 컨버터 암(11a)의 최하단 서브모듈(12a-n)의 두 단자 중 하나의 단자와 연결되고 제2 단자(X2)는 하위 컨버터 암(11b)의 최상단 서브모듈(12b-1)의 두 단자 중 하나의 단자와 연결된다. 그리고 제3 단자(X3)는 AC 계통의 단자와 연결되는 것이다.
상술한 바와 같이, 도 4에 도시된 각각의 서브모듈(200)은 도 3에 도시된 서브모듈(100)과 동일하게 상단 및 하단의 다른 서브모듈과 직렬연결하기 위한 제1 및 제2 단자(X1,X2)를 구비함과 동시에 AC 계통과 연결하기 위한 제3 단자(X3)를 각각 포함한다. 이로써, 서브모듈(200)은 상위 및 하위 컨버터 암(11a,11b) 내 서브모듈로 사용되는 경우, 그리고 예비 서브모듈로 사용되는 경우 모두 AC 계통과 직접 연결되는 것이다.
도 5는 본 발명에 따른 서브모듈이 적용된 MMC 컨버터의 회로도이다.
도 5를 참조하면, 본 발명에 따른 서브모듈(100,200)이 적용된 MMC 컨버터에서는 N개의 서브모듈(100,200)과 적어도 하나 이상의 예비 서브모듈(100a,200a)을 포함한다. 여기서, N개의 서브모듈(100,200)과 예비 서브모듈(100a,200)은 설명의 편의상 도면부호를 다르게 부여하였으나 실제로는 도 3 및 도 4와 같이 서로 동일한 구성을 갖는다. 예비 서브모듈(100a,200a)은 N개의 서브모듈(100,200) 중 어느 하나에 고장발생 시 그 고장이 발생한 서브모듈을 대체하여 투입되어 동작한다.
도면에는 1개의 예비 서브모듈(100a,200a)을 예시적으로 도시하고 있으나, 이는 일례이며 예비 서브모듈(100a,200a)은 적어도 하나 이상을 구비함이 바람직하다. 특히, 본 발명에서는 종래기술에서 상위 컨버터 암(1a)과 하위 컨버터 암(1b)에 각각 예비 서브모듈(2a)을 구비하는 것과는 달리 상위 컨버터 암(11a)과 하위 컨버터 암(11b)에 공통으로 사용할 수 있는 예비 서브모듈(100a,200a)을 구비한다.
예컨대, 종래는 상위 및 하위 컨버터 암(1a,1b)에 각각 1개씩, 총 2개의 예비 서브모듈(2a)을 구비하였으나, 본 발명은 상위 및 하위 컨버터 암(11a,11b)에 공통으로 사용 가능한 1개의 서브모듈(100a 또는 200a)만 구비하여 상위 또는 하위 컨버터 암(11a,11b)의 서브모듈 중 어느 하나에 고장이 발생한 경우 상위 또는 하위 컨버터 암(11a,11b)에 그 고장난 서브모듈을 대체할 수 있다. 이로써, 종래에 비해 예비 서브모듈의 개수를 줄일 수 있고 비용측면에서 매우 유리하다. 본 발명에서 예비 서브모듈의 개수는 MMC 컨버터의 특성 및 컨버터 암의 서브모듈의 개수에 따라 선택적으로 결정될 것이다.
또한, 도 5에서 알 수 있듯이, 본 발명에 따른 MMC 컨버터에서의 각 서브모듈(100,200,100a,200a)은 각각 제3 단자(X3)를 통해 AC 계통과 직접 연결된다는 특징을 갖는다.
도 6은 도 3의 서브모듈이 적용된 MMC 컨버터의 일례에 대한 동작도이다.
도 6에서는 일례로 상위 컨버터 암(11a)과 하위 컨버터 암(11b)에 각각 2개의 서브모듈(100-u1,100-u2,100-d1,100-d2)이 구비되고, 이들 상위 및 하위 컨버터 암(11a,11b) 사이에 1개의 예비 서브모듈(100a)이 연결된 MMC 컨버터에서의 동작에 따른 전류 흐름을 도시하고 있다.
먼저, 도 6의 (a)에는 상위 컨버터 암(11a) 및 하위 컨버터 암(11b)에서 각각 2개의 서브모듈(100-u1,100-u2,100-d1,100-d2)이 정상적인 운전 중에 상위 컨버터 암(11a)의 두 번째 서브모듈(100-u2)에 고장발생으로 전류를 바이패스(bypass)하는 상황에서 예비 서브모듈(100a)이 고장이 발생한 서브모듈(100-u2)을 대체하여 투입되는 일례를 도시한다.
고장이 발생한 서브모듈(100-u2)은 전류를 바이패스시키기 위해 제2 전력용 반도체 스위치(120)를 턴온시켜 제1 단자(X1)를 통해 상단의 서브모듈(100-u1)로부터 공급되는 전류를 제2 전력용 반도체 스위치(120)를 통해 제2 단자(X2)로 흐르게 하여 하단의 서브모듈(100-d1)로 공급되도록 한다.
