WO2016208894A1 - Mmc 컨버터의 서브모듈용 전원공급장치 - Google Patents

Mmc 컨버터의 서브모듈용 전원공급장치 Download PDF

Info

Publication number
WO2016208894A1
WO2016208894A1 PCT/KR2016/006219 KR2016006219W WO2016208894A1 WO 2016208894 A1 WO2016208894 A1 WO 2016208894A1 KR 2016006219 W KR2016006219 W KR 2016006219W WO 2016208894 A1 WO2016208894 A1 WO 2016208894A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
power supply
transformer
sub
Prior art date
Application number
PCT/KR2016/006219
Other languages
English (en)
French (fr)
Inventor
백요한
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to BR112017027960-6A priority Critical patent/BR112017027960A2/pt
Priority to US15/738,758 priority patent/US10305394B2/en
Publication of WO2016208894A1 publication Critical patent/WO2016208894A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to a power supply device, and more particularly, to a sub-module of an MMC converter that stably supplies power to a sub-module of a modular multi-level converter (MMC) linked to a high-voltage direct current transmission (HVDC) system. It relates to a power supply for the.
  • MMC modular multi-level converter
  • HVDC high-voltage direct current transmission
  • a high voltage direct current (HVDC) system converts AC power produced in a power plant into DC to transmit power and re-converts to AC at a power receiving end to supply power to a load.
  • This HVDC system is capable of efficient and economical power transmission through voltage boost, heterogeneous system linkage, and long distance high efficiency transmission.
  • HVDC systems incorporate a Modular Multilevel Converter (MMC) converter for power transmission and reactive power compensation.
  • MMC Modular Multilevel Converter
  • Such an MMC converter includes a plurality of sub-modules connected in series with each other. Sub-modules are very important elements in MMC converters and a power supply is required to supply stable power to the sub-modules in various environments.
  • FIG. 1 is an equivalent circuit diagram of an MMC converter
  • FIG. 2 is a circuit diagram of a power supply device for a submodule of a conventional MMC converter.
  • the MMC converter is composed of one or more phase modules 1, and each of the phase modules 1 is connected with a plurality of sub-modules 10 in series.
  • each phase module 1 connects the DC voltage side to the positive (+) and negative (-) DC voltage bus lines P and N, respectively.
  • the input voltage of the P-N bus is input to the submodule 10 through the connection terminals X1 and X2.
  • the power supply device 20 for the submodule of the MMC converter converts the high voltage (about 2-3 mA) of the PN bus bar into a low voltage (about 5-100 V) to supply the power required for the operation of the submodule. do.
  • the conventional power supply device 20 stores the Vdc voltage in the capacitor 21 while the input voltage of the P-N bus of the MMC converter increases from 0V to a high voltage (for example, 3 kV).
  • the controller 24 While the clamping voltage Vzd of the zener diode (ZD) 23 is output to the controller 24 while the Vdc voltage, which is the input voltage of the PN bus line, increases from 0V to 1000V, the controller 24 receives the semiconductor switch ( 25 is turned on to allow current to be supplied to the transformer 26. As such, when the secondary output voltage Pcon of the transformer 26 is applied to the controller 24, the controller 24 drives the power supply device 20.
  • the power supply device 20 starts but does not produce a normal output due to a low input voltage at an initial stage and stops. This start and stop is repeated while the input voltage is rising, and the repetition is stopped only when the input voltage reaches the rated voltage.
  • the secondary output voltage Pcon of the transformer 26 takes charge of the power of the controller 24.
  • the power supply device 20 is started even when the input voltage is lower than the rated voltage at the initial startup, there is a problem that the normal startup does not occur and the input voltage continues to rise so that the resistance 22 and The current continues to flow to the zener diode 23, so that heat generation occurs in these devices 22 and 23, which causes a problem of continuous loss.
  • An object of the present invention is to provide a power supply device for a sub-module of the MMC converter capable of adjusting the starting time for the power supply device to start the sub-module of the MMC converter associated with the HVDC system.
  • the present invention provides a power supply device for the sub-module of the MMC converter to remove heat and loss in the internal device even when the input voltage reaches the high voltage region in the power supply device for the sub-module of the MMC converter.
  • a power supply device for the sub-module of the MMC converter to remove heat and loss in the internal device even when the input voltage reaches the high voltage region in the power supply device for the sub-module of the MMC converter.
  • the present invention is to protect the internal components by blocking the circuit even if overcurrent flows or overheating occurs in the power supply due to a short circuit in the secondary load voltage output terminal of the transformer in the power supply for the sub-module of the MMC converter
  • Another object is to provide a power supply for a submodule of an MMC converter.
  • a power supply for supplying power to a sub module of an MMC converter comprising: a relay unit installed between the P-N bus lines of the MMC converter and including a B contact switch; A resistor connected in series with the relay unit; A TVS diode connected in series with said resistor; A zener diode connected in series with the TVS diode; A transformer for transferring the input voltage (primary side) of the P-N bus to the secondary side; A semiconductor switch for switching the flow of current supplied to the transformer; A control unit which turns on the semiconductor switch so that a current is conducted to the transformer when a clamping voltage of the zener diode is input; A relay driver for receiving a secondary output voltage of the transformer to drive a B-contact switch of the relay unit; And a circuit breaker connected in series with the relay unit and blocking the circuit when the current flowing through the B contact switch of the relay unit is greater than a predetermined reference current or heat is generated by the current.
  • the input voltage is increased from 0V to a predetermined maximum voltage (Vmax).
  • the relay unit is supplied with the TVS diode through the B contact switch before the initial state of the B contact switch is set to a short circuit and the input voltage increases to reach the rated voltage for starting the power supply.
  • the supply current is not conducted so that no current flows to the control unit.
  • the TVS diode when the input voltage increases to reach the rated voltage, the TVS diode conducts the supply current to be supplied to the controller, and the controller turns on the semiconductor switch when the supply current is applied. .
  • the transformer transfers the primary side voltage to the secondary side and outputs the secondary side voltage and the relay switching unit is The B contact switch of the relay unit is opened by receiving the secondary power voltage of the transformer.
  • the control unit operates by receiving the output voltage of the secondary side of the transformer as an operating power source without the clamping voltage of the zener diode being input.
  • the circuit breaker includes at least one of a current fuse that cuts off the circuit when a current equal to or greater than a predetermined reference current flows, or a thermal fuse that cuts off the circuit when heated to a predetermined reference temperature by the current.
  • the thermal fuse includes a nonflammable and flame retardant resistance material.
  • the thermal fuse is integrated with the resistor R.
  • the circuit breaker is provided between the TVS diode (TD) and the branch circuit to the controller or between the resistor (R) and the TVS diode (TD).
  • the semiconductor switch after the semiconductor switch is turned on (on) it is repeated on / off by a predetermined period by the controller.
  • the starting time of the power supply device can be adjusted according to the magnitude of the input voltage.
  • the loss in the resistor and the zener diode can be eliminated.
  • a short circuit occurs in the output side of the secondary load voltage of the transformer in the power supply, so that the circuit breaker shuts down the circuit even if overcurrent flows or overheats due to the application of high voltage. Can be prevented.
  • FIG. 2 is a circuit diagram of a power supply for a sub module of a conventional MMC converter
  • FIG. 3 is a circuit diagram of a power supply device for a sub module of an MMC converter according to an embodiment of the present invention
  • 4 to 8 is a schematic diagram of the current flow according to the driving of the power supply for the sub-module of the MMC converter according to the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only to distinguish the components from other components, and the nature, order, order, etc. of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but there may be another component between each component. It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 3 is a circuit diagram of a power supply for a sub-module of the MMC converter according to an embodiment of the present invention.
  • a power supply device 100 for a sub-module of an MMC converter may include an MMC converter including one or more phase modules. Apply. Specifically, power is supplied to a plurality of submodules constituting the upper module of the MMC converter. To this end, the power supply device 100 receives high voltages between the positive and negative P buses and the N buses to which each phase module is connected and starts and supplies the necessary voltages to the submodules when the output is normal. do.
  • the charging unit 110 the relay unit 120, the resistor 130, the TVS diode (TD) 140, the zener diode (ZD) 150, and the transformer 160.
  • a semiconductor switch 170 a controller 180, a relay switching unit 190, and a circuit breaker 200.
  • the charging unit 110 stores the input voltage of the P-N bus line of the MMC converter.
  • the input voltage is stored in the charging unit 110 while the input voltage between the P-N bus lines of the MMC converter increases from 0V to a preset maximum voltage Vmax.
  • the charging unit 110 may include, for example, a capacitor.
  • the relay unit 120 is connected to the charging unit 110 in parallel.
  • the relay unit 120 includes a B contact switch in which an initial state of the contact is formed in a short circuit. Therefore, since the B contact switch is initially in a closed state, it is turned on when a current is applied. When a voltage is applied to the relay unit 120 so that the relay unit 120 operates, the B contact switch is opened and the current is cut off.
  • the resistor 130, the TVS diode 140, and the zener diode 150 are connected in series with the relay unit 120.
  • the resistor 130, the TVS diode 140, and the control diode 150 are preferably connected in series to the relay unit 120, but the present invention is not limited thereto.
  • the TVS diode 140 serves as a transient voltage suppressor diode to conduct current only above a predetermined voltage.
  • the zener diode 150 allows a constant clamping voltage to be supplied to the controller 180.
  • the transformer 160 transfers the primary side voltage to the secondary side using the input voltage of the P-N bus as the primary side voltage.
  • the transformer 160 converts the high voltage of the P-N bus into a low voltage required for the secondary load (eg, a sub module) according to the internal winding ratio.
  • the output voltage of the secondary load voltage output terminal of the transformer 160 is input to the relay switching unit 180.
  • the secondary output voltage of the transformer 160 is input to the controller 190.
