WO2021034152A1 - 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈 - Google Patents

바이패스 스위치를 구비한 전력용 컨버터의 서브모듈 Download PDF

Info

Publication number
WO2021034152A1
WO2021034152A1 PCT/KR2020/011207 KR2020011207W WO2021034152A1 WO 2021034152 A1 WO2021034152 A1 WO 2021034152A1 KR 2020011207 W KR2020011207 W KR 2020011207W WO 2021034152 A1 WO2021034152 A1 WO 2021034152A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
storage unit
energy storage
main switching
current
Prior art date
Application number
PCT/KR2020/011207
Other languages
English (en)
French (fr)
Inventor
이두영
박용희
정홍주
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Priority to US17/623,388 priority Critical patent/US11652401B2/en
Publication of WO2021034152A1 publication Critical patent/WO2021034152A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Definitions

  • the present invention relates to a sub-module of a power converter, and more particularly, to a sub-module of a power converter to bypass a fault current when a failure of the sub-module occurs in the sub-module of the power converter.
  • a power semiconductor capable of controlling turn-on/turn-off is used for mutual conversion of an AC voltage and a DC voltage.
  • a plurality of semiconductor modules having a power semiconductor circuit must be connected in series for high voltage processing.
  • Various semiconductor modules can be connected to each other to form a power semiconductor circuit.
  • such a power semiconductor circuit includes a plurality of sub-modules forming two output terminals.
  • the submodules are connected in series with each other.
  • Such a sub-module is connected in parallel to the energy storage unit and the energy storage unit, for example, and may include a power semiconductor circuit including a plurality of power semiconductor switches and reflux diodes.
  • the failed submodule In order to stably operate the system when a specific submodule among the plurality of submodules fails, the failed submodule is short-circuited. For this short circuit, the faulty submodule bypasses the fault current by a bypass switch, and the system continues to operate normally by another normal submodule.
  • a technology for bypassing the failed submodule in a short time when a submodule fails is very important not only from the viewpoint of the submodule but also from the system perspective. If the switching time of the bypass switch is slow, overvoltage and overcurrent may occur in the faulty module, causing the internal components of the submodule (e.g., capacitors, power semiconductors, etc.) to explode and cause a fire. Occurs, and overvoltage or overcurrent above the rated value may be applied to each sub-module, which may adversely affect reliability.
  • Korean Patent Registration No. 10-1197066 discloses a technique for implementing a bypass switch using a mechanical switch in a power converter.
  • bypass switch when a mechanical switch is used as the bypass switch, there is a problem that the switching time of the bypass switch is not fast. Therefore, there is a demand for a bypass switch capable of stable and fast switching operation in the relevant technical field.
  • the present invention has been proposed to solve the problems of the prior art, and an object of the present invention is to provide a submodule of a power converter capable of quickly bypassing a fault current when a failure occurs in a specific submodule of the power converter.
  • the present invention is a sub-converter for power that rapidly bypasses current by connecting two output terminals of a sub-module to each other due to a forced failure in a bypass switch caused by a specific signal, voltage, or current, and the inside is short-circuited. Its purpose is to provide a module.
  • the sub-module of the power converter includes an energy storage unit; At least one power semiconductor circuit connected in parallel to the energy storage unit and composed of a plurality of power semiconductor switches and reflux diodes; And an auxiliary switching device connected to the energy storage unit and turned on when a failure occurs to conduct a current by the energy storage unit. And connected in series to the output terminal of the auxiliary switch, disposed between two output terminals connected to one of the at least one power semiconductor circuit, and a forced failure occurs due to a voltage by the energy storage unit through the auxiliary switch.
  • the interior is short-circuited, and includes a main switching device connecting the output terminal.
  • the current input to the auxiliary switching element and the main switching element by the voltage stored in the energy storage unit is a current greater than each rated current of the auxiliary switching element and the main switching element, and the auxiliary switching element and the main switching element When a current larger than the rated current is applied to the switching device, each forced failure occurs.
  • the voltage applied to the auxiliary switching element and the main switching element by the voltage stored in the energy storage unit is a voltage greater than each rated voltage of the auxiliary switching element and the main switching element, and the auxiliary switching element and the main switching element When a voltage greater than the rated voltage is applied to the switching device, each forced failure occurs.
  • a fault current is bypassed through the output terminal and the main switching device.
  • the auxiliary switching device has a cathode terminal connected to the energy storage unit 110 and an emitter terminal connected to the cathode terminal of the main switching device.
  • the main switching device includes a PPI (Press Pack IGBT) semiconductor device.
  • PPI Pressure Pack IGBT
  • the auxiliary switching device includes any one of a semiconductor switch, a power semiconductor switch, a diode, a mechanical switch, and a PPI (Press Pack IGBT) semiconductor device.
  • the bypass switch when a failure occurs in a submodule of a power converter, the bypass switch is quickly shorted, thereby reducing the overall bypass time.
  • a bypass switch is installed between the output terminals of the submodule of the power converter, and the bypass switch is forced to fail due to simple signals, current, and voltage, and the output terminal is shorted due to the forced failure to quickly bypass the fault current. There is an effect that can be passed.
  • FIG. 1 is an equivalent circuit diagram of a power converter according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of a submodule of a power converter according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a process in which an auxiliary switching device is turned on when a failure occurs in the submodule of FIG. 2.
  • FIG. 4 is a diagram illustrating a bypass path when a main switching element is burned and shorted.