예비 서브모듈(100)은 고장이 발생한 서브모듈(100-u2)을 대체하여 투입되는데, 이를 위해 제1 및 제3 전력용 반도체 스위치(110,130)는 턴온되고 제2 전력용 반도체 스위치(120)는 턴오프 상태가 유지된다. 이로써 상기와 같이 고장이 발생한 서브모듈(100-u2)에서 바이패스된 전류가 제1 단자(X1)를 통해 공급되어 제1 전력용 반도체 스위치(110)와 커패시터(140)를 통해 제2 단자(X2)로 흐르게 되고 제3 전력용 반도체 스위치(130)가 턴온 상태이므로 AC 계통에 전류가 공급된다.
이러한 예비 서브모듈(100a)의 투입은 예비 서브모듈(100a)이 설치된 개수에 따라 상술한 바와 같이 동일한 원리로 고장이 발생한 서브모듈을 대체하여 투입될 수 있다.
이때, 도면에서와 같이 예비 서브모듈(100a)이 모두 투입된 상태에서 상위 컨버터 암(11a)의 다른 서브모듈에 고장이 추가로 발생한 경우에는 도 6의 (b)와 같이 하위 컨버터 암(11b)을 구성하는 복수의 서브모듈 중 어느 하나를 상위 컨버터 암(11a)의 서브모듈로 동작하도록 할 수 있다.
예컨대, 상기와 같이 고장이 발생한 서브모듈(100-u2)을 대체하여 투입된 예비 서브모듈(100a)에도 고장이 발생한 경우에는 도 6의 (b)와 같이 하위 컨버터 암(11b)의 서브모듈(100-d1)이 상위 컨버터 암(11a)의 서브모듈로 전환할 수 있다.
도 6의 (b)에는 예컨대 하위 컨버터 암(11b)의 서브모듈(100-d1)을 상위 컨버터 암(11a)의 서브모듈로 동작하도록 전환하는 일례로서, 이를 위해 제1 및 제3 전력용 반도체 스위치(110,130)는 턴온되고 제2 전력용 반도체 스위치(120)는 턴오프된다. 이로써, 전류가 제1 단자(X1)로 공급되어 제1 전력용 반도체 스위치(110)와 커패시터(140)를 통해 제2 단자(X2)로 흐르게 되고 제3 전력용 반도체 스위치(130)가 턴온 상태이므로 AC 계통에 전류가 공급된다.
이때, 예비 서브모듈(100a)은 이미 상위 컨버터 암(11a)의 서브모듈로 동작하고 있으므로 AC 계통으로 전류 공급을 차단하기 위해 제3 전력용 반도체 스위치(230)를 턴오프로 전환한다.
이와 같이 본 발명에 따른 서브모듈(100)은 상위 컨버터 암(11a) 및 하위 컨버터 암(11a)을 구성하는 서브모듈로도 적용이 가능하고, 이들 상위 및 하위 컨버터 암(11a,11b) 사이에 연결된 예비 서브모듈로도 적용이 가능하다. 뿐만 아니라, MMC 컨버터의 운전 중에 필요에 따라서는 상위 컨버터 암(11a)의 서브모듈로 동작하는 중에 하위 컨버터 암(11b)의 서브모듈로 전환하여 동작할 수도 있다. 물론 그 반대의 경우도 가능하다.
상술한 바와 같이 본 발명의 실시 예에 따른 서브모듈(100)이 상위 및 하위 컨버터 암(11a,11b)을 구성하는 서브모듈로 동작하는 경우와 이들 상위 및 하위 컨버터 암(11a,11b)의 사이에 연결된 예비 서브모듈로 동작하는 경우에 따라 제1 내지 제3 전력용 반도체 스위치(110,120,130)의 턴온/턴오프에 대한 스위칭 동작을 제어함으로써 MMC 컨버터를 동작시킬 수 있다.
이는 도 6의 (a)와 (b)에 도시된 일례와 같이 서브모듈(100)이 상위 컨버터 암(11a) 또는 하위 컨버터 암(11b) 중 어느 컨버터 암의 서브모듈로 동작하는지에 따라 제1 내지 제4 전력용 반도체 스위치(110~140)의 스위칭 동작이 달라지며, 이러한 스위칭 동작에 따라 전류의 흐름도 달라진다.
특히, 서브모듈(100)이 상위 컨버터 암(11a)의 서브모듈로 동작하는 경우 제3 단자(X3)로 AC 계통의 전압이 입력되지 않으면 상위 컨버터 암(11a)의 N개의 서브모듈 중 하나로 동작하고, AC 계통의 전압이 입력되면 상위 컨버터 암(11a)의 예비 서브모듈(100a)로 동작한다. 또한, 서브모듈(100)이 하위 컨버터 암(11b)의 서브모듈로 동작하는 경우 제3 단자(X3)로 AC 계통의 전압이 입력되지 않으면 하위 컨버터 암(11b)의 N개의 서브모듈 중 하나로 동작하고, AC 계통의 전압이 입력되면 하위 컨버터 암(11b)의 예비 서브모듈(100a)로 동작한다.
