WO2021034153A1 - 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈 - Google Patents

바이패스 스위치를 구비한 전력용 컨버터의 서브모듈 Download PDF

Info

Publication number
WO2021034153A1
WO2021034153A1 PCT/KR2020/011208 KR2020011208W WO2021034153A1 WO 2021034153 A1 WO2021034153 A1 WO 2021034153A1 KR 2020011208 W KR2020011208 W KR 2020011208W WO 2021034153 A1 WO2021034153 A1 WO 2021034153A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
module
switching device
power semiconductor
switching element
Prior art date
Application number
PCT/KR2020/011208
Other languages
English (en)
French (fr)
Inventor
이두영
박용희
정홍주
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Priority to US17/623,395 priority Critical patent/US11824462B2/en
Publication of WO2021034153A1 publication Critical patent/WO2021034153A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Definitions

  • the present invention relates to a sub-module of a power converter, and more particularly, to a sub-module of a power converter to bypass a fault current when a failure of the sub-module occurs in the sub-module of the power converter.
  • a power semiconductor capable of controlling turn-on/turn-off is used for mutual conversion of an AC voltage and a DC voltage.
  • a plurality of semiconductor modules having a power semiconductor circuit must be connected in series for high voltage processing.
  • Various semiconductor modules can be connected to each other to form a power semiconductor circuit.
  • such a power semiconductor circuit includes a plurality of sub-modules forming two output terminals.
  • the submodules are connected in series with each other.
  • Such a sub-module is connected in parallel to the energy storage unit and the energy storage unit, for example, and may include a power semiconductor circuit including a plurality of power semiconductor switches and reflux diodes.
  • the failed submodule In order to stably operate the system when a specific submodule among the plurality of submodules fails, the failed submodule is short-circuited. For this short circuit, the faulty submodule bypasses the fault current by a bypass switch, and the system continues to operate normally by another normal submodule.
  • a technology for bypassing the failed submodule in a short time when a submodule fails is very important not only from the viewpoint of the submodule but also from the system perspective. If the switching time of the bypass switch is slow, overvoltage and overcurrent may occur in the faulty module, causing the internal components of the submodule (e.g., capacitors, power semiconductors, etc.) to explode and cause a fire. Occurs, and overvoltage or overcurrent above the rated value may be applied to each sub-module, which may adversely affect reliability.
  • Korean Patent Registration No. 10-1197066 discloses a technique for implementing a bypass switch using a mechanical switch in a power converter.
  • bypass switch when a mechanical switch is used as the bypass switch, there is a problem that the switching time of the bypass switch is not fast. Therefore, there is a demand for a bypass switch capable of stable and fast switching operation in the relevant technical field.
  • the present invention has been proposed to solve the problems of the prior art, and an object of the present invention is to provide a submodule of a power converter capable of quickly bypassing a fault current when a failure occurs in a specific submodule of the power converter.
  • the present invention provides a sub-module of a power converter that quickly bypasses the current by short-circuiting two output terminals of the sub-module due to a forced failure in a bypass switch due to a specific signal, voltage or current. There is a purpose.
  • the sub-module of the power converter includes an energy storage unit; At least one power semiconductor circuit connected in parallel to the energy storage unit and composed of a plurality of power semiconductor switches and reflux diodes; And two output terminals connected to one of the at least one power semiconductor circuit, and when a forced failure signal is input to the gate terminal, a forced failure occurs and the inside is short-circuited, and the output terminal X1, It includes a switching element connecting X2).
  • the fault current is bypassed through the output terminals X1 and X2 and the switching device 132.
  • the switching device includes a PPI (Press Pack IGBT) semiconductor device.
  • PPI Pressure Pack IGBT
  • a sub-module of a power converter includes an energy storage unit; At least one power semiconductor circuit connected in parallel to the energy storage unit and composed of a plurality of power semiconductor switches and reflux diodes; A switching element disposed between two output terminals connected to one of the at least one power semiconductor circuit; And a high current generator for applying a current to the switching device when a fault occurs, wherein when a fault occurs, the switching device is turned on, and when a current larger than the rated current is applied from the high current generator, a forced fault occurs and the inside is shorted (short -circuited), connect the output terminal.
  • the large current generator applies a current greater than the rated current of the switching device to the switching device, and the switching device is forced to fail when a current greater than the rated current is applied.
  • the fault current is bypassed through the output terminal and the switching device.
  • the switching device includes a PPI (Press Pack IGBT) semiconductor device.
  • PPI Pressure Pack IGBT
  • a submodule of a power converter includes an energy storage unit; At least one power semiconductor circuit connected in parallel to the energy storage unit 110 and composed of a plurality of power semiconductor switches and reflux diodes; A switching element disposed between two output terminals connected to one of the at least one power semiconductor circuit; And a DC-DC converter for applying a voltage to the switching element, wherein when a failure occurs, the switching element is turned on, and when a voltage greater than the rated voltage is applied from the DC-DC converter, a forced failure occurs and the inside is shorted ( short-circuited), connect the output terminal.
  • the DC-DC converter applies a voltage greater than the rated voltage of the switching device to the switching device, and the switching device is forced to fail when a voltage greater than the rated voltage is applied.
  • the fault current is bypassed through the output terminal and the switching device.
  • the switching device includes a PPI (Press Pack IGBT) semiconductor device.
  • PPI Pressure Pack IGBT
  • a submodule of a power converter includes an energy storage unit; At least one power semiconductor circuit connected in parallel to the energy storage unit and composed of a plurality of power semiconductor switches and reflux diodes; And a bypass switching unit disposed between two output terminals connected to one of the at least one power semiconductor circuit, wherein the bypass switching unit includes: a switching element connected to one of the power semiconductor circuits; A capacitor connected in parallel to the switching device and applied with a voltage greater than the rated voltage of the switching device; And a switch connected between the switching element and the capacitor and turned on/off by a predetermined control signal, wherein when a failure occurs, the switching element and the switch are turned on, and when the switch is turned on, the switching element is A forced failure occurs due to the voltage applied to the capacitor, and the inside is short-circuited, and the output terminal is connected.
  • the switching device includes a PPI (Press Pack IGBT) semiconductor device.
  • PPI Pressure Pack IGBT
  • the fault current is bypassed through the output terminal and the switching device.
  • the bypass switch when a failure occurs in a submodule of a power converter, the bypass switch is quickly shorted, thereby reducing the overall bypass time.
  • a bypass switch is installed between the output terminals of the submodule of the power converter, and the bypass switch is forced to fail due to simple signals, current, and voltage, and the output terminal is shorted due to the forced failure to quickly bypass the fault current. There is an effect that can be passed.
  • FIG. 1 is an equivalent circuit diagram of a power converter according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of a submodule of the power converter according to the first embodiment of the present invention.
  • FIG. 3 is an equivalent circuit diagram of a submodule of a power converter according to a second embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram of a submodule of a power converter according to a third embodiment of the present invention.
  • FIG. 5 is an equivalent circuit diagram of a submodule of a power converter according to a fourth embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used in describing the constituent elements of the embodiment of the present invention. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term.
  • a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between each component It should be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is an equivalent circuit diagram of a power converter according to an embodiment of the present invention.
  • the power converter according to the present invention is composed of one or more phase modules 1, and a plurality of sub-modules 10 are connected in series in each of these phase modules 1 .
  • each phase module 1 connects the DC voltage side to the positive and negative DC voltage buses P 0 and N 0 , respectively.
  • a DC voltage (not shown) exists between these DC voltage buses P 0 and N 0.
  • Each of these phase modules 1 has one intermediate AC voltage terminal and two outer DC voltage terminals as load connection terminals.
  • the upper module 1 has a plurality of sub-modules 10 connected in series.
  • Each of the sub-modules 10 connected in series from each phase module 1 has two output terminals, that is, a first output terminal X1 and a second output terminal X2.
  • Current is input/output through the first and second output terminals X1 and X2.
  • the power converter configured as described above may be configured as part of a facility for transmitting high voltage current, and serves to connect them to transmit large power between AC voltage power systems.
  • Such a power converter may be part of a so-called FACTS facility that serves as a system stabilization or assuring a desired voltage quality.
  • the converter shown in FIG. 1 may be used in the driving technique.
  • the current input to the submodule 10 in which the failure occurs is bypassed to The module 10 is protected, and the bypassed current flows to the other normal sub-module 10 so that the converter operates normally by the normal operation of the sub-modules 10.
  • the submodule 10 includes a switching device or a bypass switching unit for bypassing current.
  • a switching device or bypass switching unit forcibly broken by a specific signal, a specific voltage or a specific current, and when such a forced failure occurs, the inside is short-circuited to bypass the current. .
  • the switching device or the bypass switching unit that is short-circuited by the forced failure is no longer restored normally. Therefore, unlike the conventional semiconductor switch, the switching device or the bypass switching unit of the present invention is short-circuited due to a forced failure, so it is impossible to turn on/off after the short circuit, and the short-circuit state is maintained after the short circuit.
  • the switching element or the bypass switching unit is shorted within a few msec.
  • a normal current is supplied to the submodule 10 but when a specific submodule 10 fails, the failed submodule 10 bypasses the current through the switching element or the bypass switching unit. By doing so, the submodule 10 is protected.
  • FIG. 2 is an equivalent circuit diagram of a submodule of a power converter according to an embodiment of the present invention.
  • each submodule 10 includes an energy storage unit 110 and at least one power semiconductor circuit 120 connected in parallel to the energy storage unit 110. Is composed. These at least one power semiconductor circuit 120 is connected in series with each other. Each power semiconductor circuit 120 includes a power semiconductor switch 121 and 123 capable of controlling turn-on/turn-off, and a reflux diode connected in reverse parallel to the power semiconductor switch 121 and 123, respectively. free-wheel diode)(122,124).
  • the energy storage unit 110 and at least one power semiconductor circuit 120 may be disposed differently from FIG. 2 in each submodule 10 to be implemented in various configurations.
  • a switching element 132 is connected in parallel to any one of at least one power semiconductor circuit 120.
  • two power semiconductor circuits 120 are shown to be connected in parallel to the lower power semiconductor circuit, but may be connected in parallel to the upper power semiconductor circuit.
  • the submodule 10 is connected in parallel to a power semiconductor circuit connected between the two output terminals X1 and X2.
  • a power semiconductor circuit connected between the two output terminals X1 and X2.