  • first, second, A, B, (a), and (b) may be used in describing the constituent elements of the embodiment of the present invention. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term.
  • a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between each component It should be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is an equivalent circuit diagram of a power converter according to an embodiment of the present invention.
  • the power converter according to the present invention is composed of one or more phase modules 1, and a plurality of sub-modules 10 are connected in series in each of these phase modules 1 .
  • each phase module 1 connects the DC voltage side to the positive and negative DC voltage buses P 0 and N 0 , respectively.
  • a DC voltage (not shown) exists between these DC voltage buses P 0 and N 0.
  • Each of these phase modules 1 has one intermediate AC voltage terminal and two outer DC voltage terminals as load connection terminals.
  • the upper module 1 has a plurality of sub-modules 10 connected in series.
  • Each of the sub-modules 10 connected in series from each phase module 1 has two output terminals, that is, a first output terminal X1 and a second output terminal X2.
  • Current is input/output through the first and second output terminals X1 and X2.
  • the power converter configured as described above may be configured as part of a facility for transmitting high voltage current, and serves to connect them to transmit large power between AC voltage power systems.
  • Such a power converter may be part of a so-called FACTS facility that serves as a system stabilization or assuring a desired voltage quality.
  • the converter shown in FIG. 1 may be used in the driving technique.
  • the current input to the sub-module 10 is bypassed to The module 10 is protected, and the bypassed current flows to the other normal sub-module 10 so that the converter operates normally by the normal operation of the sub-modules 10.
  • the sub-module 10 includes a switching device as a device for bypassing the fault current.
  • These switching elements are forcibly broken by a specific signal, a specific voltage or a specific current, and when such a forced failure occurs, the internal short-circuited short-circuits the two output terminals (X1, X2). Allow current to be bypassed.
  • the switching device of the present invention is shorted due to a forced failure, so it is impossible to turn on/off after a short circuit, and keep a short circuit state after the short circuit.
  • short-circuited means electrically shorted.
  • the switching element is controlled to be shorted within several msec after a failure occurs by a control signal from the sub-module (SM) controller. Accordingly, in normal operation, a normal phase current is supplied through the plurality of sub-modules 10, but when a failure occurs in a specific sub-module 10, the failed sub-module 10 bypasses the current through the switching element. ) To protect.
  • SM sub-module
  • FIG. 2 is an equivalent circuit diagram of a submodule of a power converter according to an embodiment of the present invention.
  • each submodule 10 includes an energy storage unit 110 and at least one power semiconductor circuit 120 connected in parallel to the energy storage unit 110. Is composed. These at least one power semiconductor circuit 120 is connected in series with each other. Each power semiconductor circuit 120 includes a power semiconductor switch 121 and 123 capable of controlling turn-on/turn-off, and a reflux diode connected in reverse parallel to the power semiconductor switch 121 and 123, respectively. free-wheel diode)(122,124).
  • the energy storage unit 110 and at least one power semiconductor circuit 120 may be disposed differently from FIG. 2 in each submodule 10 to be implemented in various configurations.
  • the sub-module 10 is connected to the energy storage unit 110, and when turned on, an auxiliary switching device 131 that conducts a current generated by a voltage applied to the energy storage unit 110 and at least It includes a main switching device 132 connected in parallel to any one of the power semiconductor circuit 120.
  • the main switching device 132 is connected in parallel to any one power semiconductor circuit 120, and when a current exceeding the rated current range is applied, a forced failure occurs inside and short-circuited due to the forced failure.
  • the main switching device 132 may include a PPI (Press Pack IGBT) semiconductor device.
  • the main switching device 132 when a failure occurs in the submodule 10, the main switching device 132 is used to protect the submodule 10 by quickly bypassing the fault current. Specifically, the main switching element 132 of the sub-module 10 is permanently short-circuited when a current of more than the rated current is applied to it. In addition, the main switching device 132 is internally shorted due to a forced failure even when a current higher than the rated current is applied.
  • a forced failure occurs by applying a current higher than the rated current or a voltage higher than the rated voltage to the main switching device 132 of the specific submodule 10 to quickly bypass the fault current. I can. This allows the fault current to be bypassed much faster than with a mechanical switch.
  • the switching device or the bypass switching unit of the present invention is short-circuited due to a forced failure, so it is impossible to turn on/off after the short circuit, and the short-circuit state is maintained after the short circuit.
  • the cathode end is connected to the emitter end of the power semiconductor switch 123 of the power semiconductor circuit 120, and the emitter end is connected to the cathode end of the power semiconductor switch 123.
  • the cathode end of the main switching device 132 is connected to the emitter end of the auxiliary switching device 131.
  • the gate terminal of the main switching device 132 receives a turn-on signal from the sub-module (SM) controller 140.
  • SM sub-module
  • a turn-on signal is applied from the sub-module controller 140 and the main switching device 132 may be turned on.
  • FIG. 2 shows that the main switching device 132 is connected in parallel to the lower power semiconductor circuit of the two power semiconductor circuits 120, but may be connected in parallel to the upper power semiconductor circuit.
  • the main switching device 132 is connected in parallel to a power semiconductor circuit connected between the two output terminals X1 and X2 of the submodule 10.
  • the main switching device 132 may be connected in parallel to the upper power semiconductor circuit.
  • the cathode end of the auxiliary switching device 131 is connected to one side of the energy storage unit 110. That is, the auxiliary switching device 131 has its cathode end connected to the energy storage unit 110 of the submodule 10. Accordingly, a current generated by the voltage applied to the energy storage unit 110 is applied to the cathode of the auxiliary switching device 131.