도 7은 도 4의 서브모듈이 적용된 MMC 컨버터의 일례에 대한 동작도이다.
도 7에서도 일례로 상위 컨버터 암(11a)과 하위 컨버터 암(11b)에 각각 2개의 서브모듈(200-u1,200-u2,200-d1,200-d2)이 구비되고, 이들 상위 및 하위 컨버터 암(11a,11b) 사이에 1개의 예비 서브모듈(200a)이 연결된 MMC 컨버터에서의 동작에 따른 전류 흐름을 도시하고 있다.
먼저, 도 7의 (a)에서 상위 컨버터 암(11a) 및 하위 컨버터 암(11b)에서 각각 2개의 서브모듈(200-u1,200-u2,200-d1,200-d2)이 정상적인 운전 중에 상위 컨버터 암(11a)의 두 번째 서브모듈(200-u2)에 고장발생으로 전류를 바이패스(bypass)하는 상황에서 예비 서브모듈(200a)이 고장이 발생한 서브모듈(100-u2)을 대체하여 투입되는 일례가 도시된다.
고장이 발생한 서브모듈(200-u2)은 전류를 바이패스시키기 위해 제2 전력용 반도체 스위치(220)를 턴온시키고 제1,3 전력용 반도체 스위치(210,230)는 턴오프시켜 제1 단자(X1)를 통해 상단의 서브모듈(200-u1)로부터 공급되는 전류를 제2 전력용 반도체 스위치(220)를 통해 제2 단자(X2)로 흘러 하단의 서브모듈(200-d1)로 공급되도록 한다.
예비 서브모듈(200a)은 고장이 발생한 서브모듈(200-u2)을 대체하여 투입되는데, 이를 위해 제1 전력용 반도체 스위치(210)는 턴온되고 제2,3 전력용 반도체 스위치(220,230)는 턴오프 상태가 유지된다. 이로써 상기와 같이 고장이 발생한 서브모듈(200-u2)에서 바이패스된 전류가 제1 단자(X1)를 통해 공급되어 제1 전력용 반도체 스위치(210)와 커패시터(240)를 통해 제2 단자(X2)로 흐르게 된다.
이러한 예비 서브모듈(200a)의 투입은 예비 서브모듈(200a)이 설치된 개수에 따라 상기와 동일한 원리로 고장이 발생한 서브모듈을 대체하여 투입될 수 있다.
이때, 도면에서와 같이 예비 서브모듈(200a)이 모두 투입된 상태에서 상위 컨버터 암(11a)의 다른 서브모듈에 고장이 추가로 발생한 경우에는 도 7의 (b)와 같이 하위 컨버터 암(11b)을 구성하는 복수의 서브모듈 중 어느 하나를 상위 컨버터 암(11a)의 서브모듈로 동작하도록 할 수 있다.
예컨대, 상기와 같이 고장이 발생한 서브모듈(200-u2)을 대체하여 투입된 예비 서브모듈(200a)에도 고장이 발생한 경우에는 도 7의 (b)와 같이 하위 컨버터 암(11b)의 서브모듈(200-d1)이 상위 컨버터 암(11a)의 서브모듈로 전환할 수 있다.
도 7의 (b)에는 예컨대 하위 컨버터 암(11b)의 서브모듈(200-d1)을 상위 컨버터 암(11a)의 서브모듈로 동작하도록 전환하는 일례로서, 제2 전력용 반도체 스위치(220)는 턴오프로 전환되고 제1 전력용 반도체 스위치(210)는 턴온으로 전환된다. 이로써, 상기와 같이 고장이 발생한 예비 서브모듈(200-u1)에서 바이패스된 전류가 제1 단자(X1)로 공급되어 제1 전력용 반도체 스위치(210)와 커패시터(240)를 통해 제2 단자(X2)로 흐르게 되어 하단의 서브모듈(100-d1)로 공급된다.
이때, 예비 서브모듈(200a)은 이미 상위 컨버터 암(11a)의 서브모듈로 동작하고 있으므로 AC 계통으로 전류 공급을 차단하기 위해 제3 전력용 반도체 스위치(230)를 턴오프로 전환한다. 그리고, 하위 컨버터 암(11b)의 서브모듈(100-d2)이 하위 컨버터 암(11b)의 최상단 서브모듈로 동작하여 AC 계통에 전류공급을 위해 제3 전력용 반도체 스위치(230)가 턴온된다.
이와 같이 본 발명에 따른 서브모듈(200)은 상위 컨버터 암(11a) 및 하위 컨버터 암(11a)을 구성하는 서브모듈로도 적용이 가능하고, 이들 상위 및 하위 컨버터 암(11a,11b) 사이에 연결된 예비 서브모듈로도 적용이 가능하다. 뿐만 아니라, MMC 컨버터의 운전 중에 필요에 따라서는 상위 컨버터 암(11a)의 서브모듈로 동작하는 중에 하위 컨버터 암(11b)의 서브모듈로 전환하여 동작할 수도 있다. 물론 그 반대의 경우도 가능하다.