  • two output terminals X1 and X2 are connected to both ends of the upper power semiconductor circuit, they can be connected in parallel to the upper power semiconductor circuit.
  • Such a switching element 132 is quickly shorted when a failure of the corresponding submodule 10 occurs and serves to quickly bypass the fault current by connecting the two output terminals X1 and X2.
  • the bypass operation of the switching device 132 should be performed in a short time. Otherwise, overvoltage and overcurrent may occur in the failed submodule 10, and the internal components (capacitors and power semiconductors) of the submodule 10 may explode and cause a fire, and overvoltage and overcurrent may occur in the entire system.
  • Each sub-module 10 may be subjected to an overvoltage or overcurrent of a rated or higher, which may adversely affect reliability.
  • the bypass operation is performed within about several msec after the failure occurs.
  • the switching element 132 of the submodule 10 is connected in parallel to any one power semiconductor circuit 120 and is short-circuited when a forced failure signal is input to the gate terminal.
  • the cathode end is connected to the emitter end of the power semiconductor switch 123 of the power semiconductor circuit 120, and the emitter end is connected to the cathode end of the power semiconductor switch 123.
  • the switching device 132 receives a forced failure signal from the sub-module (SM) controller 140 at the gate end.
  • SM sub-module
  • the switching device 132 A forced failure occurs and a short circuit occurs. Due to this short circuit, the first and second output terminals X1 and X2 are short-circuited to each other, so that the fault current is bypassed through the two output terminals X1 and X2.
  • the switching element 132 of the sub-module 10 is permanently burned when a forced failure signal is applied from the sub-module controller 140 to the gate terminal. Thereafter, the submodule 10 including the switching element 132 is not restored.
  • the switching element 132 When a failure occurs in the sub-module 10, the switching element 132 is burned out and shorted by applying a forced failure signal to the gate of the switching element 132, so that a bypass path can be quickly formed.
  • bypass operation process of the bypass switch 132 will be described in detail.
  • the SM controller 140 detects the failure and applies a forced failure signal to the gate terminal of the bypass switch 132. Accordingly, the bypass switch 132 is short-circuited to connect the first and second output terminals X1 and X2. As a result, the current does not flow into the sub-module 10 but flows through the first and second output terminals X1 and X2 to form a bypass.
  • the bypass switch 132 is composed of a semiconductor switch that causes a forced failure internally when a forced failure signal is artificially received from the outside to short the connected circuit.
  • the bypass of the current is made quickly.
  • the current can be bypassed within 1 msec, which is much faster than the switching time of about 4 msec or less of the mechanical switch.
  • the switching device 132 is configured to be immediately shorted by the forced failure signal from the SM controller 140.
  • the switching element 132 of the submodule 10 may be immediately shorted by a forced failure signal from the SM controller 140.
  • the switching element 132 is artificially burned and shorted due to the occurrence of a forced failure, thereby bypassing the fault current and replacing a conventional mechanical switch.
  • the switching device 132 according to the present invention is shorted by a forced failure signal, that is, by an electrical method, the failure current is bypassed within 1 ms. Accordingly, the switching device 132 of the present invention can bypass the phase current much faster than a switching time of about 4 ms when using a conventional mechanical switching device.
  • FIG. 3 is an equivalent circuit diagram of a submodule of a power converter according to a second embodiment of the present invention.
  • the sub-module 10 when a failure occurs in the switching element 132 and the sub-module 10 connected in parallel to any one of at least one power semiconductor circuit 120, the sub-module 10 according to the second embodiment of the present invention It includes a large current generator 150 for applying a large instantaneous current to the switching device 132.
  • the cathode end is connected to the emitter end of the power semiconductor switch 123 of the power semiconductor circuit 120, and the emitter end is connected to the cathode end of the power semiconductor switch 123.
  • the large current generator 150 is configured to apply a current greater than the rated current of the switching device 132 to the switching device 132.
  • a current larger than the rated current means a large current capable of causing a forced failure in the switching device 132.
  • the large current generator 150 may be configured to apply a large current to the plurality of sub-modules 10.
  • the SM controller 140 applies a turn-on signal to the gate terminal of the switching device 132. Accordingly, the switching element 132 is turned on to conduct current.
  • the SM controller 140 transmits a large current application signal to the large current generator 150 when a failure of the sub-module 10 occurs.
  • the large current generator 150 applies a large current to the switching element 132 according to the large current application signal.
  • the current applied from the large current generator 150 to the switching device 132 is a current much larger than the rated current of the switching device 132, and is a large current sufficient to force the switching device 132 to fail.
  • the large current generator 150 applies a large current to a submodule in which a failure occurs among the plurality of submodules 10. That is, when a failure occurs, the switching element 132 is turned on, and when a large current greater than the rated current of the switching element 132 is applied from the large current generator 150 to the cathode end of the switching element 132, burnout occurs inside. The switching element 132 is short-circuited by this burnout to conduct current.
  • the switching element 132 of the sub-module 10 is permanently burned when a large current signal greater than the maximum rated current from the large current generator 150 is applied to the cathode end. Thereafter, since the switching element 132 is permanently shorted, the submodule 10 including the corresponding switching element 132 is not restored.
  • the switching device 132 is turned on, and a large current is applied from the large current generator 150 to burn out and short-circuit. Accordingly, when a failure occurs in a specific sub-module 10, the large current applied from the large current generator 150 Can be immediately shorted by Accordingly, when a failure occurs, the switching device 132 can immediately bypass the failure current.
  • FIG. 4 is an equivalent circuit diagram of a submodule in the power converter according to the third embodiment of the present invention.
  • a bypass switching unit 130 connected in parallel to any one of at least one power semiconductor circuit 120 is connected in parallel.
  • one of the two power semiconductor circuits 120 is shown to be connected in parallel to the lower power semiconductor circuit, but may be connected in parallel to the upper power semiconductor circuit. At this time, it is preferably connected in parallel to the power semiconductor circuit connected between the two output terminals X1 and X2 of the submodule 10. For example, when two output terminals X1 and X2 are connected to both ends of the upper power semiconductor circuit, they can be connected in parallel to the upper power semiconductor circuit.
  • the bypass switching unit 130 serves to bypass the fault current when a failure of the submodule 10 occurs.
  • the bypass switching unit 130 is connected in parallel to the switching device 132 connected to one of the power semiconductor circuits 120 and the switching device 132, and a capacitor having a voltage greater than the rated voltage of the switching device 132 ( 134 and a switch 136 connected between the switching element 132 and the capacitor 134 and turning on/off by a predetermined control signal.
  • the switch 136 may be implemented as one of a semiconductor switch, a diode, and a mechanical switching.
  • the cathode end is connected to the emitter end of the power semiconductor switch 123 of the power semiconductor circuit 120, and the emitter end is connected to the cathode end of the power semiconductor switch 123.
  • the capacitor 134 is connected to the switching element 132 in parallel, and the capacitor 134 stores a voltage greater than the maximum rated voltage of the switching element 132.
  • the SM controller 140 applies a turn-on signal to the gate terminal of the switching device 132. In addition, the SM controller 140 applies a turn-on signal to the switch 136 so that the switch 136 connects the switching element 132 and the capacitor 134.
  • the switch 136 is turned on and the switching element 132 is turned on.
  • the switching element 132 and the capacitor 134 are connected, a voltage applied to the capacitor 134 is applied to the switching element 132.
  • the capacitor 134 stores a voltage greater than the maximum rated voltage of the switching device 132, when connected to the switching device 132, the voltage applied to the capacitor 134 also in the switching device 132 It will take the same. Accordingly, the switching element 132 is short-circuited due to burnout, and conducts a fault current.
  • the switching device 132 is a device that cannot be recovered once burned out. Therefore, once the bypass path is formed, the submodule 10 is not restored.
  • the switch 136 is turned on, so that the voltage of the capacitor 134 is applied to the switching element 132.
  • the switching element 132 is burned out and shorted due to the voltage applied to the capacitor 134, and thus, the fault current can be bypassed.
  • FIG. 5 is an equivalent circuit diagram of a submodule in a power converter according to a fourth embodiment of the present invention.
  • the sub-module 10 is a switching device 132 connected in parallel to any one of at least one power semiconductor circuit 120 and a switching device when a failure occurs in the sub-module 10. It includes a DC-DC converter 160 for applying a voltage greater than the rated voltage of the switching element 132 to 132.
  • the DC-DC converter 160 is connected to the switching device 132 in parallel.
  • the cathode end is connected to the emitter end of the power semiconductor switch 123 of the power semiconductor circuit 120, and the emitter end is connected to the cathode end of the power semiconductor switch 123.
  • the DC-DC converter 160 is configured to apply a voltage greater than the maximum rated voltage of the switching device 132 to the switching device 132.
  • the DC-DC converter 160 may be configured to apply a high voltage to the plurality of submodules 10.
  • the DC-DC converter 160 may apply a voltage greater than the maximum rated voltage of the switching element 132 to a submodule in which a failure occurs among the plurality of submodules 10.
  • a voltage greater than the rated voltage is applied from the DC-DC converter 160 to the switching element 132, burnout occurs.
  • the switching element 132 is short-circuited to conduct current.
  • a turn-on signal is input from the SM controller 140 to the gate terminal when the switching device 132 fails. Accordingly, the switching element 132 is turned on, and a voltage equal to or higher than the maximum rated voltage is applied from the DC-DC converter 160 to burn out and short-circuit.
  • the switching device 132 may be immediately shorted by the voltage applied from the DC-DC converter 160 when a failure occurs in the specific sub-module 10. In this case, the switching device 132 may be short-circuited. Since it is permanently shorted, the submodule 10 including the corresponding switching element 132 is not restored.
  • the fault current can be bypassed within 1 ms.
  • the switching device 132 when the switching device 132 according to the present invention fails, a turn-on signal is input from the SM controller 140 to the gate terminal. Accordingly, the switching element 132 is turned on, and a voltage higher than the rated voltage is applied from the DC-DC converter 160 to burn out and short-circuit. Accordingly, when a failure occurs in the specific submodule 10, the DC-DC converter It may be immediately shorted by the voltage applied from 160. Due to this short circuit, the switching element 132 is short-circuited to connect the output terminals X1 and X2 to each other so that the fault current is bypassed through the output terminal.
  • the switching device and the bypass switching unit according to the present invention described above are short-circuited due to a forced failure, they are no longer normally restored. This is a characteristic different from the semiconductor switch according to the prior art.Since the switching device or the bypass switching unit of the present invention has a short circuit due to a forced failure, it is impossible to turn on/off after the short circuit, and after the short circuit, the short circuit state continues. Keep it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

