WO2015060317A1 - 神経変性疾患の検査方法 - Google Patents

神経変性疾患の検査方法 Download PDF

Info

Publication number
WO2015060317A1
WO2015060317A1 PCT/JP2014/077999 JP2014077999W WO2015060317A1 WO 2015060317 A1 WO2015060317 A1 WO 2015060317A1 JP 2014077999 W JP2014077999 W JP 2014077999W WO 2015060317 A1 WO2015060317 A1 WO 2015060317A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
neurodegenerative disease
concentration
urine
test animal
Prior art date
Application number
PCT/JP2014/077999
Other languages
English (en)
French (fr)
Inventor
長谷川亨
Original Assignee
長谷川亨
株式会社M.R.D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長谷川亨, 株式会社M.R.D. filed Critical 長谷川亨
Priority to JP2015543871A priority Critical patent/JPWO2015060317A1/ja
Publication of WO2015060317A1 publication Critical patent/WO2015060317A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders

Definitions

  • the present invention relates to a test method for a neurodegenerative disease that can determine whether or not there is a high risk of suffering from a neurodegenerative disease in the future as well as the presence or absence of a neurodegenerative disease.
  • degenerative dementias such as Alzheimer's disease (Alzheimer-type dementia), Lewy body dementia, and cerebrovascular dementia are known as typical cases of neurodegenerative diseases.
  • Alzheimer's disease is characterized by a pathology in which memory of past events is lost or it is difficult to memorize new events.
  • Alzheimer's disease can be diagnosed as early as possible.
  • non-human animals such as mice and rats exhibiting the pathology of neurodegenerative diseases are used.
  • neurodegenerative diseases are easily and accurately detected. If signs can be confirmed, it is extremely useful in research.
  • the present invention has been made in view of such circumstances, has a small burden on test animals including humans, and is not only affected by the presence or absence of neurodegenerative diseases, but also suffers from neurodegenerative diseases in the future.
  • a method for examining a neurodegenerative disease that can also determine whether or not there is a high risk of aging is provided.
  • the homocysteic acid concentration in urine collected from a test animal and the blood collected from the test animal were measured.
  • collected from the said test animal is used before collection
  • the homocysteine concentration in the first blood is greater than the homocysteine concentration in the second blood
  • the risk of suffering from the neurodegenerative disease of the test animal when the first blood is collected is the test when the second blood is collected. It is characterized in that it is determined as a first condition that is higher than the risk of suffering from a neurodegenerative disease in an animal.
  • collected from the said test animal is used for the said 1st blood.
  • collected from the said test animal is used for the said 1st blood.
  • the methionine density in the second blood collected from the test animal before the collection of the methionine concentration in the first blood is greater than the methionine concentration in the second blood.
  • collected from the said test animal is same-sex substantially same age as the said test animal.
  • the homocysteine concentration in the blood collected from the test animal deviated from the upper limit of the homocysteine concentration range in the healthy individual.
  • the test animal is characterized in that the risk of suffering from the neurodegenerative disease of the test animal is a first state higher than the risk of suffering from the neurodegenerative disease of the healthy individual.
  • collected from the said test animal is same sex as the said test animal.
  • the methionine concentration in blood collected from the test animal deviated from the upper limit of the methionine concentration range in the healthy individual, so that the test animal Is not suffering from a neurodegenerative disease
  • the test animal is characterized in that the risk of suffering from the neurodegenerative disease of the test animal is a first state higher than the risk of suffering from the neurodegenerative disease of the healthy individual.
  • the urine creatinine concentration and the blood creatinine concentration are further measured. It has the feature to do.
  • collected from the said test animal The ratio of the creatinine concentration in the second urinary creatinine sample collected from the test animal before the collection of the first urine and the second creatinine sample collected from the test animal before the first blood collection.
  • the subject animal has a risk of suffering from a neurodegenerative disease when the first urine and blood are collected, and the subject animal when the second urine and blood are collected It is characterized in that it is determined to be a second state that is higher than the risk of suffering from a neurodegenerative disease and having a higher risk of suffering from a neurodegenerative disease than the first state.
  • the homocysteic acid concentration in urine collected from a test animal the homocysteic acid concentration in blood collected from the test animal, and the homocysteine and / or methionine in the blood Therefore, it is less burdensome for test animals including humans, and signs of neurodegenerative diseases can be confirmed relatively accurately and easily, and only the presence or absence of neurodegenerative diseases
  • collected from the said test animal is made into the 2nd blood extract
  • the test animal does not suffer from a neurodegenerative disease because the homocysteine concentration in the first blood is greater than the homocysteine concentration in the second blood compared to the homocysteine concentration in In this case, the risk of suffering from the neurodegenerative disease of the test animal when the first blood is collected is higher than the risk of suffering from the neurodegenerative disease of the test animal when the second blood is collected. Since it was decided to be in the state 1, it is more accurately judged whether or not the test animal in which the neurodegenerative disease has not developed is a neurodegenerative disease reserve arm compared with its past state. Can Kill.
  • the methionine concentration in the first blood collected from the test animal is measured in the second blood collected from the test animal before the first blood is collected.
  • the test animal is not suffering from a neurodegenerative disease because the methionine concentration in the first blood is greater than the methionine concentration in the second blood compared to the methionine concentration
  • the risk of suffering from a neurodegenerative disease of the subject animal when the first blood is collected is higher than the risk of suffering from the neurodegenerative disease of the subject animal when the second blood is collected. Since it is determined that there is a neurodegenerative disease, it is possible to more accurately determine whether or not a test animal that has not developed a neurodegenerative disease is a neurodegenerative disease reserve, compared to its past state.
  • the homocysteine concentration in the blood collected from the test animal is the same as the test animal, and the homocysteine concentration range in the blood in healthy individuals of the same animal and different age.
  • the test animal is not suffering from a neurodegenerative disease because the homocysteine concentration in the blood collected from the test animal deviates from the upper limit of the homocysteine concentration range in the healthy individual. Since the test animal is determined to be in a first state in which the risk of suffering from a neurodegenerative disease of the test animal is higher than the risk of suffering from the neurodegenerative disease of the healthy individual, Whether or not the patient is a neurodegenerative disease reserve can be more accurately determined than a healthy individual.
  • the methionine concentration in blood collected from the test animal is compared with the methionine concentration range in blood in healthy individuals of the same animal as the test animal but having the same age.
  • the test animal is not suffering from a neurodegenerative disease because the methionine concentration in blood collected from the test animal deviates from the upper limit of the methionine concentration range in the healthy individual, the test animal It is determined that the risk of suffering from a neurodegenerative disease in the first state is higher than the risk of suffering from the neurodegenerative disease of the healthy individual. Whether or not it is a military can be more accurately determined than a healthy individual.
  • the ratio between the creatinine concentration in the first urine collected from the test animal and the creatinine concentration in the first blood collected from the test animal is calculated as the first Compared with the ratio between the creatinine concentration in the second urine collected from the subject animal before the collection of the urine and the creatinine concentration in the second blood collected from the subject animal before the collection of the first blood.
  • the ratio of the creatinine concentration in the first blood to the ratio of the creatinine concentration in the first urine to the creatinine concentration in the first blood is such that the creatinine concentration in the second urine and the second creatinine concentration
  • the risk of suffering from a neurodegenerative disease in the subject animal when collecting urine and blood is higher than the risk of suffering from a neurodegenerative disease in the subject animal when collecting the second urine and blood, and Since it was determined that the second state has a higher risk of suffering from a neurodegenerative disease than in the first state, a test animal that has not developed a neurodegenerative disease is more likely to suffer from a neurodegenerative disease in the neurodegenerative disease reserve army. It is possible to more accurately determine whether or not the risk state is higher than the past state.
  • the ratio of the creatinine concentration in blood in the ratio of the creatinine concentration in urine collected from the test animal and the creatinine concentration in blood collected from the test animal is By deviating from the upper limit of the range of the ratio of the blood creatinine concentration in the ratio of the creatinine concentration in urine and the blood creatinine concentration in the healthy individual of the same animal as the test animal and different in the same sex of the same age
  • the risk of suffering from the neurodegenerative disease of the test animal is higher than the risk of suffering from the neurodegenerative disease of the healthy individual, and the first state Since it was determined that the second state has a higher risk of suffering from a neurodegenerative disease, a test animal that has not developed a neurodegenerative disease Whether a state of high morbidity risk for neurodegenerative diseases than among through degenerative diseases reserve forces, it can be performed more accurately determined compared to healthy individuals.
  • (A) is a calibration curve in the high concentration region
  • (b) is a calibration curve in the low concentration region. It is a chromatogram at the time of measuring a urine sample. It is the chromatogram at the time of measuring a blood sample. It is explanatory drawing which showed the correlation with the urine homocysteic acid content and MMSE score. It is explanatory drawing which showed the correlation in a test group female or male test subject. It is explanatory drawing which showed the correlation with the blood homocysteic acid content and MMSE score.
  • the present invention provides a test method of a test animal for a neurodegenerative disease, and in particular, whether or not there is a high risk of suffering from a neurodegenerative disease in the future as well as the presence or absence of a neurodegenerative disease.
  • a method for examining a neurodegenerative disease that can be determined is provided.
  • the method for examining a neurodegenerative disease described in the present embodiment in other words, a method for determining whether a test animal is a neurodegenerative disease progression degree or a neurodegenerative disease reserve (hereinafter also simply referred to as a test method). .) Is based on new knowledge obtained by the inventors' diligent research.
  • amyloid ⁇ 42 commonly known as senile plaques, outside nerve cells, and then a protein called tau, which is a neurofibril that is a fibrous mass in nerve cells. It is understood that it occurs by accumulating and resulting in neuronal cell death resulting in neuronal cell death.
  • amyloid protein is also accumulated in the brain of a healthy subject by recent studies.
  • FIG. 1 is a graph showing the relationship between the subject's cognitive function test (MMSE: Mini-Mental State Examination) score and the urine homocysteic acid concentration.
  • FIG. 3 is a graph showing the relationship between the urinary homocysteic acid concentration and the blood homocysteic acid concentration of the subject.
  • the inventors of the present invention focused on the urinary homocysteic acid concentration, and as shown in FIG. 1, it was found that the cognitive function test score and the urine homocysteic acid concentration showed a positive correlation.
  • amyloid protein In order for amyloid protein to produce neurodegenerative action in the brain, activation of glutamate NMDA receptors is necessary, and homocysteic acid that has entered the brain is an agonist of NMDA receptors, in other words NMDA It was found to function as a transmitter that stimulates the receptor.
  • the present inventor has been in contact with many patients with neurodegenerative diseases on a daily basis as a medical researcher. Under such circumstances, if the primary screening can be performed by simply confirming the degree of progression of the neurodegenerative disease by, for example, the family at the patient's home, etc., the disease was discovered early and thought to be useful for early treatment. .
  • the present invention has been completed by the inventor of the present invention regarding the determination of the presence or absence of a neurodegenerative disease in the test method for a neurodegenerative disease according to the present embodiment, based on the situation and data as described above.
  • test animal is a human
  • test animal if it can be known that it is a degenerative neurological disease reserve, it is possible to take some measures in daily life in order to delay or avoid the onset.
  • the present inventor further advanced research while focusing on the onset mechanism of the examination of the neurodegenerative disease onset reserve.
  • homocysteic acid is produced by homocysteine or methionine catalyzed by cystathionine- ⁇ -synthase (CBS) present in the renal tubule.
  • CBS cystathionine- ⁇ -synthase
  • a test animal having a high concentration of homocysteine or methionine in the blood is in a state (first state) having a high possibility of developing a neurodegenerative disease.
  • the neurodegenerative disease is further reduced as compared with the first state. It can be said that the onset risk is high (second state).
  • the homocysteic acid concentration in urine collected from a test animal the homocysteic acid concentration in blood collected from the test animal, the homocysteine in the blood, and It was decided to measure the methionine concentration.
  • the present invention relates to a homocysteic acid concentration in urine collected from a test animal, a homocysteic acid concentration in blood collected from the test animal, and a homocysteine and / or methionine concentration in the blood. It also encompasses the concept of a method for determining the status of a neurodegenerative disease in the subject animal, including measurement.
  • the test method for a neurodegenerative disease measures the homocysteic acid concentration in urine collected from a test animal and the homocysteic acid concentration in blood collected from the test animal. It can be said that the determination as to whether or not the patient is suffering from a neurodegenerative disease and the determination as to whether or not the patient is a neurodegenerative disease reserve arm that measures homocysteine and / or methionine concentration in blood.
  • test animal is a concept including both human and non-human animals.
  • kits can be used to determine whether or not a patient suffers from a neurodegenerative disease using urine collected from the test animal.
  • the kit can also be used to determine whether or not the patient is suffering from a neurodegenerative disease using blood collected from the subject animal.
  • the kit for determining whether or not the test animal shown in this specification is suffering from a neurodegenerative disease is one that uses urine obtained from the test animal and one that uses blood obtained from the test animal However, all of them are characterized in that the determination is made based on the content of homocysteic acid contained in urine or blood.
  • the urine contact means for contacting with the urine and the urine contact means are contacted
  • An anti-homocysteic acid antibody having a homocysteic acid contained in urine as an antigen, and a labeling means that changes according to the amount of the anti-homocysteic acid antibody bound to the homocysteic acid in the urine The less the anti-homocysteic acid antibody bound to the homocysteic acid contained in the urine, the more it is possible to indicate that the neurodegenerative disease of the subject animal has progressed due to a change in the labeling means. Also good.
  • test animal when the test animal is a human, the burden on the elderly can be prevented as much as possible.
  • test animal when the test animal is a non-human animal used for testing / research and the like, it is possible to conduct research on neurodegenerative diseases while eliminating the influence of invasiveness on the non-human animal.
  • urine to be used for the test is subjected to specific gravity correction and the like and can be compared with other samples.
  • contact means for contacting the blood or plasma obtained from the blood, and contacting the contact means Anti-homocysteic acid antibody having homocysteic acid contained in blood or plasma as an antigen, and labeling means that changes depending on the binding amount of said anti-homocysteic acid antibody to homocysteic acid in said blood or plasma. Indicating that the more the anti-homocysteic acid antibody bound to the homocysteic acid contained in the blood or plasma, the more the neurodegenerative disease of the subject animal is progressing due to the change of the labeling means. It may be possible.
  • the sample brought into contact with the contact means may be either blood (whole blood) or plasma.
  • blood whole blood
