WO2015058337A1 - 触控面板及其制作方法 - Google Patents

触控面板及其制作方法 Download PDF

Info

Publication number
WO2015058337A1
WO2015058337A1 PCT/CN2013/085600 CN2013085600W WO2015058337A1 WO 2015058337 A1 WO2015058337 A1 WO 2015058337A1 CN 2013085600 W CN2013085600 W CN 2013085600W WO 2015058337 A1 WO2015058337 A1 WO 2015058337A1
Authority
WO
WIPO (PCT)
Prior art keywords
fpc
conductive layer
conductive
row
touch panel
Prior art date
Application number
PCT/CN2013/085600
Other languages
English (en)
French (fr)
Inventor
田兴法
孙增才
刘铸
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to EP13886625.6A priority Critical patent/EP2887189B1/en
Priority to CN201380003130.4A priority patent/CN103858082A/zh
Priority to PCT/CN2013/085600 priority patent/WO2015058337A1/zh
Priority to JP2015543266A priority patent/JP2015535385A/ja
Priority to US14/569,004 priority patent/US9451705B2/en
Publication of WO2015058337A1 publication Critical patent/WO2015058337A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49162Manufacturing circuit on or in base by using wire as conductive path

Definitions

  • the present invention relates to the field of touch screens, and in particular, to a touch panel and a method of fabricating the same. Background technique
  • the efficient touch interaction mode has become a universal interaction mode.
  • the operation complexity of the terminal can be reduced, and the key to the touch screen is the touch panel. Therefore, the production of the touch panel has become a focus of attention.
  • the prior art provides a touch panel comprising a substrate, row and column ITO (Indium Tin Oxides) traces formed on both sides of the substrate, and FPC (Flexible Printed Circuit, a flexible circuit board), the FPC includes a first opposing FPC and a second FPC; the row ITO trace is connected to the first FPC, the column ITO trace is connected to the second FPC, and the first FPC and the second FPC are respectively connected to the base On both sides of the material.
  • ITO Indium Tin Oxides
  • the direct relative means that the projection of the first FPC at the first surface of the first surface on the second surface completely overlaps with the second FPC of the second surface of the second surface, the first surface being the row of the ITO trace
  • the surface, the second surface is the surface on which the column ITO traces are located.
  • the length of the first FPC in the direction of the column ITO trace is greater than or equal to the vertical distance between the ITO trace of the first row and the ITO trace of the nth row, resulting in a longer length of the FPC.
  • the area of the FPC is proportional to the length. Therefore, the area of the FPC in the existing touch panel is large, resulting in a high manufacturing cost of the touch panel. Summary of the invention
  • the embodiment of the present invention provides a touch panel and a manufacturing method thereof.
  • the embodiment of the present invention provides a touch panel, the touch panel includes: a substrate, a first conductive layer formed on an upper surface of the substrate, and a lower surface formed on the substrate a second conductive layer, the flexible circuit board FPC, the FPC includes a first FPC and a second FPC, the first FPC is connected to the first conductive layer, and the second FPC is connected to the second conductive layer ;
  • the first conductive layer includes n rows of first conductive patterns arranged in a first direction, one end of each row is connected to one end of the first metal line, and the other end of the first metal line is connected to the first FPC;
  • the second conductive layer includes m rows of second conductive patterns arranged in a second direction, one end of each column is connected to one end of the second metal line, and the other end of the second metal line is connected to the second FPC.
  • the second conductive pattern and the first conductive pattern are used to generate a coupling capacitor;
  • the ray in which the first direction is located is perpendicular to the ray in which the second direction is located, and the length of the first FPC in the second direction is smaller than the vertical distance between the first line and the nth line.
  • the first conductive pattern is formed by at least two first predetermined patterns, the first predetermined patterns adjacent to each other in the row are connected;
  • the second conductive pattern is composed of at least two second predetermined patterns, the adjacent second predetermined patterns in the column are connected.
  • the first predetermined pattern and the second predetermined pattern are performed by the first conductive layer and the The required coupling capacitance between the second conductive layers is determined.
  • each row has the same line width, The column width of each column is equal, and the row width is equal to the column width.
  • the touch panel further includes: a touch chip and a surrounding circuit respectively connected to the first FPC and the second FPC.
  • the first FPC is connected to a driving pin of the touch chip, and the second FPC is The receiving pin of the touch chip is connected;
  • the first FPC is connected to a receiving pin of the touch chip, and the second FPC is connected to a driving pin of the touch control chip;
  • the driving pin is configured to transmit a driving signal
  • the receiving pin is configured to receive a receiving signal fed back according to the driving signal
  • an embodiment of the present invention provides a method for fabricating a touch panel, the method comprising: forming a first conductive layer on an upper surface of a substrate, and etching the first conductive layer in a first direction Rowing the first conductive pattern, connecting one end of each row to one end of the first metal line, connecting the other end of the first metal line to the first FPC of the flexible circuit board FPC, connecting the first FPC On the first conductive layer; Forming a second conductive layer on a lower surface of the substrate, and etching a second conductive pattern of m columns in the second direction in the second conductive layer, and connecting one end of each column to one end of the second metal line, Connecting the other end of the second metal line to the second FPC of the FPC, and connecting the second FPC to the second conductive layer;
  • the second conductive pattern and the first conductive pattern are used to generate a coupling capacitor; wherein the ray in the first direction is perpendicular to the ray in which the second direction is located, and the first FPC is in the The length in the second direction is smaller than the vertical distance between the first row and the nth row.
  • the method further includes:
  • the first conductive pattern is composed of at least two first predetermined patterns, the first predetermined patterns adjacent in the row are connected;
  • the second conductive pattern is composed of at least two second predetermined patterns, the adjacent second predetermined patterns in the column are connected.
  • the method further includes:
  • the first predetermined pattern and the second predetermined pattern are determined according to a required coupling capacitance between the first conductive layer and the second conductive layer.
  • the method further includes:
  • the same line width is set for each line, and the same column width is set for each column, the column width being equal to the line width.
  • the method further includes:
  • the method further includes:
  • the driving pin is configured to transmit a driving signal
  • the receiving pin is configured to receive a receiving signal fed back according to the driving signal.
  • the other end of the first metal wire is connected to the first FPC such that the length of the first FPC included in the FPC in the second direction is determined by the first Determining the distance between the end point of the other end of the first metal line and the end point of the other end of the nth first metal line, the length of the first FPC in the second direction may be reduced by reducing the distance, so that the first FPC is The length in the second direction is smaller than the vertical distance between the first row and the nth row, which solves the problem that the length of the first FPC in the prior art is greater than or equal to the vertical distance of the first row and the nth row, resulting in a large FPC area.
  • the problem of the cost of manufacturing the touch panel is large, and the effect of reducing the manufacturing cost of the touch panel is achieved.
  • FIG. 1 is a structural view of a touch panel provided by an embodiment of the present invention.
  • FIG. 2A is a structural view of a touch panel according to another embodiment of the present invention.
  • 2B is a schematic plan view showing a conductive pattern provided by an embodiment of the present invention.
  • FIG. 2C is a top plan view of a first connection manner of a conductive pattern according to an embodiment of the present invention
  • FIG. 2D is a top view of a second connection manner of a conductive pattern according to an embodiment of the present invention
  • FIG. 2F is a schematic diagram of the first FPC and the second FPC are not directly opposite to each other
  • FIG. 2G is a schematic view of the current of the touch operation provided by the embodiment of the present invention
  • FIG. 3 is a flow chart of a method for fabricating a touch panel according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method for fabricating a touch panel according to still another embodiment of the present invention.
  • FIG. 1 a structural frame diagram of a touch panel according to an embodiment of the present invention is shown.
  • the touch panel includes a substrate 101, a first conductive layer 102 formed on an upper surface of the substrate, and is formed on the base
  • the second conductive layer 103 of the lower surface of the material, the flexible circuit board FPC 104, the FPC 104 includes a first FPC 104a and a second FPC 104b, the first FPC 104a is connected to the first conductive layer 102, and the second FPC 104b is connected to the second conductive layer 103;
  • the first conductive layer 102 includes n rows of first conductive patterns 105 arranged in a first direction, one end of each row is connected to one end of the first metal line 106, and the other end of the first metal line 106 is connected to the first FPC 104a.
  • the second conductive layer 103 includes m rows of second conductive patterns 107 arranged in the second direction, one end of each column is connected to one end of the second metal line 108, and the other end of the second metal line 108 is connected to the second FPC 104b, and the second The conductive pattern and the first conductive pattern are used to generate a coupling capacitance, m>l, and m is an integer; wherein the ray in the first direction is perpendicular to the ray in which the second direction is located, and the length of the first FPC 104a in the second direction Less than the vertical distance between the 1st line and the nth line.
  • the touch panel provided by the embodiment of the present invention connects one end of each row to one end of the first metal line, and the other end of the first metal line is connected to the first FPC, so that the FPC includes
  • the length of the first FPC in the second direction is determined by the distance between the end point of the other end of the first first metal line and the end point of the other end of the nth first metal line, which can be reduced by reducing the distance.
  • the length of the FPC in the second direction is such that the length of the first FPC in the second direction is smaller than the vertical distance between the first row and the nth row, which solves the length of the first FPC in the second direction in the prior art.
  • FIG. 2A a structural frame diagram of a touch panel according to another embodiment of the present invention is shown.
  • the touch panel includes a substrate 101, a first conductive layer 102 formed on an upper surface of the substrate, a second conductive layer 103 formed on a lower surface of the substrate, and a flexible circuit board FPC 104, the FPC 104 including a first FPC 104a and a second FPC 104b, the first FPC 104a is connected to the first conductive layer 102, and the second FPC 104b is connected to the second conductive layer 103;
  • the first conductive layer 102 includes n rows of first conductive patterns 105 arranged in a first direction, one end of each row is connected to one end of the first metal line 106, and the other end of the first metal line 106 is connected to the first FPC 104a.
  • the second conductive layer 103 includes m rows of second conductive patterns 107 arranged in the second direction, one end of each column is connected to one end of the second metal line 106, and the other end of the second metal line 106 is connected to the second FPC 104b, and the second The conductive pattern and the first conductive pattern are used to generate a coupling capacitance, m>l, and m is an integer;
  • the ray in the first direction is perpendicular to the ray in the second direction, and the length of the first FPC 104a in the second direction is smaller than the vertical distance between the first line and the nth line.
  • the “length in the second direction” is hereinafter referred to as "length”.
  • the substrate 101 is made of a conductive material having an impedance. Typically, the substrate 101 has an impedance of 70 to 100 ohms.
  • the first conductive layer 102 includes n rows of first conductive patterns 105 arranged in the first direction, and the first conductive patterns 105 may be formed of a conductive material such as ITO, and connected to the first FPC 104a through the first metal lines 106.
  • the first metal line 106 is connected to a first metal line 106 and the two first metal lines 106 of the first conductive layer 102 do not intersect.
  • the first metal line 106 may be made of silver paste or molybdenum. Aluminum molybdenum and the like are formed.
  • the second conductive layer 103 includes m columns of second conductive patterns 107 arranged in the second direction, and the second conductive patterns 107 may be formed of a conductive material such as ITO, and connected to the second FPC 104b through the second metal lines 108. Wherein, a row of second conductive patterns 107 is connected to a second metal line 108 and any two of the second conductive lines 103 do not intersect, and the second metal line 108 may be made of silver paste or molybdenum. Aluminum molybdenum and the like are formed.