상술한 바와 같이 본 발명의 실시 예에 따른 서브모듈(200)이 상위 및 하위 컨버터 암(11a,11b)을 구성하는 서브모듈로 동작하는 경우와 이들 상위 및 하위 컨버터 암(11a,11b)의 사이에 연결된 예비 서브모듈로 동작하는 경우에 따라 제1 내지 제3 전력용 반도체 스위치(210,220,230)의 턴온/턴오프에 대한 스위칭 동작을 제어함으로써 MMC 컨버터를 동작시킬 수 있다.
도 8 및 도 9는 본 발명의 실시 예에 따른 서브모듈의 스위칭동작에 따른 전류 흐름도로서, 도 8은 도 3의 서브모듈(100)에 대한 스위칭 동작을 나타내고, 도 9는 도 4의 서브모듈(200)에 대한 스위칭 동작을 나타낸다.
도 8의 (a) 및 (b)는 AC 계통으로 전류가 출력되는 경우에 커패시터(140)에 충전하는 일례와 전류를 바이패스하는 일례를 각각 도시하고, 도 8의 (c) 및 (d)는 AC 계통으로 전류가 출력되지 않는 경우에 커패시터(140)에 충전하는 일례와 전류를 바이패스하는 일례를 각각 도시한다.
도 8의 (a)에서는 제1,3 전력용 반도체 스위치(110,130)가 턴온되고 제2 전력용 반도체 스위치(120)는 턴오프되어 제1 단자(X1)를 통해 공급된 전류가 제1 전력용 반도체 스위치(110) 및 커패시터(140)를 통해 제2 단자(X2)로 흘러 하단의 다른 서브모듈(미도시)로 공급되고, 이와 동시에 이러한 전류는 제3 전력용 반도체 스위치(130)를 통해 제3 단자(X3)로 흘러 AC 계통으로 공급된다.
도 8의 (b)에서는 제1 전력용 반도체 스위치(110)가 턴오프되고 제2,3 전력용 반도체 스위치(120,130)는 턴온되어 제1 단자(X1)를 통해 공급된 전류는 제2 단자(X2)로 흘러 하단의 다른 서브모듈로 공급되고, 이와 동시에 이러한 전류는 제3 전력용 반도체 스위치(130)를 통해 제3 단자(X3)로 흘러 AC 계통으로 공급된다.
도 8의 (c)에서는 제1 전력용 반도체 스위치(110)만 턴온되어 제1 단자(X1)를 통해 공급된 전류는 커패시터(140)를 통해 제2 단자(X2)로 흘러 하단의 다른 서브모듈로 공급된다.
도 8의 (d)에서는 제2 전력용 반도체 스위치(120)만 턴온되어 제1 단자(X1)를 통해 공급된 전류는 제2 단자(X2)로 흘러 하단의 다른 서브모듈로 공급된다.
이러한 서브모듈(100)의 각 위치 및 기능별 동작에 따른 제1 내지 제3 전력용 반도체 스위치(110~130)의 스위칭 동작은 하기 표 1과 같다.
AC 계통출력 커패시터충전 제1 전력용반도체 스위치 제2 전력용반도체 스위치 제3 전력용반도체 스위치
출력 Vc ON OFF ON
0 (bypass) OFF ON ON
미출력 Vc ON OFF OFF
0 (bypass) OFF ON OFF
표 1에서와 같이 AC 계통에 전류가 공급되는 경우는 서브모듈이 예비 서브모듈로 동작하는 것이고 AC 계통으로 전류가 공급되지 않은 경우는 서브모듈이 컨버터 암의 서브모듈로 동작하는 것이다.
다음으로, 도 9의 (a) 및 (b)에서도 AC 계통으로 전류가 출력되는 경우에 커패시터(240)에 충전하는 일례와 전류를 바이패스하는 일례를 각각 도시하고, 도 9의 (c) 및 (d)에서도 AC 계통으로 전류가 출력되지 않는 경우에 커패시터(240)에 충전하는 일례와 전류를 바이패스하는 일례를 각각 도시한다.
도 9의 (a)에서는 제1,3 전력용 반도체 스위치(210,230)가 턴온되고 제2 전력용 반도체 스위치(220)는 턴오프되어 제1 단자(X1)를 통해 공급된 전류가 제1 전력용 반도체 스위치(210) 및 커패시터(240)를 통해 제2 단자(X2)로 흘러 하단의 다른 서브모듈(미도시)로 공급되고, 이와 동시에 이러한 전류는 제3 전력용 반도체 스위치(230)를 통해 제3 단자(X3)로 흘러 AC 계통으로 공급된다.