  • the load side output voltage input to the relay switching unit 180 and the secondary side output voltage input to the controller 190 may be the same or different.
  • the load side output voltage is a load voltage for driving a load (eg, a sub module) and the secondary output voltage input to the controller 190 is a voltage for driving the controller 190.
  • the secondary coils of the transformer 160 may be divided into two, and the secondary coils may be formed at different turns ratios to implement different output voltages.
  • the semiconductor switch 170 switches the current flow so that the current by the input voltage of the P-N bus is supplied to the transformer 160.
  • the switching operation of the semiconductor switch 170 is controlled by the controller 180 to be described later.
  • the semiconductor switch 170 When the semiconductor switch 170 is turned on, current by the input voltage charged in the charging unit 110 flows through the closed circuit formed through the transformer 160 and the semiconductor switch 170, and the transformer 160 is 1 at this time. Transfer the voltage across the secondary to the secondary.
  • the semiconductor switch 170 according to the embodiment of the present invention is a power semiconductor device capable of turn-on / turn-off control, and may be preferably implemented by, for example, IGBT, IGCT, GTO, MOSFET, or the like. have.
  • the controller 180 initially turns on the semiconductor switch 170 when the supply contact is applied in the short-circuit state of the B-contact switch so that the supply current is conducted through the semiconductor switch 170. That is, since the semiconductor switch 170 is turned on, a closed circuit is formed through the semiconductor switch 170 so that the supply current by the input voltage is supplied to the transformer 160. By the current flow, the input voltage of Vdc stored in the charging unit 110 is supplied to the primary side of the transformer 160, and the transformer 160 converts the low voltage according to the turns ratio and outputs it as the secondary side voltage. The secondary output voltage is input to the controller 180 and used as the operating power of the power supply device 100. At this time, in the present embodiment, the controller 180 controls the semiconductor switch 170 to be turned off and on repeatedly according to a predetermined cycle after the semiconductor switch 170 is turned on. That is, the semiconductor switch 170 is turned on / off at a very short frequency.
  • the relay switching unit 190 operates the relay unit 120 by receiving the load voltage output voltage output to the load on the secondary side of the transformer 160 as described above. Specifically, when the secondary output voltage of the transformer 160 is input to the relay switching unit 190, the B contact switch initially set in the short circuit state to the relay unit 120 is switched to the open state. As a result, the current flowing through the relay unit 120 is blocked, so that the current is no longer supplied to the controller 180. As described above, after the relay switching unit 190 switches the B contact switch to open, the controller 180 receives only the secondary output voltage of the transformer 160 and supplies the output voltage to the power supply device 100. It is used as the operating power of.
  • the input voltage of the high voltage applied between the PN buses of the MMC converter is stored in the charging unit 110, and the Vdc input voltage stored in the charging unit 110 is stored in the primary voltage of the transformer 160.
  • the power supply device 100 of the present invention to remove the unnecessary switching operation and minimize the loss by allowing the power supply device 100 to start only at the initial voltage, that is, the rated voltage or more.
  • the power supply device 100 of the present invention increases the input voltage of the PN bus line from 0V to the preset maximum voltage Vmax, until the power supply device 100 reaches the rated voltage for starting, the TVS The diode 140 cuts off the current so that the current is not supplied to the control unit 180 so that the power supply device 100 does not start, and after reaching the rated voltage, the TVS diode 140 conducts current to supply power.
  • the feeder 100 is started.
  • the circuit breaker 200 is connected in series to the relay unit 120 in a series circuit connected to the relay unit 120, and a current flowing through the B contact switch of the relay unit 120 is greater than or equal to a preset reference current. If heat is generated by the circuit breaker. That is, in the normal operation state, when the current flows over the reference current through the B contact switch of the relay unit 120 or the heat generation occurs over the predetermined temperature by the current even though the reference current is below the current, the circuit is cut off.
  • the relay switching unit 190 switches the B contact switch initially set to the short circuit state of the relay unit 120. By switching to the open state, the current flowing through the relay unit 120 is cut off.
  • the secondary load output voltage of the transformer 160 input to the relay switching unit 190 becomes 0V and thus the relay switching unit 190 Since the voltage is not supplied to the B contact switch of the relay unit 120 is switched from the open state to the short state.
  • the circuit breaker 200 is connected in series with the relay unit 120 so that a current higher than a predetermined reference current flows through the relay unit 120 or heat is generated at the reference temperature by the current. Blocking to protect the power supply (100). Accordingly, the circuit breaker 200 may be configured as a current fuse that cuts off the circuit when an overcurrent exceeding a preset current size flows, or may be configured as a temperature fuse that cuts off the circuit when heat is generated at a predetermined temperature. .
  • thermal fuses may be made of non-flammable and flame-retardant resistive materials that can withstand high temperatures.
  • the thermal fuse may be formed of a non-flammable metal oxide film resistor (MOR) or a non-flammable wire wound resistor (RW) to prevent the fuse from being blown at high temperatures.
  • MOR non-flammable metal oxide film resistor
  • RW non-flammable wire wound resistor
  • the current fuse and the temperature fuse may be used at the same time. This allows the current fuse to operate in a similar time, but for the thermal fuse to operate when the operation of the current fuse is delayed or fails depending on the magnitude of the current by the input voltage.
  • the circuit breaker 200 connected in series to the relay unit 120 is installed to open the circuit when an overcurrent is applied or heat is generated by the current.
  • the circuit breaker 200 is connected to the relay unit 120 in series, but installed anywhere below the relay unit 120, that is, between the relay unit 120 and the zener diode 150. Is possible. In FIG.
  • the circuit breaker 200 when the circuit breaker 200 is implemented as a thermal fuse, the circuit breaker 200 may be integrated with the resistor R.
  • 4 to 7 are exemplary diagrams of the current flow according to the driving of the power supply for the sub-module of the MMC converter according to an embodiment of the present invention.
  • the input voltage of the P-N bus bar starts to increase from 0V, and this input voltage is stored in the charging unit 110.
  • the supply current flows through the relay unit 120 through the resistor 130 to the TVS diode 140 by the input voltage.
  • the TVS diode 140 conducts current only when a predetermined voltage or more is applied, in this embodiment, the input voltage is rated by setting the current to be conducted only above the rated voltage for starting the power supply device 100. In the low voltage region lower than the voltage, the TVS diode 140 does not conduct current. Since no current flows to the zener diode 150 in FIG.
  • the power supply device 100 does not start. That is, the power supply device 100 does not start until the input voltage increases from 0V to reach the predetermined rated voltage.
  • the TVS diode 140 conducts current to control the controller 180 through a branch circuit. Is applied.
  • the controller 180 turns on the semiconductor switch 170 when such a current is applied.
  • FIG. 6 illustrates an example in which the semiconductor switch 170 is turned on so that a current flows through the transformer 160.
  • the power supply device 100 is activated and the transformer 160 transmits the voltage applied to the primary side to the secondary side.
  • the voltage converted by the turns ratio is output to the secondary side of the transformer 160.
  • This secondary voltage is provided to the controller 180 and the relay switching unit 190.
  • the secondary voltages supplied to the controller 180 and the relay switching unit 190 may be the same or different. If different, it is preferable to implement the output voltage differently by configuring two windings with different secondary windings.
  • the secondary voltage supplied to the controller 180 is used as an operating power source of the controller 180, and the secondary load voltage supplied to the relay switching unit 190 is used to operate the relay switching unit 190.
  • the relay switching unit 190 switches the B contact switch of the relay unit 120 to open.
  • the current flow in the state in which the B contact switch of the relay unit 120 is opened is illustrated. Since the current is cut off in the relay unit 120 in the state where the B contact switch is open, no current is applied to the controller 180 anymore, and as shown in FIG. 6, only the secondary output voltage of the transformer 160 is controlled. It is supplied to the controller 180 as an operating voltage of 180. As such, the controller 180 continues to operate the power supply device 100 using the operating voltage.
  • FIG. 8 illustrates an example in which a short occurs at the secondary load voltage output terminal of the transformer 160.
  • the voltage supply is cut off to the relay switching unit 190, so that the B contact switch of the relay unit 120 is in a short circuit state. Is switched to.
  • the input voltage of the P-N bus is applied through the B contact switch. Since the input voltage is a high voltage, the overcurrent caused by the high voltage flows through the B contact switch.
  • the circuit breaker 200 is opened to block the flow of overcurrent. do.
  • the circuit breaker 200 is implemented as a current fuse or a temperature fuse
  • the fuse is blown by an overcurrent or a heat to make the circuit open. Therefore, it is possible to prevent the overcurrent caused by the high voltage of the input terminal from being supplied to the controller 180.
  • FIG. 8 illustrates an example in which the fuse is blown when the circuit breaker 200 is implemented as a fuse.
  • the current fuse When the fuse is blown, the current fuse is blown due to an overcurrent caused by a high voltage or a heat is generated by the current, and when the heat reaches a predetermined threshold temperature of the thermal fuse, the thermal fuse is blown to cut off the circuit. do.
  • the power supply device 100 starts only when the input voltage is equal to or higher than the rated voltage for starting the power supply device 100.
  • the power supply device 100 starts to generate a normal output, only the output voltage is used as the operating power source.
  • the unnecessary operation of repeating the start and stop of the power supply device 100 is eliminated as in the related art, and it is possible to greatly reduce heat generation and loss in the resistance and the zener diode.
  • the power supply device 100 when a short circuit occurs in the secondary output terminal of the transformer 160, when the overcurrent or overheating occurs in order to prevent the overcurrent flows to cause a failure of the internal components To install the circuit block 200 to cut off. As a result, even if a short circuit occurs in the secondary output terminal of the transformer 160, the power supply device 100 may be protected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