  • each row of the first conductive patterns 105 is composed of i ( i ⁇ l ) first predetermined patterns
  • each column of the second conductive patterns 107 is composed of j ( j ⁇ l ) second predetermined patterns.
  • the first predetermined pattern and the second predetermined pattern may be patterns of any shape, such as a rectangle, a triangle, a circle, a diamond, a hexagon, an irregular pattern, etc., and the first predetermined pattern and the second predetermined pattern may be the same , can also be different.
  • the first conductive pattern 105 and the second conductive pattern 107 are formed of a conductive material, when a current flows through the first conductive pattern 105 or the second conductive pattern 107, a relationship between the first conductive pattern 105 and the second conductive pattern 107 A coupling capacitor is generated. Since the size of the coupling capacitor is proportional to the coupling area of the conductive pattern and inversely proportional to the coupling distance of the conductive pattern, after determining the magnitude of the required coupling capacitance, the first predetermined pattern and the second predetermined may be determined according to the coupling area and the coupling distance. pattern. That is, the first predetermined pattern and the second predetermined pattern are determined by the required coupling capacitance between the first conductive layer 102 and the second conductive layer 103.
  • the first predetermined pattern and the second predetermined pattern are diamonds as an example. Please refer to the top view of the conductive pattern shown in FIG. 2B.
  • the first predetermined pattern and its connection are indicated by solid lines and the second predetermined pattern. And their connections are indicated by dashed lines.
  • adjacent to the side a of the lower left side of the first predetermined pattern is the side b of the upper right side of the second predetermined pattern, and therefore, the side a of the first predetermined pattern and the second predetermined
  • the side b of the pattern produces a coupling capacitance.
  • the side lengths of the sides a and b may be increased to increase the coupling area, or the vertical distance between the edges a and b may be reduced to reduce the coupling distance.
  • the side lengths of the sides a and b can be reduced to reduce the coupling area, or the vertical distance between the side a and the side b can be increased to increase the coupling distance.
  • the first predetermined pattern After determining the first predetermined pattern and the second predetermined pattern according to the required coupling capacitance, the first predetermined pattern needs to be connected in the first conductive layer 102 into n rows, each row may be the first conductive pattern 105; The patterns are connected in the second conductive layer 103 in m columns, and each column may be the second conductive pattern 107.
  • the projections of the first conductive patterns 105 on the second conductive layer 103 and the second conductive patterns 107 in the respective rows may partially or completely overlap, or may not overlap. For example, the projection of the first conductive pattern 105 on any of the first conductive patterns 105 in FIG. 2B does not overlap with all of the second conductive patterns 107.
  • the first predetermined patterns adjacent in the row may be connected; It is possible to connect between adjacent second predetermined patterns in the column.
  • adjacent diamonds are connected by conductive rectangular connecting blocks or wires, and the wire is taken as an example in Fig. 2B.
  • the row width of each row may be equal, and the column width of each column may be equal.
  • the row width of each row may be set to a first value
  • the column width of each column may be set to a second value.
  • the relationship between the line width and the column width may be further determined by setting the first value and the second value.
  • the line width is greater than the column width; or, if the second value is greater than the first value, the line width is less than the column width; or, the second value is equal to the first value, the line width is The column widths are equal.
  • the row width is equal to the column width, the self-capacitance generated between the row of the first conductive patterns 105 and the ground and the coupling capacitance generated between the row of the first conductive patterns 105 and the columns of the second conductive patterns 107 are balanced, and the pair can be shortened. The response time of the touch operation, improving the accuracy and sensitivity of the response to the touch operation.
  • the row width may be the maximum distance of the projection of the first conductive pattern 105 on the second conductive layer 103 in the second direction. Please refer to dl in FIG. 2B; the column width may be the second conductive pattern 107 at the first conductive The maximum distance of the projection on layer 102 in the first direction, please refer to d2 in Figure 2B.
  • each row of the first conductive patterns 105 needs to be connected to the first FPC 104a, respectively.
  • the column second conductive patterns 107 are respectively connected to the second FPC 104b. This embodiment is specifically described by taking a row of first conductive patterns 105 to the first FPC 104a as an example.
  • first conductive patterns 105 is composed of a first predetermined pattern, since each predetermined pattern includes a connection for connection Port, therefore, one end of the first predetermined pattern may be directly connected to the first FPC 104a through the first metal line 106; if the row of the first conductive pattern 105 is composed of at least two first predetermined patterns, since each predetermined pattern Including a port for connection, therefore, the at least two first predetermined patterns may be connected in a row in a first direction according to the port, and one end of any one of the first predetermined patterns of the line formed by the connection may be passed through A metal line 106 is connected to the first FPC 104a.
  • the same side ports of the respective rows of the first conductive patterns 105 can be connected to the first FPC 104a, respectively.
  • the right side ports of the first conductive patterns 105 of the respective rows are respectively connected to the first FPC 104a, please refer to the connection manner of the conductive patterns shown in FIG. 2B; the different side ports of the first conductive patterns 105 of the respective rows may be respectively connected to the first An FPC 104a, for example, connects the right port of the k (k>l) row of the first conductive pattern 105 and the left port of the remaining (nk) row of the first conductive pattern 105 to the first FPC 104a, please refer to FIG. 2C.
  • the right port of the first conductive pattern 105 is the right port of the first predetermined pattern arranged at the rightmost side
  • the left port of the first conductive pattern 105 is the left side of the first predetermined pattern arranged at the leftmost side. Port, please refer to Figure 2C.
  • the right side port and the left side port of each row of the first conductive patterns 105 are respectively connected to the first FPC 104a through the two first metal lines 106, and the current is shunted by the two first metal lines 106. Accelerate the detection speed of the current, shorten the response time of the touch, and improve the touch effect.
  • the upper side port and the lower side port of the second conductive pattern 107 may be respectively connected to the second FPC 104b through the two second metal lines 108.
  • the upper side port and the lower side port of the second conductive pattern 107 pass through the two second metal lines.
  • the second FPC 104b is connected to the second FPC 104b as an example for description. Please refer to the top view of the second connection mode of the conductive pattern shown in FIG. 2D.
  • the second FPC 104b is divided into a first connection portion 104b1 and a second connection portion 104b2, wherein the first connection portion 104b1 is connected to the upper side port of the second conductive pattern 107, and the second connection portion 104b2 and the second conductive pattern are connected.
  • the lower port of 107 is connected.
  • the upper side port of the second conductive pattern 107 is the upper side port of the second predetermined pattern arranged on the uppermost side
  • the lower side port of the second conductive pattern 107 is the lower side port of the second predetermined pattern arranged on the lowermost side
  • the length of the first FPC 104a is determined by the distance between the end point of the other end of the first first metal line 106 and the port of the other end of the nth first metal line 106. , For example, the end point p of the other end of the first first metal line 106 in FIG. 2B and the end point q of the other end of the nth first metal line 106 are at a distance.
  • the length of the first FPC 104a By reducing the length of the first FPC 104a by reducing the distance, the area of the FPC can be reduced, thereby reducing the manufacturing cost of the touch panel.
  • the length of the second FPC 104b is also determined by the distance between the end of the other end of the first second metal line 108 and the port of the other end of the mth second metal line 108.
  • the first FPC 104a may be disposed to directly oppose the second FPC 104b.
  • the direct projection area of the first FPC 104a in the connection region of the first conductive layer 102 in the second conductive layer 103 completely overlaps with the connection region of the second FPC 104b in the second conductive layer 103, that is, the projection region includes or Equal to the connection area.
  • the first FPC 104a is connected to the right edge of the first conductive layer 102
  • the second FPC 104b is connected to the opposite position of the right edge of the second conductive layer 103, and the like.
  • the first FPC is directly opposite to the second FPC.
  • the projection area of the first FPC 104a and the second FPC 104b are equal in area;
  • FIG. 2E (2) is the first
  • the projection area of the FPC 104a includes a connection area of the second FPC 104b.
  • the projection of the first metal lines 106 connecting the rows of the first conductive patterns 105 in the second conductive layer 103 does not intersect with the second metal lines 108 connecting the columns of the second conductive patterns 107, therefore, if the first FPC 104a and the second The FPC 104b is directly opposite, and the length of the first FPC 104a is greater than or equal to the distance between the first first metal line 106 and the nth first metal line 106 in the first conductive layer 102 plus the first in the second conductive layer 103. The sum of the distances between the second metal wire 108 and the mth second metal wire 108.
  • the first FPC 104a may be disposed not directly opposite to the second FPC 104b, and the length of the first FPC 104a is equal to the first first metal line 106 and the nth first metal line 106. The vertical distance between them. Please refer to the schematic diagram in which the first FPC and the second FPC are not directly opposite each other as shown in FIG. 2F.
  • the touch panel further includes: a touch chip and a peripheral circuit 109 respectively connected to the first FPC 104a and the second FPC 104b.
  • the touch chip is configured to detect a touch operation, including a driving pin and a receiving pin, the driving pin is configured to send a driving signal, and the receiving pin is configured to receive a receiving signal fed back according to the driving signal.
  • the surrounding circuitry is used to connect the touch chip to an FPC or external component.
  • the touch chip and surrounding circuitry 109 can be located in the FPC. Alternatively, in order to further reduce the area of the FPC, the touch chip and the surrounding circuit 109 may be deployed to the motherboard, and the FPC may interact with the touch chip through a connection with the motherboard.
  • the first FPC 104a is connected to the driving pin of the touch chip, and the second FPC 104b is connected to the receiving pin of the touch chip; or, the first FPC 104a and The receiving pin of the touch chip is connected, and the second FPC 104b is connected to the driving pin of the touch chip;
  • the driving pin is for transmitting a driving signal
  • the receiving pin is for receiving a receiving signal fed back according to the driving signal
  • the first conductive layer 102 is a driving layer
  • the second conductive layer 103 is a receiving layer
  • the first conductive layer 102 is a receiving layer
  • the second conductive layer 103 is a driving layer
  • this embodiment describes the principle of touch in combination with the structure of the touch panel, specifically: 3 ⁇ 4 mouth:
  • the touch chip control driving pin sends a driving signal of the first row to the first FPC 104a, and the driving signal may be a current signal, and the first FPC 104a forwards the driving signal to the first row, and the first conductive pattern 105 of the first row
  • the two conductive patterns 107 are coupled to generate a coupling capacitor. If there is no touch operation at the current time, each of the second conductive patterns 107 transmits a coupling capacitive coupling signal to the second FPC 104b, the signal is a received signal fed back according to the driving signal, and the second FPC 104b receives the received signal through the receiving pin. Forwarded to the touch chip.
  • the touch chip detects each received signal. When it is detected that all the received signals are the same as the drive signal, it is determined that the operation of the first line is completed, and the operation of the second line is continued.
  • the touch chip control driving pin sends a driving signal of the second row to the first FPC 104a, the first FPC 104a forwards the driving signal to the second row, and the first conductive pattern 105 of the second row is coupled with the second conductive pattern 107 to generate a coupling capacitor. .
  • the touch chip detects the received signal. When it is detected that a certain received signal is different from the driving signal, the coordinates of the touch operation are determined according to the column and the current line generating the received signal, and the touch operation is responded. The touch chip continues to operate on line 3 until all rows are completed.
  • FIG. 2G A top view of the current distribution of the top view of the touch operation is shown.