도 9의 (b)에서는 제1 전력용 반도체 스위치(210)가 턴오프되고 제2,3 전력용 반도체 스위치(220,230)는 턴온되어 제1 단자(X1)를 통해 공급된 전류는 제2 단자(X2)로 흘러 하단의 다른 서브모듈로 공급되고, 이와 동시에 이러한 전류는 제3 전력용 반도체 스위치(230)를 통해 제3 단자(X3)로 흘러 AC 계통으로 공급된다.
도 9의 (c)에서는 제1 전력용 반도체 스위치(210)만 턴온되어 제1 단자(X1)를 통해 공급된 전류는 커패시터(240)를 통해 제2 단자(X2)로 흘러 하단의 다른 서브모듈로 공급된다.
도 9의 (d)에서는 제2 전력용 반도체 스위치(220)만 턴온되어 제1 단자(X1)를 통해 공급된 전류는 제2 단자(X2)로 흘러 하단의 다른 서브모듈로 공급된다.
이러한 서브모듈(200)의 각 위치 및 기능별 동작에 따른 제1 내지 제3 전력용 반도체 스위치(210~230)의 스위칭 동작은 하기 표 2과 같다.
AC 계통출력 커패시터충전 제1 전력용반도체 스위치 제2 전력용반도체 스위치 제3 전력용반도체 스위치
출력 Vc ON OFF ON
0 (bypass) OFF ON ON
미출력 Vc ON OFF OFF
0 (bypass) OFF ON OFF
표 2에서와 같이 AC 계통에 전류가 공급되는 경우는 서브모듈이 예비 서브모듈로 동작하는 것이고 AC 계통으로 전류가 공급되지 않은 경우는 서브모듈이 컨버터 암의 서브모듈로 동작하는 것이다.
이상에서 설명한 바와 같이 본 발명에 따른 서브모듈(100,200)은 MMC 컨버터에 적용될 수 있으며, 특히 MMC 컨버터에서 예비 서브모듈로도 적용이 가능하다. 뿐만 아니라, 본 발명에 따른 서브모듈(100,200)은 다른 서브모듈과의 직렬연결을 위한 제1 단자(X1)와 제2 단자(X2)를 구비함과 동시에 AC 계통과의 연결을 위해 제3 단자(X3)를 각각 구비합니다. 이때, 제3 단자(X3)를 통해 AC 전압의 입력 여부에 따라 MMC 컨버터에서의 서브모듈과 예비 서브모듈로서의 스위칭 동작이 달라지며, 또한 커패시터에 충전 또는 전류의 바이패스에 따라 스위칭 동작이 달라진다.
따라서, 본 발명에 따른 서브모듈(100,200)을 MMC 컨버터에 적용하고 이러한 서브모듈을 구성하는 복수의 전력용 반도체 스위치의 스위칭 동작을 적절히 제어함으로써 MMC 컨버터의 효율적인 운전이 가능하고 비용측면에서도 매우 유리하다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (24)

  1. 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치;
    상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터;
    상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자;
    상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자;
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치; 및
    상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하는 MMC 컨버터의 서브모듈.
  2. 제1항에 있어서,
    상기 제3 전력용 반도체 스위치에 포함된 다이오드의 음극은 상기 제2 노드에 연결되는 MMC 컨버터의 예비 서브모듈.
  3. 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치;
    상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터;
    상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자;
    상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자;
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제1 노드에 연결된 제3 전력용 반도체 스위치; 및
    상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하는 MMC 컨버터의 서브모듈.
  4. 제3항에 있어서,
    상기 제3 전력용 반도체 스위치에 포함된 다이오드의 음극은 상기 제1 노드에 연결되는 MMC 컨버터의 서브모듈.
  5. 제1항 또는 제3항에 있어서,
    상기 제1단자는 상단에 연결된 서브모듈의 두 단자 중 하나의 단자에 연결되고 상기 제2단자는 하단에 연결된 서브모듈의 두 단자 중 하나의 단자에 연결되는 MMC 컨버터의 서브모듈.
  6. MMC 컨버터를 구성하는 상위 컨버터 암과 하위 컨버터 암에 공통으로 적용 가능한 예비 서브모듈에 있어서,
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치;
    상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터;
    상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자;
    상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자;
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치; 및
    상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하고,
    상기 예비 서브모듈은 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암과 하위 컨버터 암 사이에 연결되며 상기 상위 컨버터 암 또는 하위 컨버터 암을 구성하는 복수의 서브모듈 중 고장이 발생한 서브모듈을 대체하여 투입되어 동작하는 MMC 컨버터의 예비 서브모듈.
  7. 제6항에 있어서,
    상기 제3 전력용 반도체 스위치에 포함된 다이오드의 음극은 상기 제2 노드에 연결되는 MMC 컨버터.
  8. MMC 컨버터를 구성하는 상위 컨버터 암과 하위 컨버터 암에 공통으로 적용 가능한 예비 서브모듈에 있어서,
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치;
    상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터;
    상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자;
    상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자;
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제1 노드에 연결된 제3 전력용 반도체 스위치; 및
    상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하고,
    상기 예비 서브모듈은 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암과 하위 컨버터 암 사이에 연결되며 상기 상위 컨버터 암 또는 하위 컨버터 암을 구성하는 복수의 서브모듈 중 고장이 발생한 서브모듈을 대체하여 투입되어 동작하는 MMC 컨버터의 예비 서브모듈.