  • the emitter end of the auxiliary switching device 131 is connected to the cathode end of the main switching device 132. Accordingly, when the auxiliary switching device 131 conducts current, the current is applied to the cathode of the main switching device 132.
  • the auxiliary switching device 131 may be implemented as a semiconductor switch or a power semiconductor switch. In addition, the auxiliary switching device 131 may be implemented as a diode or a mechanical switch.
  • the main switching device 132 serves to bypass a fault current when a failure of the submodule 10 occurs. At this time, the bypass operation of the main switching device 132 should be performed in a short time. Otherwise, overvoltage and overcurrent may occur in the failed submodule 10, and the internal components (capacitors and power semiconductors) of the submodule 10 may explode and cause a fire, and overvoltage and overcurrent may occur in the entire system. The overvoltage and overcurrent of more than the rated voltage may be applied to each submodule 10 to adversely affect the reliability. Preferably, the bypass operation is performed within about several msec after the failure occurs.
  • FIG. 3 is a diagram for explaining a process of turning on the auxiliary switching device 131 when a failure occurs in the sub-module 10.
  • the submodule controller 140 when a failure occurs in a specific submodule 10, the submodule controller 140 turns on the auxiliary switching device 131. For example, when a failure occurs in the sub-module 10, the sub-module controller 140 applies a turn-on signal to the auxiliary switching device 131.
  • the auxiliary switching device 131 When the sub-module controller 140 applies a turn-on signal to the gate terminal of the auxiliary switching device 131, the auxiliary switching device 131 is turned on. When the auxiliary switching device 131 is turned on by a turn-on signal from the sub-module (SM) controller 140, it conducts a current generated by a voltage stored in the energy storage unit 110.
  • SM sub-module
  • the energy storage unit 110 is composed of a bipolar capacitor, and the energy storage unit 110 accumulates a voltage when a voltage is applied. When the voltage is accumulated, a voltage difference occurs at both ends of the energy storage unit 110.
  • auxiliary switching device 131 When the auxiliary switching device 131 is turned on, a current generated by a voltage applied to both ends of the energy storage unit 110 is conducted. When the auxiliary switching element 131 conducts the applied current, the current generated by the voltage applied to both ends of the energy storage unit 110 passes through the auxiliary switching element 131 and is applied to the main switching element 132.
  • the current applied by the energy storage unit 110 is a current higher than the rated current of the main switching device 132. Accordingly, when a current larger than the rated current is applied to the main switching element 132 from the energy storage unit 110, the main switching element 132 is short-circuited due to internal burnout due to a forced failure.
  • the voltage stored in the energy storage unit 110 is applied to the main switching device 132 due to conduction of the auxiliary switching device 131 as described above.
  • the voltage applied to the main switching element 132 is a voltage greater than the rated voltage of the main switching element 132. In this way, when a voltage greater than the rated voltage is applied to the main switching element 132, the main switching element 132 is short-circuited due to internal burnout due to a forced failure.
  • the auxiliary switching device 131 may include a mechanical switch or a diode.
  • the SM controller 140 may turn on the mechanical switch to conduct current.
  • current can be conducted without the control of the SM controller 140.
  • FIG. 4 is a diagram showing a bypass path when the main switching element 132 is burned out due to a forced failure and is shorted.
  • the main switching 132 is disposed between two output terminals X1 and X2 connected to one of the at least one power semiconductor circuit 120.
  • the main switching device 132 As described above, the main switching device 132 according to the present invention is immediately shorted when a current by the energy storage unit 110 applied through the auxiliary switching device 131 is applied when a failure occurs, so that the bypass path is quickly established. Can be formed.
  • the auxiliary switching device 131 when a failure occurs in a specific sub-module 10, the auxiliary switching device 131 is turned on, and the current by the energy storage unit 110 connected to the auxiliary switching device 131 is applied to the main switching device 132 do. Accordingly, the main switching device 132 may be immediately shorted by the current generated by the energy storage unit 110.
  • the main switching device 132 can artificially induce a forcible failure and burn the inside to form a bypass path, thereby replacing a conventional mechanical switch.
  • the main switching device 132 Since the main switching device 132 according to the present invention is shorted by the current applied by the turn-on of the auxiliary switching device 131, the fault current can be bypassed within 1 ms. Accordingly, the main switching device 132 can bypass the fault current much faster than a switching time of about 4 ms when using a conventional mechanical switching device.
  • the sub-module 10 is provided by connecting the auxiliary switching element 131 and the main switching element 132 in series, and when a failure occurs in the sub-module 10, the sub-module ( SM)
  • the controller 140 turns on the auxiliary switching device 131 to conduct current.
  • a current equal to or greater than the rated current is applied to the main switching element 132 through the auxiliary switching element 131 by the voltage stored in the energy storage unit 110, and the main switching element 132 is forced to fail. Due to the short circuit, the two output terminals (X1, X2) are shorted. When these two output terminals X1 and X2 are short-circuited, the fault current is bypassed through the two output terminals X1 and X2 and the main switching element 132.
  • the main switching device 132 may be forced to fail due to the voltage stored in the energy storage unit 110. That is, when the voltage applied from the energy storage unit 110 is greater than the rated voltage of the main switching device 132, a forced failure may occur and a short circuit may occur.
  • the main switching device 132 can bypass the fault current by causing a forcible failure due to the voltage stored in the energy storage unit 110 to burn out and short-circuit, thereby replacing a conventional mechanical switch. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