본 발명은 전력용 컨버터의 서브모듈에서 서브모듈의 고장발생시 고장전류를 빠르게 바이패스시키도록 하는 전력용 컨버터의 서브모듈에 관한 것이다. 본 발명의 일 실시예에 따른 전력용 컨버터의 서브모듈은 에너지저장부, 상기 에너지저장부에 병렬연결되고 다수의 파워반도체스위치 및 환류다이오드로 구성된 적어도 하나의 파워반도체회로, 상기 적어도 하나의 파워반도체회로 중 하나에 연결된 2개의 출력단자 사이에 배치되며 게이트단에 강제 고장 신호가 입력되면 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자를 연결하는 스위칭소자를 포함한다.

Description

바이패스 스위치를 구비한 전력용 컨버터의 서브모듈
본 발명은 전력용 컨버터의 서브모듈에 관한 것으로서, 특히 전력용 컨버터의 서브모듈에서 서브모듈의 고장발생시 고장전류를 바이패스시키도록 하는 전력용 컨버터의 서브모듈에 관한 것이다.
일반적으로, 고전압용 컨버터의 경우 교류전압과 직류전압의 상호 변환을 위해 턴온(turn-on)/턴오프(turn-off) 제어가능한 파워 반도체가 사용된다.
파워 반도체의 내압이 한정되어 있으므로 고전압 처리를 위해서는 파워 반도체 회로를 갖는 다수의 반도체 모듈이 직렬로 연결되어야 한다. 파워 반도체 회로의 구성을 위해 여러 가지의 반도체 모듈을 서로 연결할 수 있다.
주지된 바와 같이, 공지의 모듈러 멀티레벨 컨버터(MMC:Modular Multilevel Converter)의 경우에는 이와 같은 파워 반도체 회로가 2개의 출력단자를 형성하는 다수의 서브모듈(sub-module)을 포함하고, 이들 다수의 서브모듈은 서로 직렬로 연결된다. 이러한 서브모듈은 예컨대 에너지저장부와, 에너지저장부에 병렬연결되며 다수의 파워반도체스위치 및 환류다이오드로 이루어진 파워반도체회로를 포함하여 구성될 수 있다.
이들 다수의 서브모듈 중 특정 서브모듈에 고장발생시 시스템을 안정적으로 동작시키기 위해 그 고장난 서브모듈은 단락된다. 이러한 단락을 위해 고장난 서브모듈은 바이패스 스위치에 의해 고장 전류를 바이패스시키며 다른 정상적인 서브모듈에 의해 시스템이 계속 정상 동작되도록 한다.
이때, 서브모듈의 고장발생시 고장난 서브모듈을 빠른 시간 내에 바이패스시키는 기술은 해당 서브모듈뿐만 아니라 시스템 관점에서도 매우 중요하다. 바이패스 스위치의 스위칭 시간이 느리면 고장난 모듈에 과전압, 과전류가 발생하여 해당 서브모듈의 내부 구성품(예:커패시터, 파워반도체 등)이 자칫 폭발하여 화재를 유발시킬 수 있으며, 전체적인 시스템에 과전압, 과전류가 발생하고 각 서브모듈에 정격 이상의 과전압, 과전류가 걸려 신뢰성에 악영향을 줄 수 있다.
이러한 바이패스 스위치는 바이패스 동작의 신뢰성으로 인해 기계적 스위치를 사용하는 기술이 제안되어 있다. 한국등록특허 10-1197066에는 전력용 컨버터에서 기계적 스위치를 이용하여 바이패스 스위치를 구현한 기술이 개시되어 있다.
그러나, 바이패스 스위치로서 기계적 스위치를 이용하면 바이패스 스위치의 스위칭 시간이 빠르지 않는 문제점이 있었다. 따라서, 해당 기술분야에서는 안정적이며 빠른 스위칭 동작을 할 수 있는 바이패스 스위치에 대한 요구가 있다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 전력용 컨버터의 특정 서브모듈에 고장 발생시 고장 전류를 빠르게 바이패스시킬 수 있는 전력용 컨버터의 서브모듈을 제공하는데 그 목적이 있다.
본 발명은 특정 신호, 전압 또는 전류에 의해 바이패스 스위치에 강제고장이 발생하여 서브모듈의 두 출력단자를 서로 단락(short-circuited)시켜 전류를 빠르게 바이패스시키는 전력용 컨버터의 서브모듈을 제공하는데 그 목적이 있다.
본 발명의 일 실시예에 따른 전력용 컨버터의 서브모듈은, 에너지저장부; 상기 에너지저장부에 병렬연결되고 다수의 파워반도체스위치 및 환류다이오드로 구성된 적어도 하나의 파워반도체회로; 및 상기 적어도 하나의 파워반도체회로 중 하나에 연결된 2개의 출력단자 사이에 배치되며 게이트단에 강제 고장 신호가 입력되면 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자(X1,X2)를 연결하는 스위칭소자를 포함한다.
본 발명에서, 상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자(X1,X2) 및 스위칭소자(132)를 통해 바이패스된다.
본 발명에서, 상기 스위칭소자는 PPI(Press Pack IGBT) 반도체 소자를 포함한다.
본 발명의 다른 실시예에 따른 전력용 컨버터의 서브모듈은, 에너지저장부; 상기 에너지저장부에 병렬로 연결되고 다수의 파워반도체스위치 및 환류다이오드로 구성된 적어도 하나의 파워반도체회로; 상기 적어도 하나의 파워반도체회로 중 하나에 연결된 2개의 출력단자 사이에 배치된 스위칭소자; 및 고장 발생시 상기 스위칭소자에 전류를 인가하는 대전류 발생기;를 포함하며, 고장 발생시 상기 스위칭 소자는 턴온되고 상기 대전류 발생기로부터 상기 정격 전류보다 큰 전류가 인가되면 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자를 연결한다.
본 발명에서, 상기 대전류 발생기는 상기 스위칭소자의 정격 전류보다 큰 전류를 상기 스위칭소자로 인가하고 상기 스위칭소자는 상기 정격 전류보다 큰 전류가 인가되면 강제고장이 발생한다.
본 발명에서, 상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자 및 스위칭소자를 통해 바이패스된다.
본 발명에서, 상기 스위칭소자는 PPI(Press Pack IGBT) 반도체 소자를 포함한다.
본 발명의 또 다른 실시예에 따른 전력용 컨버터의 서브모듈은, 에너지저장부; 상기 에너지저장부(110)에 병렬로 연결되고 다수의 파워반도체스위치 및 환류다이오드로 구성된 적어도 하나의 파워반도체회로; 상기 적어도 하나의 파워반도체회로 중 하나에 연결된 2개의 출력단자 사이에 배치된 스위칭소자; 및 상기 스위칭소자에 전압을 인가하는 DC-DC 변환기를 포함하며, 고장 발생시 상기 스위칭 소자는 턴온되고 상기 DC-DC 변환기로부터 상기 정격 전압보다 큰 전압이 인가되면 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자를 연결한다.
본 발명에서, 상기 DC-DC 변환기는 상기 스위칭소자의 정격 전압보다 큰 전압을 상기 스위칭 소자로 인가하고 상기 스위칭소자는 상기 정격 전압보다 큰 전압이 인가되면 강제고장이 발생한다.
본 발명에서, 상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자 및 스위칭소자를 통해 바이패스된다.