  9. 제8항에 있어서,
    상기 제3 전력용 반도체 스위치에 포함된 다이오드의 음극은 상기 제1 노드에 연결되는 MMC 컨버터의 예비 서브모듈.
  10. 제6항 또는 제8항에 있어서,
    상기 제1단자는 상기 예비 서브모듈의 상단에 연결된 서브모듈의 두 단자 중 하나의 단자에 연결되고 상기 제2단자는 상기 예비 서브모듈의 하단에 연결된 서브모듈의 두 단자 중 하나의 단자에 연결되는 MMC 컨버터의 예비 서브모듈.
  11. 제6항 또는 제8항에 있어서,
    상기 예비 서브모듈이 상기 상위 컨버터 암의 서브모듈을 대체하여 투입되는 경우 상기 제1 및 제3 전력용 반도체 스위치는 턴온되고 상기 제2 전력용 반도체 스위치는 턴오프되어 상기 제1 단자를 통해 공급된 전류가 상기 제1 전력용 반도체 스위치 및 커패시터를 통해 상기 제2 단자로 흐르고, 상기 전류는 상기 제3 전력용 반도체 스위치를 통해 상기 제3 단자로 흘러 상기 AC 계통으로 공급되는 MMC 컨버터의 예비 서브모듈.
  12. 제6항 또는 제8항에 있어서,
    상기 예비 서브모듈이 상기 하위 컨버터 암의 서브모듈을 대체하여 투입되는 경우 상기 제1 및 제3 전력용 반도체 스위치는 턴온되고 상기 제2 전력용 반도체 스위치는 턴오프되어 상기 제2 단자를 통해 공급된 전류가 상기 커패시터 및 제1 전력용 반도체 스위치를 통해 상기 제1 단자로 흐르고, 상기 전류는 상기 제3 전력용 반도체 스위치를 통해 상기 제3 단자로 흘러 상기 AC 계통으로 공급되는 MMC 컨버터의 예비 서브모듈.
  13. 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암; 및
    상기 상위 컨버터 암의 서브모듈에 직렬연결되고 서로 직렬연결된 복수의 서브모듈로 구성된 하위 컨버터 암을 포함하고,
    상기 서브모듈 각각은,
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하는 MMC 컨버터.
  14. 제13항에 있어서,
    상기 제3 전력용 반도체 스위치에 포함된 다이오드의 음극은 상기 제2 노드에 연결되는 MMC 컨버터.
  15. 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암; 및
    상기 상위 컨버터 암의 서브모듈에 직렬연결되고 서로 직렬연결된 복수의 서브모듈로 구성된 하위 컨버터 암을 포함하고,
    상기 서브모듈 각각은,
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와, 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제1 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하는 MMC 컨버터.
  16. 제15항에 있어서,
    상기 제3 전력용 반도체 스위치에 포함된 다이오드의 음극은 상기 제1 노드에 연결되는 MMC 컨버터.
  17. 제13항 또는 제15항에 있어서,
    상기 제1단자는 상기 예비 서브모듈의 상단에 연결된 서브모듈의 두 단자 중 하나의 단자에 연결되고 상기 제2단자는 상기 예비 서브모듈의 하단에 연결된 서브모듈의 두 단자 중 하나의 단자에 연결되는 MMC 컨버터.
  18. 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암;
    서로 직렬연결된 복수의 서브모듈로 구성된 하위 컨버터 암; 및
    상기 상위 및 하위 컨버터 암 사이에 직렬연결되며 상기 상위 및 하위 컨버터 암에 공통으로 적용 가능한 하나 이상의 예비 서브모듈을 포함하고,
    상기 예비 서브모듈 각각은,
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와, 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제2 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하는 MMC 컨버터.
  19. 제18항에 있어서,
    상기 제3 전력용 반도체 스위치에 포함된 다이오드의 음극은 상기 제2 노드에 연결되는 MMC 컨버터.
  20. 서로 직렬연결된 복수의 서브모듈로 구성된 상위 컨버터 암;
    서로 직렬연결된 복수의 서브모듈로 구성된 하위 컨버터 암; 및
    상기 상위 및 하위 컨버터 암 사이에 직렬연결되며 상기 상위 및 하위 컨버터 암에 공통으로 적용 가능한 하나 이상의 예비 서브모듈을 포함하고,
    상기 예비 서브모듈 각각은,
    반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 동일한 방향으로 서로 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치와, 상기 직렬연결된 제1 전력용 반도체 스위치 및 제2 전력용 반도체 스위치 전체에 병렬연결된 커패시터와, 상기 제1 및 제2 전력용 반도체 스위치 사이의 제1 노드에 연결된 제1 단자와, 상기 제2 전력용 반도체 스위치와 커패시터 사이의 제2 노드에 연결된 제2 단자와, 반도체스위치 및 상기 반도체스위치와 역병렬로 연결된 다이오드를 각각 포함하고 일측이 상기 제1 노드에 연결된 제3 전력용 반도체 스위치와, 상기 제3 전력용 반도체 스위치의 타측에 연결되고 AC 계통의 단자와 연결되는 제3 단자를 포함하는 MMC 컨버터.