본 발명은 전력용 컨버터의 서브모듈에서 서브모듈의 고장발생시 고장전류를 바이패스시키도록 하는 전력용 컨버터의 서브모듈에 관한 것이다. 본 발명의 일 실시예에 따른 전력용 컨버터의 서브모듈은, 에너지저장부; 상기 에너지저장부에 병렬연결되고 다수의 파워반도체스위치 및 환류다이오드로 구성된 적어도 하나의 파워반도체회로; 및 상기 에너지저장부에 연결되고, 고장발생시 턴온되어 상기 에너지저장부에 의한 전류를 도통하는 보조 스위칭소자; 및 상기 보조 스위치의 출력단에 직렬연결되고, 상기 적어도 하나의 파워반도체회 중 하나에 연결된 2개의 출력단자 사이에 배치되며, 상기 보조 스위치를 통해 상기 에너지 저장부에 의한 전압에 의해 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자를 연결하는 메인 스위칭소자를 포함한다.

Description

바이패스 스위치를 구비한 전력용 컨버터의 서브모듈
본 발명은 전력용 컨버터의 서브모듈에 관한 것으로서, 특히 전력용 컨버터의 서브모듈에서 서브모듈의 고장발생시 고장전류를 바이패스시키도록 하는 전력용 컨버터의 서브모듈에 관한 것이다.
일반적으로, 고전압용 컨버터의 경우 교류전압과 직류전압의 상호 변환을 위해 턴온(turn-on)/턴오프(turn-off) 제어가능한 파워 반도체가 사용된다.
파워 반도체의 내압이 한정되어 있으므로 고전압 처리를 위해서는 파워 반도체 회로를 갖는 다수의 반도체 모듈이 직렬로 연결되어야 한다. 파워 반도체 회로의 구성을 위해 여러 가지의 반도체 모듈을 서로 연결할 수 있다.
주지된 바와 같이, 공지의 모듈러 멀티레벨 컨버터(MMC:Modular Multilevel Converter)의 경우에는 이와 같은 파워 반도체 회로가 2개의 출력단자를 형성하는 다수의 서브모듈(sub-module)을 포함하고, 이들 다수의 서브모듈은 서로 직렬로 연결된다. 이러한 서브모듈은 예컨대 에너지저장부와, 에너지저장부에 병렬연결되며 다수의 파워반도체스위치 및 환류다이오드로 이루어진 파워반도체회로를 포함하여 구성될 수 있다.
이들 다수의 서브모듈 중 특정 서브모듈에 고장발생시 시스템을 안정적으로 동작시키기 위해 그 고장난 서브모듈은 단락된다. 이러한 단락을 위해 고장난 서브모듈은 바이패스 스위치에 의해 고장 전류를 바이패스시키며 다른 정상적인 서브모듈에 의해 시스템이 계속 정상 동작되도록 한다.
이때, 서브모듈의 고장발생시 고장난 서브모듈을 빠른 시간 내에 바이패스시키는 기술은 해당 서브모듈뿐만 아니라 시스템 관점에서도 매우 중요하다. 바이패스 스위치의 스위칭 시간이 느리면 고장난 모듈에 과전압, 과전류가 발생하여 해당 서브모듈의 내부 구성품(예:커패시터, 파워반도체 등)이 자칫 폭발하여 화재를 유발시킬 수 있으며, 전체적인 시스템에 과전압, 과전류가 발생하고 각 서브모듈에 정격 이상의 과전압, 과전류가 걸려 신뢰성에 악영향을 줄 수 있다.
이러한 바이패스 스위치는 바이패스 동작의 신뢰성으로 인해 기계적 스위치를 사용하는 기술이 제안되어 있다. 한국등록특허 10-1197066에는 전력용 컨버터에서 기계적 스위치를 이용하여 바이패스 스위치를 구현한 기술이 개시되어 있다.
그러나, 바이패스 스위치로서 기계적 스위치를 이용하면 바이패스 스위치의 스위칭 시간이 빠르지 않는 문제점이 있었다. 따라서, 해당 기술분야에서는 안정적이며 빠른 스위칭 동작을 할 수 있는 바이패스 스위치에 대한 요구가 있다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 전력용 컨버터의 특정 서브모듈에 고장 발생시 고장 전류를 빠르게 바이패스시킬 수 있는 전력용 컨버터의 서브모듈을 제공하는데 그 목적이 있다.
본 발명은 특정 신호, 전압 또는 전류에 의해 바이패스 스위치에 강제고장이 발생하여 내부가 단락(short-circuited)되어 서브모듈의 두 출력단자를 서로 연결함으로써 전류를 빠르게 바이패스시키는 전력용 컨버터의 서브모듈을 제공하는데 그 목적이 있다.
본 발명의 일 실시예에 따른 전력용 컨버터의 서브모듈은, 에너지저장부; 상기 에너지저장부에 병렬연결되고 다수의 파워반도체스위치 및 환류다이오드로 구성된 적어도 하나의 파워반도체회로; 및 상기 에너지저장부에 연결되고, 고장발생시 턴온되어 상기 에너지저장부에 의한 전류를 도통하는 보조 스위칭소자; 및 상기 보조 스위치의 출력단에 직렬연결되고, 상기 적어도 하나의 파워반도체회 중 하나에 연결된 2개의 출력단자 사이에 배치되며, 상기 보조 스위치를 통해 상기 에너지 저장부에 의한 전압에 의해 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자를 연결하는 메인 스위칭소자를 포함한다.
본 발명에서, 상기 에너지 저장부에 저장된 전압에 의해 상기 보조 스위칭소자 및 메인 스위칭소자로 각각 입력되는 전류는 상기 보조 스위칭소자 및 메인 스위칭소자의 각 정격 전류보다 큰 전류이고, 상기 보조 스위칭소자 및 메인 스위칭소자로 상기 정격 전류보다 큰 전류가 인가되면 각각 강제고장이 발생한다.
본 발명에서, 상기 에너지 저장부에 저장된 전압에 의해 상기 보조 스위칭소자 및 메인 스위칭소자로 각각 인가되는 전압은 상기 보조 스위칭소자 및 메인 스위칭소자의 각 정격 전압보다 큰 전압이고, 상기 보조 스위칭소자 및 메인 스위칭소자로 상기 정격 전압보다 큰 전압이 인가되면 각각 강제고장이 발생한다.
본 발명에서, 상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자 및 메인 스위칭소자를 통해 바이패스된다.
본 발명에서, 상기 보조 스위칭소자는 상기 에너지 저장부(110)에 연결된 캐소드단 및 상기 메인 스위칭소자의 캐소드단에 연결된 에미터단을 갖는다.
본 발명에서, 상기 메인 스위칭소자는 PPI(Press Pack IGBT) 반도체 소자를 포함한다.
본 발명에서, 상기 보조 스위칭소자는 반도체 스위치, 전력 반도체 스위치, 다이오드, 계적 스위치, PPI(Press Pack IGBT) 반도체 소자 중 어느 하나를 포함한다.
상기와 같은 본 발명에 따라 전력용 컨버터의 서브모듈의 경우 다음과 같은 효과를 가질 수 있다.
본 발명에 의하면 전력용 컨버터의 서브모듈에서 고장이 발생하면 바이패스 스위치를 빠르게 쇼트시켜 전체적으로 바이패스 시간을 줄일 수 있는 효과가 있다.