  • plasma plasma
  • Plasma can also be made a sample more suitable for evaluation by performing protein removal treatment using trichloroacetic acid (TCA) or the like.
  • the kit for determining whether or not the patient suffers from a neurodegenerative disease using urine or blood is not particularly limited as long as it has the above-described configuration, and can be provided in any form. is there.
  • the concentration of homocysteine, methionine, and creatinine may be detected in addition to detecting homocysteic acid in order to determine whether or not a neurodegenerative disease reserve is described later.
  • the concentration of homocysteine, methionine, and creatinine may be detected so that only the determination of whether or not the vehicle is a reserve army may be performed.
  • kits employing an immunochromatography method or a kit employing an ELISA (Enzyme-Linked ImmunoSorbent Assay) can be cited.
  • urine contact means for contacting with urine, blood or the blood can be interpreted as part of the sample pad.
  • an anti-homocysteic acid antibody having a homocysteic acid contained in urine, blood or plasma as an antigen is included in the conjugate pad part or the test line part. Become. The same applies to homocysteine, methionine, and creatinine in a kit for determining whether or not a neurodegenerative disease reserve army or a kit for determining both simultaneously.
  • the labeling means that changes depending on the amount of anti-homocysteic acid antibody bound to homocysteic acid in urine, blood or plasma is included in, for example, a conjugate pad.
  • a conjugate pad This can be interpreted as a series of display (coloring) systems comprising a labeling substance such as gold colloid bound to an anti-homocysteine acid antibody, a membrane, and an anti-homocysteine acid antibody arranged in a line on the membrane.
  • display (coloring) systems comprising a labeling substance such as gold colloid bound to an anti-homocysteine acid antibody, a membrane, and an anti-homocysteine acid antibody arranged in a line on the membrane.
  • homocysteine, methionine, and creatinine in a kit for determining whether or not a neurodegenerative disease reserve army or a kit for determining both simultaneously.
  • the immunochromatography method is adopted in a kit for determining whether or not a patient is suffering from a neurodegenerative disease, a kit for determining whether or not a neurodegenerative disease reserve army, or a kit for determining both simultaneously.
  • storage stability and ease of determination are good, and the degree of progression of the neurodegenerative disease in the test animal is measured using urine, blood or plasma collected from the test animal without the need for a special device. Can be determined.
  • kits for determining whether or not you are suffering from a neurodegenerative disease using urine or blood as a kit adopting the ELISA method or whether or not you are a neurodegenerative disease reserve army is realized
  • the urine contact means for contacting with urine and the contact means for contacting blood or plasma obtained from the blood can be interpreted as wells formed on a microplate or the like.
  • an anti-homocysteic acid antibody having a homocysteic acid contained in urine, blood or plasma as an antigen is provided as a well bottom or as a primary antibody.
  • homocysteine, methionine, and creatinine in a kit for determining whether or not a neurodegenerative disease reserve army or a kit for determining both simultaneously.
  • a labeling means that changes depending on the amount of anti-homocysteic acid antibody bound to homocysteic acid in urine or blood or plasma, for example, a primary antibody or a secondary antibody It can be understood that it is a labeling substance such as an enzyme bound to. The same applies to homocysteine, methionine, and creatinine in a kit for determining whether or not a neurodegenerative disease reserve army or a kit for determining both simultaneously.
  • the ELISA method is adopted in a kit for determining whether or not a patient has a neurodegenerative disease, a kit for determining whether or not a neurodegenerative disease reserve army, or a kit for determining both at the same time.
  • the quantitative property can be improved, and the degree of progression of the neurodegenerative disease of the test animal can be determined using urine, blood, or plasma collected from the test animal.
  • kits for determining whether or not a person suffers from a neurodegenerative disease using urine or blood a kit for determining whether or not a neurodegenerative disease reserve army, or both simultaneously
  • the burden on the test animals including humans can be reduced, and the kit can check the signs and progression of neurodegenerative diseases relatively accurately and easily.
  • the present specification also includes a concept of a diagnostic agent for neurodegenerative diseases, including an anti-homocysteic acid antibody for detecting homocysteic acid in urine or blood collected from a test animal.
  • the concept about the diagnostic agent of the neurodegenerative disease reserve army which can be used for the determination of whether it is a neurodegenerative disease reserve army that can detect also homocysteine, methionine, and creatinine is also included.
  • the present specification also includes a concept of a method for determining the degree of progression of a neurodegenerative disease of a test animal and whether or not it is a neurodegenerative disease reserve using urine or blood collected from the test animal. .
  • the measurement of the homocysteic acid content in urine and / or blood performed in carrying out the test method for a neurodegenerative disease according to the present embodiment is not particularly limited.
  • the above-described kit may be used, or quantification may be performed by performing various chromatographies.
  • homocysteine, methionine, and creatinine in determining whether or not the patient is a neurodegenerative disease reserve.
  • the content of homocysteic acid in the first urine collected from the test animal is determined using the first urine.
  • the homocysteic acid content in the first urine is equal to the homocysteic acid content in the urine in healthy individuals. It is determined that the neurodegenerative disease of the test animal is progressing as the decrease amount is larger due to the decrease in the content of homocysteic acid in the second urine while deviating from the appropriate range.
  • the degree of progression of the neurodegenerative disease can be determined using urine, it is possible to evaluate and determine the degree of progression of the neurodegenerative disease in the test animal extremely non-invasively to the test animal. Become.
  • the present specification describes the content of homocysteic acid in the first urine collected from the test animal when determining whether or not the test animal suffers from a neurodegenerative disease. And the degree of progression of the neurodegenerative disease non-invasively to the test animal by comparing the homocysteic acid content in the second urine collected from the test animal before the collection of the first urine.
  • the concept of using at least data that shows the ratio between the content of homocysteic acid in the first urine and the content of homocysteic acid in the second urine is also included. It can also be said.
  • the degree of progression of the neurodegenerative disease in the test animal can be determined in a very noninvasive manner. It becomes possible to evaluate and judge.
  • the content of homocysteic acid in the first urine collected from the test animal and the content of homocysteine acid in the second urine collected from the test animal before the collection of the first urine are added.
  • each sample may be subjected to a high performance liquid chromatograph and compared with a calibration curve (without quantifying), the peak areas may be compared with each other to grasp the degree of progression of the neurodegenerative disease.
  • the homocysteic acid content in the present specification is a concept including not only a quantitative amount but also a ratio of several times with respect to a comparative control sample.
  • the homocysteic acid content in the first blood collected from the test animal is measured before the collection of the first blood. Compared with the homocysteic acid content in the second blood collected from the test animal, the homocysteic acid content in the first blood deviates from the appropriate range of the homocysteic acid content in the blood in healthy individuals. It can be determined that the neurodegenerative disease of the test animal is progressing as the increase amount increases as the homocystic acid content in the second blood increases.
  • the degree of progression of neurodegenerative disease can be determined using blood
  • the degree of progression of neurodegenerative disease in the test animal is non-invasive compared to conventional biomarker tests. Can be evaluated and determined.
  • the present specification describes the content of homocysteic acid in the first blood collected from the test animal and the first blood sample when determining the degree of progression of the neurodegenerative disease in the test animal.
  • the determination of the degree of progression of neurodegenerative disease by comparing the content of homocysteic acid in the second blood collected from the test animal before blood collection, and at least the homocysteic acid in the first blood It can also be said to include the concept of using data that shows the ratio between the content and the homocysteic acid content in the second blood.
  • the test animal can also be non-invasively compared to conventional biomarker tests. This makes it possible to evaluate and determine the degree of progression of the neurodegenerative disease in the test animal.
  • diagnosis and examination of neurodegenerative diseases may be examined by taking into account both the above-mentioned homocysteic acid content contained in blood and the homocysteic acid content contained in urine.
  • a test method for a neurodegenerative disease in a test animal including the following steps (a) to (d), it is possible to more accurately determine whether or not the subject is suffering from a neurodegenerative disease.
  • Become. (A) collecting urine and blood from the test animal; (B) detecting the homocysteic acid in the urine and blood; (C) comparing the homocysteic acid content in the urine with the homocysteic acid content in the blood; (D) A step of determining whether or not the patient is suffering from a neurodegenerative disease based on the comparison result.
  • the burden on the test animal is small, and the signs of the neurodegenerative disease can be relatively accurately and easily determined. You can test whether you have a disease.
  • the present specification also relates to the use of homocysteic acid contained in blood or urine collected from a test animal as a biomarker for determining whether or not the patient suffers from a neurodegenerative disease. It can be said that it is a proposal.
  • a biomarker consisting of homocysteic acid for determining whether or not the patient is suffering from a neurodegenerative disease, or a neurodegenerative disease using as an index the amount of homocysteic acid in urine or blood collected from a subject Also included are tests that determine if you are affected.
  • test method for neurodegenerative disease In the test method for neurodegenerative disease according to the present embodiment, homocysteine and / or methionine concentration in blood collected from a test animal is measured in order to determine whether or not the patient is a neurodegenerative disease reserve. . Therefore, the burden on test animals including humans is low, and signs of neurodegenerative diseases can be confirmed relatively accurately and easily. Moreover, not only the presence or absence of neurodegenerative diseases, but also neurodegeneration in the future. It is possible to provide a test method for a neurodegenerative disease that can also determine whether or not the risk of suffering from a disease is high.
  • the homocysteine concentration in the first blood collected from the test animal is the second collected from the test animal before the collection of the first blood.
  • the homocysteine concentration in the first blood deviates from an appropriate range of the homocysteine concentration in the blood of a healthy individual, while the homocysteine concentration in the second blood
  • the risk of suffering from the neurodegenerative disease of the subject animal when the first blood is collected is the second blood. It may be determined that the first state is higher than the risk of suffering from the neurodegenerative disease of the test animal when the sample is collected.
  • the first state determined in such a process is referred to as “first state derived from blood homocysteine concentration in comparison with the past”.
  • the methionine concentration in the first blood collected from the subject animal is compared with the methionine concentration in the second blood collected from the subject animal before the first blood is collected,
  • the test animal is not suffering from a neurodegenerative disease because the methionine concentration in the blood is larger than the methionine concentration in the second blood while deviating from the appropriate range of the methionine concentration in the blood in healthy individuals.
  • the risk of suffering from the neurodegenerative disease of the test animal when the first blood is collected is higher than the risk of suffering from the neurodegenerative disease of the test animal when the second blood is collected. It can also be determined that the state is 1.
  • the first state determined in such a process is referred to as “a first state derived from the blood methionine concentration in comparison with the past”.
  • the previous blood homocysteine concentration of this test animal determines whether or not the subject is a neurodegenerative disease reserve for a test animal that has not yet developed symptoms of neurodegenerative disease
  • the previous blood homocysteine concentration of this test animal determines whether or not the current concentration is higher than the past concentration by comparing with the homocysteine concentration or comparing the previous blood methionine concentration with the current blood methionine concentration, neurodegeneration compared to the past It is determined that the risk of disease is increased. Whether or not the current concentration is higher than the past concentration is determined by taking into account whether or not the variation in the concentration is significant, whether or not the normal concentration range for healthy individuals is deviated, etc. can do.
  • the comparative control is not set to the past state, but for example, a general blood homocysteine concentration range or a blood methionine concentration range in the animal species may be used as the comparative control. it can.
  • the homocysteine concentration in the blood collected from the test animal was collected from the test animal in comparison with the homocysteine concentration range in the blood of the same animal as the test animal in different healthy individuals
  • the test animal does not suffer from a neurodegenerative disease because the homocysteine concentration in the blood deviates from the upper limit of the homocysteine concentration range in the healthy individual
  • the risk of suffering from the neurodegenerative disease of the test animal it can be determined that the first state is higher than the risk of suffering from the neurodegenerative disease of the healthy individual.
  • the first state determined in such a process is referred to as “first state derived from blood homocysteine concentration in comparison with other”.
  • the methionine concentration in the blood collected from the test animal is compared with the methionine concentration range in the blood of a healthy individual having the same animal and the same age but different from the blood in the blood collected from the test animal.
  • the test animal is not suffering from a neurodegenerative disease because the methionine concentration of the test subject deviates from the upper limit of the methionine concentration range in the healthy individual, the risk of suffering from the neurodegenerative disease of the test animal is It can also be determined that the first state is higher than the individual's risk of suffering from a neurodegenerative disease.
  • the first state determined in such a process is referred to as “a first state derived from the blood methionine concentration in comparison with the other”.
  • the same animal as the test animal has the same meaning as a human if it is a human and a mouse if it is a mouse.
  • a human if it is a human
  • a mouse if it is a mouse.
  • “same age of the same sex” means the same sex (male and female) as the test animal, and the elapsed time (days, years) after the test animal is almost the same.
  • the range of approximately the same age is appropriately determined in consideration of the life of the animal, biological changes, significance of determination, etc. For example, in the case of humans, it is divided into 10 years (30 to 39 years, 40 to 40 years). 49 years old, etc.) or every 5 years (early 30's, late 30's, etc.). For example, in the case of a mouse, it can be determined by a predetermined range of ages.
  • “different healthy individuals” means other individuals in the normal growth state that are not “test animals” but are “same animals as test animals” and “same age of the same age”.
  • the “different healthy individuals” may be one individual or a plurality of individuals, that is, “different healthy individuals”.
  • concentration range of homocysteine and methionine is an average concentration range that can be taken by the above-mentioned healthy individuals (or healthy individuals), and the homocysteine concentration range is 6 ⁇ M or less.
  • these concentration ranges also vary depending on the background of the times, food conditions, medical technology, and how to perceive health.
  • test animal is a neurodegenerative disease reserve using a general blood homocysteine concentration range or blood methionine concentration range in the animal species as a comparative control.
  • the first state derived from the first state derived from the blood methionine concentration in comparison with the other is the first state different from each other, it is determined as the first state for any one reason In this case, the risk of suffering from a neurodegenerative disease is higher than that of a healthy individual, but it is not necessarily determined to be a serious condition.
  • the severity of the neurodegenerative disease reserve army may be determined according to the number.