  • 2G(1) shows the current distribution of the touch panel when there is no touch operation.
  • Fig. 2G (2) shows the current distribution in the touch panel when there is a touch operation.
  • a part of the current on the upper side a1 of the first predetermined pattern 1 is shunted by a path formed by the human body and the ground.
  • the residual current is coupled to the lower right side bl of the second predetermined pattern 1; for the same reason, part of the current on the left lower side a2 of the first predetermined pattern 1 is shunted by the path formed by the human body and the ground, and the residual current is coupled to On the upper right side b2 of the second predetermined pattern 2.
  • the touch panel provided by the embodiment of the present invention connects one end of each row to one end of the first metal line, and the other end of the first metal line is connected to the first FPC, so that the FPC includes
  • the length of the first FPC in the second direction is determined by the distance between the end point of the other end of the first first metal line and the end point of the other end of the nth first metal line, which can be reduced by reducing the distance.
  • the length of the FPC in the second direction is such that the length of the first FPC in the second direction is smaller than the vertical distance between the first row and the nth row, which solves the length of the first FPC in the second direction in the prior art.
  • the vertical distance between the first row and the nth row is large, which results in a large manufacturing cost of the touch panel, and the effect of reducing the manufacturing cost of the touch panel is achieved.
  • the self-capacitance generated by the first conductive pattern and the ground and the coupling capacitance generated by the first conductive pattern and the second conductive pattern are balanced, and the response time to the touch operation can be shortened and the response time can be improved. Accuracy and sensitivity to response to touch operations.
  • FIG. 3 illustrates a method for fabricating a touch panel according to an embodiment of the present invention. Flow chart.
  • the method for manufacturing the touch panel may include:
  • Step 301 forming a first conductive layer on the upper surface of the substrate, and etching n rows of the first conductive patterns in the first direction in the first conductive layer, and connecting one end of each row to one end of the first metal line, The other end of the first metal line is connected to the first FPC of the FPC, and the first FPC is connected to the first conductive layer, n ⁇ 2, and n is an integer;
  • Step 302 forming a second conductive layer on a lower surface of the substrate, and etching a second conductive pattern of m columns in the second direction in the second conductive layer, and connecting one end of each column to one end of the second metal line, The other end of the second metal line is connected to the second FPC of the FPC, and the second FPC is connected to the second conductive layer, m ⁇ l, and m is an integer;
  • the second conductive pattern and the first conductive pattern are used to generate a coupling capacitor
  • the ray of the first direction is perpendicular to the ray of the second direction, and the length of the first FPC in the second direction is smaller than the vertical distance of the first line and the nth line.
  • the method provided by the embodiment of the present invention connects the other end of the first metal line to the first FPC of the FPC by connecting one end of each row to one end of the first metal line, so that the FPC includes
  • the length of the first FPC in the second direction is determined by the distance between the end point of the other end of the first first metal line and the end point of the other end of the nth first metal line, and the first FPC can be reduced by reducing the distance
  • the length in the second direction is such that the length of the first FPC in the second direction is smaller than the vertical distance between the first row and the nth row, which solves the length of the first FPC in the second direction in the prior art.
  • FIG. 4 is a flowchart of a method for fabricating a touch panel according to still another embodiment of the present invention.
  • the method for manufacturing the touch panel may include:
  • Step 401 Determine a first predetermined pattern and a second predetermined pattern according to a required coupling capacitance between the first conductive layer and the second conductive layer;
  • Step 402 forming a first conductive layer on the upper surface of the substrate, and etching n rows of first conductive patterns in the first direction in the first conductive layer, and connecting one end of each row to one end of the first metal line, The other end of the first metal line is connected to the first FPC of the FPC, and the first FPC is connected to the first conductive layer, n ⁇ 2, and n is an integer;
  • the manufacturing process of the first conductive layer includes the following steps:
  • first metal wire is a silver paste, forming a first metal wire on the exposed edge by a printing process or the like; if the first metal wire is molybdenum aluminum molybdenum, forming a first surface on the exposed edge by a yellow light process or the like a metal wire
  • Step 403 forming a second conductive layer on a lower surface of the substrate, and etching a second conductive pattern of m columns in the second direction in the second conductive layer, and connecting one end of each column to one end of the second metal line, The other end of the second metal line is connected to the second FPC of the FPC, and the second FPC is connected to the second conductive layer, and the second conductive pattern and the first conductive pattern are used to generate a coupling capacitance, m ⁇ l, and m is Integer
  • the manufacturing process of the second conductive layer includes the following steps:
  • the second metal wire is a silver paste, forming a second metal wire on the exposed edge by a printing process or the like; if the second metal wire is molybdenum aluminum molybdenum, forming a first surface on the exposed edge by a yellow light process or the like Two metal wires;
  • the first conductive layer needs to be coated with a protective layer to protect the first conductive layer when the second conductive layer is formed.
  • the ray in which the first direction is located is perpendicular to the ray in which the second direction is located, and the length of the first FPC in the second direction is smaller than the vertical distance between the first line and the nth line.
  • the "length in the second direction" is hereinafter referred to as "length”.
  • the length of the first FPC is determined by the distance between the end point of the other end of the first first metal line and the port of the other end of the nth first metal line.
  • the length of the second FPC is also determined by the distance between the end of the other end of the first second metal line and the port of the other end of the mth second metal line.
  • the first FPC may be set to directly oppose the second FPC.
  • the projection area of the first FPC in the connection region of the first conductive layer in the second conductive layer overlaps with the connection region of the second FPC in the second conductive layer, that is, the projection area includes or is equal to the connection area .
  • the first FPC is connected to the right edge of the first conductive layer
  • the second FPC is connected to the opposite position of the right edge of the second conductive layer, and the like.
  • the length of the first FPC is greater than or equal to the vertical distance between the first first metal line and the first first metal line in the first conductive layer plus the first second metal line and the mth in the second conductive layer The sum of the vertical distances between the second metal wires of the root.
  • the first FPC may not be directly opposite to the second FPC, and the length of the first FPC is equal to between the first first metal line and the nth first metal line. vertical distance.
  • each row of the first conductive pattern may be respectively connected to the first FPC, or different side ports of each row of the first conductive pattern may be respectively connected to the first FPC, and the first conductive pattern may also be The right port and the left port are respectively connected to the first FPC.
  • the right port of the first conductive pattern is a right port of the first predetermined pattern arranged at the rightmost side
  • the left port of the first conductive pattern is a left port of the first predetermined pattern arranged at the leftmost side.
  • the first metal line may be etched at the port of the first conductive pattern according to the connection mode.
  • the second metal line can be etched at the port of the second conductive pattern according to the connection.
  • the method further includes:
  • first conductive pattern is composed of at least two first predetermined patterns, connecting the adjacent first predetermined patterns in the row;
  • the second conductive pattern is composed of at least two second predetermined patterns, the adjacent second predetermined in the column The pattern is connected.
  • each row of the first conductive patterns is composed of at least two first predetermined patterns, when etching the first conductive patterns, it is also required to perform a connection between adjacent first predetermined patterns in each row of the first conductive patterns. Etching.
  • the connection may be a conductive rectangular connection block or wire or the like. Similarly, it is necessary to etch the wiring between adjacent second predetermined patterns in each of the second conductive patterns.
  • the method further includes:
  • the same line width is set for each line, and the same column width is set for each column, the column width being equal to the line width.
  • the row width of the row of the first conductive pattern and the column width of the column of the second conductive pattern may also be set.
  • the row width of each row may be equal, and the column width of each column may be equal, then the row width of each row may be set to a first value, and the column width of each column may be set to a second value.
  • the relationship between the line width and the column width can be further determined by setting the first value and the second value.
  • the line width is greater than the column width; or, if the second value is greater than the first value, the line width is less than the column width; or, the second value is equal to the first value, the line width is The column widths are equal.
  • the line width is equal to the column width, the self-capacitance generated between the first conductive pattern and the ground of the row is balanced with the coupling capacitance generated between the first conductive pattern of the row and the second conductive pattern of each row, which can shorten the touch operation. Respond to time, improve the accuracy and sensitivity of response to touch operations.
  • each row of the first conductive pattern having the line width of the first value is etched; after determining the second value, the columns of the second conductive patterns having the column width of the second value are etched.
  • the method further includes:
  • the touch chip and the surrounding circuit are respectively connected to the first FPC and the second FPC.
  • the touch chip is used for detecting a touch operation, including a driving pin and a receiving pin, the driving pin is for transmitting a driving signal, and the receiving pin is for receiving a receiving signal fed back according to the driving signal.
  • the surrounding circuitry is used to connect the touch chip to an FPC or external component.
  • the touch chip and surrounding circuitry can be located in the FPC.
  • the touch chip and the surrounding circuit can be deployed to the motherboard, and the FPC can interact with the touch chip through a connection with the motherboard.
  • the method further includes:
  • the driving pin is for transmitting a driving signal
  • the receiving pin is for receiving a receiving signal fed back according to the driving signal
  • the position of the first FPC and the touch chip in the touch panel may be determined in advance, and the metal line is etched at the position to connect the first FPC to the touch through the etched metal line.
  • the driving pin of the chip; similarly, the second FPC is connected to the receiving pin of the touch chip through the etched metal line.
  • the first FPC is connected to the receiving pin of the touch chip through the etched metal line; similarly, the second FPC is connected to the driving pin of the touch chip through the etched metal line.
  • the method provided by the embodiment of the present invention connects the other end of the first metal line to the first FPC of the FPC by connecting one end of each row to one end of the first metal line, so that the FPC includes
  • the length of the first FPC in the second direction is determined by the distance between the end point of the other end of the first first metal line and the end point of the other end of the nth first metal line, and the first FPC can be reduced by reducing the distance
  • the length in the second direction is such that the length of the first FPC in the second direction is smaller than the vertical distance between the first row and the nth row, which solves the length of the first FPC in the second direction in the prior art.
  • the vertical distance between the first row and the nth row is large, which results in a large manufacturing cost of the touch panel, and the effect of reducing the manufacturing cost of the touch panel is achieved.
  • the column width is equal to the row width, so that the first conductive pattern and the ground generate self-capacitance and the first conductive pattern and the first
  • the balance between the coupling capacitances generated by the two conductive patterns can shorten the response time to the touch operation and improve the accuracy and sensitivity of the response to the touch operation.
  • the serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明公开了一种触控面板及其制作方法,涉及触摸屏领域,触控面板包括:基材、基材上表面的第一导电层、基材下表面的第二导电层、FPC,FPC 包括第一FPC和第二FPC,第一FPC与第一导电层连接,第二FPC与第二导电层连接;第一导电层包括沿第一方向排列的n行第一导电图案,每行的一端与第一金属线的一端连接,第一金属线的另一端与第一FPC连接;第二导电层包括沿第二方向排列的m列第二导电图案,每列的一端与第二金属线的一端连接,第二金属线的另一端与第二FPC连接;第一方向所在射线与第二方向所在射线垂直,且第一FPC在第二方向上的长度小于第 1行与第n行垂直距离。本发明降低了触控面板的制作成本。