  21. 제20항에 있어서,
    상기 제3 전력용 반도체 스위치에 포함된 다이오드의 음극은 상기 제1 노드에 연결되는 MMC 컨버터.
  22. 제18항 또는 제20항에 있어서,
    상기 제1단자는 상기 예비 서브모듈의 상단에 연결된 서브모듈의 두 단자 중 하나의 단자에 연결되고 상기 제2단자는 상기 예비 서브모듈의 하단에 연결된 서브모듈의 두 단자 중 하나의 단자에 연결되는 MMC 컨버터.
  23. 제18항 또는 제20항에 있어서,
    상기 예비 서브모듈이 상기 상위 컨버터 암의 서브모듈을 대체하여 투입되는 경우 상기 제1 및 제3 전력용 반도체 스위치는 턴온되고 상기 제2 전력용 반도체 스위치는 턴오프되어 상기 제1 단자를 통해 공급된 전류가 상기 제1 전력용 반도체 스위치 및 커패시터를 통해 상기 제2 단자로 흐르고, 상기 전류는 상기 제3 전력용 반도체 스위치를 통해 상기 제3 단자로 흘러 상기 AC 계통으로 공급되는 MMC 컨버터.
  24. 제18항 또는 제20항에 있어서,
    상기 예비 서브모듈이 상기 하위 컨버터 암의 서브모듈을 대체하여 투입되는 경우 상기 제1 및 제3 전력용 반도체 스위치는 턴온되고 상기 제2 전력용 반도체 스위치는 턴오프되어 상기 제2 단자를 통해 공급된 전류가 상기 커패시터 및 제1 전력용 반도체 스위치를 통해 상기 제1 단자로 흐르고, 상기 전류는 상기 제3 전력용 반도체 스위치를 통해 상기 제3 단자로 흘러 상기 AC 계통으로 공급되는 MMC 컨버터.
PCT/KR2018/006024 2017-06-02 2018-05-28 Mmc 컨버터 및 그의 서브모듈 WO2018221907A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/618,306 US11011911B2 (en) 2017-06-02 2018-05-28 MMC converter and sub-modules thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170069210A KR101943885B1 (ko) 2017-06-02 2017-06-02 Mmc 컨버터 및 그의 서브모듈
KR10-2017-0069210 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018221907A1 true WO2018221907A1 (ko) 2018-12-06

Family

ID=64455481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006024 WO2018221907A1 (ko) 2017-06-02 2018-05-28 Mmc 컨버터 및 그의 서브모듈

Country Status (3)

Country Link
US (1) US11011911B2 (ko)
KR (1) KR101943885B1 (ko)
WO (1) WO2018221907A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247566A (zh) * 2019-07-05 2019-09-17 沈阳工业大学 一种基于mmc不对称网络的直流侧故障的检测和阻断方法
CN111162555A (zh) * 2020-01-06 2020-05-15 许继集团有限公司 Mmc柔性直流换流阀可靠性评价、换流阀设计方法及装置
WO2020125950A1 (de) * 2018-12-18 2020-06-25 Siemens Aktiengesellschaft Betreiben eines multilevelstromrichters

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101943884B1 (ko) * 2017-06-02 2019-01-30 효성중공업 주식회사 Mmc 컨버터 및 그의 서브모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018028A (ja) * 2012-07-11 2014-01-30 Toshiba Corp 半導体電力変換装置
WO2015124176A1 (en) * 2014-02-19 2015-08-27 Abb Technology Ltd Energy storage system comprising a modular multi-level converter
US20160094117A1 (en) * 2014-09-29 2016-03-31 Huazhong University Of Science And Technology Ride-through and recovery method for dc short circuit faults of hybrid mmc-based hvdc system
CN105897019A (zh) * 2016-05-26 2016-08-24 华北电力大学 一种基于等式约束的mmc自均压拓扑
US20160268915A1 (en) * 2014-05-29 2016-09-15 Huazhong University Of Science And Technology Submodule for modular multi-level converter and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010018970A1 (de) 2010-04-27 2011-10-27 Siemens Aktiengesellschaft Submodul für einen modularen Mehrstufenumrichter
CA2802933C (en) 2010-06-18 2018-01-02 Alstom Technology Ltd Converter for hvdc transmission and reactive power compensation
KR101697375B1 (ko) 2011-04-04 2017-02-02 엘에스산전 주식회사 멀티-레벨 인버터 구동 장치 및 방법
KR101373170B1 (ko) * 2012-12-28 2014-03-12 주식회사 효성 컨버터
KR101389579B1 (ko) * 2012-12-28 2014-04-29 주식회사 효성 전력용 컨버터
CN103337951B (zh) 2013-06-28 2015-09-30 中国西电电气股份有限公司 一种基于载波移相调制的mmc冗余保护策略的实现方法
RU2016115720A (ru) * 2013-09-23 2017-10-30 Сименс Акциенгезелльшафт Новая топология четырехуровневой ячейки преобразователя для каскадных модульных многоуровневых преобразователей