본 발명에서, 상기 스위칭소자는 PPI(Press Pack IGBT) 반도체 소자를 포함한다.
본 발명의 또 다른 실시예에 따른 전력용 컨버터의 서브모듈은, 에너지저장부; 상기 에너지저장부에 병렬 연결되고 다수의 파워반도체스위치 및 환류다이오드로 구성된 적어도 하나의 파워반도체회로; 및 상기 적어도 하나의 파워반도체회로 중 하나에 연결된 2개의 출력단자 사이에 배치된 바이패스 스위칭부를 포함하며, 상기 바이패스 스위칭부는, 상기 파워반도체회로 중 하나에 연결된 스위칭소자; 상기 스위칭소자에 병렬로 연결되며 상기 스위칭소자의 정격 전압보다 큰 전압이 걸리는 커패시터; 및 상기 스위칭소자와 상기 커패시터 사이에 연결되고, 소정의 제어 신호에 의해 턴온/턴오프하는 스위치를 포함하고, 고장 발생시 상기 스위칭소자 및 상기 스위치는 턴온되고, 상기 스위치가 턴온되면, 상기 스위칭소자는 상기 커패시터에 걸리는 전압에 의해 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자를 연결한다.
본 발명에서, 상기 스위칭소자는 PPI(Press Pack IGBT) 반도체 소자를 포함한다.
본 발명에서, 상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자 및 스위칭소자를 통해 바이패스된다.
상기와 같은 본 발명에 따라 전력용 컨버터의 서브모듈의 경우 다음과 같은 효과를 가질 수 있다.
본 발명에 의하면 전력용 컨버터의 서브모듈에서 고장이 발생하면 바이패스 스위치를 빠르게 쇼트시켜 전체적으로 바이패스 시간을 줄일 수 있는 효과가 있다.
본 발명에 의하면 전력용 컨버터의 서브모듈의 출력단자 간에 바이패스 스위치를 설치하고 간단한 신호, 전류, 전압에 의해 바이패스 스위치가 강제고장이 발생하고 강제고장으로 인해 출력단자가 단락되어 고장전류를 빠르게 바이패스시킬 수 있는 효과가 있다.
도 1은 본 발명의 실시 예에 따른 전력용 컨버터의 등가회로도이다.
도 2는 본 발명의 제1 실시예에 따른 전력용 컨버터의 서브모듈의 등가회로도이다.
도 3는 본 발명의 제2 실시예에 따른 전력용 컨버터의 서브모듈의 등가회로도이다.
도 4은 본 발명의 제3 실시예에 따른 전력용 컨버터의 서브모듈의 등가회로도이다.
도 5는 본 발명의 제4 실시예에 따른 전력용 컨버터의 서브모듈의 등가회로도이다.
이하, 본 발명의 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 실시 예에 따른 전력용 컨버터의 등가회로도이다.
도 1을 참조하면, 본 발명에 따른 전력용 컨버터는 1개 이상의 상모듈(phase module)(1)로 구성되고 이들 각각의 상모듈(1)에서는 다수의 서브모듈(10)이 직렬로 연결된다. 또한 각 상모듈(1)은 직류전압 측을 각각 정 및 부의 직류전압 모선 P0 및 N0에 접속시킨다.
이들 직류전압 모선 P0 및 N0의 사이에는 도시하지 않은 직류전압이 존재한다. 이들 각 상모듈(1)은 부하접속단자로서 1개의 중간 교류전압단자와 2개의 외측 직류전압단자를 갖는다.
상모듈(1)은 복수의 서브모듈(10)이 직렬로 연결된다. 각 상모듈(1)에서 직렬로 연결된 각각의 서브모듈(10)은 2개의 출력단자, 즉 제1출력단자(X1) 및 제2출력단자(X2)가 형성된다. 제1,2출력단자(X1,X2)를 통해 전류가 입출력된다.
이와 같이 구성된 전력용 컨버터는 고전압 전류 전송용 설비의 일부로 구성될 수 있으며, AC전압 전원시스템들 사이에서 대전력을 전송하기 위해 이들을 연결시키는 역할을 한다.
또한, 이러한 전력용 컨버터는 시스템 안정화의 역할을 하거나 원하는 전압 품질을 보장하는 역할을 하는 소위 FACTS 설비의 일부일 수도 있다. 나아가, 구동기술에서 도 1에 도시된 컨버터를 사용할 수도 있다.
본 발명에 따른 전력용 컨버터에서는 서브모듈(10)에 고장발생시 상모듈(1)의 절선회로(Open Circuit) 방지를 위해 그 고장이 발생한 서브모듈(10)에 입력되는 전류를 바이패스시켜 해당 서브모듈(10)을 보호하고, 바이패스된 전류는 다른 정상적인 서브모듈(10)로 흘러 정상적인 서브모듈들(10)의 동작에 의해 컨버터가 정상 동작되도록 한다.
이를 위해 서브모듈(10)은 전류를 바이패스시키기 위한 스위칭소자 또는 바이패스 스위칭부를 구비한다. 이러한 스위칭소자 또는 바이패스 스위칭부는 특정 신호, 특정 전압 또는 특정 전류에 의해 강제적으로 고장이 발생하고, 이러한 강제고장이 발생되면 빠른 시간 내에 내부가 단락(short-circuited)되어 전류를 바이패스시키도록 한다.
이때, 강제고장에 의해 내부가 단락되는 스위칭소자 또는 바이패스 스위칭부는 더 이상 정상적으로 복구되지 않는다. 따라서 종래의 반도체스위치와는 달리 본 발명의 스위칭소자 또는 바이패스 스위칭부는 강제고장으로 인해 단락이 된 것이므로 단락된 이후에 턴온/턴오프가 불가능하며, 단락된 이후에는 계속 단락상태를 유지한다.
본 실시예에서 스위칭소자 또는 바이패스 스위칭부는 수 msec 이내에 단락된다. 이로써 정상적인 운전에서는 서브모듈(10)에 정상전류가 통전되지만 특정 서브모듈(10)의 고장발생 시 그 고장난 서브모듈(10)은 스위칭소자 또는 바이패스 스위칭부를 통해 전류가 바이패스 스위치를 통해 바이패스되도록 함으로써 해당 서브모듈(10)을 보호하도록 한다.
도 2는 본 발명의 일 실시예에 따른 전력용 컨버터의 서브모듈의 등가회로도이다.
도 2를 참조하면, 본 발명에 따른 전력용 컨버터에서 각 서브모듈(10)은 에너지저장부(110)와, 그 에너지저장부(110)에 병렬로 연결된 적어도 하나의 파워반도체회로(120)로 구성된다. 이들 적어도 하나의 파워반도체회로(120)는 서로 직렬로 연결된다. 각각의 파워반도체회로(120)는 턴온(turn-on)/턴오프(turn-off) 제어가능한 파워반도체스위치(121,123)와, 그 파워반도체스위치(121,123)에 각각 역병렬로 접속된 환류다이오드(free-wheel diode)(122,124)로 구성된다. 다른 실시 예에서 각 서브모듈(10)은 에너지저장부(110)와 적어도 하나의 파워반도체회로(120)가 도 2와는 다르게 배치되어 다양한 구성으로 구현될 수도 있다.
또한, 본 발명에 따른 서브모듈(10)은 적어도 하나의 파워반도체회로(120) 중 어느 하나에 스위칭소자(132)가 병렬로 연결된다. 도 2에는 일례로 두 개의 파워반도체회로(120) 중 하부의 파워반도체회로에 병렬로 연결된 것으로 도시하고 있으나 상부의 파워반도체회로에 병렬로 연결될 수도 있다.
본 실시예에서는 서브모듈(10)의 2개의 출력단자(X1,X2) 사이에 연결된 파워반도체회로에 병렬로 연결된다. 예컨대, 2개의 출력단자(X1,X2)가 상부의 파워반도체회로 양단에 연계되는 경우 상부의 파워반도체회로에 병렬로 연결될 수 있는 것이다.
이러한 스위칭소자(132)는 해당 서브모듈(10)의 고장발생시 빠르게 단락되어 2개의 출력단자(X1,X2)를 연결함으로써 고장 전류를 빠르게 바이패스시키는 역할을 수행한다.
이때, 스위칭소자(132)의 바이패스 동작은 짧은 시간에 이루어져야 한다. 그렇지 않으면 고장난 서브모듈(10)에 과전압, 과전류가 발생하여 해당 서브모듈(10)의 내부 구성품(커패시터 및 파워반도체)이 자칫 폭발하여 화재를 유발시킬 수 있으며, 전체적인 시스템에 과전압, 과전류가 발생하고 각 서브모듈(10)에 정격 이상의 과전압, 과전류가 걸려 신뢰성에 악영항을 줄 수 있다. 바람직하게는 고장발생 후 약 수 msec 이내에 바이패스 동작이 이루어지는 것이 좋다.
이를 위하여, 본 발명에 따른 서브모듈(10)의 스위칭소자(132)는 어느 하나의 파워반도체회로(120)에 병렬로 연결되며 강제 고장 신호가 게이트단에 입력되면 쇼트된다(short-circuited). 구체적으로, 스위칭소자(132)는 캐소드단이 파워반도체회로(120)의 파워반도체스위치(123)의 에미터단에 접속되고, 에미터단이 파워반도체스위치(123)의 캐소드단에 접속된다. 또한, 스위칭소자(132)는 게이트단에서 서브모듈(SM) 제어기(140)로부터의 강제 고장 신호를 수신한다.
본 발명의 일 실시예에 따라 스위칭소자(132)는 신속하게 고장 전류를 바이패스시켜 상모듈(1)를 보호하기 위해 게이트단에 서브모듈(SM) 제어기(140)로부터 강제 고장 신호가 인가되면 강제고장이 발생되어 쇼트된다. 이러한 쇼트에 의해 제1,2출력단자(X1,X2)가 서로 단락되어 고장 전류가 두 출력단자(X1,X2)를 통해 바이패스된다.
구체적으로 서브모듈(10)의 스위칭소자(132)는 서브모듈 제어기(140)로부터 강제 고장 신호가 게이트단에 인가되면 영구적으로 소손된다. 이후에, 스위칭소자(132)를 포함하는 서브모듈(10)은 복구되지 않는다.
서브 모듈(10)에 고장이 발생하면, 스위칭 소자(132)의 게이트에 강제 고장 신호를 인가함으로써 스위칭소자(132)는 소손되어 쇼트되므로, 빠르게 바이패스 경로를 형성할 수 있다.
이하에서, 바이패스 스위치(132)의 바이패스 동작과정을 상세히 설명한다.
특정 서브모듈(10)에 고장발생시 SM 제어기(140)는 고장을 감지하여 바이패스 스위치(132)의 게이트단으로 강제고장신호를 인가한다. 이에 의해 바이패스 스위치(132)는 쇼트(short-circuited)되어 제1,2출력단자(X1,X2)를 연결한다. 이로써 전류는 서브모듈(10)의 내부로 흐르지 않고 제1,2출력단자(X1,X2)를 통해 흘러 바이패스가 이루어지는 것이다.
바이패스 스위치(132)는 외부에서 인위적으로 강제고장신호가 수신되면 내부적으로 강제고장이 발생하여 연결된 회로를 쇼트시키는 반도체 스위치로 구성된다.
이러한 반도체 스위치는 스위칭 속도가 종래의 기계식 스위치보다 빠르기 때문에 전류의 바이패스가 빨리 이루어진다. 본 실시예에서는 1msec 이내로 전류를 바이패스시킬 수 있어 기계식 스위치의 약 4msec 내외의 스위칭 시간보다 훨씬 빠르다.
이와 같이, 본 발명에 따른 스위칭소자(132)는 SM 제어기(140)로부터의 강제 고장 신호에 의해 즉각적으로 쇼트되도록 구성된다. 특정 서브모듈(10)에 고장이 발생하면 해당 서브모듈(10)의 스위칭소자(132)가 SM 제어기(140)로부터의 강제 고장 신호에 의해 즉각적으로 쇼트될 수 있다.
이로써, 스위칭소자(132)는 인위적으로 강제고장의 발생으로 인하여 내부가 소손되어 쇼트됨으로써, 고장 전류를 바이패스시킬 수 있고, 종래의 기계적인 스위치를 대체할 수 있다.
본 발명에 따른 스위칭소자(132)는 강제 고장 신호에 의해, 즉 전기적 방식에 의해 쇼트되므로, 1 ms 이내로 고장 전류를 바이패스시킨다. 따라서, 본 발명의 스위칭소자(132)는 종래 기계적 스위칭 소자를 사용할 때의 대략 4 ms 내외의 스위칭 시간보다 훨씬 빠르게 상전류를 바이패스할 수 있다.
도 3는 본 발명의 제2 실시예에 따른 전력용 컨버터의 서브모듈의 등가회로도이다.
도 3를 참조하면, 본 발명의 제2 실시예에 따른 서브모듈(10)은 적어도 하나의 파워반도체회로(120) 중 어느 하나에 병렬 연결된 스위칭소자(132) 및 서브모듈(10)에 고장 발생시 스위칭소자(132)에 순간적인 대전류를 인가하는 대전류 발생기(150)를 포함한다.
스위칭소자(132)는 캐소드단이 파워반도체회로(120)의 파워반도체스위치(123)의 에미터단에 접속되고, 에미터단이 파워반도체스위치(123)의 캐소드단에 접속된다.
대전류 발생기(150)는 스위칭소자(132)의 정격 전류보다 큰 전류를 스위칭소자(132)에 인가하도록 구성된다. 상기 정격 전류보다 큰 전류는 스위칭소자(132)에 강제고장을 일으킬 수 있는 정도의 대전류를 의미한다. 대전류 발생기(150)는 복수 개의 서브모듈(10)에 대해 대전류를 인가하도록 구성될 수 있다.
서브 모듈(10)에 고장 발생시 SM 제어기(140)는 스위칭소자(132)의 게이트단에 턴온 신호가 인가한다. 그에 따라, 스위칭 소자(132)는 턴온되어 전류를 도통한다.
이와 동시에, SM 제어기(140)는 서브모듈(10)의 고장발생시 대전류 발생기(150)로 대전류인가신호를 전송한다. 대전류인가신호에 따라 대전류 발생기(150)는 스위칭소자(132)로 대전류를 인가한다.
이때 대전류 발생기(150)에서 스위칭소자(132)로 인가되는 전류는 스위칭소자(132)의 정격 전류보다 훨씬 큰 전류이며, 스위칭소자(132)를 강제고장시킬 수 있는 정도의 대전류이다.
대전류 발생기(150)는 복수 개의 서브모듈(10)중 고장이 발생한 서브모듈에 대전류를 인가한다. 즉, 고장 발생시 스위칭소자(132)는 턴온되고 대전류 발생기(150)으로부터 스위칭소자(132)의 정격 전류보다 큰 대전류가 스위칭 소자(132)의 캐소드단에 인가되면, 내부에 소손이 발생하게 된다. 스위칭소자(132)는 이러한 소손에 의해 쇼트되어(short-circuited) 전류를 도통시킨다.
즉, 서브모듈(10)의 스위칭소자(132)는 대전류 발생기(150)로부터 최대 정격 전류보다 큰 대전류 신호가 캐소드단에 인가되면 영구적으로 소손된다. 이후에, 스위칭소자(132)는 영구적으로 쇼트되므로, 해당 스위칭소자(132)를 포함하는 서브모듈(10)은 복구되지 않는다.
본 발명에 따른 스위칭소자(132)는 턴온되고 대전류 발생기(150)으로부터 대전류가 인가되어 소손되어 쇼트되며, 그에 따라, 특정 서브모듈(10)에 고장이 발생하면 대전류 발생기(150)로부터 인가되는 대전류에 의해 즉각적으로 쇼트될 수 있다. 그에 따라, 고장 발생시 스위칭소자(132)는 고장 전류를 즉각적으로 바이패스시킬 수 있다.