Description

触控面板及其制作方法
技术领域
本发明涉及触摸屏领域, 特别涉及一种触控面板及其制作方法。 背景技术
随着用户对终端的交互效率的需求, 高效的触摸交互方式已经成为一种普 遍的交互方式。通过在终端上安装包括触控面板的触摸屏可以降低终端的操作 复杂性, 而触摸屏的关键在于触控面板, 因此, 触控面板的制作成为了人们关 注的焦点。
现有技术提供了一种触控面板, 包括基材、 形成于基材的两个面上的行和 列 ITO ( Indium Tin Oxides, 纳米铟锡金属氧化物)迹线、 FPC ( Flexible Printed Circuit, 柔性电路板 ), 该 FPC包括直接相对的第一 FPC和第二 FPC; 行 ITO 迹线与第一 FPC连接, 列 ITO迹线与第二 FPC连接,第一 FPC和第二 FPC分 别连接在基材的两个面上。其中,直接相对是指第一 FPC在第一表面的第一连 接区域在第二表面的投影与第二 FPC在第二表面的第二连接区域完全重叠,第 一表面为行 ITO迹线所在的表面, 第二表面为列 ITO迹线所在的表面。
由于行 ITO迹线直接与 FPC连接, 使得第一 FPC在列 ITO迹线所在方向 上的长度大于或等于第 1行 ITO迹线和第 n行 ITO迹线的垂直距离,导致 FPC 的长度较长, 而 FPC的面积与长度成正比, 因此, 现有的触控面板中 FPC的 面积较大, 导致触控面板的制作成本较高。 发明内容
为了解决 FPC的面积大造成的触控面板的成本高的问题,本发明实施例提 供了一种触控面板及其制作方法。
第一方面, 本发明实施例提供了一种触控面板, 所述触控面板包括: 基材、 形成于所述基材的上表面的第一导电层、 形成于所述基材的下表面 的第二导电层、 柔性电路板 FPC, 所述 FPC包括第一 FPC和第二 FPC, 所述 第一 FPC与所述第一导电层连接, 所述第二 FPC与所述第二导电层连接; 所述第一导电层包括沿第一方向排列的 n行第一导电图案,每一行的一端 与第一金属线的一端连接, 所述第一金属线的另一端与所述第一 FPC连接; 所述第二导电层包括沿第二方向排列的 m列第二导电图案,每一列的一端 与第二金属线的一端连接,所述第二金属线的另一端与所述第二 FPC连接,所 述第二导电图案与所述第一导电图案用于产生耦合电容;
其中, 所述第一方向所在的射线与所述第二方向所在的射线垂直, 且所述 第一 FPC在所述第二方向上的长度小于第 1行与第 n行的垂直距离。
在第一方面的第一种可能的实现方式中, 若所述第一导电图案由至少两个 第一预定图案构成, 则行内相邻的所述第一预定图案之间连接;
若所述第二导电图案由至少两个第二预定图案构成, 则列内相邻的所述第 二预定图案之间连接。
结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的实现 方式中, 所述第一预定图案和所述第二预定图案由所述第一导电层与所述第二 导电层之间的需求耦合电容确定。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种 可能的实现方式,在第一方面的第三种可能的实现方式中,每一行的行宽相等、 每一列的列宽相等, 且所述行宽与所述列宽相等。
在第一方面的第四种可能的实现方式中, 所述触控面板还包括: 分别与所 述第一 FPC和所述第二 FPC连接的触控芯片和周围电路。
结合第一方面的第四种可能的实现方式, 在第一方面的第五种可能的实现 方式中, 所述第一 FPC与所述触控芯片的驱动管脚连接, 所述第二 FPC与所 述触控芯片的接收管脚连接; 或,
所述第一 FPC与所述触控芯片的接收管脚连接, 所述第二 FPC与所述触 控芯片的驱动管脚连接;
其中, 所述驱动管脚用于发送驱动信号, 所述接收管脚用于接收根据所述 驱动信号反馈的接收信号。
第二方面, 本发明实施例提供了一种触控面板制作方法, 所述方法包括: 在基材的上表面形成第一导电层, 并在所述第一导电层沿第一方向蚀刻出 n行第一导电图案, 将每一行的一端与第一金属线的一端进行连接, 将所述第 一金属线的另一端与柔性电路板 FPC的第一 FPC进行连接, 将所述第一 FPC 连接在所述第一导电层上; 在所述基材的下表面形成第二导电层, 并在所述第二导电层沿第二方向蚀 刻出 m列第二导电图案,将每一列的一端与第二金属线的一端进行连接,将所 述第二金属线的另一端与所述 FPC的第二 FPC进行连接, 将所述第二 FPC连 接在所述第二导电层上;
其中, 所述第二导电图案与所述第一导电图案用于产生耦合电容; 其中, 所述第一方向所在的射线与所述第二方向所在的射线垂直, 且所述 第一 FPC在所述第二方向上的长度小于第 1行与第 n行的垂直距离。
在第二方面的第一种可能的实现方式中, 所述方法还包括:
若所述第一导电图案由至少两个第一预定图案构成, 则将行内相邻的所述 第一预定图案进行连接;
若所述第二导电图案由至少两个第二预定图案构成, 则将列内相邻的所述 第二预定图案进行连接。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的实现 方式中, 所述在所述第一导电层蚀刻出 n行第一导电图案之前, 还包括:
根据所述第一导电层与所述第二导电层之间的需求耦合电容确定所述第 一预定图案和所述第二预定图案。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种 可能的实现方式, 在第二方面的第三种可能的实现方式中, 所述在所述第一导 电层蚀刻出 n行第一导电图案之前, 还包括:
对每一行设置相同的行宽, 并对每一列设置相同的列宽, 所述列宽等于所 述行宽。
在第二方面的第四种可能的实现方式中, 所述方法还包括:
将触控芯片和周围电路与分别所述第一 FPC和所述第二 FPC进行连接。 结合第二方面的第四种可能的实现方式, 在第二方面的第五种可能的实现 方式中, 所述方法还包括:
将所述第一 FPC与所述触控芯片的驱动管脚进行连接, 将所述第二 FPC 与所述触控芯片的接收管脚进行连接; 或,
将所述第一 FPC与所述触控芯片的接收管脚进行连接, 将所述第二 FPC 与所述触控芯片的驱动管脚进行连接;
其中, 所述驱动管脚用于发送驱动信号, 所述接收管脚用于接收根据所述 驱动信号反馈的接收信号。 本发明实施例提供的技术方案的有益效果是:
通过将每一行的一端与第一金属线的一端连接, 所述第一金属线的另一端 与所述第一 FPC连接, 使得 FPC包括的第一 FPC在第二方向上的长度由第 1 根第一金属线的另一端的端点与第 n根第一金属线的另一端的端点的距离确 定,可以通过缩小该距离减小第一 FPC在第二方向上的长度,使得该第一 FPC 在第二方向上的长度小于第 1行与第 n行的垂直距离, 解决了现有技术中第一 FPC的长度大于或等于第 1行和第 n行的垂直距离造成的 FPC的面积大,导致 触控面板的制作成本大的问题, 达到了减少触控面板的制作成本的效果。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例提供的触控面板的结构框架图;
图 2A是本发明另一实施例提供的触控面板的结构框架图;
图 2B是本发明实施例提供的导电图案的俯视排列示意图;
图 2C是本发明实施例提供的导电图案的第一种连接方式的俯视示意图; 图 2D是本发明实施例提供的导电图案的第二种连接方式的俯视示意图; 图 2E是本发明实施例提供的第一 FPC与第二 FPC直接相对的示意图; 图 2F是本发明实施例提供的第一 FPC与第二 FPC不直接相对的示意图; 图 2G是本发明实施例提供的俯视的触摸操作的电流分布俯视示意图; 图 3是本发明一个实施例提供的触控面板制作方法的方法流程图; 图 4是本发明再一实施例提供的触控面板制作方法的方法流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。 请参见图 1 , 其示出了本发明一个实施例提供的触控面板的结构框架图。 该触控面板包括基材 101、 形成于基材的上表面的第一导电层 102、 形成于基 材的下表面的第二导电层 103、柔性电路板 FPC 104, FPC 104包括第一 FPC104a 和第二 FPC104b, 第一 FPC104a与第一导电层 102连接, 第二 FPC104b与第 二导电层 103连接;
其中, 第一导电层 102包括沿第一方向排列的 n行第一导电图案 105 , 每 一行的一端与第一金属线 106 的一端连接, 第一金属线 106 的另一端与第一 FPC104a连接, n>2, 并且 n为整数;
第二导电层 103包括沿第二方向排列的 m列第二导电图案 107,每一列的 一端与第二金属线 108的一端连接, 第二金属线 108的另一端与第二 FPC104b 连接,第二导电图案与第一导电图案用于产生耦合电容, m>l ,并且 m为整数; 其中, 第一方向所在的射线与第二方向所在的射线垂直, 且第一 FPC104a 在第二方向上的长度小于第 1行与第 n行的垂直距离。
综上所述, 本发明实施例提供的触控面板, 通过将每一行的一端与第一金 属线的一端连接, 所述第一金属线的另一端与所述第一 FPC连接, 使得 FPC 包括的第一 FPC在第二方向上的长度由第 1根第一金属线的另一端的端点与第 n根第一金属线的另一端的端点的距离确定, 可以通过缩小该距离减小第一 FPC在第二方向上的长度, 使得所述第一 FPC在第二方向上的长度小于第 1 行与第 n行的垂直距离,解决了现有技术中第一 FPC在第二方向上的长度与第 1行和第 n行的垂直距离相等造成的 FPC的面积大,导致触控面板的制作成本 大的问题, 达到了减少触控面板的制作成本的效果。 请参见图 2A, 其示出了本发明另一实施例提供的触控面板的结构框架图。 该触控面板包括基材 101、 形成于基材的上表面的第一导电层 102、 形成于基 材的下表面的第二导电层 103、柔性电路板 FPC 104, FPC 104包括第一 FPC104a 和第二 FPC104b, 第一 FPC104a与第一导电层 102连接, 第二 FPC104b与第 二导电层 103连接;
其中, 第一导电层 102包括沿第一方向排列的 n行第一导电图案 105 , 每 一行的一端与第一金属线 106 的一端连接, 第一金属线 106 的另一端与第一 FPC104a连接, n>2, 并且 n为整数;
第二导电层 103包括沿第二方向排列的 m列第二导电图案 107,每一列的 一端与第二金属线 106的一端连接, 第二金属线 106的另一端与第二 FPC104b 连接,第二导电图案与第一导电图案用于产生耦合电容, m>l ,并且 m为整数; 其中, 第一方向所在的射线与第二方向所在的射线垂直, 且第一 FPC104a 在第二方向上的长度小于第 1行与第 n行的垂直距离。