본 발명에 의하면 전력용 컨버터의 서브모듈의 출력단자 간에 바이패스 스위치를 설치하고 간단한 신호, 전류, 전압에 의해 바이패스 스위치가 강제고장이 발생하고 강제고장으로 인해 출력단자가 단락되어 고장전류를 빠르게 바이패스시킬 수 있는 효과가 있다.
도 1은 본 발명의 실시 예에 따른 전력용 컨버터의 등가회로도이다.
도 2는 본 발명의 실시예에 따른 전력용 컨버터의 서브모듈의 등가회로도이다.
도 3은 도 2의 서브 모듈에 고장 발생시 보조 스위칭소자가 턴온되는 과정을 설명하기 위한 도면이다.
도 4는 메인 스위칭 소자가 소손되어 쇼트될 때 바이패스 경로를 나타낸 도면이다.
이하, 본 발명의 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 실시 예에 따른 전력용 컨버터의 등가회로도이다.
도 1을 참조하면, 본 발명에 따른 전력용 컨버터는 1개 이상의 상모듈(phase module)(1)로 구성되고 이들 각각의 상모듈(1)에서는 다수의 서브모듈(10)이 직렬로 연결된다. 또한 각 상모듈(1)은 직류전압 측을 각각 정 및 부의 직류전압 모선 P0 및 N0에 접속시킨다.
이들 직류전압 모선 P0 및 N0의 사이에는 도시하지 않은 직류전압이 존재한다. 이들 각 상모듈(1)은 부하접속단자로서 1개의 중간 교류전압단자와 2개의 외측 직류전압단자를 갖는다.
상모듈(1)은 복수의 서브모듈(10)이 직렬로 연결된다. 각 상모듈(1)에서 직렬로 연결된 각각의 서브모듈(10)은 2개의 출력단자, 즉 제1출력단자(X1) 및 제2출력단자(X2)가 형성된다. 제1,2출력단자(X1,X2)를 통해 전류가 입출력된다.
이와 같이 구성된 전력용 컨버터는 고전압 전류 전송용 설비의 일부로 구성될 수 있으며, AC 전압 전원시스템들 사이에서 대전력을 전송하기 위해 이들을 연결시키는 역할을 한다.
또한, 이러한 전력용 컨버터는 시스템 안정화의 역할을 하거나 원하는 전압 품질을 보장하는 역할을 하는 소위 FACTS 설비의 일부일 수도 있다. 나아가, 구동기술에서 도 1에 도시된 컨버터를 사용할 수도 있다.
본 발명에 따른 전력용 컨버터에서는 서브모듈(10)에 고장 발생시 상모듈(1)의 절선회로(Open Circuit) 방지를 위해 그 고장이 발생한 서브모듈(10)에 입력되는 전류를 바이패스시켜 해당 서브모듈(10)을 보호하고, 바이패스된 전류는 다른 정상적인 서브모듈(10)로 흘러 정상적인 서브모듈들(10)의 동작에 의해 컨버터가 정상 동작되도록 한다.
이를 위해, 본 발명에 따른 서브모듈(10)은 고장 전류를 바이패스시키기 위한 장치로서 스위칭소자를 구비한다. 이러한 스위칭소자는 특정 신호, 특정 전압 또는 특정 전류에 의해 강제적으로 고장이 발생하고, 이러한 강제고장이 발생되면 빠른 시간 내에 내부가 쇼트(short-circuited)되어 두 출력단자(X1,X2)를 단락시켜 전류가 바이패스되도록 한다.
이때, 강제고장에 의해 내부가 쇼트되는 스위칭소자는 더 이상 정상적으로 복구되지 않는다. 따라서 종래의 반도체스위치와는 달리 본 발명의 스위칭소자는 강제고장으로 인해 쇼트가 된 것이므로 단락된 이후에 턴온/턴오프가 불가능하며, 단락된 이후에는 계속 단락상태를 유지한다. 여기서, 쇼트(short-circuited)는 전기적으로 단락됨을 의미한다.
본 실시예에서 스위칭소자는 서브모듈(SM) 제어기의 제어신호에 의해 고장발생 후 수 msec 이내에 단락되도록 제어된다. 이로써 정상적인 운전에서는 다수의 서브모듈(10)을 통해 정상적인 상전류가 통전되지만 특정 서브모듈(10)에 고장발생시 그 고장난 서브모듈(10)이 스위칭소자를 통해 전류가 바이패스되도록 함으로써 해당 서브모듈(10)을 보호하도록 한다.
도 2는 본 발명의 일 실시예에 따른 전력용 컨버터의 서브모듈의 등가회로도이다.
도 2를 참조하면, 본 발명에 따른 전력용 컨버터에서 각 서브모듈(10)은 에너지저장부(110)와, 그 에너지저장부(110)에 병렬로 연결된 적어도 하나의 파워반도체회로(120)로 구성된다. 이들 적어도 하나의 파워반도체회로(120)는 서로 직렬로 연결된다. 각각의 파워반도체회로(120)는 턴온(turn-on)/턴오프(turn-off) 제어가능한 파워반도체스위치(121,123)와, 그 파워반도체스위치(121,123)에 각각 역병렬로 접속된 환류다이오드(free-wheel diode)(122,124)로 구성된다. 다른 실시 예에서 각 서브모듈(10)은 에너지저장부(110)와 적어도 하나의 파워반도체회로(120)가 도 2와는 다르게 배치되어 다양한 구성으로 구현될 수도 있다.
또한, 본 발명에 따른 서브모듈(10)은 에너지저장부(110)에 연결되며, 턴온되면 상기 에너지저장부(110)에 걸리는 전압에 의해 발생하는 전류를 도통하는 보조 스위칭소자(131) 및 적어도 하나의 파워반도체회로(120) 중 어느 하나에 병렬로 연결된 메인 스위칭소자(132)를 포함한다.
메인 스위칭소자(132)는 어느 하나의 파워반도체회로(120)에 병렬로 연결되며 정격 전류 범위 이상의 전류가 인가되면 내부에 강제고장이 발생하고 강제고장으로 인해 쇼트된다(short-circuited). 예컨대, 메인 스위칭소자(132)는 PPI(Press Pack IGBT) 반도체 소자를 포함할 수 있다.
이와 같이 본 발명에서는 서브모듈(10)에 고장이 발생하면 신속하게 고장 전류를 바이패스시켜 해당 서브모듈(10)를 보호하기 위해 메인 스위칭소자(132)가 사용된다. 구체적으로 서브모듈(10)의 메인 스위칭소자(132)는 정격 전류 이상의 전류가 인가되면 영구적으로 강제고장이 발생하여 내부적으로 쇼트된다. 또한, 메인 스위칭소자(132)는 정격 전류 이상의 전류가 인가되어도 강제고장이 발생하여 내부적으로 쇼트된다.
특정 서브모듈(10)에 고장이 발생하면, 특정 서브모듈(10)의 메인 스위칭소자(132)에 정격 전류 이상의 전류 또는 정격 전압 이상의 전압을 인가함으로써 강제고장을 발생시켜 고장 전류를 빠르게 바이패스시킬 수 있다. 그에 따라, 기계적 스위치를 사용하는 경우보다 훨씬 신속하게 고장 전류를 바이패스시킬 수 있다.
이때, 강제고장에 의해 내부가 단락되는 메인 스위칭소자(132)는 더 이상 정상적으로 복구되지 않는다. 따라서 종래의 반도체스위치와는 달리 본 발명의 스위칭소자 또는 바이패스 스위칭부는 강제고장으로 인해 단락이 된 것이므로 단락된 이후에 턴온/턴오프가 불가능하며, 단락된 이후에는 계속 단락상태를 유지한다.
메인 스위칭소자(132)는 캐소드단이 파워반도체회로(120)의 파워 반도체 스위치(123)의 에미터단에 접속되고, 에미터단이 파워 반도체 스위치(123)의 캐소드단에 접속된다. 또한 메인 스위칭소자(132)의 캐소드단은 보조 스위칭소자(131)의 에미터단에 접속된다.
메인 스위칭소자(132)의 게이트단은 서브모듈(SM) 제어기(140)로부터의 턴온 신호를 수신한다. 서브 모듈(10)에 고장이 발생하면 서브모듈 제어기(140)로부터 턴온 신호가 인가되고 메인 스위칭소자(132)가 턴온될 수 있다.
도 2에는 메인 스위칭소자(132)가 두 개의 파워반도체회로(120) 중 하부의 파워반도체회로에 병렬로 연결된 것으로 도시하고 있으나 상부의 파워반도체회로에 병렬로 연결될 수도 있다.
본 실시예에서는 메인 스위칭소자(132)는 서브모듈(10)의 2개의 출력단자(X1,X2) 사이에 연결된 파워반도체회로에 병렬로 연결된다. 예컨대, 2개의 출력단자(X1,X2)가 상부의 파워반도체회로 양단에 연결되는 경우 상부의 파워반도체회로에 병렬로 연결될 수 있다.
보조 스위칭소자(131)의 캐소드단은 에너지저장부(110)의 일측에 연결된다. 즉, 보조 스위칭소자(131)는 그 캐소드단이 서브모듈(10)의 에너지저장부(110)에 연결된다. 그에 따라, 보조 스위칭소자(131)의 캐소드단에는 에너지저장부(110)에 걸린 전압에 의해 발생되는 전류가 인가된다.
또한, 보조 스위칭소자(131)의 에미터단은 메인 스위칭소자(132)의 캐소드단에 연결된다. 그에 따라, 보조 스위칭소자(131)가 전류를 도통하면, 해당 전류는 메인 스위칭소자(132)의 캐소드단에 인가된다.
이러한 보조 스위칭소자(131)는 반도체 스위치 또는 전력 반도체 스위치로 구현될 수 있다. 또한, 보조 스위칭소자(131)는 다이오드 또는 기계적 스위치로 구현될 수 있다.
메인 스위칭소자(132)는 해당 서브모듈(10)의 고장발생시 고장 전류를 바이패스시키는 역할을 수행한다. 이때, 메인 스위칭소자(132)의 바이패스 동작은 짧은 시간에 이루어져야 한다. 그렇지 않으면 고장난 서브모듈(10)에 과전압, 과전류가 발생하여 해당 서브모듈(10)의 내부 구성품(커패시터 및 파워반도체)이 자칫 폭발하여 화재를 유발시킬 수 있으며, 전체적인 시스템에 과전압, 과전류가 발생하고 각 서브모듈(10)에 정격 이상의 과전압, 과전류가 인가되어 신뢰성에 악영항을 줄 수 있다. 바람직하게는 고장발생 후 약 수 msec 이내에 바이패스 동작이 이루어지는 것이 좋다.
이러한 구성으로 이루어진 서브 모듈(10)에 고장 발생시 고장 전류를 바이패스하는 과정을 도 3 및 도 4를 참조하여 설명한다.
도 3은 서브 모듈(10)에 고장 발생시 보조 스위칭소자(131)가 턴온되는 과정을 설명하기 위한 도면이다.
도 3을 참조하면, 특정 서브모듈(10)에 고장발생시 서브모듈 제어기(140)는 보조 스위칭소자(131)를 턴온시킨다. 예컨대, 서브 모듈(10)에 고장 발생시 서브모듈 제어기(140)는 보조 스위칭소자(131)에 턴온 신호를 인가한다.
서브모듈 제어기(140)가 보조 스위칭소자(131)의 게이트단에 턴온 신호를 인가하면, 보조 스위칭소자(131)는 턴온된다. 보조 스위칭소자(131)는 서브모듈(SM) 제어기(140)로부터의 턴온 신호에 의해 턴온되면, 에너지 저장부(110)에 저장된 전압에 의해 발생하는 전류를 도통시킨다.
에너지 저장부(110)는 양극성 커패시터로 구성되며, 에너지 저장부(110)는 전압이 인가되면 전압을 축적한다. 전압이 축적되면 에너지 저장부(110)의 양단에는 전압차가 발생한다.
보조 스위칭소자(131)가 턴온되면, 에너지 저장부(110)의 양단에 걸리는 전압에 의해 발생하는 전류를 도통시킨다. 보조 스위칭소자(131)가 인가되는 전류를 도통하면, 에너지 저장부(110)의 양단에 걸리는 전압에 의해 발생된 전류는 보조 스위칭 소자(131)를 통과하여 메인 스위칭소자(132)에 인가된다.
에너지 저장부(110)에 의해 인가되는 전류는 메인 스위칭소자(132)의 정격 전류보다 높은 전류이다. 따라서, 메인 스위칭소자(132)에 에너지 저장부(110)로부터 정격 전류보다 큰 전류가 인가되면 메인 스위칭소자(132)는 강제고장으로 인해 내부가 소손되어 회로적으로 쇼트된다(short-circuited).
또한, 상기와 같이 보조 스위칭소자(131)의 도통으로 인해 에너지 저장부(110)에 저장된 전압이 메인 스위칭소자(132)로 인가된다. 이때, 메인 스위칭소자(132)로 인가되는 전압은 메인 스위칭소자(132)의 정격 전압보다 큰 전압이다. 이와 같이 메인 스위칭소자(132)에 정격 전압보다 큰 전압이 인가되면 메인 스위칭소자(132)는 강제고장으로 인해 내부가 소손되어 회로적으로 쇼트된다(short-circuited).
전술한 바와 같이 메인 스위칭소자(132)는 일단 한번 소손되면 그 소손이 영구적으로 유지되며, 더 이상 턴온/턴오프가 불가능하다.
한편, 상술한 바와 같이 보조 스위칭소자(131)는 기계적 스위치 또는 다이오드를 포함할 수도 있다. 기계적 스위치로 구현하는 경우 서브모듈(10)에 고장이 발생하면 SM 제어기(140)에서 기계적 스위치를 온시켜 전류를 도통시킬 수 있다. 다이오드로 구현하는 경우에는 SM 제어기(140)의 제어 없이도 전류를 도통시킬 수 있다.
도 4는 메인 스위칭 소자(132)가 강제고장으로 인해 소손되어 쇼트될 때 바이패스 경로를 나타낸 도면이다.
도 4에서, 전술한 바와 같이, 메인 스위칭(132)는 상기 적어도 하나의 파워반도체회로(120) 중 하나에 연결된 2개의 출력단자(X1,X2) 사이에 배치된다.
보조 스위칭소자(131)를 통해 에너지 저장부(110)로부터 정격 전류보다 큰 전류가 메인 스위칭소자(132)로 인가되면, 메인 스위칭소자(132)는 강제고장이 발생되게 되어 소손되고, 이로써 영구적으로 쇼트를 유지한다. 그에 따라, 고장 전류는 2개의 출력단자(X1,X2)와 메인 스위칭소자(132)를 통해 바이패스된다.
이와 같이, 본 발명에 따른 메인 스위칭소자(132)는 고장 발생시 보조 스위칭소자(131)를 통해 인가되는 에너지 저장부(110)에 의한 전류가 인가될 때 즉각적으로 쇼트되므로, 신속하게 바이패스 경로를 형성할 수 있다.
다시 말해, 특정 서브모듈(10)에 고장이 발생하면 보조 스위칭소자(131)는 턴온되어, 보조 스위칭소자(131)에 연결된 에너지 저장부(110)에 의한 전류가 메인 스위칭소자(132)에 인가된다. 그에 따라, 메인 스위칭소자(132)가 에너지 저장부(110)에 의한 전류에 의해 즉각적으로 쇼트될 수 있다.
즉, 본 발명에 따른 메인 스위칭소자(132)는 인위적으로 강제고장을 유도하여 내부가 소손되어 바이패스 경로를 형성하므로 종래의 기계적인 스위치를 대체할 수 있다.
본 발명에 따른 메인 스위칭소자(132)는 보조 스위칭소자(131)의 턴온에 의해 인가되는 전류에 의해 쇼트되므로, 1 ms 이내로 고장 전류를 바이패스킬 수 있다. 따라서, 메인 스위칭소자(132)는 종래 기계적 스위칭소자를 사용할 때의 대략 4 ms 내외의 스위칭 시간보다 훨씬 빠르게 고장 전류를 바이패스시킬 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 서브모듈(10)은 보조 스위칭소자(131)와 메인 스위칭소자(132)를 직렬연결하여 구비하고, 해당 서브모듈(10)에 고장이 발생할 경우 서브모듈(SM) 제어기(140)가 보조 스위칭소자(131)를 턴온시켜 전류를 도통시킨다.
이때, 에너지저장부(110)에 저장된 전압에 의해 정격 전류 이상의 전류가 보조 스위칭소자(131)를 통해 메인 스위칭소자(132)에 인가되며, 이러한 전류에 의해 메인 스위칭소자(132)가 강제고장으로 인해 쇼트되어 두 출력단자(X1,X2)를 단락시킨다. 이러한 두 출력단자(X1,X2)가 단락되면 고장 전류가 두 출력단자(X1,X2)와 메인 스위칭소자(132)를 통해 바이패스되는 것이다.
이러한 메인 스위칭소자(132)는 에너지 저장부(110)에 저장된 전압에 의해 강제고장이 발생할 수 있다. 즉, 에너지 저장부(110)로부터 인가되는 전압이 메인 스위칭소자(132)의 정격 전압보다 큰 경우 강제고장이 발생하여 쇼트될 수 있다.
이로써, 메인 스위칭소자(132)는 에너지 저장부(110)에 저장된 전압에 의해 강제고장의 발생하여 내부가 소손되어 쇼트됨으로써 고장 전류를 바이패스시킬 수 있고, 종래의 기계적인 스위치를 대체할 수 있다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. 에너지 저장부(110);
    상기 에너지 저장부(110)에 병렬연결되고 다수의 파워반도체스위치(121,123) 및 환류다이오드(122,124)로 구성된 적어도 하나의 파워반도체회로(120); 및
    상기 에너지 저장부(110)에 연결되고, 고장발생시 턴온되어 상기 에너지저장부(110)에 의한 전류를 도통하는 보조 스위칭소자(131); 및
    상기 보조 스위칭소자(131)의 출력단에 직렬연결되고, 상기 적어도 하나의 파워반도체회로(120) 중 하나에 연결된 2개의 출력단자(X1,X2) 사이에 배치되며, 상기 보조 스위칭소자(131)를 통해 상기 에너지 저장부(110)에 저장된 전압에 의해 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자(X1,X2)를 연결하는 메인 스위칭소자(132); 를 포함하는 전력용 컨버터의 서브모듈.
  2. 제1항에 있어서,
    상기 에너지저장부(110)에 저장된 전압에 의해 상기 보조 스위칭소자(131) 및 메인 스위칭소자(132)로 각각 입력되는 전류는 상기 보조 스위칭소자(131) 및 메인 스위칭소자(132)의 각 정격 전류보다 큰 전류이고, 상기 보조 스위칭소자(131) 및 메인 스위칭소자(132)로 상기 정격 전류보다 큰 전류가 인가되면 각각 강제고장이 발생하는 전력용 컨버터의 서브모듈.
  3. 제1항에 있어서,
    상기 에너지 저장부(110)에 저장된 전압에 의해 상기 보조 스위칭소자(131) 및 메인 스위칭소자(132)로 각각 인가되는 전압은 상기 보조 스위칭소자(131) 및 메인 스위칭소자(132)의 각 정격 전압보다 큰 전압이고, 상기 보조 스위칭소자(131) 및 메인 스위칭소자(132)로 상기 정격 전압보다 큰 전압이 인가되면 각각 강제고장이 발생하는 전력용 컨버터의 서브모듈.
  4. 제1항에 있어서,
    상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자(X1,X2) 및 메인 스위칭소자(132)를 통해 바이패스되는 전력용 컨버터의 서브모듈.
  5. 제1항에 있어서,
    상기 보조 스위칭소자(131)는 상기 에너지 저장부(110)에 연결된 캐소드단 및 상기 메인 스위칭소자(132)의 캐소드단에 연결된 에미터단을 갖는 것을 특징으로 하는 전력용 컨버터의 서브모듈.
  6. 제1항에 있어서,
    상기 메인 스위칭소자(132)는 PPI(Press Pack IGBT) 반도체 소자를 포함하는 전력용 컨버터의 서브모듈.
  7. 제1항에 있어서,
    상기 보조 스위칭소자(131)는 반도체 스위치, 전력 반도체 스위치, 다이오드 및 기계적 스위치 중 어느 하나를 포함하는 것을 특징으로 하는 전력용 컨버터의 서브모듈.
PCT/KR2020/011207 2019-08-21 2020-08-21 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈 WO2021034152A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,388 US11652401B2 (en) 2019-08-21 2020-08-21 Submodule of power converter having bypass switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0102702 2019-08-21
KR1020190102702A KR102171603B1 (ko) 2019-08-21 2019-08-21 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈

Publications (1)

Publication Number Publication Date
WO2021034152A1 true WO2021034152A1 (ko) 2021-02-25

Family

ID=73129335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011207 WO2021034152A1 (ko) 2019-08-21 2020-08-21 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈

Country Status (3)

Country Link
US (1) US11652401B2 (ko)
KR (1) KR102171603B1 (ko)
WO (1) WO2021034152A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220165588A (ko) 2021-06-08 2022-12-15 한국전력공사 서브모듈 그룹별 바이패스 보호 소자를 갖춘 멀티레벨 컨버터
CN116388345B (zh) * 2023-06-01 2023-08-11 西安为光能源科技有限公司 电池pack电路系统及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389579B1 (ko) * 2012-12-28 2014-04-29 주식회사 효성 전력용 컨버터
WO2016002319A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 電力変換装置
US20190131885A1 (en) * 2017-11-02 2019-05-02 Siemens Aktiengesellschaft Submodule and electrical arrangement having submodules

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374115B2 (ja) 2000-03-02 2003-02-04 三洋電機株式会社 可変抵抗回路、演算増幅回路および集積回路
JP4345640B2 (ja) 2004-10-27 2009-10-14 富士電機システムズ株式会社 電力変換装置の突入電流抑制装置
EP2369725B1 (de) 2010-03-25 2012-09-26 ABB Schweiz AG Überbrückungseinheit
WO2020173566A1 (en) * 2019-02-28 2020-09-03 Abb Schweiz Ag Converter cell with crowbar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389579B1 (ko) * 2012-12-28 2014-04-29 주식회사 효성 전력용 컨버터
WO2016002319A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 電力変換装置
US20190131885A1 (en) * 2017-11-02 2019-05-02 Siemens Aktiengesellschaft Submodule and electrical arrangement having submodules

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AHMED A. ELSEROUGI; AYMAN S. ABDEL-KHALIK; AHMED M. MASSOUD; SHEHAB AHMED: "A New Protection Scheme for HVDC Converters Against DC-Side Faults With Current Suppression Capability", IEEE TRANSACTIONS ON POWER DELIVERY, vol. 29, no. 4, 10 June 2017 (2017-06-10), pages 1569 - 1577, XP011554269, ISSN: 0885-8977, DOI: 10.1109/TPWRD.2014.2325743 *
WANG LEI; CHENG GUO; BUREAU TIANSHENGQIAO; LI XIN; ZHANG DAI; FAN YOUPING: "Automation and control design of overvoltage protection for sub-modules in modular multilevel converter", 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 15 December 2017 (2017-12-15), pages 1048 - 1052, XP033317085, DOI: 10.1109/ITNEC.2017.8284899 *

Also Published As

Publication number Publication date
US20220376610A1 (en) 2022-11-24
US11652401B2 (en) 2023-05-16
KR102171603B1 (ko) 2020-10-29
KR102171603B9 (ko) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2017115955A1 (ko) 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법
WO2014104848A1 (ko) 전력용 컨버터
WO2018221906A1 (ko) Mmc 컨버터 및 그의 서브모듈
US8687389B2 (en) Apparatus having a converter
CN108322056B (zh) 一种模块化高压直流变换装置及其控制方法
WO2021034152A1 (ko) 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈
US9906160B2 (en) Method for discharging an intermediate circuit capacitor of an intermediate voltage circuit converter
WO2018221907A1 (ko) Mmc 컨버터 및 그의 서브모듈
WO2016108552A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
WO2016208894A1 (ko) Mmc 컨버터의 서브모듈용 전원공급장치
WO2014104836A1 (ko) 컨버터
US11476751B2 (en) Short circuit current suppression circuit for flying capacitor converter and energy storage system having the same
WO2018124519A1 (ko) 모듈러 멀티레벨 컨버터 시스템
CA2771910A1 (en) Converter cell module, voltage source converter system comprising such a module and a method for controlling such a system
WO2020101320A1 (ko) 모듈러 멀티레벨 컨버터 서브모듈의 커패시터 전압 조정 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
WO2014104839A1 (ko) 고장전류 감소기능을 가지는 컨버터
CN111030493B (zh) 一种模块化多电平换流器的子模块及其保护电路
US11276786B2 (en) Solar module and energy-generating system
US6528903B2 (en) Converter system having converter modules connected by a DC intermediate circuit, and method for operating such a system
KR20090031212A (ko) 인버터 장치
WO2021034153A1 (ko) 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈
US11463015B2 (en) Power conversion apparatus
US6040988A (en) Converter with DC voltage intermediate circuit and method for operating such a converter
WO2015102384A1 (ko) Z-소스 회로장치
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855035

Country of ref document: EP

Kind code of ref document: A1