이와 같이, 본 실시예에서는 스위칭소자(132)는 턴온된 상태에서 대전류 발생기(150)으로부터 대전류가 인가되면 내부적으로 쇼트가 발생된다. 이러한 쇼트로 인해 내부가 단락되어 제1,2출력단자(X1,X2)가 서로 연결된다. 이로써 고장 전류는 서브모듈(10)의 내부로 흐르지 않고 제1,2출력단자(X1,X2)를 통해 흘러 바이패스가 이루어지는 것이다.
도 4은 본 발명의 제3 실시예에 따른 전력용 컨버터에서 서브모듈의 등가회로도이다.
도 4를 참조하면, 제3 실시예에 따라, 서브모듈(10)은 적어도 하나의 파워반도체회로(120) 중 어느 하나에 병렬 연결된 바이패스 스위칭부(130)가 병렬로 연결된다.
도 4에는 일례로 두 개의 파워반도체회로(120) 중 하부의 파워반도체회로에 병렬로 연결된 것으로 도시하고 있으나 상부의 파워반도체회로에 병렬로 연결될 수도 있다. 이때, 바람직하게는 서브모듈(10)의 2개의 출력단자(X1,X2) 사이에 연결된 파워반도체회로에 병렬로 연결된다. 예컨대, 2개의 출력단자(X1,X2)가 상부의 파워반도체회로 양단에 연계되는 경우 상부의 파워반도체회로에 병렬로 연결될 수 있는 것이다. 이러한 바이패스 스위칭부(130)는 해당 서브모듈(10)의 고장발생시 고장 전류를 바이패스시키는 역할을 수행한다.
바이패스 스위칭부(130)는 파워반도체회로(120)중 하나에 연결된 스위칭소자(132), 스위칭소자(132)에 병렬로 연결되며 상기 스위칭소자(132)의 정격 전압보다 큰 전압이 걸리는 커패시터(134) 및 스위칭소자(132)와 상기 커패시터(134) 사이에 연결되고, 소정의 제어 신호에 의해 턴온/턴오프하는 스위치(136)를 포함한다. 상기 스위치(136)은 반도체 스위치, 다이오드 및 기계적 스위칭 중 어느 하나로 구현될 수 있다.
스위칭소자(132)는 캐소드단이 파워반도체회로(120)의 파워반도체스위치(123)의 에미터단에 접속되고, 에미터단이 파워반도체스위치(123)의 캐소드단에 접속된다. 커패시터(134)는 스위칭소자(132)에 병렬로 연결되며, 커패시터(134)는 스위칭소자(132)의 최대 정격 전압보다 큰 전압을 저장하고 있다.
서브 모듈(10)에 고장 발생시 SM 제어기(140)는 스위칭소자(132)의 게이트단에 턴온 신호가 인가한다. 또한, SM 제어기(140)는 스위치(136)에 턴온 신호를 인가하여 스위치(136)가 스위칭 소자(132)와 커패시터(134)를 연결한다.
그에 따라, 고장 발생시 스위치(136)가 턴온되고, 스위칭소자(132)가 턴온된다. 스위칭소자(132)와 커패시터(134)가 연결되면, 커패시터(134)에 걸린 전압이 스위칭소자(132)에 걸리게 된다.
전술한 바와 같이, 커패시터(134)는 스위칭소자(132)의 최대 정격 전압보다 큰 전압을 저장하고 있기 때문에, 스위칭소자(132)에 연결되면, 스위칭소자(132)에도 커패시터(134)에 걸린 전압이 동일하게 걸리게 된다. 그에 따라, 스위칭소자(132)는 소손이 발생하여 쇼트되고(short-circuited), 고장 전류를 도통시킨다.
스위칭소자(132)는 한번 소손되면 복구되지 않는 소자이다. 따라서, 한번 바이패스 경로가 형성된 서브모듈(10)은 복구되지 않는다.
이와 같이, 본 발명에 따른 바이패스 스위칭부(130)는 고장 발생시 스위치(136)가 턴온되어 커패시터(134)의 전압이 스위칭소자(132)에 걸리게 된다. 스위칭소자(132)는 커패시터(134)에 걸린 전압으로 인해 소손되어 쇼트되며, 그에 따라, 고장 전류를 바이패스시킬 수 있다.
도 5는 본 발명의 제4 실시예에 따른 전력용 컨버터에서 서브모듈의 등가회로도이다.
도 5를 참조하면, 제4 실시예에 따라, 서브모듈(10)은 적어도 하나의 파워반도체회로(120) 중 어느 하나에 병렬 연결된 스위칭소자(132) 및 서브모듈(10)에 고장 발생시 스위칭소자(132)에 스위칭소자(132)의 정격전압보다 큰 전압을 인가하는 DC-DC 변환기(160)를 포함한다. DC-DC 변환기(160)는 스위칭소자(132)에 병렬로 연결되어 있다.
스위칭소자(132)는 캐소드단이 파워반도체회로(120)의 파워반도체스위치(123)의 에미터단에 접속되고, 에미터단이 파워반도체스위치(123)의 캐소드단에 접속된다. DC-DC 변환기(160)는 스위칭소자(132)의 최대 정격 전압보다 큰 전압을 스위칭소자(132)에 인가하도록 구성된다. DC-DC 변환기(160)는 복수개의 서브모듈(10)에 대해 고전압을 인가하도록 구성될 수 있다.
즉, DC-DC 변환기(160)는 복수개의 서브모듈(10)중 고장이 발생한 서브모듈에 스위칭소자(132)의 최대 정격 전압보다 큰 전압을 인가할 수 있다. 스위칭소자(132)는 DC-DC 변환기(160)로부터 정격전압보다 큰 전압이 인가되면, 소손이 발생하게 된다. 스위칭소자(132)는 쇼트되어(short-circuited) 전류를 도통시킨다.
바이패스 경로를 형성하는 과정을 설명하면, 스위칭소자(132)는 고장 발생시 SM 제어기(140)으로부터 게이트단에 턴온 신호가 입력된다. 그에 따라, 스위칭소자(132)는 턴온되고, DC-DC 변환기(160)로부터 최대 정격전압 이상의 전압이 인가되어 소손되어 쇼트된다.
그에 따라, 스위칭소자((132)는 특정 서브모듈(10)에 고장이 발생하면 DC-DC 변환기(160)로부터 인가되는 전압에 의해 즉각적으로 쇼트될 수 있다. 이 경우, 스위칭소자(132)는 영구적으로 쇼트되므로, 해당 스위칭소자(132)를 포함하는 서브모듈(10)은 복구되지 않는다.
본 발명에 따라 한번 쇼트되면 영구적으로 소손되는 스위칭소자(132)를 사용하여 빠르게 바이패스 경로를 형성하기 때문에, 1 ms 이내로 고장 전류를 바이패스킬 수 있다.
이와 같이, 본 실시예에서는 본 발명에 따른 스위칭소자(132)는 고장 발생시 SM 제어기(140)으로부터 게이트단에 턴온 신호가 입력된다. 그에 따라, 스위칭소자(132)는 턴온되고, DC-DC 변환기(160)로부터 정격전압 이상의 전압이 인가되어 소손되어 쇼트되며, 그에 따라, 특정 서브모듈(10)에 고장이 발생하면 DC-DC 변환기(160)로부터 인가되는 전압에 의해 즉각적으로 쇼트될 수 있다. 이러한 쇼트에 의해 스위칭소자(132)는 단락되어 출력단자(X1,X2)을 서로 연결함으로써 고장 전류가 출력단자를 통해 바이패스되도록 한다.
상기에서 설명한 본 발명에 따른 스위칭소자 및 바이패스 스위칭부는 강제고장에 의해 내부가 단락되므로 더 이상 정상적으로 복구되지 않는다. 이는 종래기술에 따른 반도체스위치와는 다른 특성으로서, 본 발명의 스위칭소자 또는 바이패스 스위칭부는 강제고장으로 인해 단락이 된 것이므로 단락된 이후에 턴온/턴오프가 불가능하며, 단락된 이후에는 계속 단락상태를 유지하도록 한다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (14)