为了便于说明, 下文中将 "第二方向上的长度" 筒称为 "长度"。
基材 101由具有阻抗的导电材料制成。通常,基材 101的阻抗为 70至 100 欧姆。
第一导电层 102包括沿第一方向上排列的 n行第一导电图案 105, 该第一 导电图案 105可以由 ITO等导电材料形成, 通过第一金属线 106连接至第一 FPC104a。 其中, 一行第一导电图案 105与一根第一金属线 106连接且第一导 电层 102中的任意两根第一金属线 106之间不相交, 该第一金属线 106可以由 银浆或钼铝钼等形成。
第二导电层 103包括沿第二方向上排列的 m列第二导电图案 107,该第二 导电图案 107可以由 ITO等导电材料形成, 通过第二金属线 108连接至第二 FPC104b。 其中, 一列第二导电图案 107与一根第二金属线 108连接且第二导 电层 103中的任意两根第二金属线 108之间不相交, 该第二金属线 108可以由 银浆或钼铝钼等形成。
本实施例中, 每一行第一导电图案 105由 i ( i≥l ) 个第一预定图案构成, 每一列第二导电图案 107由 j ( j≥l )个第二预定图案构成。 其中, 第一预定图 案和第二预定图案可以是任意形状的图案, 比如, 矩形、 三角形、 圓形、 菱形、 六边形、 不规则图案等, 且第一预定图案和第二预定图案可以相同, 也可以不 同。
由于第一导电图案 105和第二导电图案 107由导电材料形成, 因此, 当电 流流过第一导电图案 105或第二导电图案 107时, 第一导电图案 105与第二导 电图案 107之间会产生耦合电容。 由于耦合电容的大小与导电图案的耦合面积 成正比、与导电图案的耦合距离成反比, 因此,在确定需求耦合电容的大小后, 可以根据耦合面积和耦合距离确定第一预定图案和第二预定图案。 即第一预定 图案和第二预定图案由第一导电层 102与第二导电层 103之间的需求耦合电容 确定。
本实施例以第一预定图案和第二预定图案是菱形为例进行说明,请参考图 2B 所示的导电图案的俯视排列示意图, 第一预定图案及其连接用实线表示、 第二预定图案及其连接用虚线表示。 其中, 与第一预定图案的左下侧的边 a临 近的是第二预定图案的右上侧的边 b, 因此, 第一预定图案的边 a与第二预定 图案的边 b产生耦合电容。 当需要产生的需求耦合电容较大时, 可以增加边 a 和边 b的边长, 以增大耦合面积,或者,可以减小边 a与边 b之间的垂直距离, 以减小耦合距离。 当需求耦合电容较小时, 可以减小边 a和边 b的边长, 以减 小耦合面积, 或者, 可以增大边 a与边 b之间的垂直距离, 以增大耦合距离。
在根据需求耦合电容确定了第一预定图案和第二预定图案之后, 需要将第 一预定图案在第一导电层 102中连接成 n行,每一行可以为第一导电图案 105; 将第二预定图案在第二导电层 103中连接成 m列,每一列可以为第二导电图案 107。 其中, 各行第一导电图案 105在第二导电层 103上的投影与各列第二导 电图案 107可以部分或全部重叠, 也可以不重叠。 比如, 图 2B中任意一行第 一导电图案 105在第二导电层 103上的投影与所有第二导电图案 107均不重叠。
具体地, 在将至少两个第一预定图案连接成一行时, 为了保证连接成一行 后形成的第一导电图案 105的导电性, 可以将行内相邻的第一预定图案之间进 行连接; 同理, 可以将列内相邻的第二预定图案之间进行连接。 比如, 相邻的 菱形之间通过导电的矩形连接块或导线连接, 图 2B中以导线为例进行表示。
本实施例中, 每一行的行宽可以相等, 每一列的列宽可以相等, 则还可以 将每一行的行宽设置为第一数值, 将每一列的列宽设置为第二数值。 当第一导 电图案 105与第二导电图案 107不同时,还可以通过设置第一数值与第二数值 来进一步确定行宽与列宽的关系。
比如, 设置第二数值小于第一数值, 则行宽大于列宽; 或, 设置第二数值 大于第一数值, 则行宽小于列宽; 或, 设置第二数值等于第一数值, 行宽与列 宽相等。 当行宽与列宽相等时, 一行第一导电图案 105和地之间产生的自电容 与该行第一导电图案 105和各列第二导电图案 107之间产生的耦合电容达到平 衡,可以缩短对触摸操作的响应时间、提高对触摸操作响应的精确性和灵敏度。
其中, 行宽可以是第一导电图案 105在第二导电层 103上的投影在第二方 向上的最大距离, 请参考图 2B中的 dl ; 列宽可以是第二导电图案 107在第一 导电层 102上的投影在第一方向上的最大距离, 请参考图 2B中的 d2。
在确定了第一导电层 102中的各行第一导电图案 105和第二导电层 103中 的各列第二导电图案 107之后, 需要将各行第一导电图案 105分别连接至第一 FPC104a, 将各列第二导电图案 107分别连接至第二 FPC104b。 本实施例以将 一行第一导电图案 105连接至第一 FPC104a为例进行具体说明。若该行第一导 电图案 105由一个第一预定图案构成, 由于每一个预定图案都包括用于连接的 端口, 因此, 可以直接将该第一预定图案的一端通过第一金属线 106连接至第 一 FPC104a; 若该行第一导电图案 105由至少两个第一预定图案构成, 由于每 一个预定图案都包括用于连接的端口, 因此, 可以根据端口将该至少两个第一 预定图案在第一方向上连接成一行, 并将连接形成的行的首尾中的任一个第一 预定图案的一端通过第一金属线 106连接至第一 FPC104a。
由于第一导电图案 105至少为两行, 则可以将各行第一导电图案 105的相 同侧端口分别连接至第一 FPC104a。 比如, 将各行第一导电图案 105的右侧端 口分别连接至第一 FPC104a, 请参考图 2B所示的导电图案的连接方式; 也可 以将各行第一导电图案 105的不同侧端口分别连接至第一 FPC104a, 比如, 将 k ( k>l )行第一导电图案 105的右侧端口和剩余(n-k )行的第一导电图案 105 的左侧端口分别连接至第一 FPC104a, 请参考图 2C所示的导电图案的第一种 连接方式的俯视示意图。 其中, 第一导电图案 105的右侧端口是排列在最右侧 的第一预定图案的右侧端口, 第一导电图案 105的左侧端口是排列在最左侧的 第一预定图案的左侧端口, 请参考图 2C。
优选地,还可以将各行第一导电图案 105的右侧端口和左侧端口通过两根 第一金属线 106分别连接至第一 FPC104a, 由于两根第一金属线 106对电流进 行了分流, 可以加快电流的检测速度, 缩短了触控的响应时间, 提高了触控效 果。 同理, 可以将第二导电图案 107的上侧端口和下侧端口通过两根第二金属 线 108分别连接至第二 FPC104b。
本实施例以第二导电图案 107的上侧端口和下侧端口通过两根第二金属线
108分别连接至第二 FPC104b为例进行说明, 则请参考图 2D所示的导电图案 的第二种连接方式的俯视示意图。 图 2D中, 第二 FPC104b分为第一连接部分 104bl和第二连接部分 104b2,其中,第一连接部分 104bl与第二导电图案 107 的上侧端口连接, 第二连接部分 104b2与第二导电图案 107的下侧端口连接。 第二导电图案 107的上侧端口是排列在最上侧的第二预定图案的上侧端口, 第 二导电图案 107的下侧端口是排列在最下侧的第二预定图案的下侧端口,请参 考图 2D。
在将第一金属线 106连接到第一 FPC104a时, 还需要确定第一 FPC104a 的长度, 以便将确定了长度的第一 FPC104a与第一导电层 102连接。 由于第一 FPC104a与第一金属线 106连接, 因此, 第一 FPC104a的长度由第 1根第一金 属线 106的另一端的端点与第 n根第一金属线 106的另一端的端口的距离确定, 比如, 图 2B中的第 1根第一金属线 106的另一端的端点 p和第 n根第一金属 线 106的另一端的端点 q距离。通过缩小该距离减小第一 FPC104a的长度, 可 以减小 FPC的面积, 从而减小触控面板的制作成本。 同理, 第二 FPC104b的 长度也由第 1根第二金属线 108的另一端的端点与第 m根第二金属线 108的另 一端的端口的距离确定。
在根据第一金属线 106确定第一 FPC104a的长度和根据第二金属线 108 确定第二 FPC104b的长度之后, 可以将第一 FPC104a设置为与第二 FPC104b 直接相对。其中, 直接相对即第一 FPC104a在第一导电层 102的连接区域在第 二导电层 103中的投影区域与第二 FPC104b在第二导电层 103中的连接区域完 全重叠, 即该投影区域包括或等于该连接区域。 比如, 第一 FPC104a连接在第 一导电层 102的右边缘、第二 FPC104b连接在第二导电层 103的右边缘的相对 位置等。 请参考图 2E所示的第一 FPC与第二 FPC直接相对的示意图, 图 2E ( 1 )中第一 FPC104a的投影区域与第二 FPC104b的连接区域的面积相等; 图 2E ( 2 ) 中第一 FPC104a的投影区域包括第二 FPC104b的连接区域。
由于连接各行第一导电图案 105的第一金属线 106在第二导电层 103中的 投影与连接各列第二导电图案 107 的第二金属线 108 不相交, 因此, 若第一 FPC104a与第二 FPC104b直接相对, 则第一 FPC104a的长度大于或等于第一 导电层 102中第 1根第一金属线 106与第 n根第一金属线 106之间的距离加上 第二导电层 103中第 1根第二金属线 108与第 m根第二金属线 108之间的距离 之和。 优选地, 为了进一步减小 FPC的长度, 还可以设置第一 FPC104a与第 二 FPC104b不直接相对, 则第一 FPC104a的长度等于第 1根第一金属线 106 与第 n根第一金属线 106之间的垂直距离。 请参考图 2F所示的第一 FPC与第 二 FPC不直接相对的示意图。
请参考图 2A, 本实施例中, 触控面板还包括: 与第一 FPC104a和第二 FPC104b分别连接的触控芯片和周围电路 109。
其中, 触控芯片用于对触摸操作进行检测, 包括驱动管脚和接收管脚, 驱 动管脚用于发送驱动信号, 接收管脚用于接收根据驱动信号反馈的接收信号。 周围电路用于将触控芯片接入 FPC 或外部元件中。 触控芯片和周围电路 109 可以位于 FPC中。 或者, 为了进一步减小 FPC的面积, 还可以将触控芯片和 周围电路 109部署到主板中, FPC可以通过与主板之间的连接来与触控芯片进 行交互。 在将触控芯片分别连接至与第一 FPC和第二 FPC时, 第一 FPC104a与触 控芯片的驱动管脚连接, 第二 FPC104b与触控芯片的接收管脚连接; 或, 第一 FPC104a与触控芯片的接收管脚连接, 第二 FPC104b与触控芯片的 驱动管脚连接;