  • the blood homocysteine or blood methionine concentration in the test individual is higher than the concentration in other different healthy individuals, whether the variation in the concentration is significant, the normal concentration in the healthy individual Judgment can be made in consideration of whether or not to depart from the range.
  • the urine creatinine concentration and the blood creatinine concentration may be further measured.
  • the creatinine concentration in the blood it is possible to determine that the neurodegenerative disease reserve arm is at a higher risk of suffering from a neurodegenerative disease.
  • the ratio between the creatinine concentration in the first urine collected from the test animal and the creatinine concentration in the first blood collected from the test animal is collected from the test animal before the collection of the first urine.
  • the creatinine concentration in the first urine Compared to the ratio of the creatinine concentration in the second urine and the creatinine concentration in the second blood collected from the test animal before the collection of the first blood, the creatinine concentration in the first urine And the ratio of the creatinine concentration in the first blood in the ratio of the creatinine concentration in the first blood to the ratio of the creatinine concentration in the second urine to the creatinine concentration in the second blood.
  • the test animal When the test animal is not suffering from a neurodegenerative disease or is in the first state due to being greater than the ratio of the creatinine concentration in the second blood, the first The risk of suffering from a neurodegenerative disease in the subject animal when collecting urine and blood is higher than the risk of suffering from a neurodegenerative disease in the subject animal when collecting the second urine and blood, and It can be determined that the second state has a higher risk of suffering from a neurodegenerative disease than the first state.
  • the ratio of the blood creatinine concentration in the past of the test animal and the current Comparison with the ratio of urinary creatinine concentration is performed, and when the current ratio is higher than the past ratio, it is determined that the risk of suffering from a neurodegenerative disease is increased compared to the past.
  • the test animal satisfies the condition of the first state, it can be determined that the risk of suffering from a neurodegenerative disease is extremely high. Determine more accurately whether or not a test animal that has not developed a neurodegenerative disease is at a higher risk of suffering from a neurodegenerative disease than in its previous state. be able to.
  • the ratio of the creatinine concentration in blood in the ratio of the creatinine concentration in urine collected from the test animal and the creatinine concentration in blood collected from the test animal is the same as that of the test animal.
  • the test animal becomes neurodegenerative disease
  • the risk of suffering from the neurodegenerative disease of the test animal is higher than the risk of suffering from the neurodegenerative disease of the healthy individual, and the first state It can also be determined that the second state has a higher risk of suffering from a neurodegenerative disease.
  • This method also makes it possible to more accurately determine whether test animals that have not developed neurodegenerative diseases are at a higher risk of suffering from neurodegenerative diseases than those in healthy individuals. It can be performed.
  • the homocysteine concentration in the second blood, the methionine concentration in the second blood, the creatinine concentration in the second urine, the creatinine concentration in the second blood (hereinafter referred to as these) Is generally referred to as second data.) May be data obtained from a single previous inspection, but is more preferably data obtained from a plurality of past inspections.
  • the second data may be an average value of a data group obtained from a plurality of tests performed in the past.
  • homocysteine concentration in the first blood methionine concentration in the first blood, creatinine concentration in the first urine, creatinine concentration in the first blood (hereinafter collectively referred to as the first It is also possible to determine whether the data is in the first state or the second state because it is statistically significantly changed when compared with the second data.
  • Antigens for inoculation to animals that were to produce antibodies were prepared by the method shown in FIG. First, 0.27 mmol of L-homocysteic acid is reacted with 2.7 mmol of excess glutaraldehyde, and the amino group of homocysteic acid is converted with glutaraldehyde as shown in FIG. 4 (a). Modified (HCA-GA).
  • a first anti-homocysteic acid antibody derived from rabbit was obtained.
  • the same operation was performed to obtain a second anti-homocysteine acid antibody that does not compete with the first anti-homocysteine acid antibody.
  • kits for determining whether or not the patient suffers from a neurodegenerative disease were prepared using urine or blood collected from a test animal or plasma obtained from the blood.
  • two types of kits were prepared: a kit employing an immunochromatography method and a kit employing an ELISA method. Specifically, each is as shown below.
  • FIG. 5 A strip-shaped immunochromatography kit A as shown in FIG. 5 was prepared.
  • 5A is an explanatory view showing the immunochromatography kit A in a plan view
  • FIG. 5B is an explanatory view showing the immunochromatography kit A in a side view.
  • the configuration of the immunochromatography kit A is substantially the same as that of a conventionally known general immunochromatography kit, and therefore the description may be omitted except that a characteristic homocysteic acid antibody is used.
  • immunochromatography kit A receives urine, blood or plasma as a sample, and is labeled with a sample pad 10 for uniformly distributing the sample and gold colloid.
  • the sample pad 10 is a part that functions as a urine contact means for contacting urine and a contact means for contacting blood or plasma.
  • the sample pad 10 may be impregnated with a reagent or the like for changing the sample composition as necessary.
  • a contact means for contacting blood it may be configured to serve as a filter for trapping blood cells and the like.
  • a second homocysteic acid antibody is immobilized on the membrane 12, and sandwiched with the first anti-homocysteic acid antibody that is developed together with the urine, blood or plasma water. It was comprised so that it might couple
  • an anti-rabbit antibody was immobilized on the membrane 12 at the position of the control line 12b, and the first anti-homocysteic acid antibody that was not trapped on the test line was bound.
  • kits for determining whether or not a neurodegenerative disease is affected by using an ELISA method is a 96-well sample plate for an ELISA method having a transparent bottom wall, and a first antibody reagent containing a second anti-homocysteic acid antibody And a second antibody reagent containing an anti-rabbit antibody that can bind to the second anti-homocysteic acid, and a coloring reagent containing a coloring substance that develops color with an enzyme bound to the anti-rabbit antibody.
  • a first anti-homocysteic acid antibody is fixed to the inner surface of the bottom wall of each well of the sample plate, and is configured to be able to capture homocysteic acid contained in urine, blood, or plasma contained in the well.
  • Each well is a part that functions as a urine contact means for contacting urine or a contact means for contacting blood or plasma.
  • Samples are healthy subjects, patients with neurodegenerative diseases diagnosed as mild Alzheimer's disease (hereinafter referred to as mild patients), patients with neurodegenerative diseases diagnosed as moderate Alzheimer's disease (hereinafter referred to as intermediate patients), Urine, blood (whole blood), and plasma obtained from patients with neurodegenerative diseases diagnosed as severe Alzheimer's disease (hereinafter referred to as severe patients) were used. The degree of mild, moderate, and severe for each patient is classified according to the MMSE score.
  • the homocysteic acid content contained in each sample was quantified in advance by high performance liquid chromatography.
  • each sample was subjected to a test using a kit using the ELISA method.
  • the same change as the quantitative result by the above-mentioned high performance liquid chromatography was observed.
  • a kit for determining whether or not a patient suffers from a neurodegenerative disease using urine collected from a test animal has the anti-homocysteine acid antibody bound to homocysteic acid contained in urine. It was shown that the smaller the amount of the labeling means, the more the neurodegenerative disease in the subject animal can be displayed.
  • kits for determining whether or not a patient suffers from a neurodegenerative disease using blood collected from a test animal includes the anti-homocysteic acid antibody bound to homocysteic acid contained in blood or plasma. It has been shown that the more the neurodegenerative disease of the test animal is progressing, the more it can be displayed by the change of the labeling means.
  • the samples are healthy rats, mild neurodegenerative disease rats (hereinafter referred to as mild rats), moderate neurodegenerative disease rats (hereinafter referred to as moderate rats), and severe neurodegenerative disease rats (hereinafter referred to as severe rats).
  • Urine, blood (whole blood), and plasma obtained from the above were used. Note that the mild, medium, and severe degrees of each patient are classified according to memory impairment determination by a water maze experiment.
  • the content of homocysteic acid in the blood of the test non-human animal Comparing the content of homocysteic acid in the blood before the animal suffers from neurodegenerative disease, the content of homocysteic acid in the blood of the test non-human animal It has been shown that it can be determined that the neurodegenerative disease of the test non-human animal is progressing as the increase amount increases as the acid content becomes larger.
  • Urine and blood were collected from these subjects.
  • the collected urine samples were stored frozen at ⁇ 20 ° C. without adding preservatives.
  • FIG. 6 is a chromatogram obtained by measuring a homocysteine acid standard sample.
  • FIG. 7A is a calibration curve in a high concentration region, and
  • FIG. 7B is a calibration curve in a low concentration region.
  • FIG. 8 shows a typical chromatogram when a urine sample is measured.
  • FIG. 9 shows a typical chromatogram when a blood sample is measured.
  • control group control group
  • FIG. 10 (b) no relationship could be found in the relationship between the urine homocysteic acid content and the MMSE score.
  • the content of homocysteic acid in urine and / or blood collected from a test animal is examined. Therefore, it can be relatively accurately and easily confirmed whether or not the patient is suffering from a neurodegenerative disease.
  • Group C For a group of 12 subjects consisting of 8 subjects with an MMSE score of 30 to 25 points and 4 subjects with 24 to 10 points (hereinafter these 4 people are collectively referred to as Group C).
  • a neurodegenerative disease test was performed to determine whether or not the patient has a neurodegenerative disease and to determine whether or not the patient is a neurodegenerative disease reserve.
  • Group A Of the 8 subjects with an MMSE score of 30 to 25, 4 are healthy (hereinafter referred to collectively as Group A), and the remaining 4 are forgetful. Those who have visited a medical institution because they are concerned about these (hereinafter, these four people are collectively referred to as group B).
  • the subjects are 70 to 79 years old.
  • Table 3 shows the homocysteic acid concentration in the first urine collection and blood collection and the homocysteic acid concentration in the second urine collection and blood collection.
  • Table 4 shows the values of blood homocysteine, methionine, creatinine, and urine creatinine in the subjects of Group A and Group B determined to be “not affected”.
  • concentration range of each component in healthy individuals is as follows: blood homocysteine concentration is 6 ⁇ M or less, blood methionine concentration is 330 to 440 mM, blood creatinine concentration is 0.4 to 1.1 mg / dl, and urine creatinine concentration is 14 to 26 mg. / kg / day, blood creatinine ratio is 1.5-7.9%.
  • subjects in group B except for No. 7 have a concentration of homocysteine and / or methionine deviating from the range of each component concentration in healthy subjects compared to the first time. Since it was rising, it was determined to be a reserve arm for neurodegenerative diseases. However, subjects No. 5 and No. 8 are judged to be in the first state because there is no significant change in the ratio of blood creatinine in the ratio of the blood creatinine value to the urine creatinine value. It was done.
  • test subject No. 6 the ratio of blood creatinine in the ratio of blood creatinine to urinary creatinine was increased in the second time compared to the first, suggesting a decrease in renal function. It was determined that the patient was in the second state at a higher risk of developing neurodegenerative diseases than the subjects of Nos. 5 and 8.
  • Table 5 shows the MMSE score of each subject tested one year after the second blood collection and urine collection (one and a half years after the first blood collection and urine collection).
  • the subject No. 7 determined not to be a reserve army has a lower score than the subjects No. 5, 6 and 8, although no significant difference was found in the score. Changes were observed.
  • the No. 6 test subject showed a significant decrease in score, confirming that the risk of developing neurodegenerative diseases was higher than that of No. 5 and No. 8 test subjects.
  • Neurodegenerative disease test 1 (Comparison with the general public) [Neurodegenerative disease test 1] described above was performed to determine whether or not the patient is suffering from a neurodegenerative disease or to be a neurodegenerative disease reserve in comparison with his / her past state. However, here, an example will be described in which it is determined whether or not the patient is suffering from a neurodegenerative disease compared to a healthy individual, and whether or not the subject is a neurodegenerative disease reserve.
  • the test subject group in the test 2 for this neurodegenerative disease was the same as the test subject group in the test 1 for neurodegenerative disease described above, a total of 12 people (70 to 79 years old) consisting of 4 people in group A, 4 people in group B, and 4 people in group C. However, there were two men and women in each group.
  • Table 6 shows the urine homocysteic acid concentration and blood homocysteic acid concentration of each subject. The concentration range of each component in healthy subjects is 0.16 to 20 ⁇ M in blood homocysteic acid concentration and 8 to 25 mM in urine homocysteic acid concentration for both men and women.
  • subjects in Group A and Group B suffer from neurodegenerative diseases because there is no deviation from the general concentration range in urinary homocysteic acid and blood homocysteic acid concentrations. In the determination of whether or not they are both, it was determined that they were “not affected”. On the other hand, in the subjects of group C, the blood homocysteic acid concentration deviated from the upper limit of the range of the homocysteic acid concentration in healthy subjects, and the urine homocysteic acid concentration was also in the urine homocysteine in healthy subjects. Both were determined to be “affected” because they were outside the lower limit of the acid concentration range.
  • Table 7 shows the values of blood homocysteine, methionine, creatinine, and urine creatinine in the subjects of Group A and Group B determined to be “not affected”.
  • concentrations of each component in healthy subjects are as follows: blood homocysteine concentration is 6 ⁇ M or less, blood methionine concentration is 330 to 440 mM, blood creatinine concentration is 0.4 to 1.1 mg / dl, and urine creatinine concentration is 14 for both men and women. ⁇ 26mg / kg / day, blood creatinine ratio is 1.5 ⁇ 7.9%.
  • Group B subjects (No. 5, No. 7, No. 8) except for No. 6 are in the neurodegenerative disease reserve army because homocysteine and / or methionine concentrations deviate from the general concentration range. It was determined that there was. However, subjects No. 5 and No. 7 were determined to be in the first state because there was no deviation in the ratio of blood creatinine in the ratio of the blood creatinine value to the urine creatinine value.
  • the number 8 test subject deviates from the general range of blood creatinine in the ratio of blood creatinine and urine creatinine, suggesting a decrease in renal function. It was determined that the patient was in the second state at a higher risk of developing a neurodegenerative disease than the No. 5 and No. 7 subjects.
  • Table 8 shows the MMSE score of each subject tested one year after blood collection and urine collection.
  • the No. 8 test subject showed a significant decrease in the score, confirming that the risk of developing neurodegenerative disease was higher than that of the No. 5 and No. 7 test subjects.
  • the homocysteic acid concentration in urine collected from a test animal and the homocysteic acid concentration in blood collected from the test animal are the same. Since it was decided to measure the homocysteine and / or methionine concentration in the blood, there is less burden on test animals including humans, the signs of neurodegenerative diseases can be confirmed relatively accurately and easily, It is possible to provide a test method for a neurodegenerative disease that can determine whether or not there is a high risk of suffering from a neurodegenerative disease in the future as well as the presence or absence of the neurodegenerative disease.
  • the rabbit is used when preparing the first anti-homocysteine acid antibody and the second anti-homocysteine acid antibody, but the present invention is not limited to this. Any animal can be used as long as it is generally used for antibody preparation.
  • a first anti-homocysteic acid antibody and a second anti-homocysteine acid antibody are allowed to appear in milk using, for example, a dairy cow as an immunized animal, it is possible to easily prepare a large amount of these antibodies.
  • the antibody fixed to the control line of the immunochromatography kit A and the secondary antibody in the kit using the ELISA method are changed according to the kind of the immunized animal so as to be able to bind to the homocysteic acid antibody. Yes.