  1. 에너지저장부(110);
    상기 에너지저장부(110)에 병렬연결되고 다수의 파워반도체스위치(121,123) 및 환류다이오드(122,124)로 구성된 적어도 하나의 파워반도체회로(120); 및
    상기 적어도 하나의 파워반도체회로(120) 중 하나에 연결된 2개의 출력단자(X1,X2) 사이에 배치되며 게이트단에 강제 고장 신호가 입력되면 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자(X1,X2)를 연결하는 스위칭소자(132);를 포함하는 전력용 컨버터의 서브모듈.
  2. 제1항에 있어서,
    상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자(X1,X2) 및 스위칭소자(132)를 통해 바이패스되는 전력용 컨버터의 서브모듈.
  3. 제1항에 있어서,
    상기 스위칭소자(132)는 PPI(Press Pack IGBT) 반도체 소자를 포함하는 것을 특징으로 하는 전력용 컨버터의 서브모듈.
  4. 에너지저장부(110);
    상기 에너지저장부(110)에 병렬로 연결되고 다수의 파워반도체스위치(121,123) 및 환류다이오드(122,124)로 구성된 적어도 하나의 파워반도체회로(120);
    상기 적어도 하나의 파워반도체회로(120) 중 하나에 연결된 2개의 출력단자(X1,X2) 사이에 배치된 스위칭소자(132); 및
    고장 발생시 상기 스위칭소자(132)에 전류를 인가하는 대전류 발생기(150);를 포함하며,
    고장 발생시 상기 스위칭 소자(132)는 턴온되고 상기 대전류 발생기(150)로부터 상기 정격 전류보다 큰 전류가 인가되면 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자(X1,X2)를 연결하는 전력용 컨버터의 서브모듈.
  5. 제4항에 있어서,
    상기 대전류 발생기(150)는 상기 스위칭소자(132)의 정격 전류보다 큰 전류를 상기 스위칭소자(132)로 인가하고 상기 스위칭소자(132)는 상기 정격 전류보다 큰 전류가 인가되면 강제고장이 발생하는 전력용 컨버터의 서브모듈.
  6. 제4항에 있어서,
    상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자(X1,X2) 및 스위칭소자(132)를 통해 바이패스되는 전력용 컨버터의 서브모듈.
  7. 제4항에 있어서,
    상기 스위칭소자(132)는 PPI(Press Pack IGBT) 반도체 소자를 포함하는 것을 특징으로 하는 전력용 컨버터의 서브모듈.
  8. 에너지저장부(110);
    상기 에너지저장부(110)에 병렬로 연결되고 다수의 파워반도체스위치(121,123) 및 환류다이오드(122,124)로 구성된 적어도 하나의 파워반도체회로(120);
    상기 적어도 하나의 파워반도체회로(120) 중 하나에 연결된 2개의 출력단자(X1,X2) 사이에 배치된 스위칭소자(132); 및
    상기 스위칭소자(132)에 전압을 인가하는 DC-DC 변환기(160);를 포함하며,
    고장 발생시 상기 스위칭 소자(132)는 턴온되고 상기 DC-DC 변환기(160)로부터 상기 정격 전압보다 큰 전압이 인가되면 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자(X1,X2)를 연결하는 전력용 컨버터의 서브모듈.
  9. 제8항에 있어서,
    상기 DC-DC 변환기(160)는 상기 스위칭소자(132)의 정격 전압보다 큰 전압을 상기 스위칭 소자(132)로 인가하고 상기 스위칭소자(132)는 상기 정격 전압보다 큰 전압이 인가되면 강제고장이 발생하는 전력용 컨버터의 서브모듈.
  10. 제8항에 있어서,
    상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자(X1,X2) 및 스위칭소자(132)를 통해 바이패스되는 전력용 컨버터의 서브모듈.
  11. 제8항에 있어서,
    상기 스위칭소자(132)는 PPI(Press Pack IGBT) 반도체 소자를 포함하는 것을 특징으로 하는 전력용 컨버터의 서브모듈.
  12. 에너지저장부(110);
    상기 에너지저장부(110)에 병렬 연결되고 다수의 파워반도체스위치(121,123) 및 환류다이오드(122,124)로 구성된 적어도 하나의 파워반도체회로(120); 및
    상기 적어도 하나의 파워반도체회로(120) 중 하나에 연결된 2개의 출력단자(X1,X2) 사이에 배치된 바이패스 스위칭부(130); 를 포함하며,
    상기 바이패스 스위칭부(130)는,
    상기 파워반도체회로(120)중 하나에 연결된 스위칭소자(132);
    상기 스위칭소자(132)에 병렬로 연결되며 상기 스위칭소자(132)의 정격 전압보다 큰 전압이 걸리는 커패시터(134); 및
    상기 스위칭소자(132)와 상기 커패시터(134) 사이에 연결되고, 소정의 제어 신호에 의해 턴온/턴오프하는 스위치(136);를 포함하고,
    고장 발생시 상기 스위칭소자(132) 및 상기 스위치(136)은 턴온되고, 상기 스위치(136)가 턴온되면, 상기 스위칭소자(132)는 상기 커패시터(136)에 걸리는 전압에 의해 강제고장이 발생하여 내부가 쇼트되어(short-circuited), 상기 출력단자(X1,X2)를 연결하는 전력용 컨버터의 서브모듈.
  13. 제12항에 있어서,
    상기 스위칭소자(132)는 PPI(Press Pack IGBT) 반도체 소자를 포함하는 것을 특징으로 하는 전력용 컨버터의 서브모듈.
  14. 제12항에 있어서,
    상기 서브모듈에 고장 발생시 고장전류는 상기 출력단자(X1,X2) 및 스위칭소자(132)를 통해 바이패스되는 전력용 컨버터의 서브모듈.
PCT/KR2020/011208 2019-08-21 2020-08-21 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈 WO2021034153A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,395 US11824462B2 (en) 2019-08-21 2020-08-21 Sub-module of power converter including bypass switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0102703 2019-08-21
KR1020190102703A KR102177141B1 (ko) 2019-08-21 2019-08-21 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈

Publications (1)

Publication Number Publication Date
WO2021034153A1 true WO2021034153A1 (ko) 2021-02-25

Family

ID=73548881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011208 WO2021034153A1 (ko) 2019-08-21 2020-08-21 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈

Country Status (3)

Country Link
US (1) US11824462B2 (ko)
KR (1) KR102177141B1 (ko)
WO (1) WO2021034153A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078400A (zh) * 2012-12-11 2013-05-01 国网智能电网研究院 适用于大容量mmc柔性直流输电系统的桥臂汇总保护系统
KR101389579B1 (ko) * 2012-12-28 2014-04-29 주식회사 효성 전력용 컨버터
JP2015130743A (ja) * 2014-01-07 2015-07-16 株式会社日立製作所 電力変換装置および電力変換装置の故障検出方法
WO2016002319A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 電力変換装置
US20190131885A1 (en) * 2017-11-02 2019-05-02 Siemens Aktiengesellschaft Submodule and electrical arrangement having submodules

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2369725B1 (de) 2010-03-25 2012-09-26 ABB Schweiz AG Überbrückungseinheit
KR101449736B1 (ko) 2012-12-27 2014-10-08 주식회사 효성 컨버터의 바이패스 장치
WO2020173566A1 (en) * 2019-02-28 2020-09-03 Abb Schweiz Ag Converter cell with crowbar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078400A (zh) * 2012-12-11 2013-05-01 国网智能电网研究院 适用于大容量mmc柔性直流输电系统的桥臂汇总保护系统
KR101389579B1 (ko) * 2012-12-28 2014-04-29 주식회사 효성 전력용 컨버터
JP2015130743A (ja) * 2014-01-07 2015-07-16 株式会社日立製作所 電力変換装置および電力変換装置の故障検出方法
WO2016002319A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 電力変換装置
US20190131885A1 (en) * 2017-11-02 2019-05-02 Siemens Aktiengesellschaft Submodule and electrical arrangement having submodules

Also Published As

Publication number Publication date
KR102177141B9 (ko) 2021-09-17
KR102177141B1 (ko) 2020-11-10
US20220376611A1 (en) 2022-11-24
US11824462B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2014104848A1 (ko) 전력용 컨버터
WO2017115955A1 (ko) 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법
RU2600328C2 (ru) Преобразователь, переключающая ячейка и способ управления преобразователем
WO2018221906A1 (ko) Mmc 컨버터 및 그의 서브모듈
CN108322056B (zh) 一种模块化高压直流变换装置及其控制方法
WO2021194063A1 (ko) 모듈러 멀티레벨 컨버터의 제어장치 및 제어방법
WO2021034152A1 (ko) 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈
JP3720601B2 (ja) 電力調相装置及び送電システム
WO2019132428A1 (ko) Mmc 컨버터 초기충전시 서브모듈 상태 진단방법
WO2018221907A1 (ko) Mmc 컨버터 및 그의 서브모듈
WO2018124519A1 (ko) 모듈러 멀티레벨 컨버터 시스템
WO2021085759A1 (ko) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
WO2015069010A1 (ko) 무정전 직류전원장치
CN111030493B (zh) 一种模块化多电平换流器的子模块及其保护电路
US6528903B2 (en) Converter system having converter modules connected by a DC intermediate circuit, and method for operating such a system
WO2018216850A1 (ko) 전력 변환 장치
WO2020101320A1 (ko) 모듈러 멀티레벨 컨버터 서브모듈의 커패시터 전압 조정 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
WO2021034153A1 (ko) 바이패스 스위치를 구비한 전력용 컨버터의 서브모듈
WO2019117490A1 (ko) 릴레이 이상 진단 시스템 및 방법
US11463015B2 (en) Power conversion apparatus
WO2021241871A1 (ko) 고체 절연 스위치
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
US11476662B2 (en) Star point grounding with overvoltage limitation for a polyphase transformer
WO2019139276A1 (ko) Dc 차단기
WO2022211605A1 (ko) 반도체를 이용한 회로 차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854494

Country of ref document: EP

Kind code of ref document: A1