其中, 驱动管脚用于发送驱动信号, 接收管脚用于接收根据驱动信号反馈 的接收信号。
当第一 FPC104a与驱动管脚连接且第二 FPC104b与接收管脚连接时, 第 一导电层 102为驱动层, 第二导电层 103为接收层。 当第一 FPC104a与接收管 脚连接且第二 FPC104b与驱动管脚连接时,第一导电层 102为接收层,第二导 电层 103为驱动层。
为了便于理解, 本实施例结合触控面板的结构对触控原理进行说明, 具体 :¾口下:
触控芯片控制驱动管脚向第一 FPC104a发送第 1行的驱动信号,该驱动信 号可以是电流信号, 第一 FPC104a向第 1行转发该驱动信号, 第 1行的第一导 电图案 105与第二导电图案 107耦合产生耦合电容。 若当前时刻不存在触摸操 作, 则每一个第二导电图案 107将耦合电容耦合的信号发送给第二 FPC104b, 该信号为根据驱动信号反馈的接收信号,第二 FPC104b通过接收管脚将该接收 信号转发给触控芯片。 触控芯片对每一个接收信号进行检测, 当检测到所有的 接收信号均与驱动信号相同后, 确定对第 1行的操作结束, 继续执行对第 2行 的操作。
触控芯片控制驱动管脚向第一 FPC104a发送第 2 行的驱动信号, 第一 FPC104a向第 2行转发该驱动信号, 第 2行的第一导电图案 105与第二导电图 案 107耦合产生耦合电容。 若当前时刻存在触摸操作, 由于人体与地形成了一 条通路, 因此, 第一导电图案 105中的一部分信号由人体分流至地, 另一部分 信号由耦合电容耦合至第二 FPC104b,第二 FPC104b接收到的信号即为根据驱 动信号反馈的接收信号,第二 FPC104b通过接收管脚将所有的接收信号转发给 触控芯片。 触控芯片对接收信号进行检测, 当检测到某一个接收信号与驱动信 号不同后, 根据产生该接收信号的列和当前行确定触摸操作的坐标, 并对该触 摸操作进行响应。 触控芯片继续执行对第 3行的操作, 直至完成对所有的行的 操作。
在进行信号耦合时, 本实施例以电流信号为例详细说明, 请参考图 2G所 示的俯视的触摸操作的电流分布俯视示意图。 其中, 图 2G ( 1 )示出了不存在 触摸操作时触控面板的电流分布。 当有电流流过第一预定图案 1时, 第一预定 图案 1的左上侧的边 al与第二预定图案 1的右下侧的边 bl产生耦合电容, 边 al上的所有电流耦合至边 bl上; 同理, 第一预定图案 1的左下侧的边 a2上的 所有电流耦合至第二预定图案 2的右上侧的边 b2上。 当电流流过第一预定图 案 2时,第一预定图案 2的右上侧的边 a3上的所有电流耦合至第二预定图案 1 的左下侧的边 b3上; 同理, 第一预定图案 2的右下侧的边 a4上的所有电流耦 合至第二预定图案 2的左上侧的边 b4上。
图 2G ( 2 )示出了存在触摸操作时触控面板中的电流分布。 当有电流流过 第一预定图案 1且第一预定图案 1的周围的预定区域内存在触摸操作时, 第一 预定图案 1的左上侧的边 al上的部分电流被人体与地形成的通路分流, 剩余 电流耦合至第二预定图案 1的右下侧的边 bl上; 同理, 第一预定图案 1的左 下侧的边 a2上的部分电流被人体与地形成的通路分流, 剩余电流耦合至第二 预定图案 2的右上侧的边 b2上。 当有电流流过第一预定图案 2且第一预定图 案 2的周围的预定区域内存在触摸操作时, 第一预定图案 2的右上侧的边 a3 上的部分电流被人体与地形成的通路分流, 剩余电流耦合至第二预定图案 1的 左下侧的边 b3上; 同理, 第一预定图案 1的右下侧的边 a4上的部分电流被人 体与地形成的通路分流, 剩余电流耦合至第二预定图案 2的左上侧的边 b4上。
综上所述, 本发明实施例提供的触控面板, 通过将每一行的一端与第一金 属线的一端连接, 所述第一金属线的另一端与所述第一 FPC连接, 使得 FPC 包括的第一 FPC在第二方向上的长度由第 1根第一金属线的另一端的端点与第 n根第一金属线的另一端的端点的距离确定, 可以通过缩小该距离减小第一 FPC在第二方向上的长度, 使得所述第一 FPC在第二方向上的长度小于第 1 行与第 n行的垂直距离,解决了现有技术中第一 FPC在第二方向上的长度与第 1行和第 n行的垂直距离相等造成的 FPC的面积大,导致触控面板的制作成本 大的问题, 达到了减少触控面板的制作成本的效果。 另外, 通过行宽与列宽相 等,使得第一导电图案与地产生的自电容和第一导电图案与第二导电图案产生 的耦合电容之间达到平衡, 可以缩短对触摸操作的响应时间、 提高对触摸操作 响应的精确性和灵敏度。 请参考图 3 , 其示出了本发明一个实施例提供的触控面板制作方法的方法 流程图。 该触控面板制作方法, 可以包括:
步骤 301 , 在基材的上表面形成第一导电层, 并在第一导电层沿第一方向 蚀刻出 n行第一导电图案, 将每一行的一端与第一金属线的一端进行连接, 将 第一金属线的另一端与 FPC的第一 FPC进行连接, 将第一 FPC连接在第一导 电层上, n≥2, 并且 n为整数;
步骤 302, 在基材的下表面形成第二导电层, 并在第二导电层沿第二方向 蚀刻出 m列第二导电图案,将每一列的一端与第二金属线的一端进行连接,将 第二金属线的另一端与 FPC的第二 FPC进行连接, 将第二 FPC连接在第二导 电层上, m≥l , 并且 m为整数;
其中, 第二导电图案与第一导电图案用于产生耦合电容;
其中,第一方向所在的射线与第二方向所在的射线垂直,且第一 FPC在第 二方向上的长度小于第 1行与第 n行的垂直距离。
综上所述, 本发明实施例提供的方法, 通过将每一行的一端与第一金属线 的一端连接, 将所述第一金属线的另一端与 FPC的第一 FPC连接, 使得 FPC 包括的第一 FPC在第二方向上的长度由第 1根第一金属线的另一端的端点与第 n根第一金属线的另一端的端点的距离确定, 可以通过缩小该距离减小第一 FPC在第二方向上的长度, 使得所述第一 FPC在第二方向上的长度小于第 1 行与第 n行的垂直距离,解决了现有技术中第一 FPC在第二方向上的长度与第 1行和第 n行的垂直距离相等造成的 FPC的面积大,导致触控面板的制作成本 大的问题, 达到了减少触控面板的制作成本的效果。 请参考图 4, 其示出了本发明再一实施例提供的触控面板制作方法的方法 流程图。 该触控面板制作方法, 可以包括:
步骤 401 , 根据第一导电层与第二导电层之间的需求耦合电容确定第一预 定图案和第二预定图案;
具体地,根据需求耦合电容确定第一预定图案和第二预定图案的流程详见 图 2A所示的实施例中的描述, 此处不赘述。
步骤 402, 在基材的上表面形成第一导电层, 并在第一导电层沿第一方向 蚀刻出 n行第一导电图案, 将每一行的一端与第一金属线的一端进行连接, 将 第一金属线的另一端与 FPC的第一 FPC进行连接, 将第一 FPC连接在第一导 电层上, n≥2, 并且 n为整数; 具体地 , 对第一导电层的制作流程包括以下几个步骤:
1 )使用镀膜等工艺将 ΙΤΟ等导电物质附着在基材的上表面, 形成第一导 电层;
2 )通过黄光或印刷耐酸油墨等方式对确定后的第一预定图案进行蚀刻, 形成 η行第一导电图案;
3 )在第一导电图案上涂上保护层, 使上表面中需要部署第一金属线的边 缘暴露;
4 )若第一金属线为银浆, 则通过印刷工艺等在暴露的边缘上形成第一金 属线; 若第一金属线为钼铝钼, 则通过黄光工艺等在暴露的边缘上形成第一金 属线;
5 )将第一 FPC连接在第一金属线所在的边缘, 与该第一金属线相连接。 步骤 403 , 在基材的下表面形成第二导电层, 并在第二导电层沿第二方向 蚀刻出 m列第二导电图案,将每一列的一端与第二金属线的一端进行连接,将 第二金属线的另一端与 FPC的第二 FPC进行连接, 将第二 FPC连接在第二导 电层上, 第二导电图案与第一导电图案用于产生耦合电容, m≥l , 并且 m为整 数;
具体地, 对第二导电层的制作流程包括以下几个步骤:
1 )使用镀膜等工艺将 ITO等导电物质附着在基材的上表面, 形成第二导 电层;
2 )通过黄光或印刷耐酸油墨等方式对确定后的第二预定图案进行蚀刻, 形成 n列第二导电图案;
3 )在第二导电图案上涂上保护层, 使下表面中需要部署第二金属线的边 缘暴露;
4 )若第二金属线为银浆, 则通过印刷工艺等在暴露的边缘上形成第二金 属线; 若第二金属线为钼铝钼, 则通过黄光工艺等在暴露的边缘上形成第二金 属线;
5 )将第二 FPC连接在第二金属线所在的边缘, 与该第二金属线相连接。 需要补充说明的是, 在制作第二导电层之前, 还需要对第一导电层涂上保 护层, 以便在制作第二导电层时对第一导电层进行保护。
其中,第一方向所在的射线与第二方向所在的射线垂直,且第一 FPC在第 二方向上的长度小于第 1行与第 n行的垂直距离。 为了便于说明, 下文中将 "第二方向上的长度" 筒称为 "长度"。
本实施例中, 在连接第一 FPC之前, 还需要确定第一 FPC的长度。 由于 第一 FPC与第一金属线连接, 因此, 第一 FPC的长度由第 1根第一金属线的 另一端的端点与第 n根第一金属线的另一端的端口的距离确定。通过缩小该距 离减小第一 FPC的长度, 可以减小 FPC的面积, 从而减小触控面板的制作成 本。 同理, 第二 FPC的长度也由第 1根第二金属线的另一端的端点与第 m根 第二金属线的另一端的端口的距离确定。
在根据第一金属线确定第一 FPC的长度和根据第二金属线确定第二 FPC 的长度之后, 可以将第一 FPC设置为与第二 FPC直接相对。 其中, 直接相对 即第一 FPC在第一导电层的连接区域在第二导电层中的投影区域与第二 FPC 在第二导电层中的连接区域重叠,即该投影区域包括或等于该连接区域。比如, 第一 FPC连接在第一导电层的右边缘、 第二 FPC连接在第二导电层的右边缘 的相对位置等。
由于连接各行第一导电图案的第一金属线在第二导电层中的投影与连接 各列第二导电图案的第二金属线不相交, 因此, 若第一 FPC与第二 FPC直接 相对, 则第一 FPC的长度大于或等于第一导电层中第 1根第一金属线与第 n 根第一金属线之间的垂直距离加上第二导电层中第 1根第二金属线与第 m根第 二金属线之间的垂直距离之和。优选地, 为了进一步减小 FPC的长度, 还可以 设置第一 FPC与第二 FPC不直接相对, 则第一 FPC的长度等于第 1根第一金 属线与第 n根第一金属线之间的垂直距离。