Abstract

 ヒトを含む被験動物に対して負担が少なく、しかも、神経変性疾患の罹患の有無のみならず、将来的に神経変性疾患に罹患するリスクが高いか否かについても判定することのできる神経変性疾患の検査方法を提供する。 被験動物から採取した尿中のホモシステイン酸濃度と、前記被験動物から採取した血液中のホモシステイン酸濃度と、同血液中のホモシステイン及び/又はメチオニン濃度とを測定することとした。さらに、尿中のクレアチニン濃度と、血液中のクレアチニン濃度とを測定することなどにも特徴を有する。

Description

神経変性疾患の検査方法
 本発明は、神経変性疾患の罹患の有無のみならず、将来的に神経変性疾患に罹患するリスクが高いか否かについても判定することのできる神経変性疾患の検査方法に関する。
 従来、アルツハイマー病(アルツハイマー型認知症)やレビー小体型認知症、脳血管性認知症などの変性性認知症は、神経変性疾患の代表的な症例として知られている。
 例えば、これら神経変性疾患のうち、アルツハイマー病は、過去の出来事の記憶が失われてしまったり、新しい出来事を記憶するのが困難となる等の病状を示すのが特徴的である。
 このような病状は、何等手立てを打たないままであると、経時的に徐々に進行することとなり、日常生活において極めて重大な支障を来すこととなってしまう場合がある。
 したがって、早期にこれら神経変性疾患の兆候を確認し、病状の進行に対して有効な手立てを打つことが重要である。
 そこで、患者を被験者として複数の質問を行うことにより、神経変性疾患の兆候や進行度合いを確認するテスト等が行われている(例えば、特許文献1参照。)。
 このようなテストによれば、早期にできるだけ簡単にアルツハイマー病の診断を行うことができるとしている。
2010-187959号公報
 しかしながら、上記従来のテストでは、神経変性疾患の進行度合いを必ずしも迅速に把握するのが困難な場合があった。
 そこで、比較的迅速に神経変性疾患の進行度合いを把握可能な方法が望まれている。
 また、既に神経変性疾患に罹患しているか否かの判定のみならず、将来的に神経変性疾患に罹患する可能性が高いか否か、すなわち、神経変性疾患予備軍であるか否かについて知ることができれば、発症を遅らせたり回避すべく、日々の生活の中で何らかの対処を行うことも可能となる。
 それゆえ、神経変性疾患に罹患しているか否かの判定と共に、神経変性疾患の予備軍であるか否かについて知ることのできる神経変性疾患の検査方法が望まれている。
 また、神経変性疾患の研究においては、神経変性疾患の病態を示すマウスやラット等の非ヒト動物が用いられているが、これら研究用の非ヒト動物においても、容易且つ正確に神経変性疾患の兆候を確認することができれば、研究において極めて有用である。
 本発明は、斯かる事情に鑑みてなされたものであって、ヒトを含む被験動物に対して負担が少なく、しかも、神経変性疾患の罹患の有無のみならず、将来的に神経変性疾患に罹患するリスクが高いか否かについても判定することのできる神経変性疾患の検査方法を提供する。
 上記従来の課題を解決するために、請求項1に係る本発明では、神経変性疾患の検査方法において、被験動物から採取した尿中のホモシステイン酸濃度と、前記被験動物から採取した血液中のホモシステイン酸濃度と、同血液中のホモシステイン及び/又はメチオニン濃度とを測定することとした。
 また、請求項2に係る本発明では、請求項1に記載の神経変性疾患の検査方法において、前記被験動物から採取した第1の血液中のホモシステイン濃度を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のホモシステイン濃度と比較して、前記第1の血液中のホモシステイン濃度が、前記第2の血液中のホモシステイン濃度より大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することに特徴を有する。
 また、請求項3に係る本発明では、請求項1又は請求項2に記載の神経変性疾患の検査方法において、前記被験動物から採取した第1の血液中のメチオニン濃度を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のメチオニン濃度と比較して、前記第1の血液中のメチオニン濃度が、前記第2の血液中のメチオニン濃度より大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することに特徴を有する。
 また、請求項4に係る本発明では、請求項1に記載の神経変性疾患の検査方法において、前記被験動物から採取した血液中のホモシステイン濃度を、前記被験動物と同じ動物で同性略同齢の異なる健常個体における血液中のホモシステイン濃度範囲と比較して、前記被験動物から採取した血液中のホモシステイン濃度が、前記健常個体におけるホモシステイン濃度範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することに特徴を有する。
 また、請求項5に係る本発明では、請求項1又は請求項4に記載の神経変性疾患の検査方法において、前記被験動物から採取した血液中のメチオニン濃度を、前記被験動物と同じ動物で同性略同齢の異なる健常個体における血液中のメチオニン濃度範囲と比較して、前記被験動物から採取した血液中のメチオニン濃度が、前記健常個体におけるメチオニン濃度範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することに特徴を有する。
 また、請求項6に係る本発明では、請求項1~5いずれか1項に記載の神経変性疾患の検査方法において、さらに、前記尿中のクレアチニン濃度と、前記血液中のクレアチニン濃度とを測定することに特徴を有する。
 また、請求項7に係る本発明では、請求項6に記載の神経変性疾患の検査方法において、前記被験動物から採取した第1の尿中のクレアチニン濃度と前記被験動物から採取した第1の血液中のクレアチニン濃度との比を、前記第1の尿の採取以前に前記被験動物より採取した第2の尿中のクレアチニン濃度と前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のクレアチニン濃度との比と比較して、前記第1の尿中のクレアチニン濃度と前記第1の血液中のクレアチニン濃度との比における第1の血液中のクレアチニン濃度の割合が、前記第2の尿中のクレアチニン濃度と前記第2の血液中のクレアチニン濃度との比における前記第2の血液中のクレアチニン濃度の割合よりも大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の尿及び血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の尿及び血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高く、且つ、前記第1の状態よりも神経変性疾患の罹患リスクが高い第2の状態であると判定することに特徴を有する。
 また、請求項8に係る本発明では、請求項6に記載の神経変性疾患の検査方法において、前記被験動物から採取した尿中のクレアチニン濃度と前記被験動物から採取した血液中のクレアチニン濃度との比における血液中のクレアチニン濃度の割合が、前記被験動物と同じ動物で同性略同齢の異なる健常個体における尿中のクレアチニン濃度と前記健常個体における血液中のクレアチニン濃度との比における血液中のクレアチニン濃度の割合の範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高く、且つ、前記第1の状態よりも神経変性疾患の罹患リスクが高い第2の状態であると判定することに特徴を有する。
 請求項1に係る本発明によれば、被験動物から採取した尿中のホモシステイン酸濃度と、前記被験動物から採取した血液中のホモシステイン酸濃度と、同血液中のホモシステイン及び/又はメチオニン濃度とを測定することとしたため、ヒトを含む被験動物に対して負担が少なく、神経変性疾患の兆候を比較的正確且つ容易に確認することができ、しかも、神経変性疾患の罹患の有無のみならず、将来的に神経変性疾患に罹患するリスクが高いか否かについても判定することのできる神経変性疾患の検査方法を提供することができる。
 また、請求項2に係る本発明によれば、前記被験動物から採取した第1の血液中のホモシステイン濃度を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のホモシステイン濃度と比較して、前記第1の血液中のホモシステイン濃度が、前記第2の血液中のホモシステイン濃度より大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することとしたため、神経変性疾患が発症していない被験動物が神経変性疾患予備軍であるか否かについて、自らの過去の状態と比較してより的確に判定を行うことができる。
 また、請求項3に係る本発明によれば、前記被験動物から採取した第1の血液中のメチオニン濃度を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のメチオニン濃度と比較して、前記第1の血液中のメチオニン濃度が、前記第2の血液中のメチオニン濃度より大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することとしたため、神経変性疾患が発症していない被験動物が神経変性疾患予備軍であるか否かについて、自らの過去の状態と比較してより的確に判定を行うことができる。
 また、請求項4に係る本発明によれば、前記被験動物から採取した血液中のホモシステイン濃度を、前記被験動物と同じ動物で同性略同齢の異なる健常個体における血液中のホモシステイン濃度範囲と比較して、前記被験動物から採取した血液中のホモシステイン濃度が、前記健常個体におけるホモシステイン濃度範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することとしたため、神経変性疾患が発症していない被験動物が神経変性疾患予備軍であるか否かについて、健常個体と比較してより的確に判定を行うことができる。
 また、請求項5に係る本発明によれば、前記被験動物から採取した血液中のメチオニン濃度を、前記被験動物と同じ動物で同性略同齢の異なる健常個体における血液中のメチオニン濃度範囲と比較して、前記被験動物から採取した血液中のメチオニン濃度が、前記健常個体におけるメチオニン濃度範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することとしたため、神経変性疾患が発症していない被験動物が神経変性疾患予備軍であるか否かについて、健常個体と比較してより的確に判定を行うことができる。
 また、請求項6に係る本発明によれば、さらに、前記尿中のクレアチニン濃度と、前記血液中のクレアチニン濃度とを測定することとしたため、神経変性疾患予備軍の中でも、より神経変性疾患の罹患リスクの高い状態であることを判定することができる。
 また、請求項7に係る本発明によれば、前記被験動物から採取した第1の尿中のクレアチニン濃度と前記被験動物から採取した第1の血液中のクレアチニン濃度との比を、前記第1の尿の採取以前に前記被験動物より採取した第2の尿中のクレアチニン濃度と前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のクレアチニン濃度との比と比較して、前記第1の尿中のクレアチニン濃度と前記第1の血液中のクレアチニン濃度との比における第1の血液中のクレアチニン濃度の割合が、前記第2の尿中のクレアチニン濃度と前記第2の血液中のクレアチニン濃度との比における前記第2の血液中のクレアチニン濃度の割合よりも大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の尿及び血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の尿及び血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高く、且つ、前記第1の状態よりも神経変性疾患の罹患リスクが高い第2の状態であると判定することとしたため、神経変性疾患が発症していない被験動物が神経変性疾患予備軍の中でもより神経変性疾患の罹患リスクの高い状態であるか否かについて、自らの過去の状態と比較してより的確に判定を行うことができる。
 また、請求項8に係る本発明によれば、前記被験動物から採取した尿中のクレアチニン濃度と前記被験動物から採取した血液中のクレアチニン濃度との比における血液中のクレアチニン濃度の割合が、前記被験動物と同じ動物で同性略同齢の異なる健常個体における尿中のクレアチニン濃度と前記健常個体における血液中のクレアチニン濃度との比における血液中のクレアチニン濃度の割合の範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高く、且つ、前記第1の状態よりも神経変性疾患の罹患リスクが高い第2の状態であると判定することとしたため、神経変性疾患が発症していない被験動物が神経変性疾患予備軍の中でもより神経変性疾患の罹患リスクの高い状態であるか否かについて、健常個体と比較してより的確に判定を行うことができる。
被験者の認知機能検査のスコアと尿中のホモシステイン酸濃度との関係を示したグラフである。 被験者の認知機能検査のスコアと血中のホモシステイン酸濃度との関係を示したグラフである。 被験者の尿中ホモシステイン酸濃度と血中ホモシステイン酸濃度との関係を示したグラフである。 抗原の合成過程を示した説明図である。 本実施形態に係るイムノクロマトキットの構成を示した説明図である。 ホモシステイン酸標品サンプルを測定したクロマトグラムである。 (a)は高濃度領域における検量線、(b)は低濃度領域における検量線である。 尿サンプルを測定した際のクロマトグラムである。 血液サンプルを測定した際のクロマトグラムである。 尿中ホモシステイン酸含量とMMSEスコアとの相関を示した説明図である。 試験群女性又は男性被験者における相関を示した説明図である。 血中ホモシステイン酸含量とMMSEスコアとの相関を示した説明図である。
 本発明は、被験動物の神経変性疾患の検査方法を提供するものであり、特に、神経変性疾患の罹患の有無のみならず、将来的に神経変性疾患に罹患するリスクが高いか否かについても判定することのできる神経変性疾患の検査方法を提供するものである。
 本実施形態において説明する、神経変性疾患の検査方法、換言すれば、被験動物の神経変性疾患の進行度合いや神経変性疾患予備軍であるか否かを判定する方法(以下、単に検査方法ともいう。)は、本願発明者らの鋭意研究により得られた新たな知見に基づくものである。
 そこで、発明の理解を容易とするために、まずはこれら新たな知見について図面を参照しながら説明する。
 従来、神経変性疾患の発病原因は、一般に老人斑として知られているアミロイドβ42が神経細胞の外に蓄積し、その後神経細胞内に繊維状の塊である神経原繊維であるタウと呼ばれるタンパクが蓄積し、その結果神経細胞の機能が障害されて神経細胞の死を迎えることにより起こると理解されている。
 しかしながら、上述のアミロイドタンパクは、近年の研究によって健常者の脳内にも十分量蓄積していることが観察されている。
 また、神経変性疾患の前駆症状であるMCI(Mild Cognitive Impairment)の患者や、神経変性疾患の患者においても、健常者と同様にアミロイドタンパクが蓄積していることが観察されている。
 これらの事実から、なぜ健常者は、神経変性疾患の患者と同様にアミロイドタンパクが蓄積しているにもかかわらず、認知機能の正常性を保つことができるのかが問題となっている。
 本願発明者は、この点について研究を重ねたところ、図1~図3に示す結果が得られた。図1は被験者の認知機能検査(MMSE:Mini-Mental State Examination)のスコアと尿中のホモシステイン酸濃度との関係を示したグラフであり、図2は被験者の認知機能検査のスコアと血中のホモシステイン酸濃度との関係を示したグラフであり、図3は被験者の尿中ホモシステイン酸濃度と血中ホモシステイン酸濃度との関係を示したグラフである。
 本発明者が尿中のホモシステイン酸濃度に着目したところ、図1に示すように、認知機能検査のスコアと尿中のホモシステイン酸濃度とは正の相関を示すことが分かった。
 また、血中のホモシステイン酸濃度に着目したところ、図2に示すように、認知機能検査のスコアと血中のホモシステイン酸濃度とは逆の相関を示すことが分かった。
 また、尿中及び血中のホモシステイン酸濃度を検討すると、図3に示すように、逆の相関を示すことが分かった。
 これらの結果から、本発明者は、ホモシステイン酸が神経の変性において重要な役割を担っていることを見出した。
 すなわち、神経変性疾患に罹患している患者は、症状の進行に伴って尿中へのホモシステイン酸の排出が抑制され、血中のホモシステイン酸濃度が上昇する。
 血中のホモシステイン酸濃度が上昇すると、血液脳関門(blood-brain barrier)を突破し、ホモシステイン酸が脳内に侵入する。
 脳内においてアミロイドタンパクが神経変性作用を生起するためには、グルタメート系のNMDA受容体の活性化が必要であり、脳内に侵入したホモシステイン酸は、NMDA受容体のアゴニスト、換言すればNMDA受容体を刺激する伝達物質として機能するということが分かった。
 また、本願発明者は、医学研究者として日頃から数多くの神経変性疾患患者と接してきている。このような中で、患者の自宅などにおいて、例えば家族らによって簡便に神経変性疾患の進行度合いを確認し一次スクリーニングを行うことができれば、早期に疾患を発見し、早期の治療に役立つと考えた。
 また、このようにして一次スクリーニングを終えた患者が来院した際には、より定量的に尿中又は血中のホモシステイン酸含量を測定することで、医師や医療従事者によって、患者の神経変性疾患の進行度合いを容易且つ速やかに把握することが可能となると考えた。
 また、前述したように、これら神経変性疾患の研究現場では、多くの試験動物を用いて研究が行われているが、従来より提案されている神経変性疾患のバイオマーカは、脳や脊髄にアクセスが必要であるなど極めて侵襲的な方法によって得られるものが多く、試験結果へのバイアスとなる可能性について懸念があった。
 本発明は、本願発明者が上述のような状況やデータを踏まえ、本実施形態に係る神経変性疾患の検査方法における神経変性疾患の罹患の有無の判定について完成するに至ったものである。
 ところで、本明細書の課題でも述べたが、神経変性疾患の検査においては、既に神経変性疾患に罹患しているか否かの判定のみならず、将来的に神経変性疾患に罹患する可能性が高いか否か、すなわち、神経変性疾患予備軍であるか否かについても判定できるのが望ましい。
 例えば被験動物がヒトである場合、変性神経疾患予備軍であることを知ることができれば、発症を遅らせたり回避すべく、日々の生活の中で何らかの対処を行うことも可能となる。
 それゆえ、神経変性疾患に罹患しているか否かの判定と共に、神経変性疾患の予備軍であるか否かについて知ることのできる神経変性疾患の検査方法が望まれていた。
 そこで本発明者は、このような状況に鑑み、神経変性疾患発症予備軍の検査について発症機序に着眼しつつ更に研究を進めた。
 その結果、前述のホモシステイン酸は、ホモシステインやメチオニンが腎臓の尿細管に存在するシスタチオニン-β-シンターゼ(CBS)に触媒されて生成することを突き止めた。
 また、腎臓の機能が低下すると、本来であれば再吸収されないホモシステイン酸が再吸収されてしまい、血中におけるホモシステイン酸濃度が高まって神経変性疾患を助長することが分かった。
 すなわち、血中のホモシステインやメチオニンの濃度が高い被験動物は、神経変性疾患を発症する可能性が高い状態(第1の状態)であるといえる。
 また、この第1の状態に加えて、腎機能の低下が予見される場合や、実際に腎機能が低下している場合には、前述の第1の状態に比して更に神経変性疾患の発症リスクが高い状態(第2の状態)であるといえる。
 これらのように、神経変性疾患の具体的な症状が発症していなくとも、血中のホモシステインやメチオニン濃度を測定し、必要に応じて更に腎機能状態を探ることにより、将来的に神経変性疾患に罹患するリスクが高いか否かについても判定することのできる神経変性疾患の検査方法を完成させた。
 すなわち、本発明に係る神経変性疾患の検査方法では、被験動物から採取した尿中のホモシステイン酸濃度と、前記被験動物から採取した血液中のホモシステイン酸濃度と、同血液中のホモシステイン及び/又はメチオニン濃度とを測定することとした。
 付言すれば、本発明は、被験動物から採取した尿中のホモシステイン酸濃度と、前記被験動物から採取した血液中のホモシステイン酸濃度と、同血液中のホモシステイン及び/又はメチオニン濃度との測定を含む、前記被験動物における神経変性疾患の状態を判定する方法についての概念も包含するものである。
 更に付言するならば、本実施形態に係る神経変性疾患の検査方法は、被験動物から採取した尿中のホモシステイン酸濃度と、前記被験動物から採取した血液中のホモシステイン酸濃度とを測定する、神経変性疾患に罹患しているか否かの判定と、血液中のホモシステイン及び/又はメチオニン濃度とを測定する神経変性疾患予備軍であるか否かの判定とを行うものであると言える。
 ここで神経変性疾患とは、神経細胞が障害を受けて神経死を招く疾患を総称するものである。このような疾患について具体的に示すならば、例えばヒトの場合、アルツハイマー病やレビー小体型認知症などの変性性認知症と解釈することができる。また、非ヒト動物の場合は、これらアルツハイマー病やレビー小体型認知症などの変性性認知症と同様の機序により発症する疾病であると解釈することができる。
 また、本明細書において被験動物とは、ヒトと、非ヒト動物との両者を含む概念である。
 前記被験動物より採取した尿を用いた神経変性疾患に罹患しているか否かの判定にあたっては、例えばキットを用いて行うことができる。また、前記被験動物より採取した血液を用いた神経変性疾患に罹患しているか否かの判定にあたっても、キットを用いて行うことができる。
 すなわち、本明細書において示す被験動物が神経変性疾患に罹患しているか否かを判定するためのキットは、被験動物から得られた尿を用いるものと、被験動物から得られた血液を用いるものとがあるが、いずれも、尿中又は血中に含まれるホモシステイン酸の含量により判定を行う点に特徴を有している。
 具体的には、被験動物より採取した尿を用いて神経変性疾患に罹患しているか否かを判定するためのキットでは、前記尿と接触させる尿接触手段と、前記尿接触手段に接触させた尿の中に含まれるホモシステイン酸を抗原とする抗ホモシステイン酸抗体と、前記抗ホモシステイン酸抗体の前記尿中のホモシステイン酸への結合量に応じて変化する標識手段と、を備え、前記尿中に含まれるホモシステイン酸に結合した前記抗ホモシステイン酸抗体が少ない程、前記標識手段の変化によって前記被験動物の神経変性疾患が進行していることを表示可能としたものであっても良い。
 尿は、被験動物から採取するに際し、被験動物に対して非侵襲的であることから、神経変性疾患の進行度合いの評価を行うときの被験動物への負担を飛躍的に軽減することができる。
 特に、被験動物がヒトである場合には、高齢者に対する負担を可及的防止することができる。また、被験動物が試験・研究等に用いられる非ヒト動物である場合には、非ヒト動物に対する侵襲の影響を排除しつつ、神経変性疾患の研究を行うことができる。なお、試験に供する尿は、比重補正等を施して他のサンプルと比較可能な状態としておくことが望ましい。
 また、被験動物より採取した血液を用いて神経変性疾患に罹患しているか否かを判定するためのキットでは、前記血液又は前記血液より得られる血漿を接触させる接触手段と、前記接触手段に接触させた血液又は血漿中に含まれるホモシステイン酸を抗原とする抗ホモシステイン酸抗体と、前記抗ホモシステイン酸抗体の前記血液又は血漿中のホモシステイン酸への結合量に応じて変化する標識手段と、を備え、前記血液又は血漿中に含まれるホモシステイン酸に結合した前記抗ホモシステイン酸抗体が多い程、前記標識手段の変化によって前記被験動物の神経変性疾患が進行していることを表示可能としたものであっても良い。
 ここで、接触手段に接触させるサンプルは、血液(全血)又は血漿のいずれであっても良い。特に血漿を用いれば、すでに血球等が除かれているため、より円滑に評価を行うことができる。また、血漿も、トリクロロ酢酸(TCA)等を用いて除タンパク処理を行えば、より評価に適したサンプルとすることができる。
 これら尿や血液を用いて神経変性疾患に罹患しているか否かを判定するためのキットは、上述の構成を備えていれば特に限定されるものではなく、あらゆる形態にて提供されうるものである。例えば、後述する神経変性疾患予備軍であるか否かの判定を行うべく、ホモシステイン酸の検出に加えて、ホモシステインやメチオニン、クレアチニンの濃度を検出できるようにしても良いし、神経変性疾患予備軍であるか否かの判定のみを行うべく、ホモシステインやメチオニン、クレアチニンの濃度を検出できるようにしても良い。
 このようなキットとして一例を示すとすれば、イムノクロマト法を採用したキットや、ELISA(Enzyme-Linked ImmunoSorbent Assay)を採用したキットなどを挙げることができる。
 例えば、イムノクロマト法を採用したキットとして尿や血液を用いて神経変性疾患に罹患しているか否かを判定するためのキットを実現した場合には、尿と接触させる尿接触手段や血液又は前記血液より得られる血漿を接触させる接触手段は、サンプルパッドの部分と解釈することができる。
 また、イムノクロマト法を採用したキットの場合、尿や血液又は血漿中に含まれるホモシステイン酸を抗原とする抗ホモシステイン酸抗体は、コンジュゲートパッドの部分や、テストラインの部分に含まれることとなる。なお、神経変性疾患予備軍であるか否かの判定を行うキット、或いは両者同時に判定を行うキットにおけるホモシステインやメチオニン、クレアチニンについても同様である。
 また、イムノクロマト法を採用したキットの場合、抗ホモシステイン酸抗体の尿中や血液又は血漿中のホモシステイン酸への結合量に応じて変化する標識手段としては、例えば、コンジュゲートパッドに含まれる抗ホモシステイン酸抗体に結合させた金コロイド等の標識物質やメンブレン、メンブレン上にライン状に配置した抗ホモシステイン酸抗体等からなる一連の表示(発色)システムと解することができる。なお、神経変性疾患予備軍であるか否かの判定を行うキット、或いは両者同時に判定を行うキットにおけるホモシステインやメチオニン、クレアチニンについても同様である。
 このように、神経変性疾患に罹患しているか否かを判定するためのキットや、神経変性疾患予備軍であるか否かの判定を行うキット、或いは両者同時に判定を行うキットにおいてイムノクロマト法を採用した場合には、保存安定性や判定の容易性が良好であり、特別な装置を必要とすることなく被験動物の神経変性疾患の進行度合いを、被験動物より採取した尿や血液又は血漿を用いて判定することができる。
 一方、ELISA法を採用したキットとして尿や血液を用いて神経変性疾患に罹患しているか否かを判定や、神経変性疾患予備軍であるか否かの判定を行うためのキットを実現した場合には、尿と接触させる尿接触手段や血液又は前記血液より得られる血漿を接触させる接触手段は、マイクロプレート等に形成されたウェル等と解釈することができる。
 また、ELISA法を採用したキットの場合、尿や血液又は血漿中に含まれるホモシステイン酸を抗原とする抗ホモシステイン酸抗体は、ウェル底部や、一次抗体として備えられることとなる。なお、神経変性疾患予備軍であるか否かの判定を行うキット、或いは両者同時に判定を行うキットにおけるホモシステインやメチオニン、クレアチニンについても同様である。
 また、ELISA法を採用したキットの場合、抗ホモシステイン酸抗体の尿中や血液又は血漿中のホモシステイン酸への結合量に応じて変化する標識手段としては、例えば、一次抗体又は二次抗体に結合させた酵素等の標識物質等と解することができる。なお、神経変性疾患予備軍であるか否かの判定を行うキット、或いは両者同時に判定を行うキットにおけるホモシステインやメチオニン、クレアチニンについても同様である。
 このように、神経変性疾患に罹患しているか否かを判定するためのキットや、神経変性疾患予備軍であるか否かの判定を行うキット、或いは両者同時に判定を行うキットにおいてELISA法を採用した場合には、定量性を良好とすることができ、被験動物の神経変性疾患の進行度合いを、被験動物より採取した尿や血液又は血漿を用いて判定することができる。
 上述してきたように、尿や血液を用いて神経変性疾患に罹患しているか否かを判定するためのキットや、神経変性疾患予備軍であるか否かの判定を行うキット、或いは両者同時に判定を行うキットによれば、ヒトを含む被験動物に対して負担が少なく、神経変性疾患の兆候や進行度合いを比較的正確且つ容易に確認可能なキットとすることができる。すなわち、本明細書中には、被験動物から採取した尿中又は血液中におけるホモシステイン酸を検出するための抗ホモシステイン酸抗体を含む、神経変性疾患の診断薬についての概念も含まれている。また、ホモシステインやメチオニン、クレアチニンについても検出可能として神経変性疾患予備軍であるか否かの判定に供することのできる神経変性疾患予備軍の診断薬についての概念も含まれている。
 また、本明細書は、被験動物の神経変性疾患の進行度合いや神経変性疾患予備軍であるか否かを同被験動物より採取した尿や血液を用いて判定する方法についての概念も含んでいる。
 すなわち、本実施形態に係る神経変性疾患の検査方法では、被験動物から採取した尿中及び/又は血液中のホモシステイン酸含量と、血液中のホモシステイン及び/又はメチオニン濃度とを調べることとしている。
 本実施形態に係る神経変性疾患の検査方法を実施するにあたって行われる尿中及び/又は血液中のホモシステイン酸含量の測定は特に限定されるものではない。例えば、前述のキットを使用しても良く、また、各種クロマトを行うことにより定量しても良い。これは、神経変性疾患予備軍であるか否かの判定におけるホモシステインやメチオニン、クレアチニンについても同様である。
 本実施形態に係る検査方法では、尿を用いて神経変性疾患に罹患しているか否かを判定するにあたっては、被験動物から採取した第1の尿中のホモシステイン酸含量を、前記第1の尿の採取以前に前記被験動物より採取した第2の尿中のホモシステイン酸含量と比較して、前記第1の尿中のホモシステイン酸含量が、健常個体における尿中のホモシステイン酸含量の適正範囲を逸脱しつつ、前記第2の尿中のホモシステイン酸含量より小さくなったことにより、その減少量が大きいほど前記被験動物の神経変性疾患が進行しているものと判定する。
 このことは、先に示した図1及び図3の結果に基づくものであり、尿へのホモシステイン酸の排出量が抑制される程、脳細胞への障害が進み、神経変性疾患が進行することに由来している。
 このように、尿を用いて神経変性疾患の進行度合いを判定することができれば、被験動物に対して極めて非侵襲的に、被験動物の神経変性疾患の進行度合いを評価・判定することが可能となる。
 また、別の視点によれば、本明細書は、被験動物が神経変性疾患に罹患しているか否かを判定するに際して、前記被験動物より採取した第1の尿中におけるホモシステイン酸の含有量と前記第1の尿の採取以前に前記被験動物より採取した第2の尿中のホモシステイン酸含有量とを比較して前記被験動物に対して非侵襲的に神経変性疾患の進行度合いを判定するための、少なくとも前記第1の尿中におけるホモシステイン酸の含有量と、前記第2の尿中におけるホモシステイン酸の含有量との比が分かるデータを使用することについての概念も包含するものとも言える。
 すなわち、上述のような尿中のホモシステイン酸のデータを神経変性疾患の進行度合いの判定に利用することにより、被験動物に対して極めて非侵襲的に、被験動物の神経変性疾患の進行度合いを評価・判定することが可能となるのである。
 なお付言すれば、被験動物より採取した第1の尿中におけるホモシステイン酸の含有量と、第1の尿の採取以前に被験動物より採取した第2の尿中のホモシステイン酸含有量とを比較する場合にあっては、各サンプル中のホモシステイン酸含有比率が分かれば良く、必ずしも定量を必要としない。
 例えば、各サンプルを高速液体クロマトグラフに供し、検量線と対比することなく(定量することなく)、ピーク面積同士を比較して、神経変性疾患の進行度合いを把握するようにしても良い。
 すなわち、本明細書におけるホモシステイン酸含量とは、定量的な量をいうのは勿論のこと、比較対照サンプルに対して何倍などの比率についても含む概念である。
 また、血液を用いて神経変性疾患に罹患しているか否かを判定する方法においては、被験動物から採取した第1の血液中のホモシステイン酸含量を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のホモシステイン酸含量と比較して、前記第1の血液中のホモシステイン酸含量が、健常個体における血液中のホモシステイン酸含量の適正範囲を逸脱しつつ、前記第2の血液中のホモシステイン酸含量より大きくなったことにより、その増加量が大きいほど前記被験動物の神経変性疾患が進行しているものと判定することができる。
 このことは、先に示した図2及び図3の結果に基づくものであり、血中にホモシステイン酸が多くなる程、脳細胞への障害が進み、神経変性疾患が進行することに由来している。
 このように、血液を用いて神経変性疾患の進行度合いを判定することができれば、被験動物に対し、従来のバイオマーカーによる検査に比して非侵襲的に、被験動物の神経変性疾患の進行度合いを評価・判定することが可能となる。
 また、別の視点によれば、本明細書は、被験動物の神経変性疾患の進行度合いを判定するに際して、前記被験動物より採取した第1の血液中におけるホモシステイン酸の含量と前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のホモシステイン酸含量とを比較して神経変性疾患の進行度合いを判定するための、少なくとも前記第1の血液中におけるホモシステイン酸の含量と、前記第2の血液中のホモシステイン酸含量との比が分かるデータを使用することについての概念も含むものとも言える。
 すなわち、上述のような血中のホモシステイン酸含量のデータを神経変性疾患の進行度合いを判定に利用することによっても、被験動物に対し、従来のバイオマーカーによる検査に比して非侵襲的に、被験動物の神経変性疾患の進行度合いを評価・判定することが可能となるのである。
 また、上述した血液中に含まれるホモシステイン酸含量と、尿中に含まれるホモシステイン酸含量との両者を加味して、神経変性疾患の診断、検査等を検討するようにしても良い。