US10186952B2 (en) * 2014-03-05 2019-01-22 Mitsubishi Electric Corporation Power conversion device
CN105099246B (zh) 2014-04-18 2018-07-20 台达电子企业管理(上海)有限公司 变换器及其中的电压箝位电路
KR101689824B1 (ko) * 2014-11-20 2016-12-27 한국전기연구원 모듈라 멀티레벨 컨버터 및 그 서브모듈
KR101711947B1 (ko) 2014-12-29 2017-03-03 주식회사 효성 모듈러 멀티레벨 컨버터
KR20160109366A (ko) * 2015-03-11 2016-09-21 엘에스산전 주식회사 모듈형 멀티레벨 컨버터
WO2017203865A1 (ja) * 2016-05-25 2017-11-30 三菱電機株式会社 電力変換装置
CN106712248B (zh) * 2017-01-16 2019-06-18 南京南瑞继保电气有限公司 一种子模块混合型换流器的充电方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018028A (ja) * 2012-07-11 2014-01-30 Toshiba Corp 半導体電力変換装置
WO2015124176A1 (en) * 2014-02-19 2015-08-27 Abb Technology Ltd Energy storage system comprising a modular multi-level converter
US20160268915A1 (en) * 2014-05-29 2016-09-15 Huazhong University Of Science And Technology Submodule for modular multi-level converter and application thereof
US20160094117A1 (en) * 2014-09-29 2016-03-31 Huazhong University Of Science And Technology Ride-through and recovery method for dc short circuit faults of hybrid mmc-based hvdc system
CN105897019A (zh) * 2016-05-26 2016-08-24 华北电力大学 一种基于等式约束的mmc自均压拓扑

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125950A1 (de) * 2018-12-18 2020-06-25 Siemens Aktiengesellschaft Betreiben eines multilevelstromrichters
US11342862B2 (en) 2018-12-18 2022-05-24 Siemens Energy Global GmbH & Co. KG Operating a multilevel converter
CN110247566A (zh) * 2019-07-05 2019-09-17 沈阳工业大学 一种基于mmc不对称网络的直流侧故障的检测和阻断方法
CN110247566B (zh) * 2019-07-05 2021-04-13 沈阳工业大学 一种基于mmc不对称网络的直流侧故障的检测和阻断方法
CN111162555A (zh) * 2020-01-06 2020-05-15 许继集团有限公司 Mmc柔性直流换流阀可靠性评价、换流阀设计方法及装置

Also Published As

Publication number Publication date
KR101943885B1 (ko) 2019-01-30
KR20180132372A (ko) 2018-12-12
US11011911B2 (en) 2021-05-18
US20200119559A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2018221906A1 (ko) Mmc 컨버터 및 그의 서브모듈
WO2018221907A1 (ko) Mmc 컨버터 및 그의 서브모듈
WO2017115955A1 (ko) 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법
WO2014104848A1 (ko) 전력용 컨버터
WO2018128216A1 (ko) 다중 채널 스위칭 컨버터
CN108322056B (zh) 一种模块化高压直流变换装置及其控制方法
WO2010087608A2 (en) Charge equalization apparatus and method for series-connected battery string
WO2014104836A1 (ko) 컨버터
WO2018124523A2 (ko) Mmc 컨버터의 서브모듈 제어기용 전원장치
CN113258794B (zh) 一种双向能量均衡换流链、电能路由器及控制方法
US11329478B2 (en) Power conversion system with abnormal energy protection and method of operating the same
WO2018124519A1 (ko) 모듈러 멀티레벨 컨버터 시스템
CN104993716A (zh) 一种模块化多电平换流器和一种混合双子模块
WO2021034152A1 (ko) 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈
WO2018105808A1 (ko) Dc-dc 컨버터
WO2011078424A1 (ko) 부하의 세그먼테이션을 고려한 풀 브릿지 인버터 및 그 제어방법
WO2013027949A2 (ko) 전력 변환 장치
US20230046346A1 (en) Power System
WO2019059510A1 (ko) 인버터 시스템
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
CN215870729U (zh) 一种直流供电系统、光伏系统、储能系统及光储系统
WO2023013824A1 (ko) 다중 직류단을 가지는 양방향 직류/교류 전력 변환 시스템
WO2017023084A1 (ko) 하나의 변압기를 구비하는 upfc 장치
CN113544952B (zh) 一种电源系统
WO2021034153A1 (ko) 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809427

Country of ref document: EP

Kind code of ref document: A1