需要补充说明的是, 可以将各行第一导电图案的相同侧端口分别连接至第 一 FPC, 也可以将各行第一导电图案的不同侧端口分别连接至第一 FPC, 还可 以将第一导电图案的右侧端口和左侧端口分别连接至第一 FPC。 其中, 第一导 电图案的右侧端口是排列在最右侧的第一预定图案的右侧端口, 第一导电图案 的左侧端口是排列在最左侧的第一预定图案的左侧端口。
本实施例中, 可以根据连接方式在第一导电图案的端口处蚀刻第一金属 线。 同理, 可以根据连接方式在第二导电图案的端口处蚀刻第二金属线。
进一步地, 该方法还包括:
若第一导电图案由至少两个第一预定图案构成, 则将行内相邻的第一预定 图案进行连接;
若第二导电图案由至少两个第二预定图案构成, 则将列内相邻的第二预定 图案进行连接。
若每一行第一导电图案均由至少两个第一预定图案构成, 则在蚀刻第一导 电图案时,还需要对每一行第一导电图案中相邻的第一预定图案之间的连线进 行蚀刻。 该连线可以是导电的矩形连接块或导线等。 同理, 需要对每一列第二 导电图案中相邻的第二预定图案之间的连线进行蚀刻。
进一步地, 在第一导电层沿第一方向蚀刻出 n行第一导电图案之前, 还包 括:
对每一行设置相同的行宽, 并对每一列设置相同的列宽, 所述列宽等于所 述行宽。
本实施例中,还可以设置第一导电图案所在行的行宽和第二导电图案所在 列的列宽。 其中, 每一行的行宽可以相等, 每一列的列宽可以相等, 则还可以 将每一行的行宽设置为第一数值, 将每一列的列宽设置为第二数值。 当第一导 电图案与第二导电图案不同时,还可以通过设置第一数值与第二数值来进一步 确定行宽与列宽的关系。
比如, 设置第二数值小于第一数值, 则行宽大于列宽; 或, 设置第二数值 大于第一数值, 则行宽小于列宽; 或, 设置第二数值等于第一数值, 行宽与列 宽相等。 当行宽与列宽相等时, 一行第一导电图案和地之间产生的自电容与该 行第一导电图案和各列第二导电图案之间产生的耦合电容达到平衡, 可以缩短 对触摸操作的响应时间、 提高对触摸操作响应的精确性和灵敏度。
具体地, 在确定第一数值之后, 蚀刻出行宽为第一数值的各行第一导电图 案; 在确定第二数值之后, 蚀刻出列宽为第二数值的各列第二导电图案。
进一步地, 该方法还包括:
将触控芯片和周围电路分别与第一 FPC和第二 FPC进行连接。
其中, 触控芯片用于对触摸操作进行检测, 包括驱动管脚和接收管脚, 驱 动管脚用于发送驱动信号, 接收管脚用于接收根据驱动信号反馈的接收信号。 周围电路用于将触控芯片接入 FPC或外部元件中。触控芯片和周围电路可以位 于 FPC中。 或者, 为了进一步减小 FPC的面积, 还可以将触控芯片和周围电 路部署到主板中, FPC可以通过与主板之间的连接来与触控芯片进行交互。
进一步地, 该方法还包括:
将第一 FPC与触控芯片的驱动管脚进行连接, 将第二 FPC与触控芯片的 接收管脚进行连接; 或, 将第一 FPC与触控芯片的接收管脚进行连接, 将第二 FPC与触控芯片的 驱动管脚进行连接;
其中, 驱动管脚用于发送驱动信号, 接收管脚用于接收根据驱动信号反馈 的接收信号。
本实施例中, 还可以预先确定第一 FPC与触控芯片在触控面板中的位置, 并在该位置处进行金属线的蚀刻,以通过蚀刻出的金属线将第一 FPC连接至触 控芯片的驱动管脚; 同理,通过蚀刻出的金属线将第二 FPC连接至触控芯片的 接收管脚。或者,通过蚀刻出的金属线将第一 FPC连接至触控芯片的接收管脚; 同理, 通过蚀刻出的金属线将第二 FPC连接至触控芯片的驱动管脚。
综上所述, 本发明实施例提供的方法, 通过将每一行的一端与第一金属线 的一端连接, 将所述第一金属线的另一端与 FPC的第一 FPC连接, 使得 FPC 包括的第一 FPC在第二方向上的长度由第 1根第一金属线的另一端的端点与第 n根第一金属线的另一端的端点的距离确定, 可以通过缩小该距离减小第一 FPC在第二方向上的长度, 使得所述第一 FPC在第二方向上的长度小于第 1 行与第 n行的垂直距离,解决了现有技术中第一 FPC在第二方向上的长度与第 1行和第 n行的垂直距离相等造成的 FPC的面积大,导致触控面板的制作成本 大的问题, 达到了减少触控面板的制作成本的效果。 另外, 通过对每一行设置 相同的行宽, 并对每一列设置相同的列宽, 所述列宽等于所述行宽, 使得第一 导电图案与地产生的自电容和第一导电图案与第二导电图案产生的耦合电容 之间达到平衡, 可以缩短对触摸操作的响应时间、 提高对触摸操作响应的精确 性和灵敏度。 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种触控面板, 其特征在于, 所述触控面板包括:
基材、 形成于所述基材的上表面的第一导电层、 形成于所述基材的下表面 的第二导电层、 柔性电路板 FPC, 所述 FPC包括第一 FPC和第二 FPC, 所述第 一 FPC与所述第一导电层连接, 所述第二 FPC与所述第二导电层连接;
所述第一导电层包括沿第一方向排列的 n行第一导电图案, 每一行的一端 与第一金属线的一端连接, 所述第一金属线的另一端与所述第一 FPC连接; 所述第二导电层包括沿第二方向排列的 m列第二导电图案, 每一列的一端 与第二金属线的一端连接, 所述第二金属线的另一端与所述第二 FPC连接, 所 述第二导电图案与所述第一导电图案用于产生耦合电容;
其中, 所述第一方向所在的射线与所述第二方向所在的射线垂直, 且所述 第一 FPC在所述第二方向上的长度小于第 1行与第 n行的垂直距离。
2、 根据权利要求 1所述的触控面板, 其特征在于,
若所述第一导电图案由至少两个第一预定图案构成, 则行内相邻的所述第 一预定图案之间连接;
若所述第二导电图案由至少两个第二预定图案构成, 则列内相邻的所述第 二预定图案之间连接。
3、 根据权利要求 2所述的触控面板, 其特征在于, 所述第一预定图案和所 述第二预定图案由所述第一导电层与所述第二导电层之间的需求耦合电容确 定。
4、 根据权利要求 1至 3任一所述的触控面板, 其特征在于, 每一行的行宽 相等、 每一列的列宽相等, 且所述行宽与所述列宽相等。
5、 根据权利要求 1所述的触控面板, 其特征在于, 所述触控面板还包括: 分别与所述第一 FPC和所述第二 FPC连接的触控芯片和周围电路。
6、 根据权利要求 5所述的触控面板, 其特征在于, 所述第一 FPC与所述触控芯片的驱动管脚连接, 所述第二 FPC与所述触控 芯片的接收管脚连接; 或,
所述第一 FPC与所述触控芯片的接收管脚连接, 所述第二 FPC与所述触控 芯片的驱动管脚连接;
其中, 所述驱动管脚用于发送驱动信号, 所述接收管脚用于接收根据所述 驱动信号反馈的接收信号。
7、 一种触控面板制作方法, 其特征在于, 所述方法包括:
在基材的上表面形成第一导电层,并在所述第一导电层沿第一方向蚀刻出 n 行第一导电图案, 将每一行的一端与第一金属线的一端进行连接, 将所述第一 金属线的另一端与柔性电路板 FPC的第一 FPC进行连接,将所述第一 FPC连接 在所述第一导电层上;
在所述基材的下表面形成第二导电层, 并在所述第二导电层沿第二方向蚀 刻出 m列第二导电图案, 将每一列的一端与第二金属线的一端进行连接, 将所 述第二金属线的另一端与所述 FPC的第二 FPC进行连接,将所述第二 FPC连接 在所述第二导电层上;
其中, 所述第二导电图案与所述第一导电图案用于产生耦合电容; 其中, 所述第一方向所在的射线与所述第二方向所在的射线垂直, 且所述 第一 FPC在所述第二方向上的长度小于第 1行与第 n行的垂直距离。
8、 根据权利要求 7所述的控制面板制作方法, 其特征在于, 所述方法还包 括:
若所述第一导电图案由至少两个第一预定图案构成, 则将行内相邻的所述 第一预定图案进行连接;
若所述第二导电图案由至少两个第二预定图案构成, 则将列内相邻的所述 第二预定图案进行连接。
9、 根据权利要求 8所述的控制面板制作方法, 其特征在于, 所述在所述第 一导电层沿第一方向蚀刻出 n行第一导电图案之前, 还包括:
根据所述第一导电层与所述第二导电层之间的需求耦合电容确定所述第一 预定图案和所述第二预定图案。
10、 根据权利要求 7至 9任一所述的触控面板制作方法, 其特征在于, 所 述在所述第一导电层沿第一方向蚀刻出 n行第一导电图案之前, 还包括:
对每一行设置相同的行宽, 并对每一列设置相同的列宽, 所述列宽等于所 述行宽。
11、 根据权利要求 7所述的触控面板制作方法, 其特征在于, 所述方法还 包括:
将触控芯片和周围电路分别与所述第一 FPC和所述第二 FPC进行连接。
12、 根据权利要求 11所述的触控面板制作方法, 其特征在于, 所述方法还 包括:
将所述第一 FPC与所述触控芯片的驱动管脚进行连接, 将所述第二 FPC与 所述触控芯片的接收管脚进行连接; 或,
将所述第一 FPC与所述触控芯片的接收管脚进行连接, 将所述第二 FPC与 所述触控芯片的驱动管脚进行连接;
其中, 所述驱动管脚用于发送驱动信号, 所述接收管脚用于接收根据所述 驱动信号反馈的接收信号。
PCT/CN2013/085600 2013-10-21 2013-10-21 触控面板及其制作方法 WO2015058337A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13886625.6A EP2887189B1 (en) 2013-10-21 2013-10-21 Touch panel and manufacturing method therefor
CN201380003130.4A CN103858082A (zh) 2013-10-21 2013-10-21 触控面板及其制作方法
PCT/CN2013/085600 WO2015058337A1 (zh) 2013-10-21 2013-10-21 触控面板及其制作方法
JP2015543266A JP2015535385A (ja) 2013-10-21 2013-10-21 タッチパネル及びその製造方法
US14/569,004 US9451705B2 (en) 2013-10-21 2014-12-12 Touch panel and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/085600 WO2015058337A1 (zh) 2013-10-21 2013-10-21 触控面板及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/569,004 Continuation US9451705B2 (en) 2013-10-21 2014-12-12 Touch panel and production method thereof