본 발명은 고압전 직류송전(HVDC) 시스템과 연계되는 모듈러 멀티레벨 컨버터(MMC)의 서브모듈(sub-module)에 전원을 안정적으로 공급하도록 하는 MMC 컨버터의 서브모듈용 전원공급장치에 관한 것이다. 본 발명에 따른 MMC 컨버터의 서브모듈용 전원공급장치는, MMMC 컨버터의 서브모듈에 전원을 공급하는 전원공급장치에 있어서, 상기 MMC 컨버터의 P-N 모선 사이에 설치되며 B접점 스위치를 포함하는 릴레이부와, 상기 릴레이부에 직렬연결된 저항과, 상기 저항에 직렬연결된 TVS 다이오드와, 상기 TVS 다이오드에 직렬연결된 제너다이오드와, 상기 P-N 모선의 입력전압(1차측)을 2차측으로 전달하는 트랜스포머와, 상기 트랜스포머로 공급되는 전류의 흐름을 스위칭하는 반도체스위치와, 상기 제너다이오드의 클램핑 전압이 입력되면 상기 트랜스포머로 전류가 도통되도록 상기 반도체스위치를 온(on)시키는 제어부와, 상기 트랜스포머의 2차측 출력전압을 입력받아 상기 릴레이부의 B접점 스위치를 구동시키는 릴레이구동부와, 상기 릴레이부에 직렬연결되며 상기 릴레이부의 B접점 스위치를 통해 흐르는 전류가 기설정된 기준전류보다 크거나 상기 전류에 의해 발열이 발생하는 경우 회로를 차단하는 회로차단부를 포함한다.

Description

MMC 컨버터의 서브모듈용 전원공급장치
본 발명은 전원공급장치에 관한 것으로서, 특히 고압전 직류송전(HVDC) 시스템과 연계되는 모듈러 멀티레벨 컨버터(MMC)의 서브모듈(sub-module)에게 전원을 안정적으로 공급하도록 하는 MMC 컨버터의 서브모듈용 전원공급장치에 관한 것이다.
일반적으로, 초고압 직류송전(HVDC: High Voltage Direct Current) 시스템에서는 발전소에서 생산되는 교류전력을 직류로 변환시켜 송전하고 수전단에서 교류로 재변환하여 부하에 전력을 공급하도록 한다. 이러한 HVDC 시스템은 전압승압을 통하여 효율적이고 경제적인 전력전송이 가능하고 이종계통 연계, 장거리 고효율 송전 등의 장점을 갖는다.
HVDC 시스템에는 전력송전 및 무효전력 보상을 위해 MMC(Modular Multilevel Converter) 컨버터가 연계된다. 이러한 MMC 컨버터는 서로 직렬연결된 다수의 서브모듈(sub-module)을 포함한다. MMC 컨버터에서 서브모듈은 매우 중요한 요소로서 다양한 환경에서도 서브모듈에 안정적인 전원을 공급하기 위한 전원공급장치가 필요하다.
도 1에는 MMC 컨버터의 등가회로도이고, 도 2는 종래의 MMC 컨버터의 서브모듈용 전원공급장치의 회로도이다. 주지된 바와 같이 MMC 컨버터는 1개 이상의 상모듈(phase module)(1)로 구성되고, 각각의 상모듈(1)에는 다수의 서브모듈(10)이 서로 직렬로 연결된다. 또한, 각 상모듈(1)은 직류전압측을 정(+)과 부(-)의 직류전압 모선 P 및 N에 각각 접속시킨다. P-N 모선의 입력전압은 접속단자(X1,X2)를 통해 서브모듈(10)로 입력된다.
MMC 컨버터의 서브모듈용 전원공급장치(20)는 서브모듈의 동작에 필요한 전원을 공급하기 위해 P-N 모선의 고전압(약 2~3㎸)을 저전압(약 5~100V)으로 변환하여 서브모듈에 공급한다. 이를 위하여 종래의 전원공급장치(20)는 MMC 컨버터의 P-N 모선의 입력전압이 0V에서 고전압(예:3㎸)으로 증가하면서 커패시터(21)에 Vdc 전압이 저장된다. P-N 모선의 입력전압인 Vdc 전압이 0V에서 1000V까지 상승하는 동안 제너다이오드(ZD)(23)의 클램핑전압 Vzd가 제어기(24)로 출력되고 제어기(24)는 클램핑전압 Vzd가 입력되면 반도체스위치(25)를 온(on)시켜 트랜스포머(26)로 전류가 공급되도록 한다. 이와 같이 트랜스포머(26)의 2차측 출력전압(Pcon)이 제어기(24)로 인가되면 제어기(24)는 전원공급장치(20)를 구동시킨다.
그런데, 이 경우 입력전압 Vdc가 전원공급장치(20)의 정격전압보다 낮더라도 전원공급장치(20)는 기동하지만 초기에 낮은 입력전압으로 인하여 정상출력을 만들어내지 못하고 정지한다. 이러한 기동과 정지는 입력전압이 상승하는 동안 계속 반복되며 입력전압이 정격전압에 도달해야만 이러한 반복이 멈춘다. 입력전압이 정격전압에 도달하여 전원공급장치(20)의 출력이 정상상태가 되면 트랜스포머(26)의 2차측 출력전압(Pcon)가 제어기(24)의 전원을 담당하게 된다.
이와 같이, 종래에는 초기 기동시 입력전압이 정격전압보다 낮은 상태에서도 전원공급장치(20)가 기동하게 되지만 정상기동이 발생시키지 못하는 문제점이 있고 입력전압이 계속 상승하여 고전압 영역에서도 저항(22)과 제너다이오드(23)로 계속 전류가 흐르게 되어 이들 소자(22,23)에서 발열이 발생하고 이로 인해 손실이 계속 발생하는 문제점이 있다.
따라서 해당 기술분야에서는 HVDC 시스템과 연계되는 MMC 컨버터의 서브모듈용 전원공급장치에서 불필요한 동작을 제거하고 손실을 줄일 수 있는 전원공급장치에 대한 기술개발이 요구되고 있다.
본 발명은 HVDC 시스템과 연계되는 MMC 컨버터의 서브모듈에 전원공급장치가 기동할 수 있도록 하기 위한 기동시점을 조절할 수 있는 MMC 컨버터의 서브모듈용 전원공급장치를 제공하는데 그 목적이 있다.
또한, 본 발명은 MMC 컨버터의 서브모듈용 전원공급장치에서 입력전압이 고전압 영역에 도달하여도 내부 소자에서의 발열 및 손실을 제거할 수 있도록 하는 MMC 컨버터의 서브모듈용 전원공급장치를 제공하는데 다른 목적이 있다.
또한, 본 발명은 MMC 컨버터의 서브모듈용 전원공급장치 내 트랜스포머의 2차측 부하전압 출력단에 단락으로 인해 전원공급장치에 과전류가 유입되거나 과열이 발생하더라도 회로를 차단하여 내부 구성요소를 보호할 수 있도록 하는 MMC 컨버터의 서브모듈용 전원공급장치를 제공하는데 또 다른 목적이 있다.
본 발명에 따른 MMC 컨버터의 서브모듈용 전원공급장치는,
MMC 컨버터의 서브모듈에 전원을 공급하는 전원공급장치에 있어서, 상기 MMC 컨버터의 P-N 모선 사이에 설치되며 B접점 스위치를 포함하는 릴레이부; 상기 릴레이부에 직렬연결된 저항; 상기 저항에 직렬연결된 TVS 다이오드; 상기 TVS 다이오드에 직렬연결된 제너다이오드; 상기 P-N 모선의 입력전압(1차측)을 2차측으로 전달하는 트랜스포머; 상기 트랜스포머로 공급되는 전류의 흐름을 스위칭하는 반도체스위치; 상기 제너다이오드의 클램핑 전압이 입력되면 상기 트랜스포머로 전류가 도통되도록 상기 반도체스위치를 온(on)시키는 제어부; 상기 트랜스포머의 2차측 출력전압을 입력받아 상기 릴레이부의 B접점 스위치를 구동시키는 릴레이구동부; 및 상기 릴레이부에 직렬연결되며 상기 릴레이부의 B접점 스위치를 통해 흐르는 전류가 기설정된 기준전류보다 크거나 상기 전류에 의해 발열이 발생하는 경우 회로를 차단하는 회로차단부를 포함한다.
본 발명에서, 상기 입력전압은 0V부터 기설정된 최대전압(Vmax)까지 증가한다.
본 발명에서, 상기 릴레이부는 상기 B접점 스위치의 초기상태가 단락으로 설정되고 상기 입력전압이 증가하여 상기 전원공급장치의 기동을 위한 정격전압에 도달하기 전에는 상기 TVS 다이오드가 상기 B접점 스위치를 통해 공급된 공급전류를 도통시키지 않아 상기 제어부로 전류가 흐르지 않도록 한다.
본 발명에서, 상기 입력전압이 증가하여 상기 정격전압에 도달하면 상기 TVS 다이오드는 상기 공급전류를 도통시켜 상기 제어부로 공급되도록 하고 상기 제어부는 상기 공급전류가 인가되면 상기 반도체스위치를 온(on)시킨다.
본 발명에서, 상기 반도체스위치가 온(on)되면 상기 공급전류에 의해 상기 트랜스포머에 1차측 전압을 공급하고 상기 트랜스포머는 1차측 전압을 2차측으로 전달하여 2차측 전압으로 출력하며 상기 릴레이스위칭부는 상기 트랜스포머의 2차측 전력전압을 입력받아 상기 릴레이부의 B접점 스위치를 오픈(open)시킨다.
본 발명에서, 상기 릴레이부의 B접점 스위치가 오픈된 후 상기 제어부는 상기 제너다이오드의 클램핑 전압은 입력되지 않고 상기 트랜스포머의 2차측 출력전압을 동작전원으로 입력받아 동작한다.
본 발명에서, 상기 회로차단부는 정상운전 상태에서 상기 트랜스포머의 2차측에 단락 발생으로 인해 상기 릴레이부의 B접점 스위치가 단락상태로 변환된 경우 상기 B접점 스위치를 통해 상기 기설정된 전류보다 큰 과전류가 흐르면 회로를 차단한다.
본 발명에서, 상기 회로차단부는 기설정된 기준전류 이상의 전류가 흐르면 회로를 차단하는 전류 퓨즈 또는 상기 전류에 의해 기설정된 기준온도로 발열되면 회로를 차단하는 온도 퓨즈 중 적어도 하나를 포함한다.
본 발명에서, 상기 온도 퓨즈는 불연성 및 난연성 저항재료를 포함한다.
본 발명에서, 상기 온도 퓨즈는 상기 저항(R)과 일체형으로 구현된다.
본 발명에서, 상기 회로차단부는 상기 TVS 다이오드(TD)와 상기 제어부로의 분기회로 사이 또는 상기 저항(R)과 상기 TVS 다이오드(TD) 사이에 설치된다.
본 발명에서, 상기 반도체스위치는 온(on)된 이후에 상기 제어부에 의해 기설정된 주기로 온/오프를 반복한다.
본 발명에 따른 MMC 컨버터의 서브모듈용 전원공급장치의 기동전압 제어장치에서는 입력전압의 크기에 따라 전원공급장치의 기동시점을 조절할 수 있다.
또한, 본 발명에 의하면 전원공급장치가 기동되어 정상상태에 도달한 이후에는 저항 및 제너다이오드로의 전류흐름이 차단되므로 저항과 제너다이오드에서의 손실을 제거할 수 있다.
또한, 본 발명에 의하면 전원공급장치에서 트랜스포머의 2차측 부하전압 출력단에 단락이 발생하여 고전압 인가에 따른 과전류가 흐르거나 과열이 발생하더라도 회로차단부에서 회로를 차단하기 때문에 내부 구성요소에 2차 고장을 방지할 수 있다.
도 1은 일반적인 MMC 컨버터의 등가회로도,
도 2는 종래의 MMC 컨버터의 서브모듈용 전원공급장치의 회로도,
도 3은 본 발명의 실시 예에 따른 MMC 컨버터의 서브모듈용 전원공급장치의 회로도,
도 4 내지 도 8은 본 발명에 따른 MMC 컨버터의 서브모듈용 전원공급장치의 구동에 따른 전류흐름의 개요도.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세히 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성요소 사이에 또 다른 구성요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 3은 본 발명의 실시 예에 따른 MMC 컨버터의 서브모듈용 전원공급장치의 회로도이다.
도 3을 참조하면, 본 발명의 실시 예에 따른 MMC 컨버터의 서브모듈용 전원공급장치(이하, 전원공급장치라 함)(100)는 1개 이상의 상모듈(phase module)을 포함하는 MMC 컨버터에 적용된다. 구체적으로, MMC 컨버터의 상모듈을 구성하는 다수의 서브모듈에 전원을 공급한다. 이를 위해 전원공급장치(100)는 각 상모듈이 접속된 정(+) 및 부(-)의 P 모선과 N 모선 사이의 고전압을 입력받아 기동하여 정상출력이 되면 서브모듈에 필요한 전압을 공급하도록 한다.
본 실시 예에 따른 전원공급장치(100)에서는 충전부(110), 릴레이부(120), 저항(130), TVS 다이오드(TD)(140), 제너다이오드(ZD)(150), 트랜스포머(160), 반도체스위치(170), 제어부(180), 릴레이스위칭부(190) 및 회로차단부(200)를 포함하여 구성된다.
충전부(110)는 MMC 컨버터의 P-N 모선의 입력전압을 저장한다. MMC 컨버터의 P-N 모선 간의 입력전압이 0V부터 기설정된 최대전압(Vmax)까지 증가하는 동안 그 입력전압이 충전부(110)에 저장된다. 이러한 충전부(110)는 예컨대, 커패시터를 포함할 수 있다.
릴레이부(120)는 충전부(110)에 병렬로 연결된다. 릴레이부(120)는 접점의 초기상태가 단락(short)으로 형성된 B접점 스위치를 포함한다. 따라서, 초기에는 B접점 스위치가 닫힌(close)상태이므로 전류가 인가되면 도통된다. 릴레이부(120)에 전압이 인가되어 릴레이부(120)가 동작하면 B접접 스위치가 열린(open) 상태가 되어 전류가 차단된다.
저항(130), TVS 다이오드(140) 및 제너다이오드(150)가 릴레이부(120)에 직렬로 연결된다. 이들 직렬연결의 순서는 릴레이부(120)에 직렬로 저항(130), TVS 다이오드(140), 제어다이오드(150)가 순서대로 연결되는 것이 바람직하지만, 본 발명은 이에 한정되지 않는다. 이러한 TVS 다이오드(140)는 과도전압억제(Transient Voltage Suppressor) 다이오드로서 기설정된 전압 이상에서만 전류를 도통하도록 한다. 제너다이오드(150)는 제어부(180)로 일정한 클램핑 전압이 공급되도록 한다.
트랜스포머(160)는 P-N 모선의 입력전압을 1차측 전압으로 하여 그 1차측 전압을 2차측으로 전달한다. 이러한 트랜스포머(160)는 전원공급장치(100)가 기동되면 P-N 모선의 고전압을 내부의 권선비에 따라 2차측의 부하(예:서브모듈)에 필요한 저전압으로 변환하여 출력하도록 한다. 트랜스포머(160)의 2차측 부하전압 출력단의 출력전압은 릴레이스위칭부(180)로 입력된다. 또한, 트랜스포머(160)의 2차측 출력전압은 제어부(190)로 입력된다. 여기서, 릴레이스위칭부(180)로 입력되는 부하측 출력전압과 제어부(190)로 입력되는 2차측 출력전압은 서로 동일할 수도 있고 다를 수도 있다. 즉, 부하측 출력전압은 부하(예:서브모듈)를 구동하기 위한 부하전압이고 제어부(190)로 입력되는 2차측 출력전압은 제어부(190)를 구동하기 위한 전압이다. 이때, 두 전압이 다른 경우에는 트랜스포머(160)의 2차측 코일을 2개로 구분하여 형성하고 이들 2차측 코일을 서로 다른 권선비로 형성하도록 함으로써 서로 다른 출력전압을 구현하도록 할 수 있다.
반도체스위치(170)는 P-N 모선의 입력전압에 의한 전류가 트랜스포머(160)로 공급되도록 전류흐름을 스위칭한다. 반도체스위치(170)는 후술하는 제어부(180)에 의해 그 스위칭 동작이 제어된다. 반도체스위치(170)가 온(on)되면 충전부(110)에 충전된 입력전압에 의한 전류가 트랜스포머(160)와 반도체스위치(170)를 통해 형성된 폐회로를 통해 흐르게 되고, 트랜스포머(160)는 이때 1차측에 걸리는 전압을 2차측으로 전달한다. 본 발명의 실시예에 따른 반도체스위치(170)는 턴온(turn-on)/턴오프(turn-off) 제어가능한 전력반도체소자로서는, 바람직하게는 예컨대 IGBT, IGCT, GTO, MOSFET 등으로 구현될 수 있다.
제어부(180)는 초기에 B접점 스위치가 단락상태에서 공급전류가 인가되면 반도체스위치(170)를 온(on)시켜 공급전류가 반도체스위치(170)를 통해 도통되도록 한다. 즉, 반도체스위치(170)가 온(on)됨으로써 그 반도체스위치(170)를 통한 폐회로가 형성되어 입력전압에 의한 공급전류가 트랜스포머(160)로 공급되도록 한다. 이러한 전류흐름에 의해 충전부(110)에 저장된 Vdc의 입력전압이 트랜스포머(160)의 1차측으로 공급되며, 트랜스포머(160)는 권선비에 따라 저전압으로 변환하여 이를 2차측 전압으로 출력한다. 이러한 2차측 출력전압은 제어부(180)로 입력되어 전원공급장치(100)의 동작전원으로 사용된다. 이때, 본 실시 예에서 제어부(180)는 반도체스위치(170)를 온(on)시킨 후 기설정된 주기에 따라 반도체스위치(170)를 오프 및 온이 반복되도록 제어한다. 즉, 반도체스위치(170)를 매우 짧은 주파수로 온/오프시키도록 하는 것이다.
릴레이스위칭부(190)는 상기와 같이 트랜스포머(160)의 2차측에 부하로 출력되는 부하전압 출력전압을 입력받아 렐레이부(120)를 동작시킨다. 구체적으로, 트랜스포머(160)의 2차측 출력전압이 릴레이스위칭부(190)로 입력되면 릴레이부(120)에 단락상태로 초기에 설정된 B접점 스위치를 오픈(open) 상태로 스위칭한다. 이로써 릴레이부(120)를 통해 흐르는 전류는 차단되고, 제어부(180)에는 더 이상 전류가 공급되지 않도록 한다. 이와 같이 릴레이스위칭부(190)가 B접점 스위치를 오픈(open)으로 전환한 후에는 제어부(180)는 트랜스포머(160)의 2차측 출력전압만을 공급받게 되고 이러한 출력전압을 전원공급장치(100)의 동작전원으로 사용하는 것이다.
이와 같이 본 발명에 따른 전원공급장치(100)에서는 MMC 컨버터의 P-N 모선 간에 걸리는 고전압의 입력전압을 충전부(110)에 저장하고 충전부(110)에 저장된 Vdc 입력전압을 트랜스포머(160)의 1차측 전압으로 하여 2차측 전압으로 변환한 후 전원공급장치(100)의 동작전원으로 사용한다. 이때, 본 발명의 전원공급장치(100)는 초기에 기설정된 전압, 즉 정격전압 이상에서만 전원공급장치(100)가 기동하도록 함으로써 불필요한 스위칭동작을 제거하고 손실을 최소화하도록 한다.
즉, 본 발명의 전원공급장치(100)는 P-N 모선의 입력전압이 0V부터 기설정된 최대전압(Vmax)까지 증가하는 동안, 전원공급장치(100)가 기동하기 위한 정격전압에 도달하기 전까지는 TVS 다이오드(140)가 전류를 차단하여 제어부(180)로 전류가 공급되지 않도록 함으로써 전원공급장치(100)가 기동하지 않도록 하고, 정격전압에 도달한 이후부터는 TVS 다이오드(140)가 전류를 도통하여 전원공급장치(100)가 기동하도록 한다.
회로차단부(200)는 릴레이부(120)에 연결된 직렬 회로에 릴레이부(120)에 직렬로 연결되며 릴레이부(120)의 B접점 스위치를 통해 흐르는 전류가 기설정된 기준전류보다 크거나 그 전류에 의해 발열이 발생하는 경우 회로를 차단한다. 즉, 정상운전 상태에서 릴레이부(120)의 B접점 스위치를 통해 기준전류 이상의 전류가 흐르거나 그 기준전류 이하라도 해당 전류에 의해 기설정된 온도 이상으로 발열이 발생하는 경우에는 회로를 차단하도록 한다.
이를 구체적으로 설명하면, 상기한 바와 같이 정상운전상태에서 렐레이스위칭부(190)는 트랜스포머(160)의 2차측 부하전압이 입력되면 릴레이부(120)의 단락상태로 초기에 설정된 B접점 스위치를 오픈상태로 스위칭함으로써 릴레이부(120)를 통해 흐르는 전류는 차단된다. 그런데, 다양한 원인에 의해 트랜스포머(160)의 2차측 부하전압 출력단에 단락이 발생하는 경우 릴레이스위칭부(190)로 입력되는 트랜스포머(160)의 2차측 부하출력전압은 0V가 되어 릴레이스위칭부(190)로 전압이 공급되지 않으므로 릴레이부(120)의 B접점 스위치는 오픈상태에서 단락상태로 전환된다. 이와 같이 릴레이부(120)가 단락상태가 되면 전원공급장치(100)로 고전압의 입력전압(약 2,600V 이상)이 인가되어 과전류로 인한 내부의 구성소자에 고장이 발생하게 된다. 이를 방지하기 위하여 회로차단부(200)는 릴레이부(120)와 직렬로 연결되어 릴레이부(120)를 통해 기설정된 기준전류 이상의 전류가 흐르게 되거나 그 전류에 의해 기준온도로 발열이 발생하면 회로를 차단하여 전원공급장치(100)를 보호하도록 한다. 이에, 회로차단부(200)는 기설정된 전류크기를 초과하는 과전류가 흐를 때 회로를 차단하는 전류 퓨즈로 구성될 수도 있고, 기설정된 온도로 발열될 때 회로를 차단하는 온도 퓨즈로 구성될 수도 있다. 본 실시 예에서는 과전류나 과열에 의해 끊어지는 퓨즈(fuse)나 퓨즈블 저항(fusible resistor) 등으로 구현할 수 있다. 이는 과전류나 과열에 의해 퓨즈나 퓨즈블 저항이 끊어져 개방회로를 형성하도록 하는 것이다. 이러한 온도 퓨즈는 고온에도 견딜 수 있는 불연성 및 난연성 저항재료를 사용할 수 있으며, 예컨대 불연성 산화 금속 피막 저항기(MOR)나 불연성 와이어 와운드 저항기(RW) 등으로 구현함으로써 고온에서 발화하지 않고 끊어지도록 한다. 본 발명의 다른 실시 예에서는 전류 퓨즈와 온도 퓨즈를 동시에 사용할 수도 있다. 이는 유사시에 전류 퓨즈가 동작을 수행하도록 하지만, 입력전압에 의한 전류의 크기에 따라 전류 퓨즈의 동작이 지연되거나 실패하는 경우, 온도 퓨즈가 작동하도록 하기 위한 것이다.
이와 같이, 본 발명에서는 정상상태에서 트랜스포머(160)의 2차측 부하전압 출력단에 단락이 발생함으로 인해 릴레이부(120)의 B접점 스위치가 단락상태가 될 때 고전압 인가에 따른 과전류로 인해 다른 소자를 손상하는 2차 피해를 막기 위해 릴레이부(120)에 직렬로 연결된 회로차단부(200)를 설치하여 과전류가 인가되거나 전류에 의한 발열이 발생될 때 회로를 개방하도록 한다. 이때, 본 실시 예에서 회로차단부(200)는 릴레이부(120)에 직렬로 연결하되, 릴레이부(120)의 이하 지점, 즉 릴레이부(120)와 제너다이오드(150) 사이이면 어디라도 설치가 가능하다. 도 3에서는 바람직한 실시 예로서 TVS 다이오드(140)의 애노드단자에 연결된 것으로 도시하고 있으나, 도 3에 표시된 바와 같이 A,B,C 중 어느 한 지점에 설치도 가능하다. 더욱 바람직하게는 TVS 다이오드(140)의 애노드단자와 제어부(180)로의 분기회로 사이에 설치된다. 또한, 다른 실시 예에서 회로차단부(200)를 온도 퓨즈로 구현하는 경우에 저항(R)과 일체형으로 구현할 수도 있다.
이하에서 도 4 내지 도 7을 참조하며, 본 발명에 따른 전원공급장치(100)의 동작을 상세하게 설명한다. 도 4 내지 도 7은 본 발명의 실시 예에 따른 MMC 컨버터의 서브모듈용 전원공급장치의 구동에 따른 전류흐름의 예시도이다.
도 4의 일례에 도시된 바와 같이, P-N 모선의 입력전압이 0V부터 증가하기 시작하고 이러한 입력전압은 충전부(110)에 저장된다. 초기에는 릴레이부(120)의 B접점 스위치가 단락(short)된 상태이므로 이러한 입력전압에 의해 공급전류가 릴레이부(120)를 통해 저항(130)을 거쳐 TVS 다이오드(140)로 흐르게 된다. 하지만 TVS 다이오드(140)는 기설정된 전압 이상이 걸리는 경우에만 전류를 도통하는 소자이므로 본 실시 예에서는 전원공급장치(100)의 기동을 위한 정격전압 이상에서만 전류가 도통하는 것으로 설정함으로써 입력전압이 정격전압보다 낮은 저전압 영역에서는 TVS 다이오드(140)가 전류를 도통하지 않는다. 도 4에서 제너다이오드(150)로 전류가 흐르지 않으므로 제너다이오드(150)의 양단의 전압은 0(zero) 전압이 되어 제어부(180)로는 아무런 전압이 인가되지 않는다. 따라서, 이러한 경우에는 전원공급장치(100)가 기동하지 않는다. 즉, 입력전압이 0V부터 증가하여 기설정된 정격전압에 도달하기 전까지는 전원공급장치(100)가 기동하지 않는 것이다.
도 5의 일례를 참조하면, 입력전압이 계속 증가하여 전원공급장치(100)의 기동을 위한 기설정된 정격전압에 도달하게 되면 TVS 다이오드(140)는 전류를 도통하여 분기회로를 통해 제어부(180)로 인가된다. 이에 제어부(180)는 이러한 전류가 인가되면 반도체스위치(170)를 온(on)시킨다.
도 6의 일례에서는 반도체스위치(170)가 온(on)되어 전류가 트랜스포머(160)로 흐르는 예시를 도시하고 있다. 이로써 전원공급장치(100)는 기동하게 되고 트랜스포머(160)는 1차측에 인가된 전압을 2차측으로 전달한다. 트랜스포머(160)의 2차측에는 권선비에 의해 변환된 전압이 출력된다. 이러한 2차측 전압은 제어부(180) 및 릴레이스위칭부(190)로 제공된다. 이때, 상기한 바와 같이 제어부(180) 및 릴레이스위칭부(190)로 공급되는 2차측 전압은 같을 수도 있고 다를 수도 있다. 다를 경우에는 2차측 권선을 서로 다르게 한 2개의 권선으로 구성하여 출력전압을 다르게 구현함이 바람직하다. 이처럼 제어부(180)로 공급된 2차측 전압은 제어부(180)의 동작전원으로 사용되며, 릴레이스위칭부(190)로 공급된 2차측 부하전압은 릴레이스위칭부(190)를 동작시키는데 사용된다. 릴레이스위칭부(190)는 상기와 같이 전압이 인가되면 릴레이부(120)의 B접점 스위치를 오픈(open)으로 스위칭한다.
도 7의 일례에서는 릴레이부(120)의 B접점 스위치가 오픈(open)된 상태에서의 전류흐름을 도시한다. B접점 스위치가 오픈된 상태에서는 전류가 릴레이부(120)에서 차단되기 때문에 제어부(180)로는 더 이상 전류가 인가되지 않으며, 도 6에서 설명한 바와 같이 트랜스포머(160)의 2차측 출력전압만이 제어부(180)의 동작전압으로서 제어부(180)에 공급된다. 이와 같이 제어부(180)는 동작전압을 이용하여 전원공급장치(100)를 계속 동작시키도록 한다.
도 8의 일례는 트랜스포머(160)의 2차측 부하전압 출력단에 단락(short)이 발생한 예를 도시한다. 이와 같이 어떤 원인에 의해 트랜스포머(160)의 2차측 부하전압 출력단에 단락이 발생하게 되면 릴레이스위칭부(190)로 전압공급이 차단되므로 릴레이부(120)의 B접점 스위치는 오픈된 상태에서 단락 상태로 전환된다. 이 경우 P-N 모선의 입력전압이 B접점 스위치를 통해 인가된다. 이러한 입력전압은 고전압이므로 그 고전압에 의한 과전류가 B접점 스위치를 통해 흐르게 되는 것이다.
이와 같이 B접점 스위치를 통해 기설정된 기준전류 이상의 과전류가 흐르거나 B접점 스위치를 통해 흐르는 전류에 의해 기설정된 기준온도까지 발열이 발생하는 경우 회로차단부(200)가 개방되어 과전류의 흐름을 차단하도록 한다. 예컨대, 회로차단부(200)가 전류 퓨즈나 온도 퓨즈로 구현되는 경우 과전류 또는 발열에 의해 퓨즈가 끊어져 회로를 오픈(open)상태로 만들게 된다. 따라서, 입력단의 고전압에 의한 과전류가 제어부(180)로 공급되는 것을 방지할 수 있다. 도 8에는 회로차단부(200)를 일례로 퓨즈(fuse)로 구현한 경우 퓨즈가 끊어진 예를 도시하고 있다. 퓨즈가 끊어지는 과정을 살펴보면, 고전압에 의한 과전류가 인가되어 전류 퓨즈가 끊어지거나 또는 전류에 의해 발열이 발생하고 그 발열이 온도 퓨즈의 기설정된 임계온도에 도달하는 경우에 온도 퓨즈가 끊어져 회로를 차단한다.
이상에서 설명한 바와 같이, 본 발명에 따른 MMC 컨버터의 서브모듈용 전원공급장치(100)에서는 입력전압이 전원공급장치(100)가 기동하기 위한 정격전압 이상인 경우에만 전원공급장치(100)가 기동하도록 하고, 전원공급장치(100)가 기동하여 정상적인 출력을 발생하는 경우에는 그 출력전압만을 이용하여 동작전원으로 사용하도록 하도록 한다. 이로써, 종래기술과 같이 전원공급장치(100)가 기동과 정지를 반복하는 불필요한 동작이 제거되고 저항과 제너다이오드에서의 발열 및 손실을 크게 줄일 수 있도록 한다.
또한, 본 발명에 따른 전원공급장치(100)는 트랜스포머(160)의 2차측 출력단에 단락이 발생하는 경우 과전류가 흘러 내부의 구성요소에 고장을 초래하는 것을 방지하기 위하여 과전류 또는 과열이 발생할 때 회로를 차단하는 회로차단부(200)를 설치하도록 한다. 이로써 트랜스포머(160)의 2차측 출력단에 단락이 발생하더라도 전원공급장치(100)를 보호할 수 있도록 한다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. MMC 컨버터의 서브모듈에 전원을 공급하는 전원공급장치에 있어서,
    상기 MMC 컨버터의 P-N 모선 사이에 설치되며 B접점 스위치를 포함하는 릴레이부;
    상기 릴레이부에 직렬연결된 저항(R);
    상기 저항(R)에 직렬연결된 TVS 다이오드(TD);
    상기 TVS 다이오드(TD)에 직렬연결된 제너다이오드(ZD);
    상기 P-N 모선의 입력전압(1차측)을 2차측으로 전달하는 트랜스포머;
    상기 트랜스포머로 공급되는 전류의 흐름을 스위칭하는 반도체스위치;
    상기 제너다이오드(ZD)의 클램핑 전압이 입력되면 상기 트랜스포머로 전류가 도통되도록 상기 반도체스위치를 온(on)시키는 제어부;
    상기 트랜스포머의 2차측 출력전압을 입력받아 상기 릴레이부의 B접점 스위치를 구동시키는 릴레이구동부; 및
    상기 릴레이부에 직렬연결되며 상기 릴레이부의 B접점 스위치를 통해 흐르는 전류가 기설정된 기준전류보다 크거나 상기 전류에 의해 발열이 발생하는 경우 회로를 차단하는 회로차단부; 를 포함하는 MMC 컨버터의 서브모듈용 전원공급장치.
  2. 제1항에 있어서, 상기 입력전압은 0V부터 기설정된 최대전압(Vmax)까지 증가함을 특징으로 하는 MMC 컨버터의 서브모듈용 전원공급장치.
  3. 제2항에 있어서, 상기 릴레이부는 상기 B접점 스위치의 초기상태가 단락으로 설정되고 상기 입력전압이 증가하여 상기 전원공급장치의 기동을 위한 정격전압에 도달하기 전에는 상기 TVS 다이오드가 상기 B접점 스위치를 통해 공급된 공급전류를 도통시키지 않아 상기 제어부로 전류가 흐르지 않도록 하는 MMC 컨버터의 서브모듈용 전원공급장치.
  4. 제3항에 있어서, 상기 입력전압이 증가하여 상기 정격전압에 도달하면 상기 TVS 다이오드는 상기 공급전류를 도통시켜 상기 제어부로 공급되도록 하고 상기 제어부는 상기 공급전류가 인가되면 상기 반도체스위치를 온(on)시키는 MMC 컨버터의 서브모듈용 전원공급장치.
  5. 제4항에 있어서, 상기 반도체스위치가 온(on)되면 상기 공급전류에 의해 상기 트랜스포머에 1차측 전압을 공급하고 상기 트랜스포머는 1차측 전압을 2차측으로 전달하여 2차측 전압으로 출력하며 상기 릴레이스위칭부는 상기 트랜스포머의 2차측 전력전압을 입력받아 상기 릴레이부의 B접점 스위치를 오픈(open)시키는 MMC 컨버터의 서브모듈용 전원공급장치.
  6. 제5항에 있어서, 상기 릴레이부의 B접점 스위치가 오픈된 후 상기 제어부는 상기 제너다이오드의 클램핑 전압은 입력되지 않고 상기 트랜스포머의 2차측 출력전압을 동작전원으로 입력받아 동작하는 MMC 컨버터의 서브모듈용 전원공급장치.
  7. 제1항에 있어서, 상기 회로차단부는 정상운전 상태에서 상기 트랜스포머의 2차측에 단락 발생으로 인해 상기 릴레이부의 B접점 스위치가 단락상태로 변환된 경우 상기 B접점 스위치를 통해 상기 기설정된 전류보다 큰 과전류가 흐르면 회로를 차단하는 MMC 컨버터의 서브모듈용 전원공급장치.
  8. 제1항에 있어서, 상기 회로차단부는 기설정된 기준전류 이상의 전류가 흐르면 회로를 차단하는 전류 퓨즈 또는 상기 전류에 의해 기설정된 기준온도로 발열되면 회로를 차단하는 온도 퓨즈 중 적어도 하나를 포함하는 MMC 컨버터의 서브모듈용 전원공급장치.
  9. 제8항에 있어서, 상기 온도 퓨즈는 불연성 및 난연성 저항재료를 포함하는 MMC 컨버터의 서브모듈용 전원공급장치.
  10. 제8항에 있어서, 상기 온도 퓨즈는 상기 저항(R)과 일체형으로 구현되는 MMC 컨버터의 서브모듈용 전원공급장치.
  11. 제1항에 있어서, 상기 회로차단부는 상기 TVS 다이오드(TD) 및 제어부로의 분기회로 사이 또는 상기 저항(R) 및 TVS 다이오드(TD) 사이에 설치되는 MMC 컨버터의 서브모듈용 전원공급장치.
  12. 제1항에 있어서, 상기 반도체스위치는 온(on)된 이후에 상기 제어부에 의해 기설정된 주기로 온/오프를 반복하는 MMC 컨버터의 서브모듈용 전원공급장치.
PCT/KR2016/006219 2015-06-22 2016-06-10 Mmc 컨버터의 서브모듈용 전원공급장치 WO2016208894A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112017027960-6A BR112017027960A2 (pt) 2015-06-22 2016-06-10 Aparelho de fonte de alimentação para sub- módulos de um mmc (conversor modular multinível)
US15/738,758 US10305394B2 (en) 2015-06-22 2016-06-10 Apparatus for supplying power to sub-module of MMC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0088178 2015-06-22
KR1020150088178A KR101731478B1 (ko) 2015-06-22 2015-06-22 Mmc 컨버터의 서브모듈용 전원공급장치

Publications (1)

Publication Number Publication Date
WO2016208894A1 true WO2016208894A1 (ko) 2016-12-29

Family

ID=57584591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006219 WO2016208894A1 (ko) 2015-06-22 2016-06-10 Mmc 컨버터의 서브모듈용 전원공급장치

Country Status (4)

Country Link
US (1) US10305394B2 (ko)
KR (1) KR101731478B1 (ko)
BR (1) BR112017027960A2 (ko)
WO (1) WO2016208894A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064737A (zh) * 2017-03-27 2017-08-18 上海交通大学 基于突变功率的mmc‑hvdc输电线路故障检测方法
CN107887923A (zh) * 2017-11-16 2018-04-06 南方电网科学研究院有限责任公司 一种mmc‑hvdv输电系统双极短路故障分析方法
EP3367529A1 (de) * 2017-02-13 2018-08-29 Siemens Aktiengesellschaft Versorgungseinrichtung für ein elektrisches modul mit sicherungselement
CN111800028A (zh) * 2020-07-14 2020-10-20 湘潭大学 一种新型铁路牵引供电系统功率波动与环流抑制的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101731477B1 (ko) * 2014-12-29 2017-04-28 주식회사 효성 Mmc 컨버터의 서브모듈용 전원공급장치
KR102040221B1 (ko) * 2017-12-20 2019-11-04 엘지전자 주식회사 간섭 소음 제거 및 출력 제어 기능이 개선된 유도 가열 장치
KR102040219B1 (ko) * 2018-01-03 2019-11-04 엘지전자 주식회사 간섭 소음 제거 및 출력 제어 기능이 개선된 유도 가열 장치
KR102053716B1 (ko) 2018-01-10 2020-01-22 엘에스산전 주식회사 보호 계전기용 전원 공급 장치
KR102661621B1 (ko) * 2019-05-03 2024-04-29 현대자동차주식회사 친환경 차량의 고전압 릴레이 제어 시스템 및 방법
CN113014081B (zh) * 2019-12-20 2022-08-09 新疆金风科技股份有限公司 直流取能电源自启动电路以及启动方法
CN111371099B (zh) * 2020-03-03 2021-06-18 国家电网公司西北分部 基于晶闸管转移电阻电路的upfc故障渡越装置及方法
JP7485495B1 (ja) 2023-08-31 2024-05-16 三菱電機株式会社 電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777513B2 (ja) * 1988-08-26 1995-08-16 日本電気株式会社 スイッチング電源の起動回路
JP2001238465A (ja) * 2000-02-25 2001-08-31 Sharp Corp インバータ装置
US20140028266A1 (en) * 2011-04-05 2014-01-30 Abb Research Ltd Modular multilevel converter with cell-connected battery storages
KR20140022374A (ko) * 2011-02-01 2014-02-24 지멘스 악티엔게젤샤프트 고전압 dc 라인 상의 고장을 제거하기 위한 방법, 고전압 dc 라인을 통해 전류를 전송하기 위한 시스템, 및 컨버터
JP2014180110A (ja) * 2013-03-14 2014-09-25 Toshiba Corp Dc−dcコンバータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077513B2 (ja) 1982-11-04 1995-01-30 パイオニア株式会社 光学式情報読取装置
JP2943969B2 (ja) * 1993-07-15 1999-08-30 矢崎総業株式会社 ガス濃度の計測装置
WO1998049766A1 (en) 1997-04-25 1998-11-05 Koninklijke Philips Electronics N.V. Switched-mode power supply having an improved start-up circuit
KR100355037B1 (ko) * 1999-11-02 2002-10-05 삼성전자 주식회사 월드 와이드 전원장치
KR100735147B1 (ko) 2006-04-18 2007-07-06 (주)유니온전자통신 보조전원수단 및 충전수단을 구비한 전원공급장치
US20120147509A1 (en) * 2010-12-08 2012-06-14 Smartpower Systems, Inc. TBF Compatible with Input Power Including GFCI
DE102011006345A1 (de) * 2011-03-29 2012-10-04 Siemens Aktiengesellschaft Modularer Mehrfachumrichter mit rückwärts leitfähigen Leistungshalbleiterschaltern
KR101731477B1 (ko) * 2014-12-29 2017-04-28 주식회사 효성 Mmc 컨버터의 서브모듈용 전원공급장치
JP7077513B2 (ja) 2018-10-02 2022-05-31 株式会社竹中工務店 設備基礎構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777513B2 (ja) * 1988-08-26 1995-08-16 日本電気株式会社 スイッチング電源の起動回路
JP2001238465A (ja) * 2000-02-25 2001-08-31 Sharp Corp インバータ装置
KR20140022374A (ko) * 2011-02-01 2014-02-24 지멘스 악티엔게젤샤프트 고전압 dc 라인 상의 고장을 제거하기 위한 방법, 고전압 dc 라인을 통해 전류를 전송하기 위한 시스템, 및 컨버터
US20140028266A1 (en) * 2011-04-05 2014-01-30 Abb Research Ltd Modular multilevel converter with cell-connected battery storages
JP2014180110A (ja) * 2013-03-14 2014-09-25 Toshiba Corp Dc−dcコンバータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3367529A1 (de) * 2017-02-13 2018-08-29 Siemens Aktiengesellschaft Versorgungseinrichtung für ein elektrisches modul mit sicherungselement
CN107064737A (zh) * 2017-03-27 2017-08-18 上海交通大学 基于突变功率的mmc‑hvdc输电线路故障检测方法
CN107887923A (zh) * 2017-11-16 2018-04-06 南方电网科学研究院有限责任公司 一种mmc‑hvdv输电系统双极短路故障分析方法
CN111800028A (zh) * 2020-07-14 2020-10-20 湘潭大学 一种新型铁路牵引供电系统功率波动与环流抑制的方法

Also Published As

Publication number Publication date
US10305394B2 (en) 2019-05-28
KR20160150348A (ko) 2016-12-30
US20180183353A1 (en) 2018-06-28
KR101731478B1 (ko) 2017-04-28
BR112017027960A2 (pt) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2016208894A1 (ko) Mmc 컨버터의 서브모듈용 전원공급장치
WO2016108571A1 (ko) Mmc 컨버터의 서브모듈용 전원공급장치
WO2016108552A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
KR102600766B1 (ko) 모듈형 멀티레벨 컨버터
WO2017115955A1 (ko) 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법
WO2014104848A1 (ko) 전력용 컨버터
CN208433908U (zh) 电压源换流器模块和换流器
WO2017078238A1 (ko) Mmc 컨버터의 서브모듈 내 커패시터 방전장치
JPH10313541A (ja) 送電プラント
US20150349520A1 (en) Electrical apparatus
EP3522194B1 (en) Switching apparatus
US11770005B2 (en) Fault handling
CN116316417A (zh) 一种光伏逆变器及关断保护方法
WO2015090365A1 (en) Integrated series converter and circuit breaker in a power system
US11368084B2 (en) Current converter unit, transmission installation having a current converter unit, and method for fault management in a current converter unit
WO2015039942A1 (en) Module
EP2849306A1 (en) Voltage source converter
EP2849330A1 (en) Modular Power Converter and module thereof
EP3544141A1 (en) Electrical assembly
US9893520B2 (en) Switching device
EP3084908B1 (en) Circuit breaking arrangement
EP3338336B1 (en) Electrical assembly
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
AU2022264754A1 (en) On-load tap-changer module, arrangement composed of an on-load tap-changer module and power transformer, and method for operating an on-load tap-changer module
US20230275514A1 (en) Energy supply device with safety-related shut-down facility and method of switching off the device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15738758

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027960

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 16814607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017027960

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171222