 例えば、以下の工程(a)~(d)を含む、被験動物の神経変性疾患の検査法とすることで、より正確な神経変性疾患に罹患しているか否かの判定を行うことが可能となる。
(a)被験動物から尿及び血液を採取する工程;
(b)前記尿中及び血液中のホモシステイン酸を検出する工程;
(c)前記尿中のホモシステイン酸含量と、前記血液中のホモシステイン酸含量とを比較する工程;
(d)比較結果に基づき、神経変性疾患に罹患しているか否かを判定する工程。
 このように、本明細書にて言及する神経変性疾患に罹患しているか否かの判定によれば、被験動物に対して負担が少なく、神経変性疾患の兆候を比較的正確且つ容易に神経変性疾患に罹患しているか否かを検査できる。
 付言すれば、本明細書は、被験動物より採取した血中又は尿中に含まれるホモシステイン酸を、神経変性疾患に罹患しているか否かの判定のためのバイオマーカーとして使用することについても提案するものであるとも言える。
 すなわち、ホモシステイン酸からなる、神経変性疾患に罹患しているか否かの判定のためのバイオマーカーや、被験者より採取された尿中又は血液中のホモシステイン酸量を指標とした神経変性疾患に罹患しているか否かの判定を行う検査法も含む。
 ここまで、神経変性疾患に罹患しているか否かの判定を中心に言及してきたが、次に、神経変性疾患予備軍であるか否かの判定を中心に説明する。
 本実施形態に係る神経変性疾患の検査方法では、神経変性疾患予備軍であるか否かの判定を行うべく、被験動物から採取した血液中のホモシステイン及び/又はメチオニン濃度を測定することとしている。したがって、ヒトを含む被験動物に対して負担が少なく、神経変性疾患の兆候を比較的正確且つ容易に確認することができ、しかも、神経変性疾患の罹患の有無のみならず、将来的に神経変性疾患に罹患するリスクが高いか否かについても判定することのできる神経変性疾患の検査方法を提供することができる。
 神経変性疾患予備軍であるか否かの判定に際しては、例えば、被験動物から採取した第1の血液中のホモシステイン濃度を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のホモシステイン濃度と比較して、前記第1の血液中のホモシステイン濃度が、健常個体における血液中のホモシステイン濃度の適正範囲を逸脱しつつ前記第2の血液中のホモシステイン濃度より大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高い第1の状態であると判定するようにしても良い。なお、以下の説明において、このような過程で判断された第1の状態を「過去との比較における血中ホモシステイン濃度に由来する第1の状態」と称する。
 また、前記被験動物から採取した第1の血液中のメチオニン濃度を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のメチオニン濃度と比較して、前記第1の血液中のメチオニン濃度が、健常個体における血液中のメチオニン濃度の適正範囲を逸脱しつつ前記第2の血液中のメチオニン濃度より大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することもできる。なお、以下の説明において、このような過程で判断された第1の状態を「過去との比較における血中メチオニン濃度に由来する第1の状態」と称する。
 すなわち、まだ神経変性疾患の症状が発現していない被験動物を対象として神経変性疾患予備軍であるか否かの判定を行うに際し、この被験動物の過去の血中ホモシステイン濃度と現在の血中ホモシステイン濃度との比較や、過去の血中メチオニン濃度と現在の血中メチオニン濃度との比較を行って、現在の濃度が過去の濃度よりも高くなっている場合、過去に比して神経変性疾患の罹患リスクが高まっていると判定する。なお、現在の濃度が過去の濃度よりも高いか否かについては、その濃度の変動が有意であるか否かや、健常個体における通常の濃度範囲を逸脱するか否か等を加味して判断することができる。
 このような方法とすることにより、神経変性疾患が発症していない被験動物が神経変性疾患予備軍であるか否かについて、自らの過去の状態と比較してより的確に判定を行うことができる。
 また、上述のように、比較対照を自らの過去の状態とするのではなく、例えば、その動物種における一般的な血中ホモシステイン濃度範囲や、血中メチオニン濃度範囲を比較対照とすることもできる。
 すなわち、前記被験動物から採取した血液中のホモシステイン濃度を、前記被験動物と同じ動物で同性略同齢の異なる健常個体における血液中のホモシステイン濃度範囲と比較して、前記被験動物から採取した血液中のホモシステイン濃度が、前記健常個体におけるホモシステイン濃度範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することができる。なお、以下の説明において、このような過程で判断された第1の状態を「他との比較における血中ホモシステイン濃度に由来する第1の状態」と称する。
 また、前記被験動物から採取した血液中のメチオニン濃度を、前記被験動物と同じ動物で同性略同齢の異なる健常個体における血液中のメチオニン濃度範囲と比較して、前記被験動物から採取した血液中のメチオニン濃度が、前記健常個体におけるメチオニン濃度範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することもできる。なお、以下の説明において、このような過程で判断された第1の状態を「他との比較における血中メチオニン濃度に由来する第1の状態」と称する。
 ここで、「被験動物と同じ動物」とは、ヒトならばヒト、マウスならばマウス程度の意味合いである。勿論、ヒトにおいては人種別、より系統的に近い血縁者などと比較することも可能であるが、その場合、系統学的人類学という問題にも留意すべきである。
 また、「同性略同齢」とは、被験動物と同じ性(雌雄)であり、被験動物の生後の経過時間(日数、年数)とほぼ同じ経過時間であることを意味している。なお、略同齢の範囲については、その動物の寿命や生体変化、判定の意義等を考慮して適宜決定されるものであり、例えばヒトであれば10年区切り(30~39歳、40~49才など)や、5年区切り(30代前半、30代後半など)、例えばマウスであれば同様に所定範囲の月齢などで決定することができる。
 また、「異なる健常個体」とは、前述の「被験動物と同じ動物」「同性略同齢」であって、被験動物ではない正常な生育状態にある他の個体を意味している。なお、「異なる健常個体」は、一個体であってもよく、複数個体、すなわち、「異なる健常個体群」であっても良い。
 また、ホモシステインやメチオニンの濃度範囲とは、前述の健常個体(又は健常個体群)が取りうる平均的な濃度範囲のことであり、ホモシステイン濃度範囲は6μM以下である。ただし、これらの濃度範囲も時代背景や食糧事情、医療技術、健康の捉え方の違いなどにより変動するものである。
 このように、その動物種における一般的な血中ホモシステイン濃度範囲や、血中メチオニン濃度範囲を比較対照として被験動物が神経変性疾患予備軍であるか否か判定を行うことができる。なお、上述した過去との比較における血中ホモシステイン濃度に由来する第1の状態や、過去との比較における血中メチオニン濃度に由来する第1の状態、他との比較における血中ホモシステイン濃度に由来する第1の状態、他との比較における血中メチオニン濃度に由来する第1の状態は、それぞれ由来の異なる第1の状態であるため、いずれか1つの理由によって第1の状態と判断された場合、健常個体に比べて神経変性疾患の罹患リスクが高いものの、必ずしも深刻な状態と判断される必要はない。これら由来の異なる第1の状態が複数合致した際に、その数に応じて神経変性疾患予備軍の深刻度合いを判断するようにしても良い。また、被験個体における血中ホモシステインや血中メチオニン濃度が他の異なる健常個体における濃度よりも高いか否かについては、その濃度の変動が有意であるか否かや、健常個体における通常の濃度範囲を逸脱するか否か等を加味して判断することができる。
 また、本実施形態に係る神経変性疾患の検査方法では、さらに、前記尿中のクレアチニン濃度と、前記血液中のクレアチニン濃度とを測定することとしても良い。血液中のクレアチニン濃度とを測定することにより、神経変性疾患予備軍の中でも、より神経変性疾患の罹患リスクの高い状態であることを判定することができる。
 例えば、前記被験動物から採取した第1の尿中のクレアチニン濃度と前記被験動物から採取した第1の血液中のクレアチニン濃度との比を、前記第1の尿の採取以前に前記被験動物より採取した第2の尿中のクレアチニン濃度と前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のクレアチニン濃度との比と比較して、前記第1の尿中のクレアチニン濃度と前記第1の血液中のクレアチニン濃度との比における第1の血液中のクレアチニン濃度の割合が、前記第2の尿中のクレアチニン濃度と前記第2の血液中のクレアチニン濃度との比における前記第2の血液中のクレアチニン濃度の割合よりも大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合又は前記第1の状態である場合には、前記第1の尿及び血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の尿及び血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高く、且つ、前記第1の状態よりも神経変性疾患の罹患リスクが高い第2の状態であると判定することができる。
 すなわち、まだ神経変性疾患の症状が発現していない被験動物を対象として神経変性疾患予備軍であるか否かの判定を行うに際し、この被験動物の過去の血中クレアチニン濃度の割合と、現在の尿中クレアチニン濃度の割合との比較を行って、現在の割合が過去の割合よりも高くなっている場合、過去に比して神経変性疾患の罹患リスクが高まっていると判定する。特に、被験動物が第1の状態の条件を満たしている場合には、極めて神経変性疾患の罹患リスクが高い状態であると判定することができる。神経変性疾患が発症していない被験動物が神経変性疾患予備軍の中でもより神経変性疾患の罹患リスクの高い状態であるか否かについて、自らの過去の状態と比較してより的確に判定を行うことができる。
 また、例えば、前記被験動物から採取した尿中のクレアチニン濃度と前記被験動物から採取した血液中のクレアチニン濃度との比における血液中のクレアチニン濃度の割合が、前記被験動物と同じ動物で同性略同齢の異なる健常個体における尿中のクレアチニン濃度と前記健常個体における血液中のクレアチニン濃度との比における血液中のクレアチニン濃度の割合の範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合又は前記第1の状態である場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高く、且つ、前記第1の状態よりも神経変性疾患の罹患リスクが高い第2の状態であると判定することもできる。
 この方法によっても、神経変性疾患が発症していない被験動物が神経変性疾患予備軍の中でもより神経変性疾患の罹患リスクの高い状態であるか否かについて、健常個体と比較してより的確に判定を行うことができる。
 なお、上述してきた説明のうち、第2の血液中のホモシステイン濃度や、第2の血液中のメチオニン濃度、第2の尿中のクレアチニン濃度、第2の血液中のクレアチニン濃度(以下、これらを総称して第2のデータという。)は、過去1回の検査より得られたデータであっても良いが、過去複数回行われた検査より得られたデータであるのがより好ましい。例えば、第2のデータを過去複数回行われた検査より得られたデータ群の平均値等とすることもできる。また、第1の血液中のホモシステイン濃度や、第1の血液中のメチオニン濃度、第1の尿中のクレアチニン濃度、第1の血液中のクレアチニン濃度(以下、これらを総称して第1のデータという。)が、第2のデータと比較した際に、統計学的に有意に変動したことにより第1の状態や第2の状態であることを判断することもできる。
 以下、本実施形態に係る神経変性疾患の検査方法について詳細に説明する。なお、説明の便宜上、まず、神経変性疾患に罹患しているか否かの判定に関連する項目について説明し、その後、神経変性疾患予備軍であるか否かの判定に関連する項目について説明する。
〔1.抗ホモシステイン酸抗体の調製〕
 まず、キットに使用する抗ホモシステイン酸抗体の調製を行った。
(抗原の調製)
 抗体を作らせる動物に接種するための抗原を図4に示す方法により調製した。まず、L-ホモシステイン酸(L-Homocysteic acid) 0.27mmolに過剰量のグルタルアルデヒド(Glutaraldehyde)2.7mmolを反応させ、図4(a)に示すように、ホモシステイン酸のアミノ基をグルタルアルデヒドで修飾した(HCA-GA)。
 次いで、得られたHCA-GAの過剰量をKLH(スカシ貝ヘモシアニン:keyhole limpet hemocyanin)上に複数存在するアミノ基と反応させて、図4(b)に示すように、中間体を合成した。
 そして、この中間体を還元した後、ゲル濾過により低分子を除き、図4(c)に示すように、抗原としてのKLHとホモシステイン酸の複合体(HCA-G-KLH)を得た。
(抗体の調製)
 つぎに、上記操作によって得られたHCA-G-KLHを抗原とし、ウサギを用いて免疫動物を作成し、2週間後に血液中にHCA-G-KLHに対する抗体を出現させた。
 このウサギより得た血清を精製することにより、ウサギ由来の第1抗ホモシステイン酸抗体を得た。また、同様の操作を行って、第1抗ホモシステイン酸抗体と競合しない第2抗ホモシステイン酸抗体を得た。
〔2.キットの作成〕
 次に、被験動物より採取した尿や血液又は前記血液より得られる血漿を用いて神経変性疾患に罹患しているか否かの判定を行うためのキットの作成を行った。本実施形態では、イムノクロマト法を採用したキットと、ELISA法を採用したキットの2種のキットの作成を行った。具体的には、それぞれ以下に示す通りである。
(イムノクロマト法を利用したキットの作成)
 図5に示すようなストリップ状のイムノクロマトキットAの作成を行った。図5(a)は平面視におけるイムノクロマトキットAを示した説明図であり、図5(b)は側面視におけるイムノクロマトキットAを示した説明図である。なお、イムノクロマトキットAの構成は、従来より公知の一般的なイムノクロマトキットと略同様であるため、特徴的なホモシステイン酸抗体を用いている点以外については説明を省略する場合がある。
 図5(a)及び図5(b)に示すように、イムノクロマトキットAは、尿や血液又は血漿を検体として受け、同検体を均一に分配するためのサンプルパッド10と、金コロイドにて標識した第1抗ホモシステイン酸抗体を含むコンジュゲートパッド11と、テストライン12a及びコントロールライン12bが表示されるメンブレン12と、検体の吸収材として機能する吸収パッド13とで構成した。
 サンプルパッド10は、尿を接触させる尿接触手段や、血液又は血漿を接触させる接触手段として機能する部位である。このサンプルパッド10には、必要に応じてサンプル組成を変えるための試薬等を含浸させておいても良い。また、血液を接触させる接触手段として機能させる場合には、血球等をトラップさせるフィルターとしての役割を担うよう構成しても良い。
 テストライン12aの位置には、メンブレン12上に第2ホモシステイン酸抗体が固定されており、尿や血液又は血漿の水分ともに展開される第1抗ホモシステイン酸抗体と結合したホモシステイン酸とサンドイッチ状に結合するよう構成した。
 また、コントロールライン12bの位置には、メンブレン12上に抗ウサギ抗体が固定されており、テストラインにてトラップされなかった第1抗ホモシステイン酸抗体が結合するように構成した。
(ELISA法を利用したキットの作成)
 ELISA法を利用した神経変性疾患に罹患しているか否かの判定キットは、透明な底壁を有するELISA法用96ウェルのサンプルプレートと、第2抗ホモシステイン酸抗体を含有する第1抗体試薬と、第2抗ホモシステイン酸に結合可能な抗ウサギ抗体を含有する第2抗体試薬と、抗ウサギ抗体に結合した酵素により発色する発色物質を含有させた発色試薬とを備えている。
 サンプルプレートの各ウェルの底壁内面には、第1抗ホモシステイン酸抗体が固定されており、ウェル内に収容した尿や血液又は血漿中に含まれるホモシステイン酸を捕捉可能に構成している。なお、各ウェルは、尿を接触させる尿接触手段や、血液又は血漿を接触させる接触手段として機能する部位である。
〔3.ヒトにおけるキットの機能試験〕
 上述したイムノクロマトキットA及びELISA法を利用したキットについて、それぞれ尿、血液、血漿を接触手段に接触させて、ホモシステイン酸が検出可能か否かについて検討を行った。
 サンプルは、健常者、軽度のアルツハイマー病と診断された神経変性疾患患者(以下、軽度患者という。)、中程度のアルツハイマー病と診断された神経変性疾患患者(以下、中程度患者という。)、重度のアルツハイマー病と診断された神経変性疾患患者(以下、重度患者という。)から得た尿、血液(全血)、血漿を用いた。なお、各患者の軽度、中程度、重度の度合いは、MMSEスコアによって分類されたものである。
 まず、予め各サンプルに含まれるホモシステイン酸含量について、高速液体クロマトグラフィーにて定量を行った。
 その結果、尿中のホモシステイン酸濃度は、健常者において最も高く、症状が重篤となるに従い減少していた。
 また、血液(全血)、血漿中のホモシステイン酸濃度は、健常者において最も低く、症状が重篤となるに従って増加していた。
 これらのことから、尿中に含まれるホモシステイン酸が少ない程、被験動物の神経変性疾患が進行していること、及び、血液又は血漿中に含まれるホモシステイン酸が多い程、被験動物の神経変性疾患が進行していることが示された。
 次に、イムノクロマトキットAに各サンプルを供して試験を行った。その結果、前述の高速液体クロマトグラフィーでの定量結果と同様の変化がテストラインにおいて観察された。
 次に、ELISA法を利用したキットに各サンプルを供して試験を行った。発色試薬の発色変化を吸光度計にて計測した結果、前述の高速液体クロマトグラフィーでの定量結果と同様の変化が観察された。
 これらの結果から、被験動物より採取した尿を用いて神経変性疾患に罹患しているか否かを判定するためのキットは、尿中に含まれるホモシステイン酸に結合した前記抗ホモシステイン酸抗体が少ない程、前記標識手段の変化によって前記被験動物の神経変性疾患が進行していることを表示可能であることが示された。
 また、被験動物より採取した血液を用いて神経変性疾患に罹患しているか否かの判定を行うためのキットは、血液又は血漿中に含まれるホモシステイン酸に結合した前記抗ホモシステイン酸抗体が多い程、前記標識手段の変化によって前記被験動物の神経変性疾患が進行していることを表示可能であることが示された。
〔4.ラットにおけるキットの機能試験〕
 上述の〔3.ヒトにおけるキットの機能試験〕と同様にラットを用いて非ヒト動物における試験を行った。
 サンプルは、健常ラット、軽度の神経変性疾患ラット(以下、軽度ラットという。)、中程度の神経変性疾患ラット(以下、中程度ラットという。)、重度神経変性疾患ラット(以下、重度ラットという。)から得た尿、血液(全血)、血漿を用いた。なお、各患者の軽度、中程度、重度の度合いは、水迷路実験による記憶障害判定によって分類されたものである。
 その結果、ヒトにおける試験と同様の結果が得られた。これらの結果から、被験非ヒト動物の神経変性疾患の進行度合いを同被験非ヒト動物より採取した尿を用いて判定するにあたり、被験非ヒト動物の尿中におけるホモシステイン酸の含有量と、前記被験非ヒト動物の神経変性疾患罹患前における尿中のホモシステイン酸含有量とを比較して、前記被験非ヒト動物の尿中におけるホモシステイン酸の含有量が前記神経変性疾患罹患前における尿中のホモシステイン酸含有量より小さくなったことにより、その減少量が大きいほど前記被験非ヒト動物の神経変性疾患が進行しているものと判定可能であることが示された。
 また、被験非ヒト動物の神経変性疾患の進行度合いを同被験非ヒト動物より採取した血液を用いて判定するにあたり、被験非ヒト動物の血中におけるホモシステイン酸の含有量と、前記被験非ヒト動物の神経変性疾患罹患前における血中のホモシステイン酸含有量とを比較して、前記被験非ヒト動物の血中におけるホモシステイン酸の含有量が前記神経変性疾患罹患前における血中のホモシステイン酸含有量より大きくなったことにより、その増加量が大きいほど前記被験非ヒト動物の神経変性疾患が進行しているものと判定可能であることが示された。
〔ヒト試験〕
 次に、ヒトより採取した尿及び血液により行われた試験について説明する。試験プロトコルは、順天堂大学倫理委員会によって承認され、また、被験者からは書面による同意を得た。被験者の詳細を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 これら被験者より尿及び血液の採取を行った。採取した尿サンプルは、防腐剤を添加することなく-20℃で冷凍保存した。
(尿中ホモシステイン酸含量の測定)
 各尿サンプルは、まず比重の測定を行い、比重を1.020に調節した。その後、ECD検知器およびカラム(Shim-pack XR-ODS、島津製作所製)を備えた高速液体クロマトグラフィー(HPLC)に供することで、各サンプル尿中のホモシステイン酸含量の測定を行った。
 なお、HPLCに供する各サンプルは、水で10倍希釈したものを使用した。また尿中のホモシステイン酸含量の測定は、ブラインド条件下で行った。図6はホモシステイン酸標品サンプルを測定したクロマトグラムであり、図7(a)は高濃度領域における検量線、図7(b)は低濃度領域における検量線である。また、図8に尿サンプルを測定した際の典型的なクロマトグラムを示す。
(血液中のホモシステイン酸含量の測定)
 各血液サンプルもまた、前処理を行った上で、前述の尿サンプルと同様にHPLC法により、ホモシステイン酸含量の測定を行った。図9に血液サンプルを測定した際の典型的なクロマトグラムを示す。
(データの解析)
 統計的有意性は、スチューデントのt検定によって評価した。また、Spearman analysisにて相関性の分析を行った。
(結果)
 上記分析の結果、尿中のホモシステイン酸含量は、アルツハイマー病の患者のMMSEスコアーと関連することが確認された。すなわち、図10(a)に示すように、MMSEスコアが低いほど、尿中におけるホモシステイン酸含量は減少する傾向が見られた。
 一方、対照群(コントロール群)では、及び図10(b)に示すように、尿中のホモシステイン酸含量と、MMSEスコアとの関係においては、関連を見出すことができなかった。
 特に、アルツハイマー病患者における尿中ホモシステイン酸含量とMMSEスコアとの相関性は、図11(a)及び図11(b)に示すように、男性よりも女性においてより強まる傾向が見られた。
 また、前述の分析結果により、表2に示すように、試験群と対照群との間で尿中のホモシステイン酸含量について比較した場合、違いは統計的に有意(p<0.01)であるとの結果が得られた。
Figure JPOXMLDOC01-appb-T000002
 また、尿中のホモシステイン酸含量と、血液サンプル中のホモシステイン酸含量とについて検討したところ、図3に示したように尿中のホモシステイン酸含量と、血液中のホモシステイン酸含量との間に逆の相関関係が示された(r=-0.6、p=0.007、n=19)。
 また、血液中のホモシステイン酸含量と、アルツハイマー病の患者のMMSEスコアーとの間には、図12に示すように逆の相関関係(r=-0.79、p=0.0000518、n=19)があることが示された。
 上述してきたように、本発明に係る神経変性疾患の検査方法によれば、被験動物から採取した尿中及び/又は血液中のホモシステイン酸含量を調べることとしたため、ヒトを含む被験動物に対して負担が少なく、神経変性疾患に罹患しているか否かの判定を比較的正確且つ容易に確認することができる。
〔神経変性疾患の検査1〕
 次に、神経変性疾患の罹患の有無の判定及び神経変性疾患予備軍であるか否かの判定を行う神経変性疾患の検査を行った例について説明する。
 MMSEスコアが30点~25点の被験者8名、24点~10点の被験者4名(以下、これら4名を総称してC群ともいう。)で構成される計12名の被験者群に対し、神経変性疾患の罹患の有無の判定及び神経変性疾患予備軍であるか否かの判定を行う神経変性疾患の検査を行った。なお、MMSEスコアが30点~25点の被験者8名のうち、4名は健康に不安のない者(以下、これら4名を総称してA群ともいう。)であり、残り4名は物忘れなどが気になって医療機関を受診した者(以下、これら4名を総称してB群ともいう。)である。また、被験者は70~79歳である。
 この被験者群に対し、1回目の採尿及び採血(第2の血液及び尿の採取)と、1回目から半年後に行われた2回目の採尿及び採血(第1の血液及び尿の採取)を行って、神経変性疾患の罹患の有無及び神経変性疾患予備軍であるか否かの判定を行った。1回目の採尿及び採血でのホモシステイン酸濃度と、2回目の採尿及び採血でのホモシステイン酸濃度を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3からもわかるように、A群及びB群の被験者は、尿中ホモシステイン酸及び血中ホモシステイン酸濃度に顕著な変化は見られず、また、その値も健常者におけるホモシステイン酸濃度の範囲内(血中ホモシステイン酸濃度:0.16~2.50μM、尿中ホモシステイン酸濃度:8.0~25.0mM)であることから、神経変性疾患に罹患しているか否かの判定において、いずれも「罹患していない」と判定された。一方、C群の被験者は、ホモシステイン酸の濃度が1回目よりも2回目の方が高いか、又は、1回目と2回目のいずれかが健常者におけるホモシステイン酸濃度の範囲の上限を逸脱しており、いずれも「罹患している」と判定された。
 次に、表4に「罹患していない」と判定されたA群及びB群の被験者における血中ホモシステイン、メチオニン、クレアチニン、尿中クレアチニンの値を示す。なお、健常者における各成分濃度の範囲は、血中ホモシステイン濃度は6μM以下、血中メチオニン濃度は330~440mM、血中クレアチニン濃度は0.4~1.1mg/dl、尿中クレアチニン濃度は14~26mg/kg/day、血中クレアチニンの割合は1.5~7.9%である。
Figure JPOXMLDOC01-appb-T000004
 表4からも分かるように、A群の被験者はいずれもホモシステイン及びメチオニンの濃度に顕著な変化が見られず、また、血中クレアチニンの値と尿中クレアチニンの値の比率における血中クレアチニンの割合(血中クレアチニン/尿中クレアチニン×100)にも顕著な変化が見られないことから、近い将来において神経変性疾患に罹患するリスクは低い、すなわち、神経変性疾患予備軍ではないと判定された。
 また、B群の被験者のうち7番の被験者についても、ホモシステイン及びメチオニンの濃度に顕著な変化が見られず、また、血中クレアチニンの値と尿中クレアチニンの値の比率における血中クレアチニンの割合にも顕著な変化が見られないことから、近い将来において神経変性疾患に罹患するリスクは低い、すなわち、神経変性疾患予備軍ではないと判定された。
 一方、7番を除くB群の被験者(5番,6番,8番)は、ホモシステイン及び/又はメチオニンの濃度が、1回目に比して健常者における各成分濃度の範囲を逸脱しつつ上昇していることから、神経変性疾患予備軍であるものと判定された。しかしながら、5番と8番の被験者は、血中クレアチニンの値と尿中クレアチニンの値の比率における血中クレアチニンの割合にも顕著な変化が見られないことから、第1の状態であると判定された。
 6番の被験者は、血中クレアチニンの値と尿中クレアチニンの値の比率における血中クレアチニンの割合において、1回目に比して2回目の値が上昇していることから腎機能の低下が示唆されており、5番や8番の被験者に比して更に神経変性疾患の発症リスクが高い第2の状態にあると判定された。
 表5に、2回目の採血及び採尿から1年後(1回目の採血及び採尿から1年半後)にテストした各被験者のMMSEスコアを示す。
Figure JPOXMLDOC01-appb-T000005
 表5からも分かるように、A群の被験者は、2回目のテストにおいてもスコアに顕著な差異は認められなかった。また、C群の被験者も同様に、2回目のテストにおいてもスコアに顕著な差異は認められなかった。
 B群の被験者にあっては、予備軍ではないと判定された7番の被験者は、スコアに顕著な差異は認められなかったものの、5番、6番、8番の被験者にスコアが低下する変化が認められた。
 特に、6番の被験者においては、スコアの大幅な低下が認められ、5番や8番の被験者に比して、神経変性疾患の発症リスクが高かったことが裏付けられた。
〔神経変性疾患の検査2〕(一般との比較)
 上述の〔神経変性疾患の検査1〕は、自らの過去の状態と比較して神経変性疾患に罹患しているか否かの判定や、神経変性疾患予備軍であるか否かの判定を行ったが、ここでは、健常個体と比較して神経変性疾患に罹患しているか否かの判定や、神経変性疾患予備軍であるか否かの判定を行った例について述べる。
 本神経変性疾患の検査2における被験者群も、前述の神経変性疾患の検査1の被験者群と同様、A群4名、B群4名、C群4名の計12名(70~79歳)に設定したが、各群男女2名ずつとした。表6に各被験者の尿中ホモシステイン酸濃度及び血中ホモシステイン酸濃度を示す。なお、健常者における各成分濃度の範囲は、男女ともに血中ホモシステイン酸濃度は0.16~20μM、尿中ホモシステイン酸濃度は8~25mMである。
Figure JPOXMLDOC01-appb-T000006
 表6からも分かるように、A群及びB群の被験者は、尿中ホモシステイン酸及び血中ホモシステイン酸濃度に一般的な濃度範囲からの逸脱は見られないことから、神経変性疾患に罹患しているか否かの判定において、いずれも「罹患していない」と判定された。一方、C群の被験者は、血中ホモシステイン酸の濃度が健常者におけるホモシステイン酸濃度の範囲の上限を逸脱しており、また、尿中ホモシステイン酸の濃度も健常者における尿中ホモシステイン酸濃度の範囲の下限を逸脱していたことから、いずれも「罹患している」と判定された。
 次に、表7に「罹患していない」と判定されたA群及びB群の被験者における血中ホモシステイン、メチオニン、クレアチニン、尿中クレアチニンの値を示す。なお、健常者における各成分濃度の範囲は、男女ともに血中ホモシステイン濃度は6μM以下、血中メチオニン濃度は330~440mM、血中クレアチニン濃度は0.4~1.1mg/dl、尿中クレアチニン濃度は14~26mg/kg/day、血中クレアチニンの割合は1.5~7.9%である。
Figure JPOXMLDOC01-appb-T000007
 表7からも分かるように、A群の被験者はいずれもホモシステイン及びメチオニンの濃度に逸脱は見られず、また、血中クレアチニンの値と尿中クレアチニンの値の比率における血中クレアチニンの割合にも逸脱は見られないことから、近い将来において神経変性疾患に罹患するリスクは低い、すなわち、神経変性疾患予備軍ではないと判定された。
 また、B群の被験者のうち6番の被験者についても、ホモシステイン及びメチオニンの濃度に逸脱は見られず、また、血中クレアチニンの値と尿中クレアチニンの値の比率における血中クレアチニンの割合にも逸脱は見られないことから、近い将来において神経変性疾患に罹患するリスクは低い、すなわち、神経変性疾患予備軍ではないと判定された。
 一方、6番を除くB群の被験者(5番,7番,8番)は、ホモシステイン及び/又はメチオニンの濃度が一般的な濃度範囲から逸脱していることから、神経変性疾患予備軍であるものと判定された。しかしながら、5番と7番の被験者は、血中クレアチニンの値と尿中クレアチニンの値の比率における血中クレアチニンの割合に逸脱が見られないことから、第1の状態であると判定された。
 8番の被験者は、血中クレアチニンの値と尿中クレアチニンの値の比率における血中クレアチニンの割合において、一般的な割合の範囲から逸脱していることから腎機能の低下が示唆されており、5番や7番の被験者に比して更に神経変性疾患の発症リスクが高い第2の状態にあると判定された。
 表8に、採血及び採尿から1年後にテストした各被験者のMMSEスコアを示す。
Figure JPOXMLDOC01-appb-T000008
 表8からも分かるように、A群の被験者は、2回目のテストにおいてもスコアに顕著な差異は認められなかった。また、C群の被験者も同様に、2回目のテストにおいてもスコアに顕著な差異は認められなかった。
 B群の被験者にあっては、予備軍ではないと判定された6番の被験者は、スコアに顕著な差異は認められなかったものの、5番、7番、8番の被験者にスコアが低下する変化が認められた。
 特に、8番の被験者においては、スコアの大幅な低下が認められ、5番や7番の被験者に比して、神経変性疾患の発症リスクが高かったことが裏付けられた。
 上述してきたように、本発明に係る神経変性疾患の検査方法によれば、被験動物から採取した尿中のホモシステイン酸濃度と、前記被験動物から採取した血液中のホモシステイン酸濃度と、同血液中のホモシステイン及び/又はメチオニン濃度とを測定することとしたため、ヒトを含む被験動物に対して負担が少なく、神経変性疾患の兆候を比較的正確且つ容易に確認することができ、しかも、神経変性疾患の罹患の有無のみならず、将来的に神経変性疾患に罹患するリスクが高いか否かについても判定することのできる神経変性疾患の検査方法を提供することができる。
 最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 本実施形態では、第1抗ホモシステイン酸抗体及び第2抗ホモシステイン酸抗体の調製を行う際にウサギを用いることとしたが、これに限定されるものではない。抗体の調製に一般的に使用される動物であれば、いずれであっても良い。
 また、例えば乳牛を免疫動物として乳中に第1抗ホモシステイン酸抗体及び第2抗ホモシステイン酸抗体を出現させるようにすれば、これらの抗体を容易に大量調製することも可能である。なお、イムノクロマトキットAのコントロールラインに固定される抗体や、ELISA法を利用したキットにおける2次抗体は、ホモシステイン酸抗体と結合可能とすべく、免疫動物の種類に応じて変更するのは言うまでもない。
 10 サンプルパッド
 11 コンジュゲートパッド
 12 メンブレン
 12a テストライン
 12b コントロールライン
 13 吸収パッド
 A イムノクロマトキット

Claims (8)

  1.  被験動物から採取した尿中のホモシステイン酸濃度と、前記被験動物から採取した血液中のホモシステイン酸濃度と、同血液中のホモシステイン及び/又はメチオニン濃度とを測定することを特徴とする神経変性疾患の検査方法。
  2.  前記被験動物から採取した第1の血液中のホモシステイン濃度を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のホモシステイン濃度と比較して、前記第1の血液中のホモシステイン濃度が、前記第2の血液中のホモシステイン濃度より大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することを特徴とする請求項1に記載の神経変性疾患の検査方法。
  3.  前記被験動物から採取した第1の血液中のメチオニン濃度を、前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のメチオニン濃度と比較して、前記第1の血液中のメチオニン濃度が、前記第2の血液中のメチオニン濃度より大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することを特徴とする請求項1又は請求項2に記載の神経変性疾患の検査方法。
  4.  前記被験動物から採取した血液中のホモシステイン濃度を、前記被験動物と同じ動物で同性略同齢の異なる健常個体における血液中のホモシステイン濃度範囲と比較して、前記被験動物から採取した血液中のホモシステイン濃度が、前記健常個体におけるホモシステイン濃度範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することを特徴とする請求項1に記載の神経変性疾患の検査方法。
  5.  前記被験動物から採取した血液中のメチオニン濃度を、前記被験動物と同じ動物で同性略同齢の異なる健常個体における血液中のメチオニン濃度範囲と比較して、前記被験動物から採取した血液中のメチオニン濃度が、前記健常個体におけるメチオニン濃度範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高い第1の状態であると判定することを特徴とする請求項1又は請求項4に記載の神経変性疾患の検査方法。
  6.  さらに、前記尿中のクレアチニン濃度と、前記血液中のクレアチニン濃度とを測定することを特徴とする請求項1~5いずれか1項に記載の神経変性疾患の検査方法。
  7.  前記被験動物から採取した第1の尿中のクレアチニン濃度と前記被験動物から採取した第1の血液中のクレアチニン濃度との比を、前記第1の尿の採取以前に前記被験動物より採取した第2の尿中のクレアチニン濃度と前記第1の血液の採取以前に前記被験動物より採取した第2の血液中のクレアチニン濃度との比と比較して、前記第1の尿中のクレアチニン濃度と前記第1の血液中のクレアチニン濃度との比における第1の血液中のクレアチニン濃度の割合が、前記第2の尿中のクレアチニン濃度と前記第2の血液中のクレアチニン濃度との比における前記第2の血液中のクレアチニン濃度の割合よりも大きくなったことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記第1の尿及び血液を採取した時の前記被験動物の神経変性疾患の罹患リスクが、前記第2の尿及び血液を採取した時の前記被験動物の神経変性疾患の罹患リスクよりも高く、且つ、前記第1の状態よりも神経変性疾患の罹患リスクが高い第2の状態であると判定することを特徴とする請求項6に記載の神経変性疾患の検査方法。
  8.  前記被験動物から採取した尿中のクレアチニン濃度と前記被験動物から採取した血液中のクレアチニン濃度との比における血液中のクレアチニン濃度の割合が、前記被験動物と同じ動物で同性略同齢の異なる健常個体における尿中のクレアチニン濃度と前記健常個体における血液中のクレアチニン濃度との比における血液中のクレアチニン濃度の割合の範囲の上限を逸脱したことにより、前記被験動物が神経変性疾患に罹患していない場合には、前記被験動物の神経変性疾患の罹患リスクが、前記健常個体の神経変性疾患の罹患リスクよりも高く、且つ、前記第1の状態よりも神経変性疾患の罹患リスクが高い第2の状態であると判定することを特徴とする請求項6に記載の神経変性疾患の検査方法。
PCT/JP2014/077999 2013-10-22 2014-10-21 神経変性疾患の検査方法 WO2015060317A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015543871A JPWO2015060317A1 (ja) 2013-10-22 2014-10-21 神経変性疾患の検査方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013219389 2013-10-22
JP2013-219389 2013-10-22

Publications (1)

Publication Number Publication Date
WO2015060317A1 true WO2015060317A1 (ja) 2015-04-30

Family

ID=52992911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077999 WO2015060317A1 (ja) 2013-10-22 2014-10-21 神経変性疾患の検査方法

Country Status (2)

Country Link
JP (1) JPWO2015060317A1 (ja)
WO (1) WO2015060317A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030252A1 (ja) * 2016-08-09 2018-02-15 大塚製薬株式会社 尿バイオマーカーを用いたアルツハイマー病の診断補助方法
WO2019022064A1 (ja) * 2017-07-25 2019-01-31 長谷川 亨 神経変性疾患を判定するための診断補助方法
WO2020059401A1 (ja) * 2018-09-21 2020-03-26 小嶋 良種 生体液の検査方法
CN111386050A (zh) * 2018-10-30 2020-07-07 国立大学法人九州大学 发病风险评估装置、发病风险评估方法、程序及痴呆症预防用食品
WO2021039941A1 (ja) * 2019-08-30 2021-03-04 ニプロ株式会社 アルツハイマー型認知症又は軽度認知症を判別する方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082523A (ja) * 2003-09-08 2005-03-31 Toru Hasegawa 神経変性疾患特にアルツハイマー病及びパーキンソン病の根本治療薬
JP2010077162A (ja) * 2002-07-11 2010-04-08 Daiichi Sankyo Co Ltd 血中ホモシステイン低下のための医薬組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009887A2 (en) * 2004-06-18 2006-01-26 Banner Health Evaluation of brain treatment
US8187825B2 (en) * 2008-02-29 2012-05-29 Riken Thiol detection method
JP5474807B2 (ja) * 2008-10-16 2014-04-16 一般財団法人化学及血清療法研究所 改変アミロイドβペプチド
CN102781259A (zh) * 2009-09-30 2012-11-14 加利福尼亚大学董事会 辅因子及个体使用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077162A (ja) * 2002-07-11 2010-04-08 Daiichi Sankyo Co Ltd 血中ホモシステイン低下のための医薬組成物
JP2005082523A (ja) * 2003-09-08 2005-03-31 Toru Hasegawa 神経変性疾患特にアルツハイマー病及びパーキンソン病の根本治療薬

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ADAM DAVEY ET AL.: "Decline in renal functioning is associated with longitudinal decline in global cognitive functioning, abstract reasoning and verbal memory", NEPHROL DIAL TRANSPLANT, 2012, pages 1 - 8 *
FUKASHI UDAKA: "Chiho to Homocysteine: Alzheimer's Disease no Atarashii Kiken Inshi ka?", DEMENTIA JAPAN, vol. 14, 2000, pages 136 - 13 9 *
HASEGAWA T ET AL.: "Urinary homocysteic acid levels correlate with mini-mental state examination scores in Alzheimer's disease patients", JOURNAL OF ALZHEIMER'S DISEASE, vol. 31, no. 1, 2012, pages 59 - 64 *
IKURO MARUYAMA: "Seikagakuteki Kensa [1] D. Teibunshi Chisso Kagobutsu Kankei Homocysteine", NIPPON RINSYO, vol. 62, no. SUPPL., 2004, pages 620 - 622 *
MCCAMPBELL ALEXANDER ET AL.: "Induction of Alzheimer's-like changes in brain of mice expressing mutant APP fed excess methionine", J NEUROCHEM, vol. 116, no. 1, 2011, pages 82 - 92 *
ZHUO JIA-MIN ET AL.: "Is hyperhomocysteinemia an Alzheimer's disease (AD) risk factor, an AD marker, or neither?", TRENDS PHARMACOL SCI, vol. 32, no. 9, 2011, pages 562 - 571 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030252A1 (ja) * 2016-08-09 2018-02-15 大塚製薬株式会社 尿バイオマーカーを用いたアルツハイマー病の診断補助方法
WO2019022064A1 (ja) * 2017-07-25 2019-01-31 長谷川 亨 神経変性疾患を判定するための診断補助方法
JPWO2019022064A1 (ja) * 2017-07-25 2020-07-27 長谷川 亨 神経変性疾患を判定するための診断補助方法
JP7109441B2 (ja) 2017-07-25 2022-07-29 亨 長谷川 神経変性疾患を判定するための診断補助方法
WO2020059401A1 (ja) * 2018-09-21 2020-03-26 小嶋 良種 生体液の検査方法
JP6734489B1 (ja) * 2018-09-21 2020-08-05 小嶋 良種 生体液の検査方法
US11885756B2 (en) 2018-09-21 2024-01-30 Yoshitane Kojima Method for examining biological fluid
CN111386050A (zh) * 2018-10-30 2020-07-07 国立大学法人九州大学 发病风险评估装置、发病风险评估方法、程序及痴呆症预防用食品
WO2021039941A1 (ja) * 2019-08-30 2021-03-04 ニプロ株式会社 アルツハイマー型認知症又は軽度認知症を判別する方法

Also Published As

Publication number Publication date
JPWO2015060317A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
Van Hulle et al. An examination of a novel multipanel of CSF biomarkers in the Alzheimer's disease clinical and pathological continuum
Resano et al. Dried matrix spots and clinical elemental analysis. Current status, difficulties, and opportunities
Martinez-Valbuena et al. Alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy
Førland et al. Evolution of cerebrospinal fluid total α-synuclein in Parkinson's disease
WO2015060317A1 (ja) 神経変性疾患の検査方法
Sparks et al. Tau is reduced in AD plasma and validation of employed ELISA methods
TW201033616A (en) Urine and serum biomarkers associated with diabetic nephropathy
JP2013527919A (ja) アルツハイマー病の診断のための処方
Papaliagkas et al. Combination of P300 and CSF β-amyloid (1-42) assays may provide a potential tool in the early diagnosis of Alzheimer's disease
AU2005258926A1 (en) Biomarkers of Alzheimer&#39;s disease
US8778334B2 (en) Method of identifying whether or not an individual has Parkinson&#39;s Disease rather than another neurodegenerative disease
Verwey et al. Additional value of CSF amyloid-β 40 levels in the differentiation between FTLD and control subjects
WO2013090285A1 (en) Method of diagnosing mild traumatic brain injury
EP2304431A1 (en) Csf biomarkers for the prediction of cognitive decline in alzheimer&#39;s disease patients
ES2929641T3 (es) Método para determinar la capacidad de degradación de histamina total en muestras biológicas
Xu et al. An impedimetric assay of α-synuclein autoantibodies in early stage Parkinson's disease
JP5267452B2 (ja) 精神障害および/または腸のディスバイオシスのインビトロまたはエクスビボ診断方法
WO2022181333A1 (ja) 軽度認知障害検査
US9863950B2 (en) Method for diagnosing neurodegenerative diseases
JP2013253781A (ja) 神経変性疾患の検査方法及び神経変性疾患判定キット
JP6222629B2 (ja) 排尿障害のバイオマーカー
US20020150878A1 (en) Method for the diagnosis of Alzheimer&#39;s Disease and other prion related disorders
EP3033622A1 (en) Sensitive diagnostic assay for inclusion body myositis
Martinez-Valbuena et al. A novel approach to evaluate alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy
Nazir Salivary biomarkers: The early diagnosis of Alzheimer's disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015543871

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14856486

Country of ref document: EP

Kind code of ref document: A1