Publications (1)

Publication Number Publication Date
WO2015058337A1 true WO2015058337A1 (zh) 2015-04-30

Family

ID=50864329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085600 WO2015058337A1 (zh) 2013-10-21 2013-10-21 触控面板及其制作方法

Country Status (5)

Country Link
US (1) US9451705B2 (zh)
EP (1) EP2887189B1 (zh)
JP (1) JP2015535385A (zh)
CN (1) CN103858082A (zh)
WO (1) WO2015058337A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802649B2 (en) 2016-07-19 2020-10-13 Elo Touch Solutions, Inc. Projected-capacitive (PCAP) touchscreen
US10969902B2 (en) * 2016-07-19 2021-04-06 Elo Touch Solutions, Inc. Projected-capacitive (PCAP) touchscreen
CN106648202B (zh) * 2016-09-30 2023-03-28 安徽精卓光显技术有限责任公司 电子设备、触控显示屏、触控组件及触控导电膜
CN106775172A (zh) * 2017-01-20 2017-05-31 京东方科技集团股份有限公司 触摸屏、触摸屏的制备方法及触控显示装置
CN108182884A (zh) * 2017-12-29 2018-06-19 重庆锐虎光电科技有限公司 能够与移动终端交互的led电子显示终端
CN110794988B (zh) * 2019-10-22 2021-12-03 维沃移动通信有限公司 一种显示模组和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324827A (zh) * 2007-06-14 2008-12-17 爱普生映像元器件有限公司 静电电容型输入装置
CN102346587A (zh) * 2010-08-03 2012-02-08 明兴光电股份有限公司 触控面板
CN102667688A (zh) * 2010-03-11 2012-09-12 阿尔卑斯电气株式会社 透光型输入装置
CN103327729A (zh) * 2012-03-22 2013-09-25 瀚宇彩晶股份有限公司 电子装置的软性电路板接合结构

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050083833A (ko) * 2002-10-31 2005-08-26 해럴드 필립 전하전송 용량성 위치센서
US8026903B2 (en) 2007-01-03 2011-09-27 Apple Inc. Double-sided touch sensitive panel and flex circuit bonding
US7920129B2 (en) 2007-01-03 2011-04-05 Apple Inc. Double-sided touch-sensitive panel with shield and drive combined layer
US8970504B2 (en) * 2008-04-25 2015-03-03 Apple Inc. Reliability metal traces
KR100909265B1 (ko) * 2009-02-23 2009-07-27 (주)이엔에이치테크 정전용량 방식의 터치스크린 패널의 제조방법
US20110012845A1 (en) * 2009-07-20 2011-01-20 Rothkopf Fletcher R Touch sensor structures for displays
JP5526761B2 (ja) * 2009-12-22 2014-06-18 ソニー株式会社 センサ装置及び情報処理装置
JP2012079169A (ja) * 2010-10-04 2012-04-19 Shin Etsu Polymer Co Ltd 検出基板およびその製造方法
JP5436485B2 (ja) * 2011-03-30 2014-03-05 アルプス電気株式会社 入力装置
US9117778B2 (en) * 2011-07-25 2015-08-25 Joled Inc. Display device
CN102298477B (zh) * 2011-09-19 2013-07-03 深圳市汇顶科技股份有限公司 触摸控制器自适应电容式触摸传感器的方法及系统
US9164548B2 (en) * 2012-04-13 2015-10-20 Htc Corporation Touch panel and handheld electronic device utilizing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324827A (zh) * 2007-06-14 2008-12-17 爱普生映像元器件有限公司 静电电容型输入装置
CN102667688A (zh) * 2010-03-11 2012-09-12 阿尔卑斯电气株式会社 透光型输入装置
CN102346587A (zh) * 2010-08-03 2012-02-08 明兴光电股份有限公司 触控面板
CN103327729A (zh) * 2012-03-22 2013-09-25 瀚宇彩晶股份有限公司 电子装置的软性电路板接合结构

Also Published As

Publication number Publication date
EP2887189A1 (en) 2015-06-24
US20150109249A1 (en) 2015-04-23
US9451705B2 (en) 2016-09-20
EP2887189B1 (en) 2019-10-02
CN103858082A (zh) 2014-06-11
EP2887189A4 (en) 2015-09-23
JP2015535385A (ja) 2015-12-10

Similar Documents

Publication Publication Date Title
US10888038B2 (en) Conductive film and display apparatus provided with same
WO2015058337A1 (zh) 触控面板及其制作方法
TWI497373B (zh) 柔性觸控面板結構及其製造方法
JP5248653B2 (ja) 導電シート及び静電容量方式タッチパネル
JP5230533B2 (ja) タッチパネルおよびそれを備えた表示装置
TWI502451B (zh) Capacitive type input device and manufacturing method thereof
WO2019076106A1 (zh) 触控面板及其制备方法以及对应的触控装置
JP6126739B2 (ja) 導電膜積層体、およびこれを用いるタッチパネル
CN104969160A (zh) 输入装置及其制造方法和电子信息设备
JP2014219986A (ja) タッチセンサおよびそれを含む電子機器
CN104956296A (zh) 输入装置及其制造方法和电子信息设备
TW201407436A (zh) 觸控感測結構及觸控裝置
JP2012163951A (ja) 導電性フイルムを備える表示装置及び導電性フイルム
US20190212841A1 (en) Touch panel and method for making same
US20230147291A1 (en) Touch substrate, display panel, and touch display device
CN204288198U (zh) 触控面板
JP2015148942A (ja) タッチパネルセンサおよびタッチパネルセンサを備える入出力装置
JP2011159271A (ja) タッチパネル構造
WO2019192337A1 (zh) 触控传感器及其制备方法、显示面板及其制备方法和显示装置
JP2012138018A (ja) タッチパネル、及びこのタッチパネルを備えた表示装置
KR101469149B1 (ko) 터치 패널 및 제조 방법
JP6118277B2 (ja) 導電性フイルム
TWI662459B (zh) 觸控面板
TWI502435B (zh) 觸控顯示系統及其觸控面板之線路佈局結構
TW201506748A (zh) 觸控顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013886625

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015